1ジクロロメタンのラットを用いた吸入による2週間毒性試験報告書

試験番号:0229

APPENDIX

APPENDIXES

APPENDIX A 1 BODY WEIGHT CHANGES: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX A 2 BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE (2-WEEK STUDY) APPENDIX B 1 FOOD CONSUMPTION CHANGES: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX B 2 FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE (2-WEEK STUDY) APPENDIX C 1 HEMATOLOGY: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX C 2 HEMATOLOGY: SUMMARY, RAT: FEMALE (2-WEEK STUDY) APPENDIX D 1 BIOCHEMISTRY: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX D 2 BIOCHEMISTRY: SUMMARY, RAT: FEMALE (2-WEEK STUDY) APPENDIX E 1 GROSS FINDINGS : SUMMARY, RAT : MALE : DEAD AND MORIBUND ANIMALS (2-WEEK STUDY) APPENDIX E 2 GROSS FINDINGS : SUMMARY, RAT : FEMALE : DEAD AND MORIBUND ANIMALS (2-WEEK STUDY) APPENDIX E 3 GROSS FINDINGS : SUMMARY, RAT : FEMALE : SACRIFICED ANIMALS (2-WEEK STUDY) APPENDIX F 1 ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX F 2 ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: FEMALE (2-WEEK STUDY) APPENDIX G 1 ORGAN WEIGHT, RELATIVE: SUMMARY, RAT: MALE (2-WEEK STUDY) APPENDIX G 2 ORGAN WEIGHT, RELATIVE: SUMMARY, RAT: FEMALE

APPENDIXES (CONTINUED)

APPENDIX H 1 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: MALE: DEAD AND MORIBUND ANIMALS (2-WEEK STUDY) APPENDIX H 2 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: FEMALE: DEAD AND MORIBUND ANIMALS (2-WEEK STUDY) APPENDIX H 3 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: FEMALE: SACRIFICED ANIMALS (2-WEEK STUDY) APPENDIX I 1 IDENTITY OF DICHLOROMETHANE IN THE 2-WEEK INHALATION STUDY STABILITY OF DICHLOROMETHANE IN THE 2-WEEK APPENDIX I 2 INHALATION STUDY APPENDIX J 1 CONCENTRATION OF DICHLOROMETHANE IN THE INHALATION CHAMBER OF THE 2-WEEK INHALATION STUDY APPENDIX J 2 ENVIRONMENTAL CONDITIONS OF INHALATION CHAMBER IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE APPENDIX K 1 METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE APPENDIX K 2 UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

APPENDIX A 1

BODY WEIGHT CHANGES :SUMMARY, RAT : MALE

STUDY NO.: 0229

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 2

SEX : MALE

(HAN260)

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

up Name	Admini:	stratio	n week-day						 	••••	
	0-0		1-1		1-7		2-7				
Control	113±	9	116±	8	134±	12	157±	11			•
1000ppm	114±	7	116±	7	138±	9	167±	12			
2000ppm	114±	8	· 117±	9	135±	10	159±	13			
4000ppm	114±	9	115±	10	134±	13	161±	16			
8000ppm	113±	9	110±	9	120±	7*	138±	9**			
Обобры	1101	U	110.1	J	120.1	14	100 표	3**			
16000ppm	113±	9	104±	0 ?	-		-				
Cincidi - 1 diff				-						· · · · · · · · · · · · · · · · · · ·	
Significant differe	ence; *:P≦0	.05	$** : P \leq 0.01$				Test of Du	ınnett			

APPENDIX A 2

BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE

UNIT : g
REPORT TYPE : A1 2

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name Administration week-day_ 0-0 1-1 1-7 2-7 Control 101± 3 102± 3 111± 5 125± 6 1000ppm 99± 4 100± 3 110± 4 122± 6 2000ppm 100± 4 101± 3 112± 5 125± 4 4000ppm 100± 3 101± 3 111± 4 125± 5 8000ppm 99± 3 95± 3** 98± 3** 110± 5** 16000ppm 99± 3 100± 2

Significant difference : $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 3

PAGE: 2

APPENDIX B 1

FOOD CONSUMPTION CHANGES: SUMMARY, RAT: MALE

STUDY NO. : 0229

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 2
SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

oup Name	Administration	week-day(effective)		
	1-7(7)	2–7 (7)		
Control	13.8± 1.5	14.2± 1.5		
1000ppm	14.0± 1.2	15.3± 1.7		
2000ppm	13.8± 1.1	14.4± 1.5		
4000ppm	13.6± 1.2	14.3± 1.2		
8000ppm	10.2± 0.6**	11.9± 0.8**		
16000ppm	7.2± 0.0 ?	_		
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01	Test of Dunnett	

(HAN260)

APPENDIX B 2

FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE

STUDY NO. : 0229

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 2
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

EX : FEMALE				PAGE:
roup Name	Administration 1—7(7)	week-day(effective) 2-7(7)		
	1-1(1)	2-1(1)	P104.32.1	
Control	11.6± 0.9	11.8± 0.9		
1000ppm	11.4± 1.0	11.5± 1.1		
2000ppm	11.5± 0.6	11.6± 0.5		
4000ppm	11.6± 0.6	11.7± 0.6		
8000ppm	8.2± 0.6**	9.6± 0.8**		
16000ppm	7.2± 0.0 ?	-		
Significant difference;	*: P ≤ 0.05 *	*: P ≤ 0.01	Test of Dunnett	
? · Significant test is	at applied because We		di 0	
?: Significant test is no	ot applied, because No.	of data in this group is less	than 3.	

(HAN260)

APPENDIX C 1

HEMATOLOGY: SUMMARY, RAT: MALE

STUDY NO. : 0229

ANIMAL : RAT F344
SAMPLING DATE : 002-7
SEX : MALE

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of Animals	RED BLOO 1 O ⁶ /μℓ		HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f Q		MCH Pg		g∕d1 MCHC		PLATELE 1 Ο³/μ	
Control	5	7.93±	0.27	14.6±	0.5	42.9±	1.3	54.1±	0.4	18.4±	0.3	34.0±	0.4	701±	75
1000ppm	5	7.81±	0.10	14.8±	0.2	43.1±	0.7	55.2±	0.6*	18.9±	0.2*	34.3±	0.4	825±	95*
2000ppm	5	8.03±	0.16	15.2±	0.4	44.2±	1.0	55.1±	0.5*	18.9±	0.2*	34.3±	0.5	785±	42
4000ppm	5	7.68±	0.22	14.7±	0.6	42.4±	1.2	55.1±	0.6*	19.1±	0.3**	34.6±	0.6	796±	36
8000ppm	5	7.88±	0.12	14.6±	0.3	42.6±	0.4	54.1±	0.6	18.5±	0.2	34.3±	0.5	637±	64
16000ppm	0	-		-		-		-				-		-	

(HCL070)

STUDY NO.: 0229 ANIMAL : RAT F344
SAMPLING DATE : 002-7

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

SEX : MALE REPORT TYPE : A1 PAGE: 2

Group Name	NO. of Animals	RETICULOC ‰	YTE	PROTHRO s e c	MBIN TIME	APTT sec	;
Contral	5	42±	6	12.7±	0.4	20.3±	1.0
1000ppm	5	48±	9	12.6±	0.4	20.6±	1.1
2000ppm	5	41±	10	12.8±	0.4	20.8±	1.0
4000ppm	5	36±	4	12.7±	0.2	21.8±	0.8
8000ppm	5	36±	12	13.3±	0.2*	21.3±	0.5
16000ppm	0	-		-			
Significant	difference;	*: P ≤ 0.0)5	**: P ≦ 0.0)1		Test of Dunnett

(HCL070)

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE : 002-7 SEX : MALE

REPORT TYPE : A1

PAGE: 3

Froup Name	NO. of	WBC	;	Dif	ferentia	L WBC (9	6)										
	Animals	1 0³/	'μέ ————————————————————————————————————	N-BAND		N-SEG		EOSINO		BASO		MONO		LYMPHO		OTHERS	
Control	5	1.35±	0.20	0±	0	25±	10	1±	1	0±	0	4±	0	69±	8	0±	0
1000ppm	5	1.44±	0.27	0±	1	27±	7	1±	1	0±	0	3±	1	68±	6	0±	0
2000ppm	5	1.64±	0.57	0±	0	24±	4	1±	1	0±	0	3±	1	72±	4	0±	0
4000ppm	5	1.75±	0.62	0 ⁻ ±	0	22±	6	1±	0	0±	0	3±	2	73±	8	0±	0
8000ppm	5	1.82±	1.16	1±	1	33±	8	1±	1	0±	0	4±	2	62±	10	0±	1
16000ppm	0	-				-		-		-		-		-		-	
Significan	t difference :	*:P;	≦ 0.05	**: P ≦	0.01	···		Test	of Duni	nett							
(HCL070)						•											BAISS

APPENDIX C 2

HEMATOLOGY: SUMMARY, RAT: FEMALE

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE: 002-7 SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

		пқ	g/dl)BIN	HEMATOC %		MCV f Q		MCH Pg		MCHC g∕dl	·	PLATELE 1 O³∕µ	
5	8.11±	0.24	15.4±	0.4	43.5±	1.3	53.7±	0.4	19.0±	0.4	35.4±	0.9	738±	69
5	8.53±	0.06**	16.2±	0.3*	46.3±	0.2**	54.3±	0.4	19.0±	0.4	34.9±	0.8	731±	71
5	8.33±	0.23	15.8±	0.4	45.0±	1.4	54.0±	0.3	18.9±	0.2	35.0±	0.4	737±	66
5	8.28±	0.19	15.7±	0.5	45.1±	1.1	54.4±	0.5	18.9±	0.3	34.8±	0.6	717±	105
5	7.97±	0.16	15.2±	0.3	43.1±	0.9	54.1±	0.9	19.1±	0.5	35.3±	1.1	664±	62
0	-		-		-		-				•••		-	
difference;	* ; P ≤	0.05 *	*: P ≤ 0.0)1			Test of Dur	nett						
	5 5 5 0	5 8.53± 5 8.33± 5 8.28± 5 7.97± 0 -	5 8.53± 0.06** 5 8.33± 0.23 5 8.28± 0.19 5 7.97± 0.16 0 -	5 8.53± 0.06** 16.2± 5 8.33± 0.23 15.8± 5 8.28± 0.19 15.7± 5 7.97± 0.16 15.2± 0 - -	5 8.53± 0.06** 16.2± 0.3* 5 8.33± 0.23 15.8± 0.4 5 8.28± 0.19 15.7± 0.5 5 7.97± 0.16 15.2± 0.3 0	5 8.53± 0.06** 16.2± 0.3* 46.3± 5 8.33± 0.23 15.8± 0.4 45.0± 5 8.28± 0.19 15.7± 0.5 45.1± 5 7.97± 0.16 15.2± 0.3 43.1± 0 - - - -	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 0 - - - - -	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0 - - - - - -	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 0	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 19.0± 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 18.9± 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 18.9± 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 19.1± 0 - - - - - -	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 19.0± 0.4 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 18.9± 0.2 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 18.9± 0.3 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 19.1± 0.5 0	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 19.0± 0.4 34.9± 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 18.9± 0.2 35.0± 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 18.9± 0.3 34.8± 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 19.1± 0.5 35.3± 0 - - - - - - - - -	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 19.0± 0.4 34.9± 0.8 5 8.33± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 18.9± 0.2 35.0± 0.4 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 18.9± 0.3 34.8± 0.6 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 19.1± 0.5 35.3± 1.1 0	5 8.53± 0.06** 16.2± 0.3* 46.3± 0.2** 54.3± 0.4 19.0± 0.4 34.9± 0.8 731± 5 8.38± 0.23 15.8± 0.4 45.0± 1.4 54.0± 0.3 18.9± 0.2 35.0± 0.4 737± 5 8.28± 0.19 15.7± 0.5 45.1± 1.1 54.4± 0.5 18.9± 0.3 34.8± 0.6 717± 5 7.97± 0.16 15.2± 0.3 43.1± 0.9 54.1± 0.9 19.1± 0.5 35.3± 1.1 664± 0 -

(HCLO70)

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE: 002-7 SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

Group Name	NO. of Animals	RETICULO	OCYTE	PROTHRO sec	OMBIN TIME	APTT sec		
Control	5	26±	4	12.8±	0.5	18.6±	5	
1000ppm	5	27士	7	12.9±	0.2	19.2±		
2000ppm	5	29±	6	12.8±	0.3	20.2±	0	
4000ppm	5	29±	3	12.8±	0.1	20.1±	0	
mqq0008	5	33±	8	13.6±	0.3**	20.0±	2	
16000ppm	0	-		-		-		
Significant	difference;	*: P ≤ 0	.05	**: P ≤ 0.0	D1		Test of Dunnett	
(HCL070)								DATO

(HCL070)

HEMATOLOGY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE : 002-7 SEX : FEMALE REPORT TYPE : A1 PAGE: 6

roup Name	NO. of Animals	WBC 1 03/		Dif N-BAND	ferentia	L WBC (% N-SEG	5)	EOSINO		BASO		MONO		LYMPHO		OTHERS	
Control	5	1.32±	0.73	0±	1	23±	6	1±	1	0±	0	4±	1	72±	5	0±	0
1000ppm	5	1.61±	1.35	0±	0	24±	8	2±	1	0±	0	4±	1	70±	9	0±	0
2000ppm	5	1.36±	0.64	0±	0	30±	5	2±	1	0±	0	3±	1	65±	4	0±	0
4000ppm	5	1.87±	0.80	0.于	0	33±	4	1±	1	0±	0	3±	1	62±	5	0±	1
8000ppm	5	1.15±	0.48	0±	0	43±	6**	2±	1	0±	0	5±	2	50±	8**	0±	0
16000ppm	0	_		-		-		-		-		-		-		-	
Significan	t difference ;	*:P <u>\$</u>	≤ 0.05	**: P ≦	0.01			Test	of Dunr	nett		- / ····					
HCL070)			•		THAT.					**************************************			*****				BAISS

APPENDIX D 1

BIOCHEMISTRY: SUMMARY, RAT: MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE: 003-1 SEX: MALE

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of Animals	TOTAL PROTEI	N ALBUMIN g∕dl	A/G RATIO	T-BILIRUBIN mg/df	GLUCOSE mg/dl	T-CHOLESTEROL mg∕dl	PHOSPHOLIPID mg/dl
Control	5	5.8± 0.1	3.6± 0.0	1.7± 0.1	0.27± 0.05	177± 13	59± 3	118± 8
1000pm	5	5.7± 0.1	3.6± 0.1	1.7± 0.1	0.23± 0.03	168± 7	58± 7	116± 17
2000ppm	5	5.7± 0.2	3.5± 0.1	1.7± 0.1	0.25± 0.09	174± 6	56± 3	112± 9
4000ppm	5	5.6± 0.2	3.5± 0.1	1.6± 0.1	0.27± 0.03	176± 11	56± 3	109± 7
8000ppm	5	5.6± 0.1	3.5± 0.1	1.7± 0.1	0.34± 0.06	169± 10	55± 4	116± 6
16000ppm	0	-	-	-	-	-	-	-
Significant	defference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HCL074)

SAMPLING DATE: 003-1 SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

REPORT TYPE : A1

CPK UREA NITROGEN CREATININE NO. of GOT GPT LDH G-GTP Group Name mg/dl IU/Q IU/l IU/l IU/Q mg/dl Animals IU/Q 2 20± 226± 40 0土 0 141士 22 15.6± 3.0 0.3± 0.1 Control 5 63± 1 0± 225± 50 139± 18 15.6± 1.1 $0.3 \pm$ 0.0 5 3 20士 1 1000ppm 61± 0.3± 0.1 $20\pm$ 2 $226 \pm$ 42 0± 1 141土 20 $16.2 \pm$ 3.1 2000ppm 5 $63\pm$ 3 $0.4\pm$ 0.1 4000ppm 5 62± $20\pm$ 2 254生 52 0± $162 \pm$ 22 $14.7 \pm$ 2.7 5 $21\pm$ 245± 49 0± 0 149± 17 $13.9 \pm$ 3.2 $0.3 \pm$ 0.0 8000ppm 67± 1 0 16000ppm

PAGE: 2

Significant defference : $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

BAIS3 (HCL074)

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE: 003-1

SEX : MALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of Animals	SODIUM mEq/Q	, .	POTASSI mEq/		CHLORIDE mEq∕ Q	· F, III · · · · · · · · · · · · · · · · ·	mg/dl mg/dl		INORGAN mg/dl	NIC PHOSPHORUS
Control	5	141±	2	4.2±	0.2	106±	1	10.6±	0.2	7.5±	0.5
1000ppm	5	141±	2	4.1±	0.4	105±	2	10.9±	0.5	8.5±	0.8
2000ppm	5	142±	1	'4.1±	0.3	105±	1	10.7±	0.4	7.8±	0.8
4000ppm	5	140±	2	4.3±	0.3	105±	2	10.7±	0.1	7.8±	0.8
8000ppm	5	141±	2	4.0±	0.2	106±	1	10.8±	1.3	7.5±	1.1
16000ppm	0	-		-		-		•••		-	

(HCL074)

APPENDIX D 2

BIOCHEMISTRY: SUMMARY, RAT: FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE : 003-1 SEX : FEMALE

REPORT TYPE : A1

oup Name	NO. of Animals	g/dl g/dl	ROTEIN	g ∕di ATBUMIN		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES	TEROL	PHOSPHOI mg/dl	JIPID
Contral	5	5.7±	0.3	3.5±	0.1	1.6±	0.1	0.37±	0.12	177±	9	73±	2	136±	7
1000ppm	5	5.5±	0.2	3.5±	0.1	1.7±	0.1	0.39±	0.12	166±	12	68±	5	128±	14
2000ppm	5	5.6±	0.1	·3.5±	0.1	1.7±	0.1	0.32±	0.12	168±	14	67±	5	122±	12
4000ppm	5	5.6±	0.2	3.5±	0.1	1.7±	0.1	0.34±	0.07	173±	15	72±	6	134±	10
8000ppm	5	5.6±	0.1	3.5±	0.1	1.7±	0.1	0.41±	0.11	160±	12	68±	5	135±	10
16000ppm	0			-		-		-		-		-		- -	

(HCL074)

BAIS3

PAGE: 4

SAMPLING DATE: 003-1

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

SEX : FEMALE

REPORT TYPE : A1

Group Name NO. of GOT GPT LDH G-GTP CPK UREA NITROGEN CREATININE Animals IU/Q IU/Q IU/Q IU/l IU/l mg/dl mg/dl Control 5 63± 2 19± 1 369± 59 $1\pm$ 1 166± 20 $17.4 \pm$ 2.6 0.3± 0.1 1000ppm 63± 3 19± 2 319± 83 0± 1 154± 23 17.4± 3.5 0.3± 0.0 2000ppm $59\pm$ 3 · 19± 2 $232 \pm$ 21** $1\pm$ 0 $135\pm$ 7 $15.5 \pm$ 2.0 $0.3 \pm$ 0.1 4000ppm 5 $58\pm$ 2* 18± 1 277士 50 1± 1 144士 13 16.9± 2.9 0.4± 0.1 mqq0008 64± 5 $21\pm$ 2 277± 81 1± 1 $139 \pm$ 25 13.7 ± 3.1 0.4± 0.1 16000ppm 0

Significant defference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett

(HCL074)

BAIS 3

PAGE: 5

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (2)

SAMPLING DATE: 003-1

16000ppm

SEX : FEMALE

REPORT TYPE : A1

Group Name NO. of SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mEq/l mEq∕l mEq/l mg/dl mg/dl Control 142± 1 3.8± 0.2 108生 2 10.4± 0.4 6.8± 0.8 1000ppm 5 141± 1 $4.0 \pm$ 0.3 108± 3 $10.4 \pm$ 0.4 6.9± 1.0 2000ppm 5 142士 2 '3.7± 0.4 108士 1 10.4± 0.2 $6.7\pm$ 0.6 4000ppm 141土 $4.1\pm$ 0.3 106± 1 $10.7 \pm$ 0.7 $7.4 \pm$ 0.5 8000ppm 5 141士 1 $4.0 \pm$ 0.4 107士 10.6± 1.0 6.9± 1.0

PAGE: 6

BAIS 3

Significant defference : $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett (HCL074)

APPENDIX E 1

GROSS FINDINGS: SUMMARY, RAT: MALE: DEAD AND MORIBUND ANIMALS

REPORT TYPE : A1 : MALE

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0- 2W)

PAGE: 1

			0 (%)	0 (%)
luns redizone	- (-)	- (-)	- (-)	- (-)
voluminus	- (-)	- (-)	- (-)	- (-)

(HPT080)

STUDY NO. : 0229

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0- 2W)

ANIMAL : RAT F344
REPORT TYPE : A1
SEX : MALE

0rgan	Findings	Group Name NO. of Animals	8000ppm 0 (%)	16000ppm 10 (%)	
lung	red zone		- (-)	7 (70)	
	voluminus		- (-)	5 (50)	
(HPT080)		•.			BAIS3

PAGE: 2

APPENDIX E 2

GROSS FINDINGS : SUMMARY, RAT : FEMALE : DEAD AND MORIBUND ANIMALS (2-WEEK STUDY)

STUDY NO. : 0229 ANIMAL : RAT F344
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0- 2W)

SEX : FEMALE

Organ	Findings_	Group Name NO. of Animals	Control 0 (%)	1000ppm 0 (%)	2000ppm 0 (%)	4000ppm 0 (%)
rachea	fluid:foamy		- (-)	- (-)	- (-)	- (-)
lung	red zone		- (-)	- (-)	- (-)	- (-)
	voluminus		- (-)	- (-)	- (-)	- (-)

PAGE: 3

(HPT080) BAIS3 STUDY NO. : 0229

GROSS FINDINGS (SUMMARY)

ANIMAL : RAT F344

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1 : FEMALE SEX

0rgan	Findings	Group Name NO. of Animals	8000ppm 0 (%)	16000ppm 10 (%)	
trachea	fluid:foamy		- (-)	3 (30)	
lung	red zone		- (-)	9 (90)	
	voluminus .		- (-)	2 (20)	
	· ·				
(HPT080)					BAIS3

PAGE: 4

APPENDIX E 3

GROSS FINDINGS : SUMMARY, RAT : FEMALE : SACRIFICED ANIMALS

REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	1000ppm 10 (%)	2000ppm 10 (%)	4000ppm 10 (%)
thymus	red zone		1 (10)	0 (0)	0 (0)	0 (0)
HPT080)						

STUDY NO. : 0229
ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (2W)

Organ	Findings	Group Name 8000ppm NO. of Animals 10 (%)	16000ppm 0 (%)	
thymus	red zone	0 (0)	- (-)	
(HPT080)				BAIS3

•

PAGE: 2

.

.

APPENDIX F 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: MALE

(2-WEEK STUDY)

STUDY NO.: 0229 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (2)

PAGE: 1

oup Name	NO. of Animals	Body	Weight	ТНҮМ	US	ADRE	NALS	TEST	ES	HEAR	T	LUNG	S
Control	5	157±	9	0.303±	0.028	0.040±	0.006	1.998±	0.217	0.592±	0.063	0.712±	0.074
1000ppm	5	173±	13	0.331±	0.010	0.045±	0.009	2.146±	0.161	0.631±	0.056	0.768±	0.069
2000ppm	5	160±	19	0.306±	0.041	0.044±	0.009	2.011±	0.468	0.601±	0.069	0.722±	0.095
4000ppm	5	161±	18	0.331±	0.029	0.041±	0.005	1.784±	0.236	0.600±	0.061	0.744±	0.058
8000ppm	5	139±	12	0.215±	0.022**	0.049±	0.004	1.757±	0.390	0.514±	0.038	0.649±	0.053
16000ppm	0	-		-		-		-		_		***	
Significan	t difference;	*: P ≤ 0.	05 *	*: P ≤ 0.01			Tes	t of Dunnett		-,	***************************************		
ICL040)	· · · · · · · · · · · · · · · · · · ·							*****		·			

STUDY NO.: 0229
ANIMAL: RAT F344
REPORT TYPE: A1

ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (2)

SEX : MALE UNIT: g

Group Name NO. of KIDNEYS SPLEEN LIVER BRAIN Animals Control 1.234± 0.070 0.354± 0.050 5.876± 0.403 1.684± 0.107 1000ppm 5 1.375± 0.100 0.382± 0.037 6.851± 0.889 1.711± 0.032 2000ppm 1.279± 0.130 0.364± 0.070 6.257± 0.977 1.697± 0.069 4000ppm 5 1.263± 0.179 0.371± 0.041 6.581± 1.057 1.628± 0.044 8000ppm 5 1.197± 0.152 0.291± 0.029 5.273± 0.601 1.650± 0.055 16000ppm

Test of Dunnett

(HCL040)

Significant difference; $*: P \leq 0.05$

 $**: P \leq 0.01$

BAIS3

PAGE: 2

APPENDIX F 2

ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: FEMALE

(2-WEEK STUDY)

STUDY NO. : 0229
ANIMAL : RAT F344
REPORT TYPE : A1
SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (2)

PAGE: 3

roup Name	NO. of Animals	Body (eight	ТНҮМ	US	ADRE	NALS	OVAR	IES	HEAR	Т	LUNG	S
Contral	5	123±	6	0.261±	0.012	0.051±	0.010	0.068±	0.004	0.477±	0.054	0.603±	0.054
1000ppm	5	124±	6	0.278±	0.014	0.047±	0.009	0.066±	0.007	0.488±	0.044	0.633±	0.068
2000ppm	5	125±	5	0.279±	0.030	0.050±	0.005	0.065±	0.016	0.504±	0.030	0.625±	0.064
4000ppm	5	126±	4	0.288±	0.019	0.056±	0.012	0.077±	0.016	0.519±	0.050	0.670±	0.054
8000ppm	5	108±	5**	0.165±	0.020**	0.051±	0.001	0.057±	0.012	0.440±	0.027	0.578±	0.025
16000ppm	0	-		-		-		-				-	
	t difference;	*: P ≤ 0.0	5 **	: P ≤ 0.01		· · · · · · · · · · · · · · · · · · ·	Tes	t of Dunnett		-			

(HCL040)

BAIS 3

STUDY NO.: 0229 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)
SURVIVAL ANIMALS (2)

PAGE: 4

NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
5	0.995± 0.058	0.285± 0.024	4.305± 0.481	1.629± 0.039	
5	1.041± 0.066	0.274± 0.031	4.445± 0.421	1.593± 0.069	
5	1.021± 0.029		4.604± 0.283	1.634± 0.046	
5	1.097± 0.064	•	5.007± 0.308*	1.617± 0.055	
5	1.016± 0.046	0.236± 0.012*	4.032± 0.264	1.564± 0.040	
0	-	-	-	-	
-	5 5 5 5	5 0.995± 0.058 5 1.041± 0.066 5 1.021± 0.029 5 1.097± 0.064 5 1.016± 0.046	5 0.995± 0.058 0.285± 0.024 5 1.041± 0.066 0.274± 0.031 5 1.021± 0.029 0.296± 0.022 5 1.097± 0.064 0.311± 0.031 5 1.016± 0.046 0.236± 0.012*	5 0.995± 0.058 0.285± 0.024 4.305± 0.481 5 1.041± 0.066 0.274± 0.031 4.445± 0.421 5 1.021± 0.029 0.296± 0.022 4.604± 0.283 5 1.097± 0.064 0.311± 0.031 5.007± 0.308* 5 1.016± 0.046 0.236± 0.012* 4.032± 0.264	5

(HCL040)

BAIS 3

APPENDIX G 1

ORGAN WEIGHT, RELATIVE: SUMMARY, RAT: MALE

(2-WEEK STUDY)

STUDY NO.: 0229 ANIMAL: RAT F344

REPORT TYPE : A1
SEX : MALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (2)

PAGE: 1

Group Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	5	157± 9	0.194± 0.019	0.026± 0.003	1.273± 0.092	0.377± 0.027	0.453± 0.024	
1000ppm	5	173± 13	0.192± 0.012	0.026± 0.004	1.242± 0.063	0.365± 0.016	0.444± 0.033	
2000ppm	5	160± 19	. 0.193± 0.020	0.028± 0.005	1.245± 0.169	0.377± 0.004	0.453± 0.033	
4000ppm	5	161± 18	0.207± 0.018	0.026± 0.004	1.109± 0.071	0.374± 0.019	0.466± 0.046	
8000ppm	5	139± 12	0.156± 0.012**	0.036± 0.004**	1.256± 0.201	0.371± 0.016	0.468± 0.021	
16000ppm	0	-	-	-	-	-	-	
Significan	t difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Test	t of Dunnett			

(HCL042)

BAIS 3

STUDY NO. : 0229 ANIMAL : RAT F344 REPORT TYPE : A1

REPORT TYPE SEX: MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (2)

PAGE: 2

	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	5	0.787± 0.018	0.225± 0.020	3.747± 0.132	1.076± 0.084	
1000ppm	5	0.795± 0.028	0.220± 0.010	3.948± 0.251	0.993± 0.068	
2000ppm	5	0.803± 0.029	0.227± 0.023	3.905± 0.174	1.074± 0.111	
4000ppm	5	0.784± 0.034	0.231± 0.006	4.077± 0.200	1.024± 0.128	
8000ppm	5	0.860± 0.035**	0.210± 0.010	3.792± 0.112	1.196± 0.100	
16000ppm	0	-	-	-	-	

(HCL042)

BAIS3

APPENDIX G 2

ORGAN WEIGHT, RELATIVE: SUMMARY, RAT: MALE

(2-WEEK STUDY)

STUDY NO. : 0229 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (2)

PAGE: 3

NO. of Animals			THYMUS	ADRENALS	OVARIES	HEART	LUNGS
5	123±	6	0.213± 0.017	0.041± 0.007	0.055± 0.003	0.387± 0.027	0.490± 0.041
5	124±	6	0.225± 0.012	0.038± 0.006	0.053± 0.005	0.394± 0.032	0.511± 0.041
5	125±	5	0.222± 0.018	0.040± 0.005	0.051± 0.012	0.403± 0.037	0.498± 0.039
5	126±	4	0.228± 0.012	0.044± 0.009	0.061± 0.012	0.411± 0.033	0.529± 0.032
5	108±	5**	0.153± 0.020**	0.048± 0.003	0.053± 0.011	0.408± 0.022	0.537± 0.036
0	-		-	-	-	-	-
	Animals 5 5 5 5	Animals (5 123± 5 124± 5 125± 5 126± 5 108±	Animals (g) 5 123± 6 5 124± 6 5 125± 5 5 126± 4 5 108± 5**	Animals (g) 5 123± 6 0.213± 0.017 5 124± 6 0.225± 0.012 5 125± 5 0.222± 0.018 5 126± 4 0.228± 0.012 5 108± 5** 0.153± 0.020**	Animals (g) 5 123± 6 0.213± 0.017 0.041± 0.007 5 124± 6 0.225± 0.012 0.038± 0.006 5 125± 5 0.222± 0.018 0.040± 0.005 5 126± 4 0.228± 0.012 0.044± 0.009 5 108± 5** 0.153± 0.020** 0.048± 0.003	Animals (g) 5	Animals (g) 5

(HCL042)

BAIS 3

STUDY NO. : 0229 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (2)

PAGE: 4

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	5	0.809± 0.027	0.231± 0.010	3.492± 0.234	1.327± 0.074	
1000ppm	5	0.841± 0.034	0.220± 0.016	3.586± 0.217	1.290± 0.104	
2000ppm	5	0.816± 0.040	0.236± 0.011	3.680± 0.221	1.306± 0.020	
4000ppm	5	0.868± 0.047	0.246± 0.020	3.959± 0.165**	1.280± 0.056	
mqq0008	5	0.943± 0.043**	0.220± 0.013	3.739± 0.140	1.453± 0.079*	
16000ppm	0	-	-	-	-	

(HCL042)

BAIS 3

APPENDIX H 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: MALE: DEAD AND MORIBUND ANIMALS

(2-WEEK STUDY)

STUDY NO. : 0229 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0- 2W)

PAGE: 1

BAIS3

REPORT TYPE : A1

(HPT150)

SEX : MALE

)rgan		p Name	1000ppm 0 1 2 3 4 (%) (%) (%) (%)	2000ppm 0 1 2 3 4 (%) (%) (%) (%)	4000ppm 0 1 2 3 4 (%) (%) (%) (%)
Respiratory s	vstem]				
masal cavit	congestion .	<pre></pre>	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
ura	congestion	< 0> (-) (-) (-) (-)	(-) (-) (-) ()	(-) (-) (-) (-)	< 0> (-) (-) (-) (-)
	edema	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
ematopoietic	system]				
nymus	hemorrhage	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Endocrine sys	ton				
adrenal	consestion	(-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-)	< 0> (-) (-) (-) (-

STUDY NO. : 0229 ANIMAL : RAT F344 REPORT TYPE : A1

: MALE

SEX

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

0rgan	No	roup Name 8000ppm b. of Animals on Study 0 rade 1 2 3 4 (%) (%) (%) (%)	16000ppm 2 1 2 3 4 (%) (%) (%) (%)	
[Respiratory	system]			
nasal cauit	congestion	< 0> (-) (-) (-) (-)	<pre></pre>	
lung	congestion	<pre></pre>	<pre></pre>	
	edema	(-) (-) (-) (-)	1 1 0 0 (50) (50) (0) (0)	
[Hematopoiet	cic system]			
thymus	hemorrhage	< 0> (-) (-) (-) (-)	2 0 0 0 (100) (0) (0)	
[Endocrine s	system]			
adrenal	congestion	(-) (-) (-) (-)	2 0 0 0 (100) (0) (0) (0)	
Grade <a>> b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a*100	Marked 4: Severe se		
(HPT150)				BAIS

PAGE: 2

APPENDIX H 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: MALE: DEAD AND MORIBUND ANIMALS

(2-WEEK STUDY)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 3

STUDY NO. : 0229 : RAT F344 DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1 : FEMALE

ANIMAL

Group Name 1000ppm Control 2000ppm 4000ppm No. of Animals on Study 0 0 Findings [Respiratory system] lung congestion (-) (-) (-) (-) (-) (-) (-) (-) (-) hemorrhage (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) edema (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) inflammatory infiltration (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) osseous metaplasia (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) [Hematopoietic system] thymus hemorrhage (-) (-) (-) (-) (-) (-) (-) (-) (-) [Endocrine system] adrenal congestion (-) (-) (-) (-) (-) (-) (-)

4 : Severe

Grade 1 : Slight 2 : Moderate 3 : Marked (a) a: Number of animals examined at the site

1-1 ~ : h / - + 100

b: Number of animals with lesion b

STUDY NO. : 0229 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 4

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1
SEX : FEMALE

Organ	Findings	Group Name 8000ppm No. of Animals on Study 0 Grade 1 2 3 4 (%) (%) (%) (%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(Respirator)	v system]			
lung	congestion	· · · (-) (-) (-) (-)	<pre></pre>	
	hemorrhage	(-) (-) (-) (-)	1 0 0 0 (50) (0) (0) (0)	
	edema	(-) (-) (-) (-)	1 1 0 0 (50) (50) (0) (0)	
	inflammatory infiltration	(-) (-) (-) (-)	1 0 0 0 (50) (0) (0) (0)	
	Osseous metaplasia	(-) (-) (-)	1 0 0 0 (50) (0) (0) (0)	
[Hematopoiet	tic system]			
thymus	hemorrhage	< 0> (-) (-) (-) (-)	2 0 0 0 (100) (0) (0) (0)	
(Endocrine s	system]			
adrenal	congestion	(-) (-) (-) (-)	2 0 0 0 (100) (0) (0) (0)	

b b: Number of animals with lesion

1: Slight

2 : Moderate

a: Number of animals examined at the site

3 : Marked

4 : Severe

Grade

(a)

STUDY NO. : 0229 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

REPORT TYPE : A1 SEX

: FEMALE

Group Name Control 1000ppm 2000ppm 4000ppm No. of Animals on Study 0 Grade Findings [Reproductive system] ovary < 0> congestion (-) (-) (-) (-) (-) (-) (--) (-) (-) (-) (-) (-) (-) (-) (-) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 (HPT150) BAIS3

PAGE: 5

STUDY NO. : 0229 ANIMAL : RAT F344 REPORT TYPE : A1

: FEMALE

SEX

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 2W)

PAGE: 6 Group Name 8000ppm 16000ppm No. of Animals on Study 0 2 Grade Findings_ [Reproductive system] ovary < 0> < 2> congestion 2 0 0 0 (-) (-) (-) (-) (100) (0) (0) (0) Grade 1: Slight 2 : Moderate 3 : Marked 4 : Severe <a>> a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 (HPT150) BAIS3

APPENDIX H 3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: FEMALE: SACRIFICED ANIMALS

(2-WEEK STUDY)

STUDY NO. : 0229 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (2W)

PAGE: 1

Organ	Findings	Group Name No. of Animals on Study Grade $\frac{1}{(\%)}$	Control 2 2 3 (%) (%)	4 (%) 1 (%)	1000ppm 2 2 3 (%) (%)	<u>4</u> (%) <u>1</u> (%)	2000ppm 2 2 3 (%) (%)	<u>4</u> (%)	_1	4000ppm 2 2 3 (%) (%)	<u>4</u> (%)
[Circulator:	y system]										
neart	necrosis:focal	0 (0)	< 2> 0 0 (0) (0)	0 1 (0) (50)	< 2> 0 0 (0) (0) (0 0 (0)	< 2> 0 0 (0) (0)	0 (0)	1 (50) (< 2> 0 0 0) (0) (0
rade a > b c)	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b/a*100	: Marked 4 : Sever	е	No. Account							

STUDY NO. : 0229 ANIMAL : RAT F344 HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (2W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 2

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	8000ppm 2 2 3 4) (%) (%) (%)	16000ppm 0 1 2 3 4 (%) (%) (%) (%)	
[Circulato	ry system]				
heart	necrosis:focal	0 (0)	< 2> 0 0 0 0 0 0 0 0 0	< 0> (-) (-) (-) (-)	
Grade (a) b (c)	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b/a * 100	3 : Marked 4 : Sever	re		
(HPT150)		40-34	M.D. Marchander		BAIS3

APPENDIX I 1

IDENTITY OF DICHLOROMETHANE IN THE 2-WEEK INHALATION STUDY

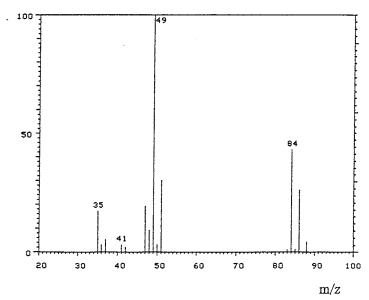
IDENTITY OF DICHLOROMETHANE IN THE 2-WEEK INHALATION STUDY

Lot No. APR5259

1. Spectral data

Mass Spectrometry

Instrument


: Hitachi M-80B Mass Spectrometer

Ionization

: EI(Electron Ionization)

Ionization Voltage

: 70eV

Mass Spectrum of Test Substance

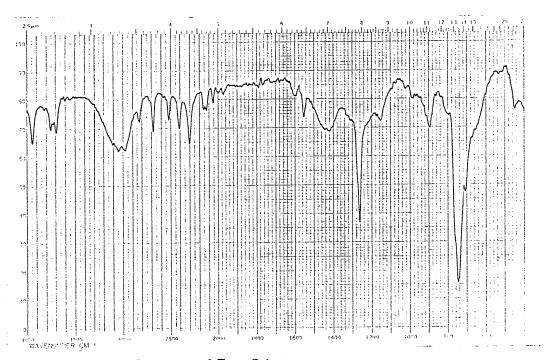
Results: The mass spectrum was consistent with literature spectrum.

Determined Values Fragment Peak(m/z)	<u>Literature Values</u> * Fragment Peak(m/z)		
35	35		
49	49		
84	84		

(*EPA/NIH Mass Spectral Data Base (1978) Vol. 1, p. 33.)

Infrared Spectrometry

Instrument


: Hitachi 270-30 Infrared Spectrometer

Cell

: KBr Liquid Cell

Slit

: Medium

Infrared Spectrum of Test Substance

Results: The infrared spectrum was consistent with literature spectrum.

<u>Literature Values</u> *
Wave Number(cm ⁻¹)
650~ 850
870~ 940
970~1000
1130~1180
1200~1350
1380~1500
1540~1570
1580~1630
2050~2090
2120~2190
2280~2370
2400~2460
2500~2560
2650~2730
2800~2860
2900~3200
3670~3750
3750~3800
3900~4000

(*Performed by the WAKO PURE CHEMICAL INDUSTRIES, LTD.)

2. Conclusions: The test substance was identified as dichloromethane, by the mass spectrum and the infrared spectrum.

APPENDIX I 2 STABILITY OF DICHLOROMETHANE IN THE 2-WEEK INHALATION STUDY

STABILITY OF DICHLOROMETHANE IN THE 2-WEEK INHALATION STUDY

Lot No. APR5259

1. Sample: This lot was used from 1993.4.13 to 1993.4.26. Test substance was stored in a dark place at room temperature.

2. Infrared Spectrometry

Instrument

: Hitachi 270-30 Infrared Spectrometer

Cell

: KBr Liquid Cell

Slit

: Medium

Results: The result of infrared spectrum did not change when before and after the lot of study.

1993.04.07(date analyzed)	1993.05.12(date analyzed)
Wave Number(cm ⁻¹)	Wave Number(cm ⁻¹)
430~ 480	430~ 480
650~ 840	650 ∼ 840
870~ 940	870~ 940
970~1000	970~1000
1120~1180	1120~1180
1200~1340	1200~1340
1370~1500	1370~1500
1530 ~ 1570	1530~1570
1580 ~ 1630	1580~1630
2040~2090	2040~2090
2100~2190	2100~2190
2250 ~ 2360	2250~2360
2380 ~ 2460	2380~2460
2500~2550	2500~2550
2650~2730	2650~2730
2800~2860	2800~2860
2900~3200	2900~3200
3650~3730	3650~3730
3730~3800	3730~3800
3900~4000	3900~4000

3. Gas Chromatography

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: Methyl Silicone(0.2 mm $\phi \times 50$ m)

Column Temperature : 60 °C

Flow Rate

: 1 ml/min

Detector

: FID(Flame Ionization Detector)

Injection Volume

 $: 1 \mu 1$

Results: Gas chromatography indicated one major peak (peak No.1) and one impurity (peak No.2 < 1% of total area) analyzed at 1993.4.7 and one major peak (peak No.1) and one impurity (peak No.2 < 1% of total area) analyzed at 1993.5.12. No new trace impurity peak in the test substance analyzed at 1993.5.12 was detected.

Date (date analyzed)	Peak No.	Retention Time(min)	Area Count
1993.04.07	1	3.303	65203
	2	3.41	8
1993.05.12	1	3.305	64019
	2	3.407	10

1

^{4.} Conclusions: The test substance was stable for about 5 weeks in a dark place at room temperature.

APPENDIX J 1

CONCENTRATION OF DICHLOROMETHANE IN THE INHALATION CHAMBER IN THE 2-WEEK INHALATION STUDY

CONCENTRATION OF DICHLOROMETHANE IN THE INHALATION CHAMBER

Concentration(ppm) $Mean \pm S.D.$		
0.0 ± 0.0		
$1,004.1 \pm 10.4$		
$2,003.7 \pm 17.3$		
$3,975.0 \pm 35.9$		
$7,983.4 \pm 45.8$		
$15,973.4 \pm 125.4$		

APPENDIX J 2

ENVIRONMENTAL CONDITIONS OF INHALATION CHAMBER
IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

ENVIRONMENTAL CONDITIONS OF INHALATION CHAMBER IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

Group Name	Temperature(°C) Mean ± S.D.	Humidity(%) Mean ± S.D.	Ventilation Rate(L/min) Mean \pm S.D.	Room Air Change(time/h) Mean
Control	21.8 ± 0.2	55.4 ± 0.8	211.7 ± 0.6	12.0
1,000ppm	22.0 ± 0.2	57.9 ± 0.6	211.2 ± 0.6	12.0
2,000ppm	22.3 ± 0.2	58.5 ± 0.4	211.0 ± 0.8	11.9
4,000ppm	22.1 ± 0.2	56.6 ± 0.6	212.0 ± 0.6	12.0
8,000ppm	22.5 ± 0.2	57.0 ± 0.7	212.1 ± 0.6	12.0
16,000ppm	21.6 ± 0.2	53.7 ± 0.7	212.2 ± 0.6	12.0

APPENDIX K 1

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

Item	Method	
Hematology		
Red blood cell (RBC)	Light scattering method 1)	
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)	
Hematocrit (Hct)	Calculated as RBC × MCV/10 1)	
Mean corpuscular volume (MCV)	Light scattering method 1)	
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC $ imes$ 10 $^{1)}$	
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct × 100 1)	
Platelet	Light scattering method 1)	
Reticulocyte	Pattern recognition method 3)	
•	(New methyleneblue staining)	
Prothrombin time	Quick one stage method 2)	
Activated partial thromboplastin time (APTT)	Ellagic acid activated method 2)	
White blood cell (WBC)	Light scattering method 1)	
Differential WBC	Pattern recognition method 3)	
	(May-Grunwald-Giemsa staining)	
Biochemistry		
Total protein (TP)	Biuret method 4)	
Albumin (Alb)	BCG method 4)	
A/G ratio	Calculated as Alb/(TP-Alb) 4)	
T-bilirubin	Michaelson method 4)	
Glucose	Enzymatic method (HK·G-6-PDH) 4)	
T-cholesterol	Enzymatic method (CEH·COD·POD) 4)	
Phospholipid	Enzymatic method (PLD·COD·POD) 4)	
Glutamic oxaloacetic transaminase (GOT)	UV·Rate method 4)	
Glutamic pyruvic transaminase (GPT)	UV·Rate method 4)	
Lactate dehydrogenase (LDH)	UV·Rate method 4)	
γ -Glutamyl transpeptidase (γ -GTP)	L- γ - Glutamyl-p-nitroanilide method 4)	
Creatine phosphokinase (CPK)	UV·Rate method 4)	
Urea nitrogen	Enzymatic method (Urease-GLDH) 4)	
Creatinine	Jaffe method 4)	
Sodium	Flame photometry 5)	
Potassium	Flame photometry 5)	
Chloride	Coulometric titration 5)	
Calcium	OCPC method 4)	
Inorganic phosphorus	Enzymatic method (SPL·PGM·G-6-PDH) 4)	

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation, USA)
- 2) Automatic coagulometer (Amelung KC-10: Heinrich Amelung GmbH, Germany)
- 3) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi,Ltd.Japan)
- 4) Automatic analyzer (Hitachi 705: Hitachi, Ltd., Japan)
- 5) Flame photometer (Hitachi 750 : Hitachi, Ltd., Japan)

APPENDIX K 2

UNISTS AND DECIMAL PLACE FOR HEMAYOLOGY AND BIOCHEMISTRY IN THE 2-WEEK INHALATION STUDY OF DICHLOROMETHANE

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2—WEEK INHALATION STUDY OF DICHLOROMETHANE

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	× 10 °/μ L	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	\times 10 $^{3}/\mu$ L	0
Reticulocyte	%	0
Prothrombin time	sec	1
Activated partial thromboplastin time (APTT)	sec	1
White blood cell (WBC)	\times 10 $^{3}/\mu$ L	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Creatinine	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1