p-ニトロアニソールのラットを用いた経口投与による 13 週 間 毒 性 試 験 (混 餌 試 験)報 告 書

試験番号:0369

APPENDIX

APPENDIXES

APPENDIX A 1	CLINICAL OBSERVATION: SUMMARY, RAT : MALE (13-WEEK STUDY)
APPENDIX A 2	CLINICAL OBSERVATION: SUMMARY, RAT : FEMALE (13-WEEK STUDY)
APPENDIX B 1	BODY WEIGHT CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX B 2	BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX C 1	FOOD CONSUMPTION CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX C 2	FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX D 1	CHEMICAL INTAKE CHANGES: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX D 2	CHEMICAL INTAKE CHANGES: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX E 1	HEMATOLOGY: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX E 2	HEMATOLOGY: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX F 1	BIOCHEMISTRY: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX F 2	BIOCHEMISTRY: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX G 1	URINALYSIS: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX G 2	URINALYSIS: SUMMARY, RAT: FEMALE (13-WEEK STUDY)

APPENDIXES (CONTINUED)

APPENDIX H 1	GROSS FINDINGS: SUMMARY, RAT: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX H 2	GROSS FINDINGS: SUMMARY, RAT: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX I 1	ORGAN WEIGHT: ABSOLUTE: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX I 2	ORGAN WEIGHT: ABSOLUTE: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX J 1	ORGAN WEIGHT: RELATIVE: SUMMARY, RAT: MALE (13-WEEK STUDY)
APPENDIX J 2	ORGAN WEIGHT: RELATIVE: SUMMARY, RAT: FEMALE (13-WEEK STUDY)
APPENDIX K 1	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: MALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX K 2	HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY, RAT: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX L 1	HISTOLOGICAL FINDINGS: NEOPLASTIC LESIONS: SUMMARY, RAT: FEMALE: ALL ANIMALS (13-WEEK STUDY)
APPENDIX M 1	IDENTITY AND IMPURITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY
APPENDIX M 2	STABILITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY
APPENDIX M 3	CONCENTRATION OF p-NITROANISOLE IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY
APPENDIX M 4	STABILITY OF p-NITROANISOLE IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY
APPENDIX N 1	METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE
APPENDIX O 1	UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE

APPENDIX A 1

CLINICAL OBSERVATION: SUMMARY, RAT: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0369

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W	ek-day										
		1-7	2-7	3-7	4-7	5–7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
•	1250 ppm	0	0	0	0	0	0	0	7	9	9	9	9	9
	2500 ppm	1	1	7	10	10	10	10	10	10	10	10	10	10
	5000 ppm	9	10	10	10	10	10	10	10	10	10	10	10	10
	8000 ppm	9	9	9	10	10	10	10	10	10	10	10	10	10
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
OILED PERI GENITALIA	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	8000 ppm	0	0	1	1	1	1	2	2	2	2	2	4	4
	10000 ppm	0	0	3	3	2	2	3	2	2	2	2	5	6
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	9	10	10	10	10	10	10	10	10	10	10	10	10
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	8000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10

BAIS 3 (HAN190)

APPENDIX A 2

CLINICAL OBSERVATION: SUMMARY, RAT: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0369 ANIMAL : RAT F344/DuCrj REPORT TYPE : A1 13

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
-	·	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	Ō	0	0	0	0	0	0	0	0	1	1	
	mag 0008	Ō	Ô	0	Ö	0	0	0	0	Ō	0	0	0	Ō	
	10000 ppm	Ö	Ö	0	Ö	Ŏ	Õ	0	Ö	Ŏ	Ö	. 0	1	1	
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	9	9	9	9	9	10	9	9	9	9	9	10	10	
	2500 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	mag 0008	10	10	10	10	10	10	10	10	10	10	10	10	10	
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
SOILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	
	2500 ppm	0	0	2	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	1	1	1	1	4	5	4	4	4	4	4	
	mag 0008	7	7	7	7	7	7	7	7	7	7	7	8	8	
	10000 ppm	8	8	10	10	9	9	8	8	8	8	8	8	8	
EYE OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
•	5000 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	
	mag 0008	Ö	Ō	Ö	Ō	0	0	Ö	Ö	Ô	Õ	Õ	ō	ō	
	10000 ppm	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ŏ	ŏ	Ö	Ö	ő	ŏ	
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	
	mqq 0008	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	Ö	0	Ō	Ö	
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	2500 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	5000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	8000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	

APPENDIX B 1

BODY WEIGHT CHANGES: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Admini	stration	week											
	0		1		2		3		4		5		6	
Control	126±	4	155±	6	182±	9	203±	11	224士	11	239±	12	251±	13
1250 ppm	126±	4	155±	4	180±	2	202±	6	219±	6	236±	7	248±	6
2500 ppm	126±	3	153±	6	178±	7	198±	11	216±	11	230±	12	246±	13
5000 ppm	126±	3	148±	7	173±	11	194±	13	212±	15	226±	15*	240±	15
mag 0008	126±	3	137±	2**	161±	4**	180±	6**	197±	7**	211±	9**	222±	10**
mag 00001	126±	4	127±	5**	143±	5**	159±	7**	174±	5**	186±	7**	197±	7**
10000 ppm	126±	4	127±	5**	143±	5**	159±	7**	174±	5**	186±	7**		197±
nt differer	nce; *:P≦0).05	**: P ≤ 0.0	1			Test of Du	mett						

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 2

oup Name	Admini	stration	week											
	7		8		9		10		11		12		13	
Control	264±	13	276士	13	286±	13	295±	14	303±	14	309±	15	315±	15
1250 ppm	260±	8	273士	7	281±	8	290±	9	298±	10	306±	10	312±	11
2500 ppm	260士	13	269±	14	280±	15	289±	13	298±	14	306±	15	314±	14
5000 ppm	249土	17*	258±	16**	269±	19	279±	19*	288±	16*	294士	17	301±	19
mqq 0008	234±	11**	242士	11**	250±	12**	256±	13**	263±	14**	269±	14**	276±	15**
10000 ppm	205±	6**	214±	7**	222±	7**	230±	6**	237±	8**	243±	9**	249±	10**
Significant difference;	*: P ≦ (0.05	**: P ≦ 0.0	01			Test of Du	nnett						

(HAN260)

BAIS 3

APPENDIX B 2

BODY WEIGHT CHANGES: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 3

oup Name	Admini	stratio	n week											
	0		1		2		3		4		5	·	6	
Control	100±	3	112±	5	123±	5	130±	4	138±	6	144±	5	149±	5
1250 ppm	100±	3	111±	4	118±	5	125±	5	130±	6	136±	7	140±	7*
2500 ppm	100±	3	107±	5	115±	6 *	119±	6**	125±	7**	130±	8**	134±	7**
5000 ppm	100±	3	104±	6**	111±	8**	115±	7**	120±	8**	124±	8**	129±	8**
8000 ppm	100±	3	96±	5**	105±	5**	112±	7**	118±	8**	122±	8**	126±	7**
10000 ppm	100±	3	94±	5**	102±	7**	111±	8**	118±	7**	124土	9**	129±	10**
						·····	····							
Significant difference	e; *:P≦(0.05	**: P ≤ 0.0)1			Test of Dur	nett			•			
N260)					··· · · · · · · · · · · · · · · · · ·		-							j

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

PAGE: 4

oup Name	Admini	stration	week											
	7		8		9		10		11		12		13	
Control	154±	5	157±	6	163±	5	166±	5	171±	5	172±	7	175±	5
1250 ppm	142±	7**	143±	9**	146±	8**	152±	7**	152±	8**	157±	8**	159±	8**
2500 ppm	138±	8**	139±	8**	142±	8**	145±	9**	149土	8**	152±	8**	154土	8**
5000 ppm	131±	8**	133±	8**	135±	9**	138土	7**	140±	10**	142±	10**	144土	11**
8000 ppm	130±	8**	133±	8**	133±	7**	137±	8**	139±	7**	144土	8**	146土	10**
10000 ppm	132±	9**	135±	9**	137±.	10**	139±	10**	141±	11**	145±	11**	147土	10**
Significant differen	nce; *:P≦(0.05	**: P ≤ 0.0	1			Test of Du	nnett						
AN260)														

(HAN260)

BAIS3

APPENDIX C 1

FOOD CONSUMPTION CHANGES : SUMMARY, RAT : MALE (13-WEEK STUDY)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

UNIT : g

STUDY NO. : 0369

REPORT TYPE : A1 13

SEX: NALE

roup Name	Administration 1-7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7(7)
Control	12.6± 0.7	13.3± 0.9	13.7± 1.0	14.4± 0.9	14.5± 1.0	14.4± 0.9	14.7± 0.6
1250 ppm	12.6± 0.6	13.3± 0.4	14.0± 0.5	14.2± 0.4	14.6± 0.8	14.2± 0.7	14.4± 0.5
2500 ppm	11.8± 0.7*	13.1± 0.5	13.5± 1.0	13.7± 0.9	13.7± 1.3	13.9± 0.8	14.5± 0.6
5000 ppm	10.1± 0.6**	12.9± 1.2	13.3± 1.2	13.7± 1.2	13.8± 1.1	13.8± 1.0	14.0± 1.1
mqq 0008	8.5± 0.5**	11.7± 0.4*	12.6± 0.6*	13.0± 0.6**	13.1± 1.0*	13.3± 1.6	14.1± 1.9
10000 ppm	7.0± 0.6**	9.7± 0.6**	10.8主 0.9**	11.5士 0.7**	11.5± 0.9**	12.0± 0.8**	12.2± 0.7**
	D < 0.05		····	To the filtred			
Significant difference	; *:P≦0.05	**: P ≤ 0.01	· · · · · · · · · · · · · · · · · · ·	Test of Dunnett			

(HAN260)

BAIS 3

ANIMAL : RAT F344/DuCrj UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

iroup Name	Administration	week-day(effective)_					·
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	14.5± 0.8	14.3± 0.8	14.2± 0.9	14.2± 0.8	14.0± 1.1	14.2± 1.2	
1250 ppm	14.3± 0.4	14.4± 0.6	14.2± 0.8	14.4± 1.1	14.3± 0.8	14.7± 1.2	
2500 ppm	13.9± 0.8	14.4± 0.8	14.2± 0.8	14.3± 0.8	14.2± 0.8	14.4± 0.9	
5000 ppm	13.6± 1.0	14.2± 1.3	14.3± 1.3	14.3± 0.8	14.4± 0.9	14.3± 1.3	
Mqq 0008	13.9± 1.5	13.7± 1.2	13.7± 1.2	13.9± 1.5	14.3± 1.8	14.8± 1.9	
10000 ppm	12.4± 0.4**	12.1± 0.5**	12.3± 0.5**	12.4± 0.8**	12.8± 0.7	13.1± 0.8	
Significant differ	rence; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
HAN260)							BAIS

APPENDIX C 2

FOOD CONSUMPTION CHANGES: SUMMARY, RAT: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

UNIT : g

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 13

SEX : FEMALE

roup Name	Administration 1-7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7(7)
Control	9.8± 0.7	9.8± 0.8	10.0± 0.5	10.2± 0.6	10.3± 0.6	10.0± 0.5	10.2± 0.4
1250 ppm	9.4± 0.5	9.2± 0.7	9.4± 0.7	9.5± 0.9	9.7± 0.8	9.3± 0.8	9.3± 0.9
2500 ppm .	8.6± 0.6	8.5± 0.8**	8.8± 0.7**	9.1± 0.8*	9.0± 0.7**	9.3± 0.7	9.5± 0.9
5000 ppm	8.2± 2.5*	8.2± 0.9**	8.2± 0.8**	8.3± 0.9**	8.3± 0.7**	8.3± 0.7**	8.4± 0.9**
8000 ppm	6.2± 1.2**	7.4± 0.6**	7.8± 0.5**	8.1± 0.6**	8.1± 0.7**	8.1± 0.7**	8.1± 0.7**
10000 ppm	7.1± 3.3**	7.4± 0.5**	7.8± 0.6**	8.2± 0.6**	8.0± 0.6**	8.3± 1.1**	8.6± 1.4**
Significant difference	; *: P ≤ 0.05	:*: P ≤ 0.01		Test of Dunnett			······································
AN260)							В

ANIMAL : RAT F344/DuCrj

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name Administration week-day(effective) 8-7(7) 9-7(7) 10-7(7)11-7(7)12-7(7)13-7(7) Control 9.8± 0.7 9.8± 0.8 9.7± 0.8 9.9± 0.7 9.8± 0.7 9.9± 0.7 1250 ppm 8.8± 0.5 9.0 ± 0.4 9.1± 0.4 9.1± 0.4 9.1± 0.5 9.2± 0.6 2500 ppm 8.8± 0.6 8.8± 0.7 8.8± 0.8 8.8± 0.7 8.8± 0.6 9.1± 1.4 5000 ppm 8.2± 0.6** 8.3± 0.8** 8.1± 0.6** 7.9± 0.6** 7.9士 0.7** 8.1± 0.8** mqq 0008 7.7± 0.5** 7.8± 0.5** 7.6± 0.7** 8.0士 0.6** 8.3± 0.6** 10000 ppm 8.7± 1.8** 8.6± 1.8** 8.7± 2.3** 8.8± 2.8** 10.2± 4.7** 9.7生 3.7**

Test of Dunnett

(HAN260)

Significant difference; $*: P \leq 0.05$

**: $P \leq 0.01$

BAIS 3

APPENDIX D 1

CHEMICAL INTAKE CHANGES: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj UNIT : g/kg/day REPORT TYPE : A1 13

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

Administration	(weeks)					
1	2	3	4	5	6	7
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
0.102± 0.003	0.092± 0.002	0.087± 0.002	0.081± 0.002	0.077± 0.003	0.072± 0.003	0.069± 0.002
0.192± 0.005	0.185± 0.006	0.170± 0.004	0.159± 0.005	0.149± 0.007	0.141± 0.003	0.140± 0.004
0.341± 0.017	0.372± 0.019	0.343± 0.011	0.322± 0.011	0.305± 0.009	0.288± 0.006	0.282± 0.010
0.494± 0.025	0.580± 0.015	0.562± 0.012	0.528± 0.025	0.497± 0.034	0.479± 0.058	0.483± 0.074
0.554± 0.035	0.679± 0.027	0.679± 0.041	0.661± 0.030	0.618± 0.033	0.607± 0.029	0.597± 0.022
	1 0.000± 0.000 0.102± 0.003 0.192± 0.005 0.341± 0.017 0.494± 0.025	1 2 0.000± 0.000 0.000± 0.000 0.102± 0.003 0.092± 0.002 0.192± 0.005 0.185± 0.006 0.341± 0.017 0.372± 0.019 0.494± 0.025 0.580± 0.015	1 2 3 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.102± 0.003 0.092± 0.002 0.087± 0.002 0.192± 0.005 0.185± 0.006 0.170± 0.004 0.341± 0.017 0.372± 0.019 0.343± 0.011 0.494± 0.025 0.580± 0.015 0.562± 0.012	1 2 3 4 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.102± 0.003 0.092± 0.002 0.087± 0.002 0.081± 0.002 0.192± 0.005 0.185± 0.006 0.170± 0.004 0.159± 0.005 0.341± 0.017 0.372± 0.019 0.343± 0.011 0.322± 0.011 0.494± 0.025 0.580± 0.015 0.562± 0.012 0.528± 0.025	1 2 3 4 5 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.102± 0.003 0.092± 0.002 0.087± 0.002 0.081± 0.002 0.077± 0.003 0.192± 0.005 0.185± 0.006 0.170± 0.004 0.159± 0.005 0.149± 0.007 0.341± 0.017 0.372± 0.019 0.343± 0.011 0.322± 0.011 0.305± 0.009 0.494± 0.025 0.580± 0.015 0.562± 0.012 0.528± 0.025 0.497± 0.034	1 2 3 4 5 6 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.102± 0.003 0.092± 0.002 0.087± 0.002 0.081± 0.002 0.077± 0.003 0.072± 0.003 0.192± 0.005 0.185± 0.006 0.170± 0.004 0.159± 0.005 0.149± 0.007 0.141± 0.003 0.341± 0.017 0.372± 0.019 0.343± 0.011 0.322± 0.011 0.305± 0.009 0.288± 0.006 0.494± 0.025 0.580± 0.015 0.562± 0.012 0.528± 0.025 0.497± 0.034 0.479± 0.058

(HAN300) BAIS 3

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrj UNIT : g/kg/day

REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

)± 0.000	9	10	1	.1	12		13	
)± 0.000								
	0.000± 0.000	0.000±	0.000 0.00	0.000 ± 0.000	0.000±	0.000	0.000± 0.000	
3± 0.002	0.064± 0.00	0.061±	0.003 0.08	31± 0.004	0.058±	0.003	0.059± 0.005	
9± 0.003	0.128± 0.00	0.123±	0.004 0.12	20± 0.005	0.116±	0.003	0.115± 0.005	
1± 0.009	0.262± 0.000	3 0.255±	0.007 0.24	49± 0.004	0.244±	0.009	0.237± 0.011	
1	0.437± 0.02	3 0.429±	0.039 0.42	23± 0.037	0.427±	0.052	0.428± 0.051	
	0.547± 0.01	0.533±	0.013 0.55	24± 0.024	0.527±	0.023	0.524± 0.025	
ι:	± 0.052 ± 0.015		± 0.015 0.547± 0.014 0.533±	± 0.015 0.547± 0.014 0.533± 0.013 0.55	± 0.015 0.547± 0.014 0.533± 0.013 0.524± 0.024	± 0.015 0.547± 0.014 0.533± 0.013 0.524± 0.024 0.527±	± 0.015 0.547± 0.014 0.533± 0.013 0.524± 0.024 0.527± 0.023	

(HAN300)

BAIS3

APPENDIX D 2

CHEMICAL INTAKE CHANGES : SUMMARY, RAT : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj UNIT : g/kg/day REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

Administration ((weeks)					
1	2	3	4	5	6	7
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
0.106± 0.004	0.097± 0.005	0.095± 0.006	0.091± 0.004	0.089± 0.004	0.083± 0.004	0.082± 0.005
0.201± 0.009	0.186± 0.011	0.185± 0.010	0.181± 0.013	0.174± 0.010	0.172± 0.010	0.173± 0.025
0.392± 0.127	0.368± 0.020	0.354± 0.019	0.346± 0.024	0.335± 0.014	0.322± 0.016	0.321± 0.020
0.519± 0.109	0.565± 0.029	0.558± 0.020	0.552± 0.020	0.530± 0.017	0.513± 0.028	0.501± 0.024
0.744± 0.326	0.721± 0.032	0.707± 0.026	0.694± 0.022	0.646± 0.021	0.641± 0.046	0.652± 0.068
	1 0.000± 0.000 0.106± 0.004 0.201± 0.009 0.392± 0.127 0.519± 0.109	1 2 0.000± 0.000 0.000± 0.000 0.106± 0.004 0.097± 0.005 0.201± 0.009 0.186± 0.011 0.392± 0.127 0.368± 0.020 0.519± 0.109 0.565± 0.029	1 2 3 $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.106\pm\ 0.004$ $0.097\pm\ 0.005$ $0.095\pm\ 0.006$ $0.201\pm\ 0.009$ $0.186\pm\ 0.011$ $0.185\pm\ 0.010$ $0.392\pm\ 0.127$ $0.368\pm\ 0.020$ $0.354\pm\ 0.019$ $0.519\pm\ 0.109$ $0.565\pm\ 0.029$ $0.558\pm\ 0.020$	1 2 3 4 $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.106\pm\ 0.004$ $0.097\pm\ 0.005$ $0.095\pm\ 0.006$ $0.091\pm\ 0.004$ $0.201\pm\ 0.009$ $0.186\pm\ 0.011$ $0.185\pm\ 0.010$ $0.181\pm\ 0.013$ $0.392\pm\ 0.127$ $0.368\pm\ 0.020$ $0.354\pm\ 0.019$ $0.346\pm\ 0.024$ $0.519\pm\ 0.109$ $0.565\pm\ 0.029$ $0.558\pm\ 0.020$ $0.552\pm\ 0.020$	1 2 3 4 5 $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.000\pm\ 0.000$ $0.106\pm\ 0.004$ $0.097\pm\ 0.005$ $0.095\pm\ 0.006$ $0.091\pm\ 0.004$ $0.089\pm\ 0.004$ $0.201\pm\ 0.009$ $0.186\pm\ 0.011$ $0.185\pm\ 0.010$ $0.181\pm\ 0.013$ $0.174\pm\ 0.010$ $0.392\pm\ 0.127$ $0.368\pm\ 0.020$ $0.354\pm\ 0.019$ $0.346\pm\ 0.024$ $0.335\pm\ 0.014$ $0.519\pm\ 0.109$ $0.565\pm\ 0.029$ $0.558\pm\ 0.020$ $0.552\pm\ 0.020$ $0.530\pm\ 0.017$	1 2 3 4 5 6 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.106± 0.004 0.097± 0.005 0.095± 0.006 0.091± 0.004 0.089± 0.004 0.083± 0.004 0.201± 0.009 0.186± 0.011 0.185± 0.010 0.181± 0.013 0.174± 0.010 0.172± 0.010 0.392± 0.127 0.368± 0.020 0.354± 0.019 0.346± 0.024 0.335± 0.014 0.322± 0.016 0.519± 0.109 0.565± 0.029 0.558± 0.020 0.552± 0.020 0.530± 0.017 0.513± 0.028

(HAN300)

BAIS3

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrj

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 4

roup Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000 ± 0.000	0.000± 0.000	0.000± 0.000	
1250 ppm	0.077± 0.004	0.077± 0.002	0.075± 0.003	0.075± 0.002	0.073± 0.002	0.072± 0.003	
2500 ppm	0.159± 0.010	0.155± 0.014	0.152± 0.013	0.148± 0.011	0.145± 0.010	0.149± 0.028	
5000 ppm	0.307± 0.013	0.306± 0.016	0.293± 0.017	0.282± 0.013	0.278± 0.020	0.280± 0.018	
8000 ppm	0.481± 0.019	0.463± 0.022	0.454± 0.022	0.439± 0.028	0.448± 0.023	0.457± 0.023	
10000 ppm	0.641± 0.092	0.622± 0.088	0.622± 0.119	0.621± 0.151	0.698± 0.302	0.653± 0.208	

(HAN300)

BAIS 3

APPENDIX E 1

HEMATOLOGY: SUMMARY, RAT: MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

NO. of Animals			HEMOGLO g∕dl	DBIN	HEMATOO %	CRIT	MCV f Q		MCH pg		MCHC g∕dl		PLATELE 1 O³/μ	
10	9.68±	0.25	16.3±	0.3	47.5±	1.3	49.1±	0.6	16.8±	0.2	34.2±	0.5	708±	77
10	9.51±	0.19	16.0±	0.4	47.1±	1.2	49.5±	0.7	16.8±	0.2	34.0±	0.4	729±	21
10	9.07±	0.24**	15.5±	0.4**	45.7±	1.5*	50.4±	0.5**	17.0±	0.2*	33.8±	0.3	791±	28
10	8.36±	0.16**	14.4±	0.3**	42.6±	1.0**	51.0±	0.8**	17.2±	0.2**	33.7±	0.5	911±	47**
10	7.98±	0.17**	13.8±	0.4**	41.3±	1.1**	51.7±	0.7**	17.3±	0.2**	33.4±	0.4**	935±	26**
10	8.06±	0.32**	14.0±	0.5**	41.9±	1.5**	52.0±	0.9**	17.4±	0.2**	33.4±	0.4**	938±	20**
_	10 10 10 10 10 10	10 9.68± 10 9.51± 10 9.07± 10 8.36± 10 7.98±	10 9.68± 0.25 10 9.51± 0.19 10 9.07± 0.24** 10 8.36± 0.16** 10 7.98± 0.17**	Animals $10^6/\mu$ g/dl $10 9.68 \pm 0.25 16.3 \pm$ $10 9.51 \pm 0.19 16.0 \pm$ $10 9.07 \pm 0.24 ** 15.5 \pm$ $10 8.36 \pm 0.16 ** 14.4 \pm$ $10 7.98 \pm 0.17 ** 13.8 \pm$	Animals $10^6/\mu\ell$ g/d ℓ 10 $9.68\pm$ 0.25 $16.3\pm$ 0.3 10 $9.51\pm$ 0.19 $16.0\pm$ 0.4 10 $9.07\pm$ 0.24** $15.5\pm$ 0.4** 10 $8.36\pm$ 0.16** $14.4\pm$ 0.3** 10 $7.98\pm$ 0.17** $13.8\pm$ 0.4**	Animals $10^6/\mu$ g/dl % 10 $9.68\pm$ 0.25 $16.3\pm$ 0.3 $47.5\pm$ 10 $9.51\pm$ 0.19 $16.0\pm$ 0.4 $47.1\pm$ 10 $9.07\pm$ 0.24** $15.5\pm$ 0.4** $45.7\pm$ 10 $8.36\pm$ 0.16** $14.4\pm$ 0.3** $42.6\pm$ 10 $7.98\pm$ 0.17** $13.8\pm$ 0.4** $41.3\pm$	Animals $10^6/\mu$ 2 g/d2 % 10 $9.68\pm$ 0.25 $16.3\pm$ 0.3 $47.5\pm$ 1.3 10 $9.51\pm$ 0.19 $16.0\pm$ 0.4 $47.1\pm$ 1.2 10 $9.07\pm$ 0.24** $15.5\pm$ 0.4** $45.7\pm$ 1.5* 10 $8.36\pm$ 0.16** $14.4\pm$ 0.3** $42.6\pm$ 1.0** 10 $7.98\pm$ 0.17** $13.8\pm$ 0.4** $41.3\pm$ 1.1**	Animals $10^{6}/\mu$ g/dl % f l 10 9.68± 0.25 $16.3\pm$ 0.3 $47.5\pm$ 1.3 $49.1\pm$ 10 9.51± 0.19 $16.0\pm$ 0.4 $47.1\pm$ 1.2 $49.5\pm$ 10 9.07± 0.24** $15.5\pm$ 0.4** $45.7\pm$ 1.5* $50.4\pm$ 10 8.36± 0.16** $14.4\pm$ 0.3** $42.6\pm$ 1.0** $51.0\pm$ 10 7.98± 0.17** $13.8\pm$ 0.4** $41.3\pm$ 1.1** $51.7\pm$	Animals 106/µ2 g/d2 % f 2 10 9.68± 0.25 16.3± 0.3 47.5± 1.3 49.1± 0.6 10 9.51± 0.19 16.0± 0.4 47.1± 1.2 49.5± 0.7 10 9.07± 0.24** 15.5± 0.4** 45.7± 1.5* 50.4± 0.5** 10 8.36± 0.16** 14.4± 0.3** 42.6± 1.0** 51.0± 0.8** 10 7.98± 0.17** 13.8± 0.4** 41.3± 1.1** 51.7± 0.7**	Animals $1.0^{6}/\mu$ g/dl % f D p g 10 9.68± 0.25 $16.3\pm$ 0.3 $47.5\pm$ 1.3 $49.1\pm$ 0.6 $16.8\pm$ 10 9.51± 0.19 $16.0\pm$ 0.4 $47.1\pm$ 1.2 $49.5\pm$ 0.7 $16.8\pm$ 10 9.07± 0.24** $15.5\pm$ 0.4** $45.7\pm$ 1.5* $50.4\pm$ 0.5** $17.0\pm$ 10 8.36± 0.16** $14.4\pm$ 0.3** $42.6\pm$ 1.0** $51.0\pm$ 0.8** $17.2\pm$ 10 7.98± 0.17** $13.8\pm$ 0.4** $41.3\pm$ 1.1** $51.7\pm$ 0.7** $17.3\pm$	Animals $1.06/\mu k$ g/dk % $f \Omega$ $p g$ 10 $9.68\pm$ 0.25 $16.3\pm$ 0.3 $47.5\pm$ 1.3 $49.1\pm$ 0.6 $16.8\pm$ 0.2 10 $9.51\pm$ 0.19 $16.0\pm$ 0.4 $47.1\pm$ 1.2 $49.5\pm$ 0.7 $16.8\pm$ 0.2 10 $9.07\pm$ $0.24**$ $15.5\pm$ $0.4**$ $45.7\pm$ $1.5*$ $50.4\pm$ $0.5**$ $17.0\pm$ $0.2*$ 10 $8.36\pm$ $0.16**$ $14.4\pm$ $0.3**$ $42.6\pm$ $1.0**$ $51.0\pm$ $0.8**$ $17.2\pm$ $0.2**$ 10 $7.98\pm$ $0.17**$ $13.8\pm$ $0.4**$ $41.3\pm$ $1.1**$ $51.7\pm$ $0.7**$ $17.3\pm$ $0.2**$	Animals $10^6/\mu\ell$ $g/d\ell$ % $f \ell$ $p g$ $g/d\ell$ 10 9.68 ± 0.25 16.3 ± 0.3 47.5 ± 1.3 49.1 ± 0.6 16.8 ± 0.2 34.2 ± 10 9.51 ± 0.19 16.0 ± 0.4 47.1 ± 1.2 49.5 ± 0.7 16.8 ± 0.2 34.0 ± 10 $9.07\pm 0.24**$ $15.5\pm 0.4**$ $45.7\pm 1.5*$ $50.4\pm 0.5**$ $17.0\pm 0.2*$ 33.8 ± 10 $8.36\pm 0.16**$ $14.4\pm 0.3**$ $42.6\pm 1.0**$ $51.0\pm 0.8**$ $17.2\pm 0.2**$ 33.7 ± 10 $7.98\pm 0.17**$ $13.8\pm 0.4**$ $41.3\pm 1.1**$ $51.7\pm 0.7**$ $17.3\pm 0.2**$ $33.4\pm 1.1**$	Animals $1.0^6/\mu R$ g/dR % fR pg g/dR g/dR 10 9.68 ± 0.25 16.3 ± 0.3 47.5 ± 1.3 49.1 ± 0.6 16.8 ± 0.2 34.2 ± 0.5 10 9.51 ± 0.19 16.0 ± 0.4 47.1 ± 1.2 49.5 ± 0.7 16.8 ± 0.2 34.0 ± 0.4 10 $9.07\pm 0.24**$ $15.5\pm 0.4**$ $45.7\pm 1.5*$ $50.4\pm 0.5**$ $17.0\pm 0.2*$ 33.8 ± 0.3 10 $8.36\pm 0.16**$ $14.4\pm 0.3**$ $42.6\pm 1.0**$ $51.0\pm 0.8**$ $17.2\pm 0.2**$ 33.7 ± 0.5 10 $7.98\pm 0.17**$ $13.8\pm 0.4**$ $41.3\pm 1.1**$ $51.7\pm 0.7**$ $17.3\pm 0.2**$ $33.4\pm 0.4**$	Animals 106/μ2 g/d2 % f 2 p g g/d2 103/μ 10 9.68± 0.25 16.3± 0.3 47.5± 1.3 49.1± 0.6 16.8± 0.2 34.2± 0.5 708± 10 9.51± 0.19 16.0± 0.4 47.1± 1.2 49.5± 0.7 16.8± 0.2 34.0± 0.4 729± 10 9.07± 0.24** 15.5± 0.4** 45.7± 1.5* 50.4± 0.5** 17.0± 0.2* 33.8± 0.3 791± 10 8.36± 0.16** 14.4± 0.3** 42.6± 1.0** 51.0± 0.8** 17.2± 0.2** 33.7± 0.5 911± 10 7.98± 0.17** 13.8± 0.4** 41.3± 1.1** 51.7± 0.7** 17.3± 0.2** 33.4± 0.4** 935±

(HCLO70)

ANIMAL : RAT F344/DuCrj MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

roup Name	NO. of Animals	RETICUL ‰	OCYTE	PROTHRO sec	OMBIN TIME	APTT sec						
Contral	10	16±	2	15.7±	1.3	26.0±	1.1					
1250 ppm	10	19±	4	15.3±	1.0	26.3±	1.1					
2500 ppm	10	25±	6	14.4±	0.9	23.4±	1.5					
5000 ppm	10	33±	7**	13.9±	0.5*	23.0±	2.6*					
8000 ppm	10	42±	11**	13.4±	0.4**	19.7±	2.4**					
10000 ppm	10	53±	13**	13.3±	0.3**	21.8±	0.9**					
Significant	difference;	*: P ≤ 0	.05 ×	*: P ≤ 0.0)1			Test of Dunnett	 		<u>, ,, , , , , , , , , , , , , , , , , ,</u>	
CL070)									 · · · · · · · · · · · · · · · · · · ·			BAI

ANIMAL : RAT F344/DuCrj MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	WBC 1 03/		Dif N-BAND	ferentia	L WBC (% N-SEG	5)	EOSINO		BASO	-	МОИО		LYMPHO		OTHER	
Control	10	5.77±	1.40	0±	1	22±	2	1±	1	0±	0	3±	1	74±	3	0±	0
1250 ppm	10	7.48±	1.46*	0±	0	21±	4	1±	1	0±	0	4土	2	74±	4	0±	0
2500 ppm	10	6.75±	1.09	0±	1	22±	5	1±	1	0±	0	3±	2	73±	5	0±	0
5000 ppm	10	7.75±	1.60*	1±	1	24±	5	1±	í	0±	0	3±	2	71±	5	0±	0
mqq 0008	10	8.65±	1.58**	0±	0	27±	7	1±	1	0±	0	3±	2	69±	7	0±	0
10000 ppm	10	8.08±	1.13**	0±	1	30±	6**	1±	1	0±	0	3±	2	66±	6*	0±	0
Significan	t difference ;	*: P ≦	≦ 0.05	**: P ≦	0.01		· · · · · · · · · · · · · · · · · · ·	Test	of Dunn	ətt	····						
(HCL070)		····					· · · · · · · · · · · · · · · · · · ·										BAISS

APPENDIX E 2

HEMATOLOGY: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj MEASURE. TIME : 1 SEX : FEMALE REPOR

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

oup Name	NO. of Animals	RED BL	OOD CELL µ£	g ∕dl	BIN	HEMATOO %	CRIT	MCV f &		MCH pg		MCHC g/dl		PLATELE 1 O³/μ	
Control	10	8.83±	0.24	16.0±	0.5	45.5±	1.5	51.6±	0.6	18.0±	0.2	35.0±	0.5	836±	57
1250 ppm	10	8.58±	0.26	15.4±	0.5	44.0±	1.6	51.3±	0.7	18.0±	0.1	35.1±	0.4	854±	59
2500 ppm	10	8.29±	0.32**	15.1±	0.6**	43.7±	1.9*	52.7±	0.7**	18.2±	0.2	34.6±	0.4*	898±	44
5000 ppm	10	7.46±	0.25**	13.7±	0.5**	40.1±	1.4**	53.8±	0.6**	18.3±	0.3**	34.1±	0.3**	960±	72**
Mqq 0008	10	7.47±	0.25**	13.4±	0.4**	39.6±	1.4**	53.0±	0.5**	17.9±	0.3	33.8±	0.3**	941±	61**
10000 ppm	10	7.40±	0.21**	13.1±	0.4**	39.1±	1.4**	52.8±	0.6**	17.7±	0.2**	33.5±	0.3**	992±	45**

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1 SEX: FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	RETICUL ‰	OCYTE	PROTHRO s e c	OMBIN TIME	APTT sec				
Control	10	14±	3	13.7±	0.4	19.4±	1.7			
1250 ppm	10	18土	4	13.8±	0.4	20.6±	1.2			
2500 ppm	10	19±	5	14.2±	0.3*	20.2±	2.0			
5000 ppm	10	34±	10**	13.9±	0.4	21.7±	1.1**			
8000 ppm	10	41±	12**	13.8±	0.3	21.0±	1.4			
10000 ppm	10	49±	14**	13.8±	0.3	21.2±	2.0			
Significant	difference;	*: P ≤ 0	.05	**: P ≤ 0.0	01	54W.4.2.		Test of Dunnett	 	
(HCL070)					···-		· · · · · · · · · · · · · · · · · · ·		 	 RAIC

BAIS 3

STUDY NO. : 0369 ANIMAL : RAT F344/DuCrj

MEASURE, TIME: 1 SEX: FEMALE REPORT TYPE : A1 HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

oup Name	NO. of Animals	WBC 1 0³∕.		Dif N-BAND	ferential	. WBC (% N-SEG	,)	EOSINO		BASO		MONO		LYMPHO		OTHER	
Contral	10	3.29±	0.76	0±	1	20±	3	2±	1	0±	0	2±	2	75±	3	0±	0
1250 ppm	10	3.44±	0.90	0±	0	20±	5	1±	1	0±	0	3±	2	76±	6	0±	0
2500 ppm	10	4.19±	1.08	0±	0	17±	3	1±	1	0±	0	2±	1	80±	3	0±	0
5000 ppm	10	5.06±	1.04**	0±	0	24±	8	1±	1	0±	0	2±	1	73±	8	0±	0
8000 ppm	10	5.23±	0.70**	0±	1	23±	6	1±	1	0±	0	2±	1	74±	6	0±	0
10000 ppm	10	5.05±	1.07**	0±	0	22±	5	0±	1**	0±	0	2±	2	75±	5	0±	0

(HCL070)

BAIS3

APPENDIX F 1

BIOCHEMISTRY: SUMMARY, RAT: MALE

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1 SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

roup Name	NO. of Animals	TOTAL P	ROTEIN	g∕dl ALBUMIN		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLE:	STEROL	TRIGLYCI mg/dl	ERIDE
Control	10	6.1±	0.1	3.8±	0.1	1.7±	0.1	0.13±	0.01	178±	24	67±	4	75±	31
1250 ppm	10	6.3±	0.2	3.9±	0.1	1.6±	0.1*	0.12±	0.01	178±	13	69土	4	65±	23
2500 ppm	10	6.3±	0.2*	4.0±	0.1	1.7±	0.1	0.13±	0.01	180±	10	82±	5	55±	17
5000 ppm	10	7.0±	0.2**	4.4±	0.1**	1.7±	0.1	0.14±	0.01	160±	8	118±	14**	45±	16**
mag 0008	10	7.4±	0.1**	4.6±	0.1**	1.6±	0.0*	0.15±	0.01**	151±	12*	162±	17**	33±	13**
10000 ppm	10	7.4±	0.2**	4.6±	0.2**	1.6±	0.1*	0.15±	0.01**	140±	11**	166±	17**	38±	19**

PAGE: 1

BAIS 3 (HCL074)

ANIMAL : RAT F344/DuCrj

MEASURE. TIME : 1 SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

Group Name NO. of PHOSPHOLIPID GOT GPT LDH ALP G-GTP CPK Animals mg/dl IU/l IU/l IU/l IU/Q IU/l IU/l Contral 10 118± 11 82± 40 46± 15 169± 71 232± 16 2士 95± 11 1250 ppm 10 9 88± 21 119± 48土 8 $173 \pm$ 50 234土 19 $2\pm$ 96± 10 7 2500 ppm 10 130土 $57\pm$ 9 36± 5 141± 42 209士 11** 2土 1 93± 15 5000 ppm 10 176士 19* 47± $31\pm$ $115\pm$ 4** 1** 14 194± 16** 4土 87± 6 Mqq 0008 10 236生 24** $51\pm$ 6 36± $127 \pm$ 13 186± 15** 4 8± 2** 94士 10 10000 ppm 10 245± 33** $54\pm$ 9 41土 $125\pm$ 19 177生 18** 11土 3** 98± 14 Significant difference; $*: P \leq 0.05$ ** : $P \le 0.01$ Test of Dunnett

PAGE: 2

(HCL074) BAIS 3

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1 SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

iroup Name	NO. of Animals	UREA NI mg/dl		CREATIN mg/dl		SODIUM mEq/Q	,	POTASSI mEq/		CHLORIDE mEq/l		CALCIUM mg/dl		INORGAN mg/dl	IIC PHOSPHORU
Control	10	20.3±	6.7	0.5±	0.1	142士	2	3.8±	0.5	105±	3	10.1±	0.2	5.4±	1.1
1250 ppm	10	19.3±	1.2	0.5±	0.1	142士	2	3.8±	0.2	106±	2	10.1±	0.2	5.7±	0.7
2500 ppm	10	20.7±	1.6	0.5±	0.0	141±	2	3.9±	0.3	104土	2	10.2±	0.3	5.7±	0.9
5000 ppm	10	26.1±	1.7**	0.6±	0.1	140±	1	4.1±	0.2	101±	1*	10.9±	0.2**	5.9±	0.4
8000 ppm	10	29.9±	4.3**	0.6±	0.1	139±	1**	4.1±	0.4	99士	2**	11.3±	0.1**	6.0±	0.4
10000 ppm	10	29.5±	4.3**	0.5±	0.0	139±	2**	4.1±	0.4	98±	2**	11.3±	0.2**	6.6±	0.5*

PAGE: 3

BAIS 3 (HCL074)

APPENDIX F 2

BIOCHEMISTRY: SUMMARY, RAT: FEMALE

ANIMAL : RAT F344/DuCrj

MEASURE, TIME: 1

SEX : FEMALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

-oup Name	NO. of Animals	TOTAL P	ROTEIN	g∕dl g∕dl		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYC mg∕dl	ERIDE
Control	10	6.0±	0.1	3.8±	0.1	1.7±	0.1	0.14±	0.01	143±	15	74±	5	18±	5
1250 ppm	10	6.0±	0.1	3.8±	0.1	1.7±	0.1	0.14±	0.01	140±	11	72±	6	16±	2
2500 ppm	10	6.1±	0.2	3.7±	0.1	1.6±	0.1**	0.14±	0.01	144±	14	79±	4	14±	3
5000 ppm	10	6.6±	0.2*	4.1±	0.1	1.6±	0.1**	0.14±	0.01	144±	9	132±	9*	14±	3
8000 ppm	10	7.2±	0.3**	4.5±	0.2**	1.6±	0.1*	0.15±	0.02	137±	10	178±	15**	20±	6
10000 ppm	10	7.5±	0.4**	4.6±	0.3**	1.6±	0.1**	0.16±	0.02	137±	18	205±	24**	24±	11

PAGE: 4

(HCL074) BAIS 3

ANIMAL : RAT F344/DuCrj

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

CPK LDH ALP G-GTP Group Name NO. of PHOSPHOLIPID GOT GPT IU/l IU/l IU/l Animals mg/dl IU/l IU/Q IU/l 154士 40 $168\pm$ 18 $2\pm$ 109± 55 Control 10 $139\pm$ 9 67± 11 36± 9 13 10 131± 9 70士 12 39± 15 139士 49 162士 15 $2\pm$ 1 95± 1250 ppm 175± 63 161± 10 $2\pm$ 1 95± 18 29± 3 2500 ppm 10 $137 \pm$ 64士 $3\pm$ 94士 25 $163 \pm$ 88 129± 10 199士 13 53± 6* $29\pm$ 4 5000 ppm 94± 22 53 125士 25** 9± 3** 260± 34** $53\pm$ 8* 31± $165 \pm$ mag 0008 10 $31\pm$ $191 \pm$ 139 117± 28** 12± 3** 102± 38 10000 ppm $301 \pm$ 48** 49± 6** Significant difference; $*:P \leq 0.05$ $** : P \leq 0.01$ Test of Dunnett

PAGE: 5

(HCL074) BAIS 3

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

INORGANIC PHOSPHORUS CREATININE Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM mg/dl Animals mg/dl mg/dl mEq/l mEq/QmEq/Qmg/dl $9.7 \pm$ Control 10 17.8± 1.6 $0.5\pm$ 0.1 141士 $3.8 \pm$ 0.3 107士 0.3 4.8± 1.4 $9.7 \pm$ 1250 ppm 10 19.8± 1.7 $0.5\pm$ 0.1 140± $3.8 \pm$ 0.2 107生 2 0.2 $5.3 \pm$ 1.2 2500 ppm 10 20.4± 1.3 $0.5 \pm$ 0.1 140士 4.0± 0.2 107士 2 $9.8 \pm$ 0.2 5.3± 0.8 5000 ppm $27.0 \pm$ 2.9** $0.5 \pm$ 0.1 139± 2* 4.0± 0.3 104士 10.1± 0.2 5.0± 0.7 10 2** $0.5 \pm$ 8000 ppm 10 $29.2 \pm$ 3.3** 0.0 $139 \pm$ $4.0 \pm$ 0.3 $101 \pm$ $10.9 \pm$ 0.3** 5.5± 0.5 1* 2** 10000 ppm 10 $30.5 \pm$ 2.8** 0.5± 0.1 138± 1** 4.1± 0.2** 100士 1** 11.1± 0.4** 5.5± 0.6 Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

PAGE: 6

(HCL074)

APPENDIX G 1

URINALYSIS: SUMMARY, RAT: MALE

URINALYSIS

ANIMAL : RAT F344/DuCrj MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of	Hq								Pr	otei	n				GL	ucos	: :e				Ket	:one	body	,			Bi	liru	bin	
	Animals		6.0	6.5	7.0	7.5	8.0	8.5	CHI			_	2+ 3	+ 4+	CHI				2+ 3	+ 4+	CHI			+ 2+		4+	CHI		+	2+ 3	+ CHI
Control	10	0	0	0	0	0	2	8		0	0	5	5	0 0		10	0	0	0	0 0		0	6	4 (0 0	0		10	0	0	0
1250 ppm	10	0	0	0	0	0	4	6		0	0	6	3	1 0		10	0	0	0	0 0		0	7	3 (0 0	0		10	0	0	0
2500 ppm	10	0	0	0	0	1	3	6		0	0	4	6	0 0		10	0	0	0	0 0		2	6	2 (0 0	0		10	0	0	0
5000 ppm	10	0	0	0	0	1	6	3		0	0	7	3	0 0		10	0	0	0	0 0		6	3	1 (0 (0	*	10	0	0	0
mqq 0008	10	0	0	0	1	5	4	0	**	0	0	5	5	0 0		10	0	0	0	0 0		9	1	0 (0 0	0	**	10	0	0	0
10000 ppm	10	0	0	1	0	4	4	1	*	0	0	0	9	1 0	*	10	0	0	0	0 0		5	5	0 (0 0	0	*	10	0	0	0

(HCL101)

BAIS3

URINALYSIS

ANIMAL : RAT F344/DuCrj

.

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1

SEX : MALE	REPORT	TYPE : A1			PAGE: 2
Group Name	NO. of Animals	Occult blood — ± + 2+ 3+ CHI	Vrobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0	10 0 0 0 0		
1250 ppm	10	10 0 0 0 0	10 0 0 0 0		
2500 ppm	10	10 0 0 0 0	10 0 0 0 0		
5000 ppm	10	10 0 0 0 0	10 0 0 0 0		
8000 ppm	10	10 0 0 0 0	10 0 0 0 0		
10000 ppm	10	10 0 0 0 0	10 0 0 0 0	•	
Significant	t difference	; *:P≦0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(HCL101)					BAIS3

APPENDIX G 2

URINALYSIS : SUMMARY, RAT : FEMALE

STUDY NO.: 0369 URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1

Group Name NO. of Protein Glucose Ketone body Bilirubin Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI $-\pm +2+3+4+$ CHI $-\pm + 2 + 3 + 4 + CHI$ $-\pm+2+3+4+$ CHI - + 2+ 3+ CHI Control 10 0 0 0 0 0 8 2 0 0 7 3 0 0 10 0 0 0 0 0 8 2 0 0 0 0 10 0 0 0 1250 ppm 10 0 0 0 6 4 0 0 9 1 0 0 10 0 0 0 0 0 9 1 0 0 0 0 10 0 0 0 2500 ppm 10 0 0 0 3 7 * 0 1 8 1 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 5000 ppm 0 0 3 7 0 0 10 0 0 0 0 0 10 0 0 1 7 2 9 1 0 0 0 0 10 0 0 0 mqq 0008 10 0 0 0 9 1 0 0 9 1 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 10000 ppm · 10 0 0 1 2 2 2 3 0 0 8 2 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 Significant difference ; $*:P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

PAGE: 3

(HCL101) BAIS 3

URINALYSIS

ANIMAL : RAT F344/DuCrj

MEASURE. TIME: 1

SEX : FEMALE	REPORT	TYPE : A1			PAGE: 4
Group Name	NO. of Animals	Occult blood — ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0	10 0 0 0 0		
1250 ppm	10	10 0 0 0 0	10 0 0 0 0		
2500 ppm	10	10 0 0 0 0	10 0 0 0 0		
5000 ppm	10	10 0 0 0 0	10 0 0 0 0		
8000 ppm	10	10 0 0 0 0	10 0 0 0 0		
10000 ppm	10	10 0 0 0 0	10 0 0 0 0		
Significant	t difference	; *:P≦0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(HCL101)			, , , , , , , , , , , , , , , , , , , ,		BAIS 3

APPENDIX H 1

GROSS FINDINGS: SUMMARY, RAT: MALE ALL ANIMALS

ANIMAL : RAT F344/DuCrj

GROSS FINDINGS (SUMMARY)

REPORT TYPE : A1

SEX : MALE

ALL ANIMALS (0- 14W)

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
iver	herniation		0 (0)	1 (10)	0 (0)	3 (30)
PT080)						В

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

Organ	Findings	Group Name 8000 ppm NO. of Animals 10 (%)	10000 ppm 10 (%)	
liver	herniation	0 (0)	3 (30)	
(HPT080)			A. A	BAIS

APPENDIX H 2

GROSS FINDINGS : SUMMARY, RAT : FEMALE ALL ANIMALS

ANIMAL : RAT F344/DuCrj

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 3

0rgan	Findings	Group Name Control NO. of Animals 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
Liver	herniation	1 (10)	2 (20)	2 (20)	0 (0)
idney	nadule	0 (0)	0 (0)	0 (0)	1 (10)
tui tary	cyst	0 (0)	0 (0)	0 (0)	0 (0)
uary	cyst	0 (0)	0 (0)	0 (0)	0 (0)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

0rgan	Findings	Group Name NO. of Animals	8000 ppm 10 (%)	10000 ppm 10 (%)		
liver	herniation		2 (20)	0 (0)		
kidney	nadule		0 (0)	0 (0)		
pituitary	cyst		0 (0)	1 (10)		
DUALA	cyst		1 (10)	0 (0)		
(HPT080)					·····	BAIS 3

BAIS 3

APPENDIX I 1

ORGAN WEIGHT, ABSOLUTE: SUMMARY, RAT: MALE (13-WEEK STUDY)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

oup Name	NO. of Animals	Body	Weight	ТНҮМ	JS	ADRE		TEST	ES	HEAR	r	LUNG	
Control	10	297±	17	0.214±	0.017	0.049±	0.007	2.950±	0.110	0.945±	0.051	1.029±	0.040
1250 ppm	10	294±	10	0.204±	0.023	0.052±	0.006	2.876±	0.154	0.921±	0.033	1.013±	0.047
2500 ppm	10	295±	15	0.205±	0.026	0.052±	0.011	3,061±	0.090	0.913±	0.046	1.026±	0.063
5000 ppm	10	283±	18	0.191±	0.018	0.054±	0.006	3.094±	0.092*	0.917±	0.047	1.036±	0.054
8000 ppm	10	259±	14**	0.184±	0.024*	0.057±	0.010	3.079±	0.092*	0.862±	0.070**	1.014±	0.058
10000 ppm	10	234±	10**	0.171±	0.014**	0.054±	0.006	3.101±	0.084*	0.811±	0.038**	0.947±	0.044**

(HCL040)

BAIS 3

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

REPORT TYPE : SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 2

roup Name	NO. of Animals	KID	NEYS	SPL	EEN	LIV	ER	BRA		
Control	10	1.805±	0.113	0.549±	0.036	7.113±	0.399	1.882±	. 044	
1250 ppm	10	1,809±	0.061	0.538±	0.029	7.258±	0.490	1.862±	047	
2500 ppm	10	1.878±	0.094	0.609±	0.089	8.117±	0.601**	1.894±	055	
5000 ppm	10	2.112±	0.109**	0.715±	0.078**	9.930±	0.849**	1.914±	032	
mqq 0008	10	2.102±	0.126**	0.757±	0.088**	11.528±	0.841**	1.888±	034	
10000 ppm	10	2.104±	0.107**	0.732±	0.098**	11.389±	0.712**	1.858±	026	

(HCL040)

BAIS3

APPENDIX I 2

ORGAN WEIGHT, ABSOLUTE : SUMMARY, RAT : FEMALE (13-WEEK STUDY)

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

STUDY NO. : 0369 ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1
SEX : FEMALE

UNIT: g

roup Name	NO. of Animals	Body M	Veight	ТНҮМ	JS	ADRE	VALS	OVAR	IES	HEAR	r	LUNG	S
Control	10	163±	5	0.171±	0.020	0.060±	0.009	0.090±	0.011	0.605±	0.026	0.763±	0.036
1250 ppm	10	147±	8**	0.150±	0.022	0.054±	0.007	0.086±	0.010	0.562±	0.058	0.724±	0.045
2500 ppm	10	143±	8**	0.154±	0.020	0.053±	0.005	0.091±	0.017	0.542±	0.043*	0.714±	0.026*
5000 ppm	10	136±	10**	0.144±	0.012**	0.050±	0.005**	0.086±	0.007	0.534±	0.047**	0.694±	0.032**
8000 ppm	10	137±	10**	0.143±	0.020**	0.049±	0.009**	0.090±	0.023	0.559±	0.051	0.684±	0.041**
10000 ppm	10	139士	8**	0.149±	0.018	0.047±	0.005**	0.089±	0.009	0.571±	0.051	0.681±	0.040**

PAGE: 3

(HCLO40) BAIS3

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1
SEX : FEMALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

UNIT: g						PAGE: 4
Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	

Total Name	Animals	nip.	5, 255K			
Control	10	1.106± 0.026	0.331± 0.022	3.776± 0.122	1.732± 0.046	
1250 ppm	10	1.078± 0.065	0.328± 0.030	3.611± 0.201	1.726± 0.034	
2500 ppm	10	1.104± 0.056	0.335± 0.034	3.717± 0.171	1.767± 0.036	
5000 ppm	10	1.189± 0.067*	0.380± 0.033*	4.768± 0.338	1.730± 0.040	
8000 ppm	10	1.289± 0.086**	0.429士 0.060**	6.083± 0.555**	1.737± 0.045	
10000 ppm	10	1.334± 0.056**	0.475± 0.048**	6.977± 0.528**	1.769± 0.057	

(HCLO40) BAIS 3

APPENDIX J 1

ORGAN WEIGHT, RELATIVE : SUMMARY, RAT : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

STUDY NO.: 0369

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1

SEX : MALE UNIT: %

10	297± 17	0.072± 0.007	0.016± 0.002	0.997± 0.071	0.319± 0.014	0.348± 0.016	
10	294± 10	0.069± 0.007	0.018± 0.002	0.978± 0.055	0.314± 0.018	0.345± 0.011	
10	295± 15	0.069± 0.008	0.018± 0.004	1.039± 0.053	0.309± 0.009	0.348± 0.016	
10	283± 18	0.067± 0.005	0.019± 0.003	1.096± 0.073**	0.324± 0.017	0.366± 0.011	
10	259士 14**	0.071± 0.008	0.022± 0.003**	1.192± 0.049**	0.333± 0.019	0.392± 0.012**	
10	234± 10**	0.073± 0.005	0.023± 0.003**	1.327± 0.078**	0.347± 0.012**	0.405± 0.026**	
difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Test	t of Dunnett			BAIS
	10 10 10 10	10 294± 10 10 295± 15 10 283± 18 10 259± 14** 10 234± 10**	10	10 294± 10 0.069± 0.007 0.018± 0.002 10 295± 15 0.069± 0.008 0.018± 0.004 10 283± 18 0.067± 0.005 0.019± 0.003 10 259± 14** 0.071± 0.008 0.022± 0.003** 10 234± 10** 0.073± 0.005 0.023± 0.003**	10 295± 15 0.069± 0.008 0.018± 0.004 1.039± 0.055 10 295± 15 0.069± 0.008 0.018± 0.004 1.039± 0.053 10 283± 18 0.067± 0.005 0.019± 0.003 1.096± 0.073** 10 259± 14** 0.071± 0.008 0.022± 0.003** 1.192± 0.049** 10 234± 10** 0.073± 0.005 0.023± 0.003** 1.327± 0.078**	10	10 294± 10 0.069± 0.007 0.018± 0.002 0.978± 0.055 0.314± 0.018 0.345± 0.011 10 295± 15 0.069± 0.008 0.018± 0.004 1.039± 0.053 0.309± 0.009 0.348± 0.016 10 283± 18 0.067± 0.005 0.019± 0.003 1.096± 0.073** 0.324± 0.017 0.366± 0.011 10 259± 14** 0.071± 0.008 0.022± 0.003** 1.192± 0.049** 0.333± 0.019 0.392± 0.012** 10 234± 10** 0.073± 0.005 0.023± 0.003** 1.327± 0.078** 0.347± 0.012** 0.405± 0.026**

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1 SEX : MALE

STUDY NO. : 0369

UNIT: %

PAGE: 2

oup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.609± 0.025	0.185± 0.013	2.399± 0.077	0.636± 0.040	
1250 ppm	10	0.615± 0.013	0.183± 0.010	2.465± 0.088	0.634± 0.025	
2500 ppm	10	0.637± 0.015	0.206± 0.022	2.748± 0.095	0.643± 0.034	
5000 ppm	10	0.746± 0.022**	0.252± 0.017**	3.501± 0.119**	0.678± 0.041*	
8000 ppm	10	0.813± 0.040**	0.292± 0.026**	4.453± 0.148**	0.731± 0.034**	
10000 ppm	10	0.899± 0.031**	0.312± 0.036**	4.864± 0.201**	0.795± 0.038**	

(HCL042) BAIS 3

APPENDIX J 2

ORGAN WEIGHT, RELATIVE : SUMMARY, RAT : FEMALE

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14W)

STUDY NO.: 0369 ANIMAL: RAT F344/DuCrj

Significant difference;

REPORT TYPE : A1 SEX : FEMALE UNIT: %

THYMUS ADRENALS OVARIES HEART LUNGS Group Name NO. of Body Weight Animals (g) 10 $163\pm$ 5 0.105 ± 0.011 0.037 ± 0.006 0.055 ± 0.008 0.370 ± 0.012 0.467 ± 0.024 Control 1250 ppm 10 147士 8** 0.102 ± 0.013 0.037 ± 0.005 0.059± 0.008 0.384 ± 0.035 0.494生 0.022* 2500 ppm 10 143± 8** 0.108 ± 0.014 0.037 ± 0.002 0.064± 0.013 0.380 ± 0.015 0.502± 0.023** 136± 10** 0.106± 0.007 0.037 ± 0.003 0.064± 0.008 0.394 ± 0.024 0.513± 0.024** 10 5000 ppm 0.066 ± 0.016 0.410士 0.034** 8000 ppm 10 $137 \pm$ 10** 0.104± 0.008 0.036± 0.006 10 $139\pm$ 8** 0.107 ± 0.011 0.064± 0.007 0.410士 0.019** 0.490 ± 0.017 10000 ppm 0.034 ± 0.004

PAGE: 3

(HCL042)

Test of Dunnett

**: $P \leq 0.01$

 $*: P \leq 0.05$

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1
SEX : FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN
Control	10	0.677± 0.016	0.203± 0.015	2.312± 0.074	1.061± 0.043
1250 ppm	10	0.737± 0.054	0.224± 0.015	2.464± 0.055	1.181± 0.072**
2500 ppm	10	0.776± 0.032	0.235± 0.020**	2.611± 0.080	1.243± 0.065**
5000 ppm	10	0.880± 0.047**	0.281± 0.017**	3.519± 0.062**	1.283± 0.092**
mqq 0008	10	0.945± 0.052**	0.313± 0.031**	4.450± 0.177**	1.277± 0.094**
10000 ppm	10	0.961± 0.047**	0.342± 0.028**	5.018± 0.280**	1.276± 0.077**

(HCL042)

BAIS 3

APPENDIX K 1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: MALE: ALL ANIMALS

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX

: MALE

Group Name Control 1250 ppm 2500 ppm 5000 ppm No. of Animals on Study 10 10 10 10 Grade (%) Findings_ (%) [Respiratory system] nasal cavit <10> <10> <10> <10> respiratory metaplasia:gland 3 0 0 0 (30) (0) (0) (0) (30) (10) (0) (0) (30) (0) (0) (0) (0)(0)(0)(0) lung <10> <10> <10> <10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 osseous metaplasia (0)(0)(0)(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) [Hematopoietic system] spleen <10> <10> <10> <10> 0 0 0 0 0 0 deposit of hemosiderin (0)(0)(0)(0) (0)(0)(0)(0) (30) (0) (0) (0) (50) (50) (0) (0) 9 1 0 0 ** engargement of erythrocyte (0)(0)(0)(0) (0)(0)(0)(0) (30) (0) (0) (0) (90) (10) (0) (0) [Digestive system] Liver <10> <10> <10> <10> 0 0 0 herniation 0 0 0 0 3 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (30) (0) (0) (0) Grade 1: Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion

(c)

c:b/a*100

Significant difference; $*:P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj

SEX : MALE

REPORT TYPE : A1

)rgan	Findings	Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Respiratory	system]			
masal cavit	respiratory metaplasia:gland	3 0 0 0 - (30) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
ung	osseous metaplasia	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
Hematopoieti	ic system]			
pleen	deposit of hemosiderin	<10> 0 10 0 0 ** (0) (100) (0) (0)	(0) (100) (0) (0)	
	engorgement of erythrocyte	6 4 0 0 ** (60) (40) (0) (0)	0 10 0 0 ** (0) (100) (0) (0)	
Digestive sy	vstem]			
iver	herniation	(10) 0 0 0 0 (0) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)	
Grade (a > b (c) Significant o	1: Slight 2: Moderate a: Number of animals examined at 1 b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:			

(HPT150)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1 SEX : MALE

STUDY NO. : 0369

Organ	Findings	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Digestive	system]				
Liver	granulation	<10> 0 0 0 0 (0) (0) (0) (0		<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	hepatocellular hypertrophy:central	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
[Urinary sy	stem]				
kidney	basophilic change	(10) (0) (0) (0		3 0 0 0 (30) (0) (0) (0)	<pre></pre>
	easinaphilic body	4 6 0 ((40) (60) (0) (0		0 10 0 0 0 (0) (0) (0)	0 0 10 0 ** (0) (0) (100) (0)
	hyaline cast	0 0 0 0 (0 0 0 0 0 0 (0)	0 0 0 0 0 0 (0) (0) (0)
	papillary necrosis	0 0 0 0 (0 0 0 0 0 0 (0)	0 0 0 0 0
	mineralization:papilla	2 1 0 ((20) (10) (0) (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 (30) (0) (0) (0)	2 6 0 0 * (20) (60) (0) (0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

< a > a: Number of animals examined at the site
b: Number of animals with lesion

b

c:b/a * 100 Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : MALE PAGE: 4

0rgan	Findings	Group Name No. of Animals on Study Grade 10 10 10 10 10 10 10 1	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Digestive	system]			
liver	granulation	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
	hepatocellular hypertrophy:central	5 0 0 0; (50) (0) (0) (0)		
[Urinary sy	vstem]			
kidney	basophilic change	10 0 0 0 0 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)		
	easinaphilic bady	0 0 10 0:		
	hyaline cast	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	papillary necrosis	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	
	mineralization:papilla	4 5 0 0 1 (40) (50) (0) (0)	* 2 0 0 0 0 (20) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the: b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P			

(HPT150)

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE: 5

BAIS3

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX : MALE

(HPT150)

STUDY NO. : 0369

0rsan	1	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Urinary sys	stem]				
kidney	granular cast formation	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	\$ 0 0 0 ** (80) (0) (0) (0)
	basophilic change:atypia	(0) (0) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (0) (0) (0)
(Endocrine s	system]				
pituitary	Rathke pouch	(0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
thyroid	ultimibranchial body remanet	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Reproduction	ue system]				
testis	mineralization	(10) 0 0 0 0 (0) (0) (0) (0)		0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
Grade (a > b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrj

: MALE

ALL ANIMALS (0- 14W) REPORT TYPE : A1

Organ	Findings	Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sy	stem]			
kidney .	granular cast formation	7 0 0 0 *** (70) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	basophilic change:atypia	2 0 0 0 0 (20) (20) (0) (0)	1 1 0 0 (10) (10) (0) (0)	
[Endocrine:	system]			
pituitary	Rathke pouch	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
thyroid	ultimibranchial body remanet	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
[Reproducti	ue system]			
testis	mineralization	2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b / a * 100 cdifference; *: P ≤ 0.05 **:			

(HPT150)

BAIS3

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 7

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1
SEX : MALE

OrganFi	indings	No. of Animals on Study Grade	2 3 (%) (%)	<u>4</u> (%)	1250 10 1 2 (%) (%)		<u>1</u> (%)	2500 ppm 10 2 3 (%) (%)	<u>4</u> (%)	1 2 (%) (%)	
[Special sense org	gans/appendage]										
Harder gl de	egeneration	(0)	<10> 0 0 (0) (0)	0 (0)	0 0 (0) (0)		1 (10) (<10> 0 0 0) (0)	0 (0)	0 (<10>) 0)) (0) (
ls	vmohacytic infiltration	(10)	0 0	0 (0)	0 0 (0)	0 0 (0)	2 (20) (0 0	0 (0)	2 (20) (10	1 0
(a) a: b b: (c) c:	Slight 2: Moderate 3 Number of animals examined at the s Number of animals with lesion b / a * 100 rence; * : P ≤ 0.05 **: P ≤	: Marked 4 : Severe	,								

ANIMAL : RAT F344/DuCrj

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

Organ		Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Special sens	se organs/appendage]			
Harder gl	degeneration	(10) 10	(10) 10	
	lymphocytic infiltration	3 0 0 0 (30) (0) (0) (0)	2 0 0 0 0 (20) (0) (0) (0)	
Grade (a) b (c) Significant (1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤			

(HPT150)

BAIS3

APPENDIX K 2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: SUMMARY

RAT: FEMALE: ALL ANIMALS

(13-WEEK STUDY)

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj
REPORT TYPE : A1

REPORT TYPE : A1
SEX : FEMALE

STUDY NO. : 0369

1250 ppm 2500 ppm 5000 ppm Group Name Control No. of Animals on Study 10 10 10 10 3 Findings_ [Respiratory system] <10> <10> <10> <10> nasal cavit 1 0 0 0 1 0 0 0 2 0 0 0 0 0 0 inflammation (10) (0) (0) (0) (20) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) respiratory metaplasia:olfactory epithelium (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 3 0 0 0 6 0 0 0 2 1 0 0 4 1 0 0 respiratory metaplasia:gland (40) (10) (0) (0) (30) (0) (0) (0) (60) (0) (0) (0) (20) (10) (0) (0) lung 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 osseous metaplasia (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) [Hematopoietic system] <10> <10> <10> <10> bone marrow 1 0 0 0 0 1 0 0 1 1 0 0 granulation (0) (10) (0) (0) (10) (0) (0) (0) (0) (10) (0) (0) (10) (10) (0) (0) <10> spleen <10> <10> 1 9 0 0 ** deposit of hemosiderin 0 0 0 0 0 0 0 0 10 0 0 0 ** (0)(0)(0)(0) (10) (90) (0) (0) (0)(0)(0)(0) (100) (0) (0) (0) 3 : Marked 4 : Severe Grade 1 : Slight 2 : Moderate (a) a: Number of animals examined at the site b: Number of animals with lesion b c : b / a * 100(c) Significant difference; $*:P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

PAGE: 9

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1

SEX

: FEMALE

PAGE: 10

Organ		up Name 8000 ppm of Animals on Study 10 de 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
[Respiratory	system]			•
nasal cavit	inflammation	<10> 2 0 0 0 (20) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	
	respiratory metaplasia:olfactory epitheli	um 0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (10) (10) (10) (10)	
	respiratory metaplasia:gland	4 0 0 0 (40) (0) (0) (0)	3 0 0 0 0 (30) (0) (0) (0)	
lung	ossebus metaplasia	<10> 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
[Hematopoieti	c system]			
bone marrow	granulation	<10> 0 1 0 0 (0) (10) (0) (0)	<10> 0 1 0 0 (0) (10) (0) (0)	
spleen	deposit of hemosiderin	<10> 0 10 0 0 ** (0) (100) (0) (0)	<10> 0 10 0 0 ** (0) (100) (0) (0)	
Grade <a>\ a > \ b \ (c) Significant c	1: Slight 2: Moderate 3: Max a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: $P \le 0.05$	larked 4: Severe 01 Test of Chi Square		

(HPT150)

BAIS3

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W) STUDY NO. : 0369

ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1

SEX : FEMALE PAGE: 11

Organ		Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Hematopoie	otic system]				
spleen	engargement of erythrocyte	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	10 0 0 0 ** (100) (0) (0) (0)
[Digestive	system]				
liver	herniation	1 0 0 0 0 (10) (10) (0) (0)	2 0 0 0 (20) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	hepatocellular hypertrophy:central	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0)
[Urinary sy	vstem]				
kidney	cyst	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
	deposit of hemosiderin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P ≤			:	

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrj

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

ANIMAL

: FEMALE

10000 ppm mgg 0008 Group Name No. of Animals on Study 10 10 Findings [Hematopoietic system] <10> <10> spleen 6 4 0 0 ** 0 10 0 0 ** engargement of erythrocyte (60) (40) (0) (0) (0) (100) (0) (0) [Digestive system] liver <10> 1 0 0 0 0 0 0 0 herniation (10) (0) (0) (0) (0)(0)(0)(0) 0 ** 10 0 0 0 ** hepatocellular hypertrophy:central 10 (100) (0) (0) (0) (100) (0) (0) (0) [Urinary system] kidney <10> <10> 0 0 0 cyst (0)(0)(0)(0) (0)(0)(0)(0) deposit of hemosiderin 0 0 0 9 1 0 0 ** (0)(0)(0)(0) (90) (10) (0) (0)

Grade

1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>>

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a*100

Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square

(HPT150)

BAIS3

PAGE: 12

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

STUDY NO. : 0369 ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

REPORT TYPE : A1
SEX : FEMALE

0rgan		Sup Name Control of Animals on Study 10 ade 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
[Urinary sys	tem]				
<idney< td=""><td>hyaline cast</td><td>(10) 0 0 0 0 (0) (0) (0) (0)</td><td>(10) 0 0 0 0 (0) (0) (0) (0)</td><td>0 0 0 0 (0) (0) (0) (0)</td><td>(10) 0 0 0 0 (0) (0) (0) (0)</td></idney<>	hyaline cast	(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)
	papillary necrosis	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
	mineralization:cortico-medullary junction	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 0 (0) (0)
	mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (20) (0) (0) (0)
	atypical tubule hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (0) (0)
	eosinophilic droplet:proximal tubule	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	5 0 0 0 ** (50) (0) (0) (0)
[Endocrine s	ystem]				
pituitary	cyst	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)

PAGE: 13

HISTOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : A1

SEX

: FEMALE PAGE: 14

Organ	1	Group Name 8000 ppm No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	10000 ppm 10 10 1 2 3 4 (%) (%) (%) (%)	
[Urinary sys	stem]			
kidney	hyaline cast	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 2 0 0 0 (20) (0) (0) (0)	
	papillary necrosis	0 0 0 0 0 (0) (0)	2 0 0 0 0 (20) (0) (0) (0)	
	mineralization:cortico-medullary junct	ian 0 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	mineralization:papilla	4 0 0 0 (40) (0) (0) (0)	1 1 0 0 (10) (10) (0) (0)	
	atypical tubule hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	eosinophilic droplet:proximal tubule	10 0 0 0 *** (100) (0) (0) (0)	3 7 0 0 *** (30) (70) (0) (0)	
[Endocrine s	system]			
pituitary	cyst	<10> 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤			

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

STUDY NO. : 0369 ANIMAL : RAT F344/DuCrj

REPORT TYPE : A1

(HPT150)

SEX : FEMALE

Organ	Findings_	Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
(Endocrine s	ystem]				
pituitary	Rathke pouch	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)
thyroid	ultimibranchial body remanet	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
[Reproductiv	e system]				
ovary	cyst	(10) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
[Special sen	se organs/appendage]				
larder gl	degeneration	<10> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)
	lymphocytic infiltration	0 1 0 0 (0) (10) (0) (0)	2 0 0 0 (20) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	4 1 0 0 (40) (10) (0) (0)

PAGE: 15

: RAT F344/DuCri

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL REPORT TYPE : A1

: FEMALE

Group Name Mqq 0008 10000 ppm No. of Animals on Study 10 10 Findings_ [Endocrine system] pituitary <10> <10> Rathke pouch (0)(0)(0)(0) (0)(0)(0)(0) thyroid <10> <10> 1 0 0 0 0 0 0 0 ultimibranchial body remanet (10) (0) (0) (0) (0)(0)(0)(0) [Reproductive system] <10> ovary 0 0 0 0 1 0 0 0 cyst (10) (0) (0) (0) (0)(0)(0)(0) [Special sense organs/appendage] <10> <10> Harder gl 9 0 0 0 ** 10 0 0 0 ** degeneration (90) (0) (0) (0) (100) (0) (0) (0) lymphocytic infiltration 4 1 0 0 (90) (0) (0) (0) (40) (10) (0) (0) 3 : Marked 4 : Severe Grade 1 : Slight 2 : Moderate <a>> a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a*100

(HPT150)

Significant difference; $*:P \leq 0.05$ **: $P \leq 0.01$ Test of Chi Square

BAIS3

PAGE: 16

APPENDIX L 1

HISTOLOGICAL FINDINGS: NEOPLASTIC LESIONS: SUMMARY

RAT: FEMALE: ALL ANIMALS

(13-WEEK STUDY)

ANIMAL : RAT F344/DuCrj

HISTOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

PAGE: 1 SEX : FEMALE

renal cell carcinoma 0 (0%) 0 (0%) 0 (0%) 1 (10%) <a> a : Number of animals examined at the site	0rgan	Findings	Group Name No. of animals on Study	Control 10	1250 ppm 10	2500 ppm 10	5000 ppm 10
renal cell carcinoma 0 (0%) 0 (0%) 0 (0%) 1 (10%) <a> a : Number of animals examined at the site	[Urinary sys	stem]					
	kidney	renal cell carcinoma					
b (c) b fulliber of attitudes with the peasing c b f a f 200	(a) b (c)		o/a * 100				

HISTOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL : RAT F344/DuCrj REPORT TYPE : Å1 SEX : FEMALE

PAGE: 2 Group Name 8000 ppm 10000 ppm Findings_ No. of animals on Study 10 10 Organ____ [Urinary system] <10> <10> kidney 0 (0%) 0 (0%) renal cell carcinoma (a) a : Number of animals examined at the site b (c) b: Number of animals with neoplasm c:b/a*100BAIS3 (HPT085)

APPENDIX M 1

IDENTITY AND IMPURITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY

IDENTITY AND IMPURITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY

Test Substance

: p-Nitroanisole (Wako Pure Chemical Industries, LTD.)

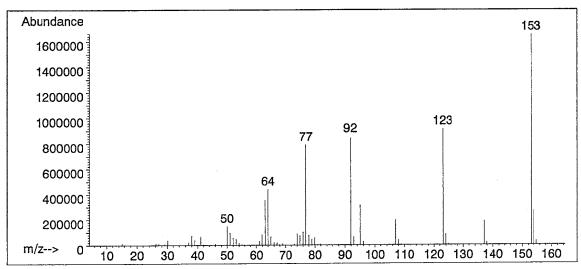
Lot No.

: ACG7156

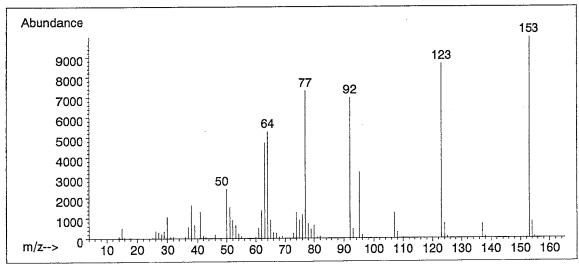
1. Spectral data

Mass Spectrometry

Instrument


: Hewlett Packard 5989B Mass Spectrometer

Ionization


: EI (Electron Ionization)

Ionization Voltage

: 70eV

Mass Spectrum of Test Substance

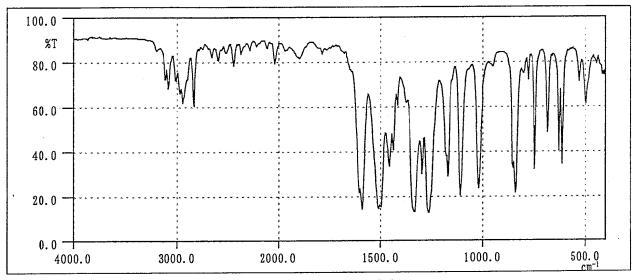
Mass Spectrum of Literature Data*

Results: The mass spectrum was consistent with literature spectrum.

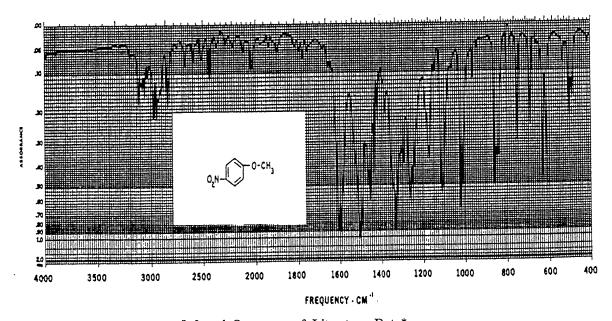
(*Fred W. McLafferty (1994) Wiley Registry of Mass Spectral Data, 6th edition. John Wiley and Sons, Inc. (U.S.), Entry Number 38330)

Infrared Spectrometry

Instrument


: Shimadzu FTIR-8200PC Infrared Spectrometer

Cell


: KBr Liquid Cell

Resolution

: 2.0 cm⁻¹

Infrared Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Results: The infrared spectrum was consistent with literature spectrum.

(*William W. Simons (1978) The Sadtler Handbook of Infrared Spectra. Sadtler Research Laboratories, Inc. (U.K.), pp.443)

2. Impurity

Instrument

: Hewlett Packard 5890A Gas Chromatograph

Column

: INNOWAX (0.2 mm ϕ × 50 m)

Column Temperature : 80 $^{\circ}$ C \rightarrow (15 $^{\circ}$ C/min) \rightarrow 280 $^{\circ}$ C (5 min)

Flow Rate

: 1 mL/min

Detector

: FID (Flame Ionization Detector)

Injection Volume

 $: 1 \mu L$

Sample Name	Peak No.	Area (%)	Peak Name
Test Substance	1	0.01	m-Chloronitrobenzene
	2	99.99	p-Nitroanisole

Results: Gas chromatography indicated one major peak (peak No.2) and one impurity. It was identified only by comparing its gas chromatograph with that of m-chloronitrobenzene (peak No.1) in the p-nitroanisole, the amount in the test substance were 0.01%.

3. Conclusions: The test substance was identified as p-nitroanisole, by the mass spectrum and the infrared spectrum. Gas chromatography indicated one major peak (peak No.2) and one impurity. It was identified only by comparing its gas chromatograph with that of m-chloronitrobenzene, the amount in the test substance were 0.01%.

APPENDIX M 2

STABILITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY

STABILITY OF p-NITROANISOLE IN THE 13-WEEK FEED STUDY

Test Substance : p-Nitroanisole (Wako Pure Chemical Industries, LTD.)

Lot No. : ACG7156

1. Sample : This lot was used from 1998.10.30 to 1999.2.2. Test substance was stored in a

dark place at room temperature.

2. Gas Chromatography

Instrument : Hewlett Packard 5890A Gas Chromatograph

Column : INNOWAX (0.2 mm ϕ × 50 m)

Column Temperature : 80 $^{\circ}$ C \rightarrow (15 $^{\circ}$ C/min) \rightarrow 280 $^{\circ}$ C (5 min)

Flow Rate : 1 mL/min

Detector : FID (Flame Ionization Detector)

Injection Volume : 1 µL

Date (date analyzed)	Peak No.	Retention Time (min)	Area (%)
1998.10.26	1	10.248	0.01
	2	13.132	99.99
1999.02.24	1	10.251	0.01
	2	13.139	99.99

Results: Gas chromatography indicated one major peak (peak No.2) and one impurity (peak No.1 < 0.02% of total area) analyzed at 1998.10.26 and one major peak (peak No.2) and one impurity (peak No.1 < 0.02% of total area) analyzed at 1999.2.24. No new trace impurity peak in the test substance analyzed at 1999.2.24 was detected.

4. Conclusions: The test substance was stable for about 4 months in a dark place at room temperature.

APPENDIX M 3

CONCENTRATION OF p-NITROANISOLE IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

CONCENTRATION OF p-NITROANISOLE IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

Target Concentration					
Date Analyzed	1250ª	2500	5000	8000	10000
1998.10.29	1200 (96.0) ^b	2430 (97.2)	4760 (95.2)	7630 (95.4)	9430 (94.3)

^a ppm ^b %

Analytical method

: The samples were analyzed by the high performance liquid chromatography.

Instrument

: Hewlett Packard 1090 High Performance Liquid Chromatograph

Column

: TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature

: Room Temperature

Flow Rate

: 1 mL/min

Mobile Phase

: Distilled Water : Acetonitrile = 1 : 1

Detector

: UV (295 nm)

Injection Volume

: 20 μL

APPENDIX M 4

STABILITY OF p-NITROANISOLE IN FORMULATED DIETS $\hbox{IN THE 13-WEEK FEED STUDY}$

STABILITY OF p-NITROANISOLE IN FORMULATED DIETS IN THE 13-WEEK FEED STUDY

		Target Concentration			
Date Prepared	Date Analyzed	300 ^a	40000		
1998.09.24	1998.09.24	314 (100) ^b	40500 (100)		
	1998.10.02°	257 (81.8)	37400 (92.3)		
	1998.10.29 ^d	304 (96.8)	39400 (97.3)		

a ppm

Analytical method : The samples were analyzed by the high performance liquid chromatography.

Instrument : Hewlett Packard 1090 High Performance Liquid Chromatograph

Column : TSK GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: Room Temperature

Flow Rate : 1 mL/min

Mobile Phase : Distilled Water : Acetonitrile = 1 : 1

Detector : UV (295 nm)

Injection Volume : 20 μL

^b % (Percentage was based on the concentration on date of preparation.)

^c Animal room samples

^d Cold storage samples

APPENDIX N 1

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALSIS IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE

Item	Method
Hematology Red blood cell (RBC) Hemoglobin (Hgb) Hematocrit (Hct) Mean corpuscular volume (MCV) Mean corpuscular hemoglobin (MCH) Mean corpuscular hemoglobin concentration (MCHC) Platelet	Light scattering method ¹⁾ Cyanmethemoglobin method ¹⁾ Calculated as RBC×MCV/10 ¹⁾ Light scattering method ¹⁾ Calculated as Hgb/RBC×10 ¹⁾ Calculated as Hgb/Hct×100 ¹⁾ Light scattering method ¹⁾
Prothrombin time Activated partial thromboplastin time (APTT) White blood cell (WBC) Differential WBC	Pattern recognition method (New methyleneblue staining) Quick one stage method (Pattern recognition method (Pattern recognition method (Wright staining))
Biochemistry Total protein (TP) Albumin (Alb) A/G ratio T-bilirubin Glucose T-cholesterol Triglyceride Phospholipid Glutamic oxaloacetic transaminase (GOT) Glutamic pyruvic transaminase (GPT) Lactate dehydrogenase (LDH) Alkaline phosphatase (ALP)	Biuret method BCG method Calculated as Alb/(TP-Alb) Alkaline azobilirubin method GIcK·G-6-PDH method CE·COD·POD method LPL·GK·GPO·POD method PLD·ChOD·POD method JSCC method SFBC method SFBC method GSCC method SFBC method SFBC method Urease·GLDH method JSCC method Iscomethod
Urinalysis pH,Protein,Glucose,Ketone body,Bilirubin,Occult Blood, Urobilinogen	Urinalysis reagent paper method 5)

- 1) Automatic blood cell analyzer (Technicon H·1: Bayer Corporation)
- 2) Automatic coagulometer (Sysmex CA-5000: Sysmex Corporation)
- 3) Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)
- 4) Automatic analyzer (Hitachi 7070: Hitachi, Ltd.)
- 5) Ames reagent strips for urinalysis (Multistix: Bayer Corporation)

APPENDIX O 1

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK FEED STUDY OF p-NITROANISOLE

Item	Unit	Decimal place
Hematology		
Red blood cell (RBC)	$\times 10^6/\mu L$	2
Hemoglobin	g/dL	1
Hematocrit	%	1
Mean corpuscular volume (MCV)	fL	1
Mean corpuscular hemoglobin (MCH)	pg	1
Mean corpuscular hemoglobin concentration (MCHC)	g/dL	1
Platelet	$\times 10^3/\mu$ L	0
Reticulocyte	%	0 ·
Prothrombin time	sec	1
Activated partial thromboplastin time (APTT)	sec	1
White blood cell (WBC)	$\times 10^3/\mu$ L	2
Differential WBC	%	0
Biochemistry		
Total protein	g/dL	1
Albumin	g/dL	1
A/G ratio	_	1
T-bilirubin	mg/dL	2
Glucose	mg/dL	0
T-cholesterol	mg/dL	0
Triglyceride	mg/dL	0
Phospholipid	mg/dL	0
Glutamic oxaloacetic transminase (GOT)	IU/L	0
Glutamic pyruvic transaminase (GPT)	IU/L	0
Lactate dehydrogenase (LDH)	IU/L	0
Alkaline phosphatase (ALP)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	IU/L	0
Creatine phosphokinase (CPK)	IU/L	0 .
Urea nitrogen	mg/dL	1
Creatinine	mg/dL	1
Sodium	mEq/L	0
Potassium	mEq/L	1
Chloride	mEq/L	0
Calcium	mg/dL	1
Inorganic phosphorus	mg/dL	1