アクリル酸=2 - ヒドロキシエチルのラットを用いた 経口投与による 13 週間毒性試験(混水試験)報告書

試験番号:0323

APPENDIX

APPENDIXES

APPENDIX A 1	CLINICAL OBSERVATION: SUMMARY, RAT : MALE (13-WEEK STUDY)
APPENDIX A 2	CLINICAL OBSERVATION: SUMMARY, RAT : FEMALE (13-WEEK STUDY)
APPENDIX B 1	BODY WEIGHT CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX B 2	BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX C 1	WATER CONSUMPTION CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX C 2	WATER CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX D 1	FOOD CONSUMPTION CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX D 2	FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX E 1	CHEMICAL INTAKE CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX E 2	CHEMICAL INTAKE CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX F 1	HEMATOLOGY: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX F 2	HEMATOLOGY: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX G 1	BIOCHEMISTRY: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX G 2	BIOCHEMISTRY: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX H 1	URINALYSIS: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX H 2	URINALYSIS: SUMMARY, RAT: FEMALE: (13-WEEK STUDY)

APPENDIXES (CONTINUED)

APPENDIX I 1	GROSS FINDINGS: SUMMARY, RAT: MALE: ALLANIMALS (13-WEEK STUDY)
APPENDIX I 2	GROSS FINDINGS: SUMMARY, RAT: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX J 1	ORGAN WEIGHT: ABSOLUTE: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX J 2	ORGAN WEIGHT: ABSOLUTE: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX K 1	ORGAN WEIGHT: RELATIVE: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX K 2	ORGAN WEIGHT: RELATIVE: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX L 1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX L 2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX M 1	IDENTITY AND IMPURITY OF 2-HYDROXYETHYL ACRYLATE IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 2	STABILITY OF 2-HYDROXYETHYL ACRYLATE IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 3	CONCENTRATION OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX M 4	STABILITY OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
APPENDIX N 1	METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE
APPENDIX N 2	UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

APPENDIX A 1

CLINICAL OBSERVATION: SUMMARY, RAT: MALE

STUDY NO. : 0323 ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 13

SEX : MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

PAGE: 1

Group Name	Admini	stration We	eek-day										
·	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Control	0	0	0	0	0	0	0	0	0	0	0	0	0
250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
4000 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
4000 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0
	Control 250 ppm 500 ppm 1000 ppm 4000 ppm Control 250 ppm 500 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm	Control 0 250 ppm 0 500 ppm 0 1000 ppm 0 2000 ppm 0 4000 ppm 0 Control 0 250 ppm 0 500 ppm 0 1000 ppm 0	Control 0 0 250 ppm 0 0 500 ppm 0 0 2000 ppm 0 0 4000 ppm 0 0 Control 0 0 250 ppm 0 0 4000 ppm 0 0 1 Control 0 0 250 ppm 0 0 500 ppm 0 0 2000 ppm 0 0 2000 ppm 0 0	Control 0 0 0 0 0 250 ppm 0 0 0 0 0 2000 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAIS 3 (HAN190)

APPENDIX A 2

CLINICAL OBSERVATION: SUMMARY, RAT: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 13

STUDY NO. : 0323

SEX : FEMALE PAGE: 2

Clinical sign	Group Name	Admini	stration We	eek-day										
	-	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	2	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	4	5	5	3	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0

BAIS 3 (HAN190)

APPENDIX B 1

BODY WEIGHT CHANGES :SUMMARY, RAT : MALE

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES

(SUMMARY)

ALL ANIMALS

Name		stration	week		2	· · · · · · · · · · · · · · · · · · ·	3		4		5		6	
	0													
Control	124±	4	154±	6	188±	7	212±	7	230±	7	244±	9	255±	9
250 ppm	124±	4	154±	7	186±	10	208±	12	226±	13	240±	12	252±	13
500 ppm	124±	4	153±	6	184±	7	206±	7	224±	8	239±	8	251±	9
1000 ppm	124±	4	150±	7	181±	7	204±	7	221±	6	235±	6	248±	7
2000 ppm	124±	4	144±	6**	170±	7**	192±	6**	207±	7**	221±	7**	231±	7**
4000 ppm	124±	4	112±	5**	131±	7**	156±	8**	171±	7**	182±	9**	189±	10**
Significant differen	ıce; *:P≦(2 05	** : P ≤ 0.0	11			Test of D	unnett.						

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Adminis	tration	week											
·	7		8		9		10		11		12		13	
Control	268±	11	278±	12	287±	13	296±	13	302±	14	308±	14	312±	17
250 ppm	262±	13	272±	12	279±	13	286±	13	293士	12	300±	13	303±	13
500 ppm	261±	9	271±	9	278±	8	286±	7	293±	7	299±	7	303±	7
1000 ppm	257±	6	266±	6	274±	7*	281±	8*	288±	7*	294±	8*	298±	8
2000 ppm	240±	8**	247±	11**	252±	10**	258±	10**	266±	11**	271±	11**	276±	12**
4000 ppm	196±	11**	202±	12**	211±	13**	217±	13**	226±	13**	230±	13**	235±	13**
Significant differen	ce; *: P ≤ 0.	. 05	** : P ≦ 0.0	01			Test of Du	unnett						

(HAN260)

BAIS 3

APPENDIX B 2

BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

ıp Name	Administ	ration	week											
	0		1		2		3		4		5		6	
Control	98主	3	113±	4	129±	5	135±	6	144±	5	151±	6	154±	10
250 ppm	98±	3	111±	4	126±	5	134±	6	141±	6	146±	7	150±	11
500 ppm	98±	3		4	125±	4	127±	6**	141±	6	144±	8*	150±	6
1000 ppm	98±	3	110±	4	124±	4	128±	4*	139±	4	145±	5	148±	5
2000 ppm	98±	3	105±	3**	119±	4**	128±	4**	134±	4**	139±	4**	144±	5*
4000 ppm	98±	3	85±	5**	99±	5**	111±	4**	119±	4**	123±	4**	127±	5**
Significant difference	ce; *:P≤0.	05	** : P ≤ 0.0	1			Test of Dun	nett						

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

PAGE: 4

Name	Admini	stration	week											
	7		8		9		10		11		12		13	
Control	161±	7	165±	7	169±	8	173±	8	177±	6	180±	8	182±	8
250 ppm	154±	8*	157±	9*	160±	9	164±	9*	167±	10*	171±	10*	171±	10**
500 ppm	156±	7	158±	8	162±	8	166±	7	168±	7*	171±	7*	173±	7*
1000 ppm	152±	5**	155±	4**	158±	4	162±	5**	166±	4**	168±	6**	168±	6**
2000 ppm	148±	3**	150±	4**	153±	3**	157±	5**	161±	5**	164土	7**	165±	6**
4000 ppm	131±	5**	132±	6 * *	134±	6**	137±	6**	141±	6 **	143±	5**	145±	7**

(HAN260)

BAIS 3

APPENDIX C 1

WATER CONSUMPTION CHANGES : SUMMARY, RAT : MALE (13 - WEEK STUDY)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0323

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

up Name	Administration	week					
	1	2	3	4	5	6	7
Control	16.7± 1.1	18.3± 1.1	18.6± 1.0	19.0± 1.3	18.7± 1.1	18.6± 1.5	18.7± 1.6
250 ppm	15.1± 1.0**	16.3± 1.6**	16.4± 1.3**	16.3± 1.1**	16.5± 0.9	16.5± 0.9**	16.7± 1.2**
500 ppm	14.4± 0.5**	14.8± 0.7**	15.2± 1.0**	15.5± 0.8**	15.6± 1.8	15.2± 1.2**	16.2± 1.9**
1000 ppm	13.3± 0.9**	13.8± 1.0**	14.0± 0.9**	13.9± 0.8**	13.8± 0.5**	14.1± 0.8**	14.1± 0.9**
2000 ppm	11.6± 0.8**	11.7± 1.0**	12.0± 0.7**	11.5± 0.8**	11.9± 0.8**	12.0± 0.7**	11.9± 0.9**
4000 ppm	5.8± 0.9**	8.4± 0.6**	9.1± 0.5**	8.7± 0.4**	8.8± 0.7**	8.7± 0.7**	9.3± 0.9**

(HAN260)

BAIS 3

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

UNIT : g

STUDY NO. : 0323

REPORT TYPE : A1 13

SEX: MALE

p Name	Administration	week				
	8	9	10	11	12	13
Control	17.8± 1.0	18.3± 1.3	18.5± 1.7	17.7± 1.3	17.1± 1.4	17.5± 1.2
250 ppm	16.2± 1.1**	16.2± 0.8**	15.7± 0.7	15.3± 0.9**	15.1± 0.9**	15.2± 0.7**
500 ppm	14.9± 0.9**	15.2± 0.5**	14.9± 0.7	14.8± 0.6**	14.3± 0.8**	14.4± 0.7**
1000 ppm	14.0± 1.0**	13.7± 0.9**	13.6± 0.9**	13.5± 1.2**	13.3± 1.1**	13.3± 1.1**
2000 ppm	12.0± 0.9**	12.3± 1.0**	11.7± 1.0**	12.0± 1.1**	11.4± 1.0**	11.5± 0.9**
4000 ppm	8.9± 0.9**	9.3± 0.8**	9.0± 0.4**	9.6± 0.6**	9.1± 0.6**	9.3± 0.5**
Significant difference	e; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett		

PAGE: 2

(HAN260) BAIS 3

APPENDIX C 2

WATER CONSUMPTION CHANGES : SUMMARY, RAT : FEMALE (13 - WEEK STUDY)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

up Name	Administration	week					
	1	2	3	4	5	6	7
Control	14.1± 1.2	15.2± 2.0	18.9± 9.7	17.0± 5.5	16.9± 4.7	16.9± 4.1	20.7± 9.3
250 ppm	12.6± 1.1**	13.3± 1.4	12.7± 1.4	12.6± 1.2	13.1± 1.7	17.5± 10.8	16.8± 11.5
500 ppm	12.1± 1.1**	13.4± 4.4	12.6± 3.0	14.4± 8.1	11.8± 0.8	12.1± 1.6	16.6± 8.9
1000 ppm	10.5± 0.6**	10.5± 0.8**	10.7± 1.1**	10.1± 0.6**	10.6± 0.5**	10.2± 0.6**	11.0± 1.9**
2000 ppm	9.1± 0.8**	9.8± 1.1**	9.5± 1.1**	9.3± 1.8**	9.8± 1.4**	9.7± 1.9**	10.5± 2.3**
4000 ppm	5.6± 0.8**	7.5± 0.5**	7.2± 0.5**	7.0± 0.6**	7.1± 0.6**	7.2± 0.5**	7.4± 0.7**
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj ALI

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

Name	Administration	week				
	8	9	10	11	12	13
Control	19.3± 9.5	19.1± 6.9	16.6± 2.9	18.1± 7.2	16.0± 4.7	18.1± 8.6
250 ppm	14.1± 3.7	13.2± 2.6	14.7± 4.4	12.6± 1.3	12.9± 2.3	16.1± 5.1
500 ppm	17.1± 8.9	15.9± 7.0	16.1± 6.2	15.8± 7.4	14.7± 5.0	14.5± 5.9
1000 ppm	10.5± 1.0**	10.4± 0.7**	10.7± 0.7*	11.2± 1.6*	11.0± 1.8*	9.9± 1.1*
2000 ppm	9.8± 1.9**	9.9± 1.4**	9.4± 1.1**	9.4± 0.9**	9.1± 1.0**	9.2± 1.5**
4000 ppm	7.0± 0.4**	6.9± 0.7**	7.0± 0.5**	7.5± 0.4**	6.9± 0.4**	7.1± 0.5**
		_				
Significant differen	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett		

(HAN260)

BAIS 3

APPENDIX D 1

FOOD CONSUMPTION CHANGES : SUMMARY, RAT : MALE (13 - WEEK STUDY)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0323

ANIMAL : RAT F344/DuCrj

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

ip Name	Administration	Administration week									
	1	2	3	4	5	6	7				
Control	14.3± 0.7	16.1± 0.7	16.4± 0.7	16.2± 0.5	15.8± 0.9	15.6± 0.5	15.6± 0.8				
250 ppm	13.5± 1.4	15.5± 1.3	15.8± 1.2	15.3± 0.8*	15.3± 0.9	14.9± 1.0	14.7± 1.0				
500 ppm	14.1± 0.4	15.3± 0.8	15.6± 0.9	15.5± 0.7	15.6± 0.8	15.0± 0.9	14.9± 0.8				
1000 ppm	13.5± 0.7	14.9± 0.7**	15.7± 1.1	15.5± 0.9	15.2± 0.4	15.3± 0.5	14.6± 0.6*				
2000 ppm	12.2± 0.6**	13.9± 0.6**	14.4± 0.5**	14.2± 0.6**	14.2± 0.4**	13.9± 0.6**	13.7± 0.8**				
4000 ppm	7.7± 1.0**	10.1± 0.8**	12.3± 0.6**	12.2± 0.5**	12.2± 0.9**	11.4± 0.8**	11.3± 0.9**				
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett							

(HAN260)

BAIS 3

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX: MALE

up Name	Administration	week					
	8	9	10	11	12	13	
Control	15.5± 0.9	15.7± 1.1	15.3± 0.9	15.5± 0.8	15.4± 0.8	15.2± 0.9	
250 ppm	14.6± 0.9	14.8± 0.9	14.3± 0.7*	14.5± 0.9*	14.2± 0.7**	14.6± 0.6	
500 ppm	14.6± 0.6	14.8± 0.7	14.6± 0.6	14.8± 0.5	14.4± 0.7*	14.8± 0.6	
1000 ppm	14.5± 0.7*	14.7± 0.7*	14.3± 0.7*	14.7± 0.5	14.6± 0.7	14.7± 0.7	
2000 ppm	13.3± 0.7**	13.4± 0.7**	13.3± 0.8**	13.9± 0.8**	13.6± 0.7**	13.7± 0.8**	
4000 ppm	11.6± 0.9**	11.8± 0,9**	11.9± 1.0**	12.7± 1.0**	12.3± 1.0**	12.8± 0.8**	
Significant differer	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

APPENDIX D 2

FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj

UNIT : g
REPORT TYPE : A1 13

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX: FEMALE

ıp Name	Administration	week					
	1	2	3	4	5	6	7
Control	10.9± 0.4	11.2± 0.4	10.9± 0.6	11.0± 0.6	11.0± 0.8	10.9± 1.0	11.1± 0.8
250 ppm	10.5± 0.6	10.7± 0.5	10.7± 0.7	10.4± 0.7	10.4± 0.7	10.0± 1.0	10.1± 0.7**
500 ppm	10.5± 0.5	10.7± 0.5	10.7± 0.7	10.6± 0.5	10.3± 0.6*	10.3± 0.6	10.4± 0.7
1000 ppm	10.1± 0.4**	10.3± 0.4**	10.3± 0.4	10.2± 0.5**	10.3± 0.4*	9.8± 0.6*	9.7± 0.3**
2000 ppm	9.1± 0.3**	10.1± 0.5**	10.2± 0.5	9.9± 0.4**	10.1± 0.3**	9.8± 0.5**	9.7± 0.4**
4000 ppm	6.0± 0.6**	8.6± 0.5**	9.3± 0.5**	9.0± 0.4**	8.9± 0.4**	8.7± 0.5**	8.4± 0.5**
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

Name	Administration	week				
	8	9	10	11	12	13
Control	11.0± 0.8	11.1± 0.8	10.7± 0.7	11.1± 0.7	10.9± 0.5	11.1± 0.8
250 ppm	10.3± 0.9	10.1± 0.8**	10.0± 0.6*	10.3± 0.8*	10.4± 0.8	10.3± 0.7**
500 ppm	10.1± 0.4	10.3± 0.4*	10.1± 0.6	10.4± 0.4*	10.2± 0.5	10.3± 0.4**
1000 ppm	9.7± 0.3*	9.5± 0.5**	9.6± 0.4**	9.8± 0.5**	9.6± 0.5**	9.7± 0.5**
2000 ppm	9.4± 0.5**	9.5± 0.6**	9.3± 0.6**	9.7± 0.6**	9.5± 0.5**	9.8± 0.5**
4000 ppm	8.3± 0.4**	8.4± 0.5**	8.5± 0.5**	8.7± 0.4**	8.7± 0.5**	8.9± 0.4**
						,
Significant differenc	ce; *:P≦0.05 ×	* : P ≤ 0.01		Test of Dunnett		

(HAN260)

BAIS 3

APPENDIX E 1

CHEMICAL INTAKE CHANGES: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj

UNIT : g/kg/day
REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

ıp Name	Administration	(weeks)					
-	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
250 ppm	0.024± 0.001	0.022± 0.002	0.020± 0.001	0.018± 0.001	0.017± 0.001	0.016± 0.001	0.016± 0.001
500 ppm	0.047± 0.001	0.040± 0.002	0.037± 0.002	0.035± 0.002	0.033± 0.003	0.030± 0.002	0.031± 0.004
1000 ppm	0.089± 0.003	0.076± 0.003	0.069± 0.002	0.063± 0.003	0.059± 0.002	0.057± 0.003	0.055± 0.003
2000 ppm	0.162± 0.011	0.138± 0.009	0.126± 0.006	0.111± 0.007	0.108± 0.006	0.104± 0.006	0.100± 0.006
4000 ppm	0.208± 0.024	0.256± 0.015	0.234± 0.011	0.203± 0.010	0.193± 0.011	0.184± 0.011	0.189± 0.012

(HAN300)

BAIS 3

ANIMAL : RAT F344/DuCrj

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

Administration	(weeks)					
8	9	10	11	12	13	
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
0.015± 0.001	0.014± 0.001	0.014± 0.001	0.013± 0.001	0.013± 0.001	0.013± 0.001	
0.028± 0.001	0.027± 0.001	0.026± 0.001	0.025± 0.001	0.024± 0.001	0.024± 0.001	
0.053± 0.003	0.050± 0.003	0.048± 0.003	0.047± 0.003	0.045± 0.003	0.045± 0.003	
0.097± 0.007	0.098± 0.007	0.091± 0.007	0.090± 0.006	0.084± 0.006	0.084± 0.005	
0.176± 0.008	0.176± 0.010	0.166± 0.005	0.169± 0.006	0.158± 0.008	0.158± 0.006	
	0.000± 0.000 0.015± 0.001 0.028± 0.001 0.053± 0.003 0.097± 0.007	0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.015 ± 0.001 0.014 ± 0.001 0.028 ± 0.001 0.027 ± 0.001 0.053 ± 0.003 0.050 ± 0.003 0.097 ± 0.007 0.098 ± 0.007	0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.015 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.028 ± 0.001 0.027 ± 0.001 0.026 ± 0.001 0.053 ± 0.003 0.050 ± 0.003 0.048 ± 0.003 0.097 ± 0.007 0.098 ± 0.007 0.091 ± 0.007	0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.015 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 0.013 ± 0.001 0.028 ± 0.001 0.027 ± 0.001 0.026 ± 0.001 0.025 ± 0.001 0.053 ± 0.003 0.050 ± 0.003 0.048 ± 0.003 0.047 ± 0.003 0.047 ± 0.003 0.097 ± 0.007 0.098 ± 0.007 0.091 ± 0.007 0.090 ± 0.006	$0.000\pm\ 0.000$ $0.015\pm\ 0.001$ $0.014\pm\ 0.001$ $0.014\pm\ 0.001$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.028\pm\ 0.001$ $0.028\pm\ 0.001$ $0.026\pm\ 0.001$ $0.025\pm\ 0.001$ $0.024\pm\ 0.001$ $0.024\pm\ 0.001$ $0.053\pm\ 0.003$ $0.050\pm\ 0.003$ $0.048\pm\ 0.003$ $0.047\pm\ 0.003$ $0.045\pm\ 0.003$ $0.045\pm\ 0.003$ $0.097\pm\ 0.007$ $0.099\pm\ 0.006$ $0.084\pm\ 0.006$	$0.000\pm\ 0.000$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.013\pm\ 0.001$ $0.028\pm\ 0.001$ $0.028\pm\ 0.001$ $0.028\pm\ 0.001$ $0.026\pm\ 0.001$ $0.025\pm\ 0.001$ $0.024\pm\ 0.001$ $0.024\pm\ 0.001$ $0.024\pm\ 0.001$ $0.053\pm\ 0.003$ $0.050\pm\ 0.003$ $0.048\pm\ 0.003$ $0.047\pm\ 0.003$ $0.045\pm\ 0.003$ $0.045\pm\ 0.003$ $0.045\pm\ 0.003$ $0.045\pm\ 0.005$

BAIS 3 (HAN300)

APPENDIX E 2

CHEMICAL INTAKE CHANGES: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj UNIT : g / kg / d a y
REPORT TYPE : A1 13
SEX : FEMALE CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Administration (weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
250 ppm	0.029± 0.002	0.026± 0.003	0.024± 0.002	0.023± 0.002	0.022± 0.002	0.030± 0.021	0.027± 0.017
500 ppm	0.054± 0.005	0.053± 0.017	0.050± 0.012	0.051± 0.029	0.041± 0.003	0.041± 0.007	0.054± 0.031
1000 ppm	0.095± 0.004	0.085± 0.006	0.083± 0.007	0.073± 0.004	0.073± 0.002	0.069± 0.004	0.072± 0.014
2000 ppm	0.174± 0.016	0.164± 0.018	0.150± 0.016	0.139± 0.025	0.141± 0.020	0.134± 0.023	0.142± 0.030
4000 ppm	0.264 ± 0.027	0.302± 0.019	0.259± 0.011	0.234± 0.015	0.230± 0.018	0.226± 0.011	0.227± 0.017

PAGE: 3

BAIS 3 (HAN300)

ANIMAL : RAT F344/DuCrj

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

Administration	(weeks)					
8 .	9	10	11	12	13	
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000 ± 0.000	
0.022± 0.005	0.021± 0.005	0.022± 0.007	0.019± 0.002	0.019± 0.003	0.024± 0.008	
0.055± 0.030	0.050 ± 0.022	0.049± 0.021	0.048± 0.023	0.044± 0.017	0.042± 0.017	
0.068± 0.008	0.066± 0.004	0.066± 0.005	0.068± 0.011	0.066± 0.013	0.059± 0.007	
0.130± 0.024	0.129± 0.018	0.119± 0.013	0.117± 0.009	0.112± 0.010	0.112± 0.017	
0.213± 0.010	0.207± 0.019	0.203± 0.014	0.213 ± 0.007	0.193± 0.012	0.195± 0.012	
	8 0.000± 0.000 0.022± 0.005 0.055± 0.030 0.068± 0.008 0.130± 0.024	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 9 10 11 12 13 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.022± 0.005 0.021± 0.005 0.022± 0.007 0.019± 0.002 0.019± 0.003 0.024± 0.008 0.055± 0.030 0.050± 0.022 0.049± 0.021 0.048± 0.023 0.044± 0.017 0.042± 0.017 0.068± 0.008 0.066± 0.004 0.066± 0.005 0.068± 0.011 0.066± 0.013 0.059± 0.007 0.130± 0.024 0.129± 0.018 0.119± 0.013 0.117± 0.009 0.112± 0.010 0.112± 0.017

(HAN300) BAIS 3

APPENDIX F 1

HEMATOLOGY: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

up Name	p Name NO. of Animals		RED BLOOD CELL 1 O ^s /µl		HEMOGLOBIN g/dl		HEMATOCRIT MCV % f l			MCH pg		MCHC g/dl		PLATELET 1 O³/µl	
Control	10	8.98±	0.18	15.7±	0.3	44. 2±	0.9	49.2±	0.3	17.5±	0, 2	35.6±	0.5	664土	36
250 ppm	10	8.92±	0. 20	15.8±	0.3	44.2±	1.3	49.6±	0.7	17.7±	0.5	35.8±	1.0	647±	58
500 ppm	10	8.75±	0, 40	15.5±	0.3	43.6±	2. 1	49.8±	1.0	17.8±	0.8	35.6±	1.4	643±	50
1000 ppm	10	8.77±	0. 21	15.6±	0.3	43.9±	1.3	50.0±	0.8	17.8±	0.5	35.6±	1.1	645±	30
2000 ppm	10	8.49±	0.30**	15.2±	0.4**	42.9±	1.6	50.6±	0.7**	17.9±	0.3*	35.3±	0.7	672±	62
4000 ppm	10	8.58±	0. 25**	15.5±	0.2	43.8±	1.6	51.1±	0.8**	18.1±	0.4**	35.3±	1.0	692±	51

(HCL070) BAIS 3

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj MEASURE. TIME: 1

PAGE: 2 SEX : MALE REPORT TYPE : A1

oup Name	NO. of Animals			CULOCYTE PROTHROMBIN TIME sec		APTT sec	
Control	10	31±	6	15.0±	3, 2	26.0±	4.1
250 ppm	10	27±	8	15.6±	1.5	28.1±	7.7
500 ppm	10	25±	5	13.8±	0.8	23.7±	1.7
1000 ppm	10	30±	8	13.0±	1.0	26.6±	8.0
2000 ppm	10	29±	6	12.9±	1.2	23.6±	4.8
4000 ppm	10	35±	6	12.5±	0.3*	24.7±	5.7
Significant	difference;	*: P ≤ 0.	05	**: P ≤ 0.01	1		Test of Dunnett

(HCL070)

BAIS 3

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

PAGE: 3 SEX : MALE Differential WBC (%) NO. of WBC Group Name Animals $10^{3}/\mu l$ N-BAND N-SEG EOSINO BASO MONO LYMPHO OTHERS 0± 1± $4\pm$ $67 \pm$ 0 Control 10 3.68± 0.86 0± 0 $28\pm$ 0± 1 $0\pm$ $32\pm$ $1\pm$ 0± 4生 $63 \pm$ $0\pm$ 0 250 ppm 10 3.83± 1.02 0 1 1± 1 . $0\pm$ 4土 1 $69 \pm$ Ο± 0 3.39 ± 0.98 $0\pm$ 0 26± 4 500 ppm 10 1000 ppm 3.66 ± 1.07 0± 0 28± 5 1± 1 0± $4\pm$ $67 \pm$ Ο± 0 10 $28\pm$ 8 $1\pm$ 0± 4土 67± $0\pm$ 0 10 3.42± 1.11 0± 0 2000 ppm $2\pm$ ± 0 4± $0\pm$ 3.51 ± 0.70 $0\pm$ 0 $30\pm$ 1 $64\pm$ 0 4000 ppm 10 Test of Dunnett Significant difference; *: P ≤ 0.05 ** : P ≤ 0.01

BAIS 3 (HCL070)

APPENDIX F 2

HEMATOLOGY: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

oup Name	NO, of Animals	RED BLOO 1 O ⁶ /µ		HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f £		MCH pg		MCHC g/dl		PLATELET 1 O³/u	
Control	10	8.02±	0.41	15.4±	0.4	41.9±	2. 2	52.2±	0.8	19.3±	1.0	36.9±	1.7	681±	80
250 ppm	10	8. 26±	0.26	15.6±	0.5	43.3±	1.9	52.5±	1.0	18.9±	0.2	36.1±	0.8	710±	55
500 ppm	10	8.10±	0.30	15.5±	0.5	42.7±	1.7	52.8±	0.6	19.1±	0.4	36.2±	0.6	671±	73
1000 ppm	10	8.04±	0.40	15.6±	0.3	42.6±	2. 1	53.0±	0.6	19.5±	0.9	36.7±	1. 7	697±	46
2000 ppm	10	7.78±	0.30	15.4±	0.3	41.9±	1.8	53.8±	0.9**	19.8±	0.7*	36.7±	1.3	678±	68
4000 ppm	9	8.06±	0.27	15.5±	0.4	43.1±	2. 1	53.3±	1.0*	19.3±	0.3	36.1±	1.1	728±	82

(HCL070)

BAIS 3

HEMATOLOGY (SUMMARY)

ANIMAL : RAT F344/DuCrj

ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

RETICULOCYTE Group Name NO. of PROTHROMBIN TIME APTT Animals ‰ s e c s e c Control 10 $26\pm$ 12.1 \pm 0.5 19.3± 1.4 $12.2 \pm$ 250 ppm 10 $23\pm$ 5 0.6 24.3± 9.7 $27\pm$ 23.2± 6.8 500 ppm 10 $12.0 \pm$ 0.4 $23\pm$ 12.2 \pm 0.3 18.6± 1.1 1000 ppm 10 4 $31\pm$ 12.1 \pm 0.3 18.4± 2.4 2000 ppm 10 3 4000 ppm 9 $34\pm$ 9** 12.0± 0.5 20.4± 4.0 Significant difference : $*: P \le 0.05$ ** : $P \leq 0.01$ Test of Dunnett

PAGE: 5

(HCLO70) BAIS 3

ANIMAL : RAT F344/DuCrj

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

PAGE: 6 REPORT TYPE : A1

Tb Name	NO. of Animals	WBC 1 0 ³ /1		Dif N-BAND	ferentia	1 WBC (% N-SEG	5)	EOSINO		BASO		MONO		LYMPHO		OTHERS	
Control	10	1.93±	0.57	0±	0	28±	5	2±	1	0±	0	4±	2	66±	6	0±	C
250 ppm	10	1.89±	0.61	0±	0	28±	5	· 1±	1	0±	0	4±	2	66±	5	0±	(
500 ppm	10	2.07±	1.01	0±	0	25±	4	1±	1	0±	0	4±	2	70±	5	0±	(
1000 ppm	10	2.07±	0.56	0±	0	24土	3	1±	1	0±	0	4±	2	70±	4	0±	(
2000 ppm	10	2.24±	0.71	0±	0	$25\pm$	6	1±	1	0±	0	4 ±	2	70±	7	0±	1
4000 ppm	9	2.87±	1. 11	0±	0	27±	12	2±	1	0±	0	4±	1	67±	12	0±	(

(HCL070) BAIS 3

APPENDIX G 1

BIOCHEMISTRY: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

oup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g∕dl		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYCI mg/dl	ERIDE
Control	10	6.3±	0.1	3.9±	0, 1	1.6±	0.1	0.13±	0.01	188士	10	61±	7	56±	19
250 ppm	10	6.3±	0.1	3.9±	0. 1	1.6±	0.1	0.14±	0.01	184±	6	62±	4	59±	16
500 ppm	10	6.3±	0.2	3.9±	0.1	1.6±	0.1	0.14±	0.01	179±	10	67±	4	54±	23
1000 ppm	10	6.4±	0.1	4.0±	0.1	1.7±	0.1	0.14±	0.01	180±	15	70±	5*	59±	16
2000 ppm	10	6.2±	0.2	3.9±	0.1	1.7±	0.1**	0.14±	0.01	172±	9**	72±	3**	43±	14
4000 ppm	10	6.0±	0.2**	3.8±	0.1	1.7生	0.1**	0.16±	0.01**	172±	11**	79±	8**	64±	10

(HCL074)

BAIS 3

SEX : MALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

REPORT TYPE : A1

PAGE: 2

oup Name	NO. of Animals	PHOSPHOI mg/dl	LIPID	GOT IU/L		GPT IU/l		LDH IU/L		ALP IU/1		G-GTP IU/l		CPK IU/A	!
Control	10	110±	10	94±	18	53±	9	203±	36	268±	15	3±	5	110±	10
250 ppm	10	115±	4	100±	26	53±	9	218±	70	267±	16	2±	1	111±	23
500 ppm	10	119±	7	119±	37	62±	16	256±	78	259±	19	1±	1	101±	11
1000 ppm	10	125±	9*	101±	44	54±	18	231±	85	260±	16	2±	1	100±	11
2000 ppm	10	126±	7**	99±	26	54±	13	$233 \pm$	46	253±	23	6±	15	116±	61
4000 ppm	10	145±	16**	103±	32	62±	21	$222\pm$	42	263±	24	3±	2	118±	20

BAIS 3 (HCL074)

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

up Name	NO. of Animals	UREA N mg∕dl	ITROGEN	CREATIN mg/dl	INE	SODIUM m Eq / l		POTASSI m Eq /		CHLORIDE m Eq / 1		CALCIUN mg/dl	f	INORGAN mg/dl	IC PHOSPHORU
Control	10	19.1±	1.8	0.6±	0.1	141±	1	3.8±	0.3	106±	1	10.2±	0, 1	6,1±	0.8
250 ppm	10	18.6±	0.6	0.5±	0.0	141±	1	3.8±	0.4	106±	1	10.3±	0.1	6.0±	0.7
500 ppm	10	19.7±	1, 2	0.5±	0. 1	140±	1	3.9±	0.3	105±	1	10.3±	0.2	6.0±	0.7
1000 ppm	10	19.9±	1.5	0.5±	0.1	140±	1	3.9±	0.4	105±	1	10.4±	0.2	6.0±	0.5
2000 ppm	10	26.1±	15.9*	0.8±	0.8	139±	2**	4.9±	2.1**	105±	2	10.2±	0.1	7.3±	3. 1
4000 ppm	10	22.8±	3.1**	0.5±	0.1	140±	1	4.3±	0.3*	105±	1	10.2±	0.2	6.5±	0.5

(HCL074) BAIS 3

APPENDIX G 2

BIOCHEMISTRY: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

SEX : FEMALE PAGE: 4

oup Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g/dl		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES mg/dl	STEROL	TRIGLYCE mg/dl	RIDE
Control	10	6.2±	0.1	3.8±	0.1	1.6±	0.1	0.15±	0.01	146生	9	70±	5	15±	1
250 ppm	10	6.2±	0.2	3.9±	0.1	1.6±	0.1	0.15±	0.01	146±	12	73±	9	16±	3
500 ppm	10	6.2±	0.2	3.9±	0.1	1.7±	0.1	0.15±	0.01	150±	10	76±	6	19±	5
1000 ppm	10	6.1±	0.2	3.9±	0.1	1.7±	0.1**	0.15±	0.01	150±	9	77±	5	19±	3*
2000 ppm	10	6.1±	0.1	3.9±	0.1	1.7±	0.0*	0.16±	0.01	151±	12	84±	8 * *	20±	5*
4000 ppm	9	5.7±	0.2**	3.6±	0.1*	1.7±	0.2**	0.17±	0.07	149±	12	92±	62	35±	45**

BAIS 3 (HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 5

up Name	NO. of Animals	PHOSPHO mg/dl	LIPID	GOT IU/l		GPT I U/L		LDH IU/A		ALP IU/s	2	G-GTP IU/A		CPK IU/l	!
Control	10	127±	10	77±	15	40±	10	270±	82	188±	9	2±	1	140±	33
250 ppm	10	133±	17	81±	18	43±	22	280±	55	180±	26	3±	1	131±	27
500 ppm	10	137±	12	73±	14	37±	12	264±	44	174±	15	. 2±	1	117±	17
1000 ppm	10	139±	8	77±	17	38±	9	263±	86	182±	18	$2\pm$	1	128±	39
2000 ppm	10	148±	12**	79±	13	39±	7	307±	111	181±	13	3±	1	137±	51
4000 ppm	9	164±	104	93±	54	47±	30	273±	54	258±	141	20±	47**	129±	26

(HCL074) BAIS 3

ANIMAL : RAT F344/DuCrj

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

NO. of Animals	UREA NI mg/dl	TROGEN 2. 2	CREATIN mg/dl	INE	SODIUM mEq/l		POTASSI m Eq / s		CHLORIDE m Eq / l		CALCIUM mg/dl	[INORGAN mg/dl	VIC PHOSPHORU
	19.5±	2. 2	A # 1							<u></u>				
10			0.5±	0.0	141±	1	3.8±	0.4	108生	2	9.9±	0.2	5.1±	1, 3
10	18.8±	1.8	0.5±	0.0	140±	1	3.8±	0.3	107生	2	9.9±	0. 2	5.3±	1. 2
10	18.6±	2.0	0.5±	0.0	140土	1	3.9±	0.4	108±	2	9.9±	0. 2	5.5±	1.1
10	20.4±	0.8	0.5±	0.0	139±	1*	4.1±	0.5	106±	2	10.0±	0.1	5.3±	1.0
10	20.7±	1.7	0.5±	0.0	138±	1**	4.1±	0.5	106±	1	9.9±	0.2	5.6±	0.9
9	24.4±	3. 4**	0.4±	0.1**	138±	1**	4.1±	0.4	106±	1	9.7±	0.3	5.9±	0.5
fference;	*: P ≤ 0), 05 *	*: P ≤ 0.0)1			Test of Du	nett						
f	10 10 9	10 20.4± 10 20.7± 9 24.4±	10 20.4± 0.8 10 20.7± 1.7 9 24.4± 3.4**	10 20.4± 0.8 0.5± 10 20.7± 1.7 0.5± 9 24.4± 3.4** 0.4±	10 20.4± 0.8 0.5± 0.0 10 20.7± 1.7 0.5± 0.0 9 24.4± 3.4** 0.4± 0.1**	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1**	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 0.5 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 0.5 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm 0.4	10 20.4± 0.8 0.5± 0.0 139± 1* 4.1± 0.5 106± 10 20.7± 1.7 0.5± 0.0 138± 1** 4.1± 0.5 106± 9 24.4± 3.4** 0.4± 0.1** 138± 1** 4.1± 0.4 106±	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 0.5 106 \pm 2 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 0.5 106 \pm 1 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm 0.4 106 \pm 1	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 0.5 106 \pm 2 10.0 \pm 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 0.5 106 \pm 1 9.9 \pm 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm 0.4 106 \pm 1 9.7 \pm	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 0.5 106 \pm 2 10.0 \pm 0.1 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 0.5 106 \pm 1 9.9 \pm 0.2 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm 0.4 106 \pm 1 9.7 \pm 0.3	10 20.4 \pm 0.8 0.5 \pm 0.0 139 \pm 1* 4.1 \pm 0.5 106 \pm 2 10.0 \pm 0.1 5.3 \pm 10 20.7 \pm 1.7 0.5 \pm 0.0 138 \pm 1** 4.1 \pm 0.5 106 \pm 1 9.9 \pm 0.2 5.6 \pm 9 24.4 \pm 3.4** 0.4 \pm 0.1** 138 \pm 1** 4.1 \pm 0.4 106 \pm 1 9.7 \pm 0.3 5.9 \pm

PAGE: 6

(HCL074) BAIS 3

APPENDIX H 1

URINALYSIS: SUMMARY, RAT: MALE

URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

oup Name	NO. of	pH_							Prote	in_			_		Glu	cose				Ket	one	body				liru		
··· ·	Animals	5.0	6.0	6. 5	7.0	7.5	8.0	8.5 CHI	- ±	+	2+	3+ 4	+	CHI	_	± ·	+ 2-	+ 3+	4+ CHI	_	± -	+ 2+	3+	4+ CHI		+ —	2+ 3+	CHI
Control	10	0	0	0	0	0	4	6	0 (5	5	0	0		10	0	0 (0 0	0	0	4	3 3	0	0	10	0	0 ()
250 ppm	10	0	0	0	0	0	8	2	0 () 2	8	0	0		10	0	0 (0 0	0	0	2	8 0	0	0	10	0	0 ()
500 ppm	10	0	0	0	0	0	5	5	0 () 4	6	0	0		10	0	0	0 0	0	0	3	6 1	. 0	0	10	0	0 ()
1000 ppm	10	0	0	0	0	0	7	3	0 () 1	9	0	0		10	0	0	0 0	0	0	1	8 1	. 0	0	10	0	0 ()
2000 ppm	10	0	0	0	0	1	6	3	0 6) 1	9	0	0		10	0	0	0 0	0	0	2	6 2	0	0	10	0	0 ()
4000 ppm	10	0	0	0	0	0	6	4	0 (0 (10	0	0	**	10	0	0	0 0	0	0	2	7 1	. 0	0	10	0	0 ()

PAGE: 1

(HCL101) BAIS 3

URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

10	10 10					
		0 0 0 0	10 0 0 0 0		,	
10	10 10	0 0 0 0	10 0 0 0 0			
10	10 10	0 0 0 0	10 0 0 0 0			
10	10 10	0 0 0 0	10 0 0 0 0			
10	10 10	0 0 0 0	10 0 0 0 0			
10	10 10	0 0 0 0	10 0 0 0 0			
erence	ference ; *	:: P ≤ 0.05 *	*: P ≤ 0.01	Test of CHI SQUARE		
ere	fere	nce ; *	nce ; *: P ≤ 0.05 *	nce ; *: P ≤ 0.05 **: P ≤ 0.01	nce ; *: P ≤ 0.05 **: P ≤ 0.01 Test of CHI SQUARE	nce ; *: P ≤ 0.05 **: P ≤ 0.01 Test of CHI SQUARE

BAIS 3

PAGE: 2

(HCL101)

APPENDIX H 2

URINALYSIS : SUMMARY, RAT : FEMALE

URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

Bilirubin Ketone body Group Name NO. of Protein__ Glucose___ 5. 0 6. 0 6. 5 7. 0 7. 5 8. 0 8. 5 CHI $-\pm + 2 + 3 + 4 + CHI$ $-\pm +2+3+4+$ CHI $-\pm +2+3+4+$ CHI - + 2 + 3 + CHIAnimals 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 4 6 0 0 0 Control 10 0 0 0 2 0 1 8 1 0 0 10 0 0 0 0 0 9 1 0 0 0 0 10 0 0 0 5 4 250 ppm 10 0 1 8 1 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 500 ppm 10 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 1000 ppm 10 0 1 8 1 0 0 10 0 0 0 9 1 0 0 0 0 2000 ppm 10 0 2 1 4 3 0 0 8 2 0 0 * 10 0 0 0 0 0 10 0 0 0 0 0 5 5 0 0 * 10 0 0 0 0 0 7 3 0 0 0 0 4000 ppm 10 0 0 0 2 6 2 Test of CHI SQUARE Significant difference : $*: P \leq 0.05$ ** : $P \le 0.01$

PAGE: 3

(HCL101) BAIS 3

URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1

Group Name NO. of Occult blood Urobilinogen $-\pm + 2 + 3 + CHI$ ± + 2+ 3+ 4+ CHI Animals Control 10 0 0 0 0 10 0 0 0 0 250 ppm 10 10 0 0 0 0 10 0 0 0 0 500 ppm 10 10 0 0 0 0 10 0 0 0 0 10 0 0 0 0 10 0 0 0 0 1000 ppm 10 2000 ppm 10 10 0 0 0 0 10 0 0 0 0 4000 ppm 10 0 0 0 0 10 10 0 0 0 0 Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

PAGE: 4

(HCL101) BAIS 3

APPENDIX I 1

GROSS FINDINGS: SUMMARY, RAT: MALE ALL ANIMALS

ANIMAL : RAT F344/DuCrj GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

PAGE: 1

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	250 ppm 10 (%)	500 ppm 10 (%)	1000 ppm 10 (%)
liver	herniation		0 (0)	0 (0)	0 (0)	1 (10)
HPT080)						

ANIMAL : RAT F344/DuCrj GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14%)

REPORT TYPE : A1 : MALE SEX

4000 ppm 10 (%) 2000 ppm 10 (%) Group Name NO. of Animals Findings___ Organ____ 0 (0) 1 (10) herniation liver BAIS 3 (HPT080)

PAGE: 2

APPENDIX I 2

GROSS FINDINGS : SUMMARY, RAT : FEMALE ALL ANIMALS

ANIMAL : RAT F344/DuCrj

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 3

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	250 ppm 10 (%)	500 ppm 10 (%)	1000 ppm 10 (%)
liver	herniation		0 (0)	3 (30)	2 (20)	0 (0)
IDTAGA\						

(HPT080) BAIS 3

ANIMAL : RAT F344/DuCrj

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 4

0rgan	Findings	Group Name 2000 ppm NO. of Animals 10 (%)	4000 ppm 10 (%)	
liver	herniation	0 (0)	0 (0)	
(HPT080)			· ·	BAIS 3

APPENDIX J 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: MALE
(13 - WEEK STUDY)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

up Name	NO. of Animals	Body !	Weight	ТНҮМ	JS	ADRE	NALS	TEST	ES 	HEAR	T	LUNG	
Control	10	290±	15	0.218±	0.019	0.053±	0.008	3.010±	0.148	0.906±	0.050	1.011±	0. 045
250 ppm	10	284±	13	0.213±	0.022	0.053±	0.008	3.049±	0.117	0.903±	0.059	1.005±	0.064
500 ppm	10	284±	8	0.216±	0.022	0.048±	0.005	3.000±	0.085	0.900±	0.053	0.984±	0. 034
1000 ppm	10	281±	8	0.218±	0.019	0.049±	0.004	3.027±	0.110	0.883±	0.053	0.999±	0.054
2000 ppm	10	259±	11**	0.177±	0.024**	0.050±	0.002	2.969±	0.072	0.847±	0.047	0.950±	0.037*
4000 ppm	10	222±	12**	0.162±	0.028**	0.044±	0.004**	2.888±	0.090	0.776±	0.063**	0.864±	0.049**

(HCL040) BAIS 3

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : MALE UNIT: g

PAGE: 2

up Name	NO. of Animals	KIDI	NEYS	SPLI	EEN	LIV	ER	BRA	N
Control	10	1.801±	0.067	0.539±	0. 032	7. 195±	0. 571	1.870±	0. 037
250 ppm	10	1.823±	0.094	0.527±	0. 033	7.102±	0. 472	1.898±	0.040
500 ppm	10	1.873±	0.107	0.533±	0. 022	7.150±	0.393	1.884±	0.030
1000 ppm	10	1.883±	0. 080	0.525±	0. 023	7.316±	0. 257	1.876±	0.036
2000 ppm	10	1.861±	0. 104	0.507±	0.044	7.062±	0.356	1.844±	0.040
4000 ppm	10	1.750±	0.096	0.462±	0.025**	6.479±	0. 577**	1.812±	0.041**

(HCL040) BAIS 3

APPENDIX J 2

ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: FEMALE
(13 - WEEK STUDY)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (14W)

Name	NO. of Animals	Body W	eight	лмүнт	JS	ADRE	NALS	OVAR	IES	HEAR'	<u> </u>	LUNGS	S
Control	10	168±	8	0.196±	0.033	0.056±	0.005	0.115±	0.012	0.617±	0.050	0.755±	0. 029
250 ppm	10	160±	9*	0.171±	0.021*	0.056±	0.005	0.105±	0.009	0.602±	0.054	0.737±	0. 037
500 ppm	10	161±	7	0.181±	0.017	0.052±	0.005	0.105±	0.011	0.599±	0.037	0.726±	0.040
1000 ppm	10	158±	6**	0.178±	0.014	0.055±	0.006	0.102±	0.010	0.591±	0.047	0.726±	0.036
2000 ppm	10	155±	6**	0.169±	0.017*	0.050±	0.004	0.107±	0.007	0.590±	0.026	0.720±	0.034
4000 ppm	10	136±	6**	0.158±	0.021**	0.050±	0.007	0.102±	0.016	0.530±	0.024**	0.655±	0.018**

(HCL040) BAIS 3

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (14W)

oup Name	NO. of Animals	KIDI	NEYS	SPLI	EEN	LIV	ER	BRA:		 	
Control	10	1.155±	0. 034	0.385±	0.022	3.979±	0.168	1.739±	0.056		
250 ppm	10	1.163±	0.068	0.359±	0. 029	3.890±	0. 178	1.747±	0.036		
500 ppm	10	1.181±	0.075	0.356±	0.025	3.964±	0. 207	1.725±	0.060		
1000 ppm	10	1.238±	0.045**	0.370±	0.029	3.970±	0.163	1.738±	0.024		
2000 ppm	10	1.307±	0.054**	0.380±	0.028	4.210±	0. 199	1.734±	0.040		
4000 ppm	10	1.259±	0.045**	0.349±	0.025*	4.088±	0.418	1.674±	0.036**		

BAIS 3 (HCL040)

APPENDIX K 1

ORGAN WEIGHT, RELATIVE : SUMMARY, RAT : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

STUDY NO. : 0323 ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : MALE UNIT: %

UNIT: %

PAGE: 1

up Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	29 0± 15	0.075± 0.006	0.018± 0.003	1.040± 0.031	0.313± 0.009	0.350± 0.008
250 ppm	10	284± 13	0.075± 0.007	0.019± 0.003	1.077± 0.054	0.318± 0.015	0.355± 0.016
500 ppm	10	284± 8	0.076± 0.008	0.017± 0.002	1.058± 0.028	0.318± 0.017	0.347± 0.012
1000 ppm	10	281± 8	0.078± 0.006	0.018± 0.001	1.079± 0.029*	0.314± 0.017	0.356± 0.013
2000 ppm	10	259± 11**	0.068± 0.009	0.019± 0.001	1.146± 0.050**	0.327± 0.015	0.366± 0.009**
4000 ppm	10	222± 12**	0.073± 0.011	0.020± 0.001	1.307± 0.076**	0.350± 0.022**	0.391± 0.024**

(HCL042) BAIS 3

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (14W)

PAGE: 2 UNIT: %

up Name	NO, of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.623± 0.015	0.186± 0.004	2.483± 0.095	0.647± 0.028	
250 ppm	10	0.643± 0.022	0.186± 0.006	2.503± 0.073	0.670± 0.025	
500 ppm	10	0.660± 0.023**	0.188± 0.005	2.520± 0.088	0.665± 0.018	
1000 ppm	10	0.671± 0.020**	0.187± 0.005	2.607± 0.082*	0.669± 0.018	
2000 ppm	10	0.717± 0.026**	0.195± 0.014	2.723± 0.088**	0.712± 0.033**	
4000 ppm	10	0.791± 0.029**	0.209± 0.006**	2.921± 0.136**	0.820± 0.040**	

(HCL042)

BAIS 3

APPENDIX K 2

ORGAN WEIGHT, RELATIVE : SUMMARY, RAT : FEMALE

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 3

oup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS
Control	10	168± 8	0.116± 0.017	0.033± 0.003	0.068± 0.006	0.367± 0.021	0.449± 0.020
250 ppm	10	· 160± 9*	0.107± 0.011	0.035± 0.004	0.066± 0.009	0.377± 0.024	0.463± 0.031
500 ppm	10	161± 7	0.112± 0.009	0.032± 0.003	0.066± 0.006	0.373± 0.018	0.452± 0.022
1000 ppm	10	158± 6**	0.112± 0.007	0.035± 0.003	0.064± 0.006	0.374± 0.025	0.459± 0.020
2000 ppm	10	155± 6**	0.109± 0.009	0.033± 0.002	0.069± 0.004	0.381± 0.018	0.465± 0.019
4000 ppm	10	136± 6**	0.116± 0.012	0.036± 0.006	0.075± 0.011	0.389± 0.018	0.481± 0.022*

(HCL042) BAIS 3

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

PAGE: 4

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN
Control	10	0.687± 0.025	0.229± 0.015	2.366± 0.100	1.035± 0.058
250 ppm	10	0.729± 0.025**	0.225± 0.013	2.440± 0.081	1.098± 0.061*
500 ppm	10	0.735± 0.040**	0.222± 0.012	2.468± 0.087*	1.075± 0.039
1000 ppm	10	0.782± 0.016**	0.234± 0.013	2.510± 0.070**	1.100± 0.040*
2000 ppm	10	0.844± 0.024**	0.245± 0.015*	2.718± 0.079**	1.121± 0.041**
4000 ppm	10	0.924± 0.034**	0.256± 0.013**	2.997± 0.271**	1.229± 0.049**
Significant	difference;	* : P ≤ 0.05 **:	P ≤ 0.01	Test	of Dunnett

(HCL042)

BAIS 3

APPENDIX L 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: MALE: ALL ANIMALS

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX : MALE

ANIMAL : RAT F344/DuCrj

PAGE: 1 1000 ppm Group Name Control 250 ppm 500 ppm 10 No. of Animals on Study 10 10 10 Grade (%) (%) (%) Findings_ {Respiratory system} <10> <10> <10> <10> nasal cavit 0 0 0 0 0 0 0 inflammation:foreign body 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 2 0 0 3 0 0 2 0 respiratory metaplasia:gland (30) (0) (0) (0) (20) (0) (0) (0) (20) (0) (0) (0) (20) (0) (0) (0) {Digestive system} <10> <10> <10> <10> salivary gl 0 0 0 0 0 0 0 atrophy (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) <10> <10> <10> <10> stomach 0 0 0 0 0 0 0 0 0 0 0 0 0 hyperplasia: forestomach 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) <10> <10> liver <10> <10> 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 herniation (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) {Urinary system} <10> <10> <10> kidney <10> 0 0 0 0 0 0 0 0 0 basophilic change (20) (0) (0) (0) (10) (0) (0) (0) (20) (0) (0) (0) (20) (0) (0) (0) 3 : Marked 4 : Severe Grade 1 : Slight 2 : Moderate a : Number of animals examined at the site < a > b b: Number of animals with lesion (c) c:b/a*100 Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : MALE

PAGE: 2

Organ	No	roup Name 2000 ppm b. of Animals on Study 10 rade 1 2 3 4 (%) (%) (%) (%)	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Respiratory	system}			
masal cavit	inflammation:foreign body	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
	respiratory metaplasia:gland	5 0 0 0 (50)(0)(0)(0)	2 0 0 0 0 (20) (0) (0) (0)	
{Digestive sy	vstem}			
salivary gl	atrophy	<pre></pre>	<10> 5 0 0 0 * (50) (0) (0) (0)	
stomach	hyperplasia:forestomach	<10> 0 0 0 0 (0) (0) (0) (0)	(10) (0) (0) (0)	
liver	herniation	<10> 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (10) (0) (0) (0)	
{Urinary syst	tem)			
kidney	basophilic change	<10> 1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤			

(HPT150)

BAIS3

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : MALE

Organ	Findings	<u> </u>	Control 10 2 3 4 (%) (%)	250 ppm 10 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Urinary syst	tem)					
kidney	eosinophilic body		<10> .0 0 0 .00) (0) (0)	1 9 0 0 (10) (90) (0) (0)	<10> 0 10 0 0 (0) (100) (0) (0)	<10> 0 10 0 0 (0) (100) (0) (0)
	hyeline cast	(0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0	1 0 0 0 (10) (10) (10)
{Endocrine s	system}					
pituitary	cyst		<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<10> 1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	Rathke pouch	(0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)
{Special sen	nse organs/appendage}					
Harder gl	lymphocytic infiltration	(10) (<10> 0 0 0 0) (0) (0)	<pre></pre>	1 0 0 0 (10) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **	3 : Marked 4 : Severe the site : P ≤ 0.01 Test of Chi Square				

BAIS3

PAGE: 3

(HPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14\)

STUDY NO. : 0323 ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

: MALE

Organ	N	roup Name 2000 ppm o. of Animals on Study 10 rade 1 2 3 4 (%) (%) (%) (%)	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Urinary sys	stem			
kidney	eosinophilic body	<10> 2 8 0 0 (20) (80) (0) (0)	<10> 0 10 0 0 (0) (100) (0) (0)	
	hyaline cast	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (0) (0) (0)	
{Endocrine s	system}			
pituitary	cyst	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	Rathke pouch	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
{Special ser	nse organs/appendage)			
Harder gl	lymphocytic infiltration	2 0 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade <a> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of unimals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤			
(HPT150)		·		 BAIS

APPENDIX L 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: FEMALE: ALL ANIMALS

(13 - WEEK STUDY)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1

SEX : FEMALE PAGE : 5

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	250 ppm 10 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%) (%)	1000 ppm 10 1 2 3 4 (%) (%) (%) (%)
{Respiratory	system)				
nasal cavit	respiratory metaplasia:gland	<10> 5 0 0 0 (50) (0) (0) (0)	5 0 0 0 (50) (0) (0) (0)	<10> 4 0 0 0 (40) (0) (0) (0)	<10> 0 0 0 0 * (0) (0) (0) (0)
lung	osseous metaplasia	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
{Hematopoieti	c system}				
bone marrow	granulation	<10> 2 2 0 0 (20) (20) (0) (0)	1 2 0 0 (10) (20) (0) (0)	1 4 0 0 (10) (40) (0) (0)	<10> 1 1 0 0 (10) (10) (0) (0)
{Digestive sy	stem}				
salivary gl	atrophy	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
liver	herniation	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 3 0 0 0 (30) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
Grade <a>a> b (c) Significant d	 a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 			-	

(HPT150)

BAIS3

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : FEMALE

Organ	1	Group Name 2000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
(2)				
{Respiratory s	system;			
nasal cavit	respiratory metaplasia:gland	5 0 0 0 (50) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)	
lung	ossecus metaplasia	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
{Hematopoieti	c system)			
bone marrow	granulation	2 1 1 0 (20) (10) (10) (0)	<10> 2	
{Digestive sy	rstem)			
salivary gl	atrophy		<10> 7 0 0 0 ** (70) (0) (0) (0)	
liver	herniation	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade <a> > b (c) Significant d	a: Number of animals examined at the si b: Number of animals with lesion c: b/a * 100			DATES

(HPT150)

BAIS3

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : FEMALE

Organ	N	roup Name o, of Animals on Study rade(%)	Control 10 2 3 4 (%) (%) (%)	250 ppm 10 1 2 3 4 (%) (%) (%) (%)	500 ppm 10 1 2 3 4 (%) (%) (%)	1000 ppm 10 10 1 2 3 4 (%) (%) (%) (%)
{Digestive sy	ystem)					
liver	granulation	1 (10) (<10> 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
{Urinary sys	tem)					
kidney	basophilic change	0 (0)	<10> 0 0 0 (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)
	mineralization:cortico-medullary juncti	ion 1 (10)	0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	2 0 0 0 0	0 0 0 0 0 (0) (0)
	eosinophilic droplet:proximal tubule	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	4 0 0 0 0 (40) (0) (0)	8 0 0 0 ***
{Endocrine s	system}					
pituitary	Rathke pouch	1 (10)	<10> 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	1 0 0 0 (10) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤					

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14%)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : FEMALE

Organ	No	oup Name of Animals on Study ade 1 (%)	2000 ppm 10 2 3 (%) (%) (4 <u>1</u> (%)	4000 ppm 10 2 3 (%) (%)	<u>4</u> (%)	
{Digestive sy	vstem}						
liver	granulation	(0)	<10> 0 0 (0) (0) (<10> 0 0 (0) (0)	0 (0)	
(Urinary syst	tem)						
kidney	basophilic change	0 (0)	<10> 0 0 (0) (0) (0 0 0	<10> 0 0 (0) (0)	0 (0)	
	mineralization:cortico-medullary junctio	0 (0)	0 0 (0) (0 2 0) (20)	0 0	0 (0)	
	ecsinophilic droplet:proximal tubule	10 (100)	0 0 (0) (0 ** 10 0) (100)	0 0 (0)	0 **	
(Endocrine s	ystem}						
pituitary	Rathke pouch	0 (0)	<10> 0 0 (0) (0) (0 0 0	<10> 0 0 (0) (0)	0 (0)	
Grade (a) b (c) Significant	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤			· · · · · · · · · · · · · · · · · · ·			
Significant (HPT150)	difference; *: P ≤ 0.05 **: P ≤	0.01 Test of Chi Squar	re				

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name No. of Animals on Grade	1	10 2	3 (%) (9	<u>4</u> %)	<u>1</u> (%)	25 10 2 (%)	50 ppm) 3 (%)	<u>4</u> (%)	1 (%)		00 ppr 0 3 (%)	4 (%)	1 (%)	2	000 ppm 10 3 (%)	4 (%)
Special sen	use organs/appendage}																	
Harder gl	lymphocytic infiltration		2 (20) (<10> 0 0) (0	0 0)	0 (0)	0 (0)	0	0 (0)	1 (10)	0	(0)	0 (0)	0 (0)	0	0 (0)	0 (0)
Grade (a > b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:	e site	: Severe												·			
(HPT150)]

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

PAGE: 10 SEX : FEMALE

0rgan	Findings	Group Name No, of Animals on Study Grade (9	2 3 4	4000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Special ser	nse organs/appendage}				
Harder gl	lymphocytic infiltration		<10> 2	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade <a> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:				
(HPT150)					Ві

APPENDIX M 1

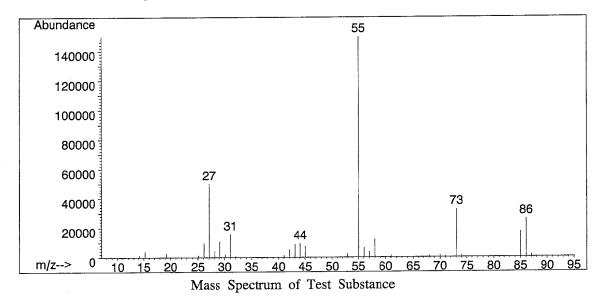
IDENTITY AND IMPURITY OF 2 - HYDROXYETHYL ACRYLATE

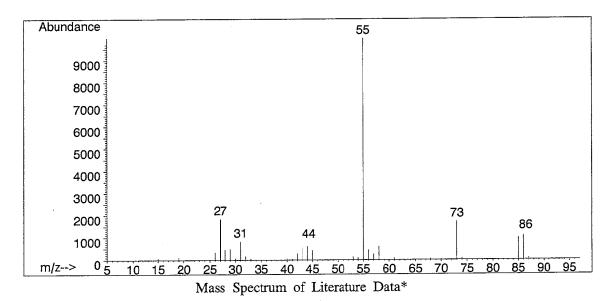
IN THE 13 - WEEK DRINKING WATER STUDY

IDENTITY AND IMPURITY OF 2-HYDROXYETHYL ACRYLATE IN THE 13-WEEK DRINKING WATER STUDY

Test Substance : 2-Hydroxyethyl Acrylate (Wako Pure Chemical Industries, Ltd.)

Lot No. : LEM4569


1. Spectral Data


Mass Spectrometry

Instrument : Hewlett Packard 5989B Mass Spectrometer

Ionization : EI (Electron Ionization)

Ionization Voltage : 70eV

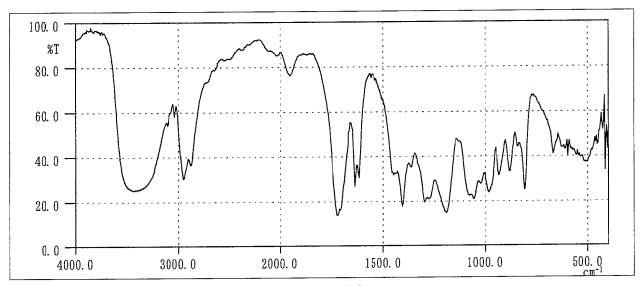
Results: The mass spectrum was consistent with literature spectrum.

(*Fred W. McLafferty (1994) Wiley Registry of Mass Spectral Data, 6th edition.

John Wiley and Sons, Inc. (U.S.), Entry Number 12762)

Infrared Spectrometry

Instrument :


: Shimadzu FTIR-8200PC Infrared Spectrometer

Cell

: KBr Liquid Cell

Resolution

: 2 cm⁻¹

Infrared Spectrum of Test Substance

	*
Determined Values	Literature Values
Wave Number (cm ⁻¹)	Wave Number (cm ⁻¹)
650~ 680	650~ 680
$770\sim 850$	770~ 850
850~ 910	850~ 910
910~ 950	910~ 950
950~1010	950~1010
1010~1140	1010~1140
$1140\sim 1250$	$1140 \sim 1250$
1250~1350	$1250 \sim 1350$
1350~1550	$1350\sim 1550$
1580~1660	1580~1660
1660~1850	$1660 \sim 1850$
1920~2000	1920~2000
2750~3020	$2750\sim3020$
3060~3700	3060~3700

Results: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Impurity

)

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : FFAP (0.53 mm ϕ × 30 m)

Column Temperature : 180 ° C

Flow Rate : 3 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 μL

Sample Name	Peak No.	Area (%)	Peak Name
Test Substance	1	1.125	Acrylic Acid
	2	96.190	2-Hydroxyethyl Acrylate
	3	2.632	Material which cannot be identified
	4	0.053	p-Methoxyphenol

Results: Gas chromatography indicated one major peak (peak No.2) and three impurities. It was identified only by comparing gas chromatograph with that of acrylic acid (peak No.1), material which cannot be identified (peak No.3) and p-methoxyphenol (peak No.4) in the 2-hydroxyethyl acrylate, the amount in the test substance were 1.125%, 2.632% and 0.053%.

3. Conclusions: The test substance was identified as 2-hydroxyethyl acrylate by the mass spectrum and the infrared spectrum. Gas chromatography indicated one major peak (peak No.2) and three impurities. It was identified only by comparing gas chromatograph with that of acrylic acid, material which cannot be identified and p-methoxyphenol, the amount in the test substance were 1.125%, 2.632% and 0.053%.

APPENDIX M 2

STABILITY OF 2 - HYDROXYETHYL ACRYLATE IN THE 13 - WEEK DRINKING WATER STUDY

STABILITY OF 2-HYDROXYETHYL ACRYLATE IN THE 13-WEEK DRINKING WATER STUDY

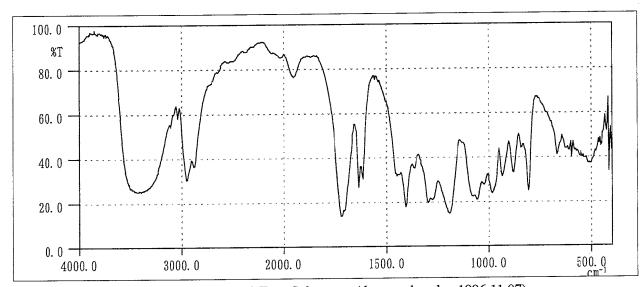
Test Substance : 2-Hydroxyethyl Acrylate (Wako Pure Chemical Industries, Ltd.)

Lot No. : LEM4569

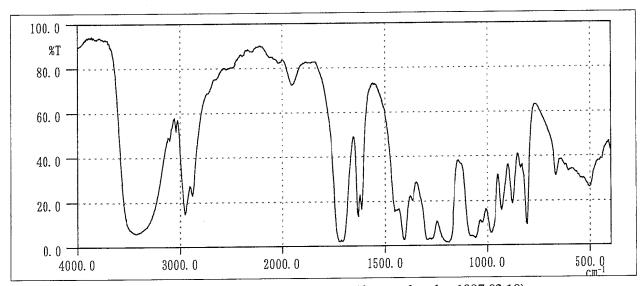
1. Sample : This lot was used from 1996.11.19 to 1997.2.20. Test substance was stored

at room temperature.

2. Infrared Spectrometry


)

)


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

Infrared Spectrum of Test Substance (date analyzed: 1996.11.07)

Infrared Spectrum of Test Substance (date analyzed: 1997.03.10)

Results: The results of infrared spectrum did not change before and after the study.

3. Gas Chromatography

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ × 30 m)

Column Temperature

: 180 °C

Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

: 1 μL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
1996.11.07	1	2.657	1.125
	2	3.369	96.190
	3	7.527	2.632
	4	20.362	0.053
1997.03.10	1	2.439	0.857
	2	3.007	96.308
	3	6.858	2.782
	4	18.570	0.053

Results: Gas chromatography indicated one major peak (peak No.2) and three impurities (peaks No.1, No.3 and No.4 < 4% of total area) analyzed on 1996.11.7 and one major peak (peak No.2) and three impurities (peaks No.1, No.3 and No.4 < 4% of total area) analyzed on 1997.3.10. No new trace impurity peak in the test substance analyzed on 1997.3.10 was detected.

4. Conclusions: The test substance was stable for about 4 months at room temperature.

APPENDIX M 3

CONCENTRATION OF 2 - HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13 - WEEK DRINKING WATER STUDY

CONCENTRATION OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

Target Concentration							
Date Analyzed	250ª	500	1000	2000	4000		
1996.11.19	256 (102) ^b	512 (102)	1030 (103)	2120 (106)	4150 (104)		

^a ppm ^b %

Analytical Method

: The samples were analyzed by gas chromatography.

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ × 30 m)

Column Temperature

: 180 °C

Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

: 1 μL

APPENDIX M 4

STABILITY OF 2 - HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13 - WEEK DRINKING WATER STUDY

STABILITY OF 2-HYDROXYETHYL ACRYLATE IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

Date Prepared		Target Concentration		
	Date Analyzed	250ª	4000	
1996.11.07	1996.11.07	238 (100) ^b	3770 (100)	
	1996.11.14°	228 (95.8)	3670 (97.3)	

^a ppm

Analytical Method : The samples were analyzed by gas chromatography.

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: FFAP (0.53 mm ϕ × 30 m)

Column Temperature: 180 ° C Flow Rate

: 3 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

: 1 µL

^b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

APPENDIX N 1

METHODS FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13 - WEEK DRINKING WATER STUDY OF 2 - HYDROXYETHYL ACRYLATE

METHOD FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Item	Method
Hematology	
Red blood cell (RBC)	Light scattering method 1)
Hemoglobin (Hgb)	Cyanmethemoglobin method '
Hematocrit (Hct)	Calculated as RBC×MCV/10 "
Mean corpuscular volume (MCV)	Light scattering method '
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC×10 '
Mean corpuscular hemoglobin concentration (MCHC)	Calculated as Hgb/Hct×100 1)
Platelet	Light scattering method 17
Reticulocyte	Pattern recognition method 39
	(New methyleneblue staining)
Prothrombin time	Quick one stage method 2)
Activated partial thromboplastin time (APTT)	Ellagic acid activaterd method 2)
White blood cell (WBC)	Light scattering method '
Differential WBC	Pattern recognition method 3)
	(May-Grunwald-Giemsa staining)
Biochemistry	
Total protein (TP)	Biuret method 4)
Albumin (Alb)	BCG method 4)
A/G ratio	Calculated as Alb/(TP-Alb) 4)
T-bilirubin	Alkaline azobilirubin method 4/
Glucose	Enzymatic method (GLK·G-6-PDH)
T-cholesterol	Enzymatic method (CE·COD·POD)
Triglyceride	Enzymatic method (LPL·GK·GPO·POD)
Phospholipid	Enzymatic method (PLD·COD·POD) 4)
Glutamic oxaloacetic transaminase (GOT)	IFCC method 4)
Glutamic pyruvic transaminase (GPT)	IFCC method 4)
Lactate dehydrogenase (LDH)	Wroblewski-LaDue method 4)
Alkaline phosphatase (ALP)	p-Nitrophenylphosphate method 4)
γ -Glutamyl transpeptidase (γ -GTP)	L-γ-Glutamyl-p-nitroanilide method 4)
Creatine phosphokinase (CPK)	GSCC method "
Urea nitrogen	Enzymatic method (Urease · GLDH) 4)
Creatinine	Jaffe method 4)
Sodium	Ion selective electrode method 4)
Potassium	Ion selective electrode method 4)
Chloride	Ion selective electrode method 4)
Calcium	OCPC method ⁴⁾
Inorganic phosphorus	Enzymatic method (PNP·XOD·POD) 4)
Urinalysis	
pH,Protein,Glucose,Ketone body,Bilirubin,Occult Blood,	Urinalysis reagent paper method 5)
Urobilinogen	

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation)
- 2) Automatic coagulometer (Sysmex CA-5000 : Toa Medical Electronics Co.,Ltd.)
- 3) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi,Ltd.)
- 4) Automatic analyzer (Hitachi 7070 : Hitachi,Ltd.)
- 5) Ames reagent strips for urinalysis (Multistix: Bayer-Sankyo Co.,Ltd.)

APPENDIX N 2

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13 - WEEK DRINKING WATER STUDY OF 2 - HYDROXYETHYL ACRYLATE

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-HYDROXYETHYL ACRYLATE

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	$ imes 10^6 / \mu \mathrm{L}$	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	$\times 10^3/\mu L$	0
Reticulocyte	‰	0
Prothrombin time	sec	1
Activated partial thromboplastin time (APTT)	sec	1
White blood cell (WBC)	$\times 10^3/\mu L$	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Triglyceride	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transaminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
Alkaline phosphatase (ALP)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0
Urea nitrogen	mg/dL	1
Creatinine	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1