2-フェノキシエタノールのラットを用いた経口投与によるがん原性試験(混水試験)報告書

試験番号:0497

APPENDICES

APPENDICES

APPENDIX A 1	IDENTITY OF 2-PHENOXYETHANOL IN THE 2-YEAR DRINKING WATER STUDY
APPENDIX A 2	STABILITY OF 2-PHENOXYETHANOL IN THE 2-YEAR DRINKING WATER STUDY
APPENDIX A 3	CONCENTRATION OF 2-PHENOXYETHANOL IN FORMULATED WATER IN THE 2-YEAR DRINKING WATER STUDY
APPENDIX A 4	STABILITY OF 2-PHENOXYETHANOL IN FORMULATED WATER
APPENDIX B 1	CLINICAL OBSERVATION: MALE
APPENDIX B 2	CLINICAL OBSERVATION: FEMALE
APPENDIX C 1	BODY WEIGHT CHANGES: MALE
APPENDIX C 2	BODY WEIGHT CHANGES: FEMALE
APPENDIX D 1	FOOD CONSUMPTION CHANGES: MALE
APPENDIX D 2	FOOD CONSUMPTION CHANGES: FEMALE
APPENDIX E 1	WATER CONSUMPTION CHANGES: MALE
APPENDIX E 2	WATER CONSUMPTION CHANGES: FEMALE
APPENDIX F 1	CHEMICAL INTAKE CHANGES: MALE
	CHEMICAL INTAKE CHANGES: FEMALE
APPENDIX G 1	HEMATOLOGY: MALE
	HEMATOLOGY: FEMALE
ADDENIDIV II 1	BIOCHEMISTRY: MALE
APPENDIX H 2	BIOCHEMISTRY: FEMALE

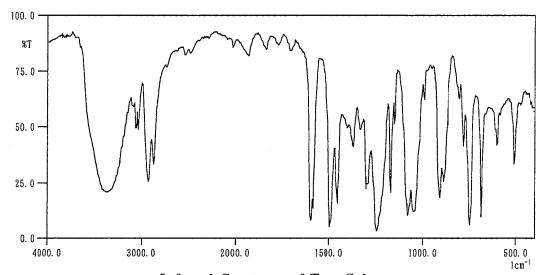
APPENDICES (CONTINUED)

APPENDIX I 1	URINALYSIS: MALE
APPENDIX I 2	URINALYSIS: FEMALE
APPENDIX J 1	GROSS FINDINGS: MALE: ALL ANIMALS
APPENDIX J 2	GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS
APPENDIX J 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
APPENDIX J 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
APPENDIX J 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
APPENDIX J 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
APPENDIX K 1	ORGAN WEIGHT, ABSOLUTE: MALE
APPENDIX K 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
APPENDIX L 1	ORGAN WEIGHT, RELATIVE: MALE
APPENDIX L 2	ORGAN WEIGHT, RELATIVE: FEMALE
APPENDIX M 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
APPENDIX M 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: DEAD AND MORIBUND ANIMALS
APPENDIX M 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS
APPENDIX M 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
APPENDIX M 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
APPENDIX M 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS

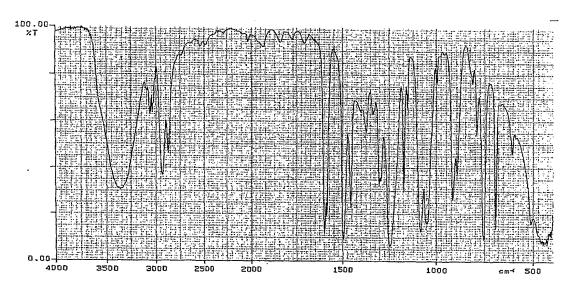
APPENDICES (CONTINUED)

APPENDIX N 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
APPENDIX N 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
APPENDIX O 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
APPENDIX O 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
APPENDIX P 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
APPENDIX P 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
APPENDIX Q 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
APPENDIX Q 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
APPENDIX R	METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR DRINKING WATER STUDY OF 2-PHENOXYETHANOL

APPENDIX A 1


IDENTITY OF 2-PHENOXYETHANOL IN THE 2-YEAR DRINKING WATER STUDY

Infrared Spectrometry


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

Infrared Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Conclusion: The test substance was identified as 2-phenoxyethanol by mass spectrum and infrared spectrum.

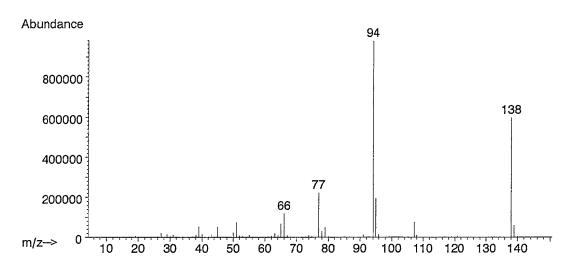
B. Lot No.

: PKF5373

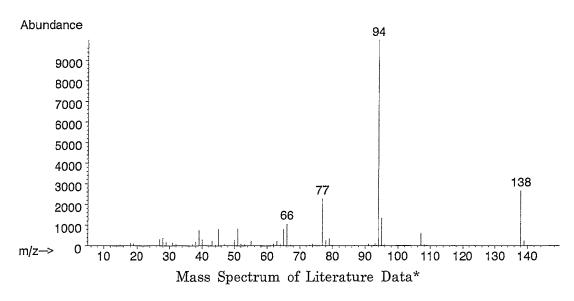
1. Spectral Data

Mass Spectrometry

Instrument


: Hewlett Packard 5989B Mass Spectrometer

Ionization


: EI (Electron Ionization)

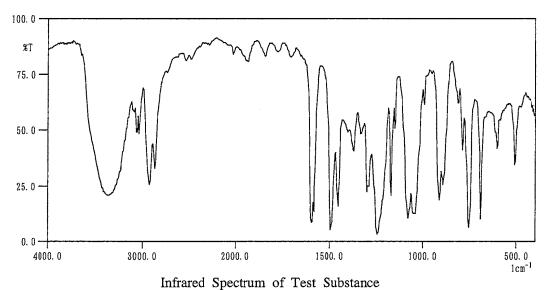
Ionization Voltage

: 70eV

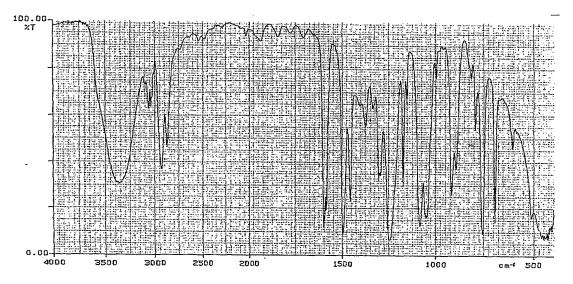
Mass Spectrum of Test Substance

Result: The mass spectrum was consistent with literature spectrum.

(*McLafferty FW. 1994. Wiley Registry of Mass Spectral Data, 6th ed.


New York:John Wiley and Sons.)

Infrared Spectrometry


Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution : 2 cm⁻¹

minuted Spectrum of Test Substance

Infrared Spectrum of Literature Data*

Result: The infrared spectrum was consistent with literature spectrum. (*Performed by Wako Pure Chemical Industries, Ltd.)

2. Conclusion: The test substance was identified as 2-phenoxyethanol by mass spectrum and infrared spectrum.

APPENDIX A 2

STABILITY OF 2-PHENOXYETHANOL IN THE 2-YEAR DRINKING WATER STUDY

STABILITY OF 2-PHENOXYETHANOL IN THE 2-YEAR DRINKING WATER STUDY

Test Substance : 2-Phenoxyethanol (Wako Pure Chemical Industries, Ltd.)

A. Lot No. : PKM4201

1. High Performance Liquid Chromatography

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: 40 °C

Flow Rate : 1 mL/min

Mobile Phase : Acetonitrile : Distilled Water = 4 : 6

Detector : UV (271 nm)

Injection Volume : 10 μL

Date analyzed	Peak No.	Retention Time (min)	Area (%)
2003.06.19	1	3.488	100
2004.05.17	1	3.457	100

Result: High performance liquid chromatography indicated one major peak (peak No.1) analyzed on 2003.6.19 and one major peak (peak No.1) analyzed on 2004.5.17. No new trace impurity peak in the test substance analyzed on 2004.5.17 was detected.

2. Conclusion: The test substance was stable for the period that the test substance had been used for the study.

B. Lot No.

: PKF5373

1. High Performance Liquid Chromatography

Instrument

: Shimadzu LC-10 High Performance Liquid Chromatograph

Column

: TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: 40 °C

Flow Rate

: 1 mL/min

Mobile Phase

: Acetonitrile : Distilled Water = 4 : 6

Detector

: UV (271 nm)

Injection Volume

: 10 μL

Date analyzed	Peak No.	Retention Time (min)	Area (%)
2004.05.10	1	3.454	100
2005.07.22	1	3.459	100

Result: High performance liquid chromatography indicated one major peak (peak No.1) analyzed on 2004.5.10 and one major peak (peak No.1) analyzed on 2005.7.22. No new trace impurity peak in the test substance analyzed on 2005.7.22 was detected.

2. Conclusion: The test substance was stable for the period that the test substance had been used for the study.

APPENDIX A 3

CONCENTRATION OF 2-PHENOXYETHANOL IN FORMULATED WATER IN THE 2-YEAR DRINKING WATER STUDY

CONCENTRATION OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 2-YEAR DRINKING WATER STUDY

Analytical Method : The samples were analyzed by high performance liquid

chromatography.

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: 40 °C

Flow Rate : 1 mL/min

Mobile Phase : Acetonitrile : Distilled Water = 4 : 6

Detector : UV (271 nm)

Injection Volume : 10 μL

		Target Concentration	
Date Analyzed	2500°	5000	10000
2003.06.20	2500 ^b (100) ^c	5130 (103)	10200 (102)
2003.09.12	2520 (101)	5100 (102)	10200 (102)
2003.12.05	2560 (102)	5140 (103)	10200 (102)
2004.02.27	2410 (96.4)	4900 (98.0)	9730 (97.3)
2004.05.21	2510 (100)	5030 (101)	9950 (99.5)
2004.08.13	2520 (101)	5070 (101)	10100 (101)
2004.11.05	2510 (100)	5000 (100)	10000 (100)
2005.01.28	2560 (102)	5180 (104)	10400 (104)
2005.04.22	2480 (99.2)	5000 (100)	10000 (100)

a ppm

b ppm (Mean measured concentration.)

 $^{^{\}circ}$ % (Mean measured concentration/target concentration \times 100.)

APPENDIX A 4

STABILITY OF 2-PHENOXYETHANOL IN FORMULATED WATER

STABILITY OF 2-AMINOETHANOL IN FORMULATED WATER

Analytical Method : The samples were analyzed by high performance liquid

chromatography.

Instrument : Shimadzu LC-10 High Performance Liquid Chromatograph

Column : TSK-GEL ODS-80TM (4.6 mm ϕ × 15 cm)

Column Temperature: 40 °C

Flow Rate : 1 mL/min

Mobile Phase : Acetonitrile : Distilled Water = 4 : 6

Detector : UV (271 nm)

Injection Volume : 10 μ L

	Target Cor	ncentration
Date Analyzed	100ª	25000
2002.05.15	97.3 (100)b	24600 (100)
2002.05.20°	98.7 (101)	25700 (104)

a ppm

^b % (Percentage was based on the concentration at the date of preparation.)

^c Animal room samples

APPENDIX B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
eatii	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	Ŏ	0	Ö	Ö	ŏ	ő	Ö	0	Ö	Ö	Ŏ	Ö	ő
	5000ppm	Ö	0	0	0	0	0	Ö	0	0	0	Ŏ	Ö	0	ő
	10000ppm	0	Ō	0	Ö	0	ō	0	Ō	0	Ö	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0			0	0				0
	5000ppm 10000ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0
RALYTIC GAIT	Control	0	0	0	0	.0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ЕАТН	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i></i>	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ODIDIAD CACDITION	0 . 1	•	•	•	•	•						_	_	_	
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
INCLIBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ŏ	Ö	Ö	Ö	Ö	Ö	ŏ	0	0	Ö	ŏ	0	Ö	0
	5000ppm	0	0	Ö	ō	Ö	Ö	ō	ŏ	0	ő	ő	0	Õ	Ö
	10000ррш	ő	Ö	Ö	o	ő	ő	Ö	ő	0	ő	ő	0	Ö	Ö
SNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SHORBIE ON I	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									-			-	•		-
	5000ppm 10000ppm	0	0 0	0 0	0 0	0 0	0	0 0							
ACTING	0 1	•		•	•	•		•	•	•			•	•	•
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTLED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2900ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	U	U	U	U	U	U	U	U	U	v	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ATII	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2111	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	o	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MIDOND CHOKII IOD	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	ő
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	0	0	Ŏ	ő
	TOOOODDW	U	U	U	U	U	U	U	U	U	U	U	U	U	U
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0 0	0	0	0 0	0	0 0	0 0	0 0
	2500ppm	0	0	0	0	0	0		_	0		0			0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0 -	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	5000ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TLED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	Ö	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ö	Ö	0	Ö	0	0	ō	0	0	Ō	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.DODREOT TOR	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	v	U	U	U	U	U	v	U	U	U	v	U	U	U

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav									,		
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATII	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ö	0	0	0	ő	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	Ö	ŏ	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	ō	ō	ō	ő	ő	ő	ő	ő	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2500ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	5000ppm 10000ppm	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0	0 0	0 0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	ő	0	0	0	0	o o	0	0	0	0	0	0	0
OTLED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ŏ	ō	0	0	ō	ō	ŏ	ō	0	ō	0	0	ő	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ŏ	ŏ	Ö	Ö	0	0	0	0	0	0	0	0	Ö	0
	5000ppm	0	0	Õ	Ö	ő	ŏ	ő	ő	0	ů	ő	0	ő	0
	10000ppm	Ö	Ŏ	Ŏ	Ŏ	ő	Ö	Ŏ	0	Õ	ő	0	0	0	ő

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
	oroup numo	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ATU	0 . 1	•		٥			•	•		0		0	0	0	0
BATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթտ	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ō	0	Ō	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATII	C11	0	0	1	,	,	,	,	,	,	,	0		0	4
DATH	Control	0	0	1	1	1	1	1	1	1	1	2	2	2	4
	2500ppm	1	1	Ţ	1	I	1	1	1	1	1	1	l	2	2
	5000ppm	0	l •	1	1	1	1	1	1	1	1	1	į.	1	1
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	2
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	2
	2500ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	i	0	0	0
COMOTOR MOTEMBER 1930A	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TOOOODDW	U	U	U	U	U	U	U	U	U	U	U	U	U	U
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	2500ppm	ŏ	Õ	0	0	0	Ö	0	0	0	0	Ô	Ö	Ö	ő
	5000ppm	0	0	0	ő	0	0	0	0	0	Ö	Ö	0	0	ő
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Тооборран	v	•	v	v	•	V	·	•	v	·	v	·	·	•
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	Ö	0	0	0	0	0	0	0	0	ő	0	Ö	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22722271271	2500ppm	0	Ŏ	ő	0	0	ŏ	ŏ	0	ŏ	Ö	0	Ö	0	ō
	5000ppm	0	0	0	0	0	0	ő	0	Ö	Ö	0	0	0	ő
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	Ô	ŏ	ő

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration V	eek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ЕЛТН	Control	4	5	7	7	7	7	7	7	7	8	8	9	9	9
	2500ppm	3	3	3	3	3	3	4	4	4	4	4	4	4	4
	5000ppm	i	i	1	2	2	2	2	2	2	2	3	3	3	3
	10000ppm	2	2	2	2	2	2	2	2	2	2	4	5	5	6
RIBUND SACRIFICE	Control	2	2	2	2	2	2	2	2	2	2	2	3	3	3
	2500ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	1	1	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
RALYTIC GAIT	Control	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0
	10000թթա	U	U	U	U	U	U	U	U	U	U	U	U	U	U
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000րթա 10000թթա	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ō	Õ	ŏ	ŏ	Ö	ŏ	Ö	Ö	Ŏ	ŏ	Ö	Ŏ	ŏ	Ö
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ō	ō	ō	0	Ö	0	ō	ō	ō	0	ŏ	ō	Ö	1
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	1	0	0	0	0	0	1	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	1	i	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

· IAI F344/DUCTIONIJ[F344/DUCT]]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day _			
		99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	9	9	10	10	11	11
	2500ppm	4	4	5	7	8	8
	5000ppm	4	4	4	5	5	5
	10000ppm	6	8	9	9	9	9
MORIBUND SACRIFICE	Control	3	3	3	3	3	3
	2500ppm	2	2	3	4	4	5
	5000ppm	0	0	0	0	ō	0
	10000ppm	0	0	1	i	1	1
	rooodbm	U	υ	1	1	1	1
LOCOMOTOR MOVEMENT DECR	Control	0	0	^	0	0	0
NOTION TO THE MOTERAL TO SOME STATE OF THE SOURCE STATE OF THE SOU				0			
	2500ppm	0	0	1	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	2900ppm 5000ppm	0	0	0	0	0	0
			0	0	0	0	0
	10000ppm	0	U	U	U	υ	U
IDMODULE GALL					•	•	•
ABNORMAL GAIT	Control	0	0	0	0	0	0
	2500ppm	0	0	1	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0
	2500ppm	Ō	0	Ō	0	0	0
	5000ppm	Ō	0	0	0	0	0
	10000ppm	1	0	0	0	0	Ö
	TOOOODDIII	1	U	U	U	U	. •
COTIED	0 1	•	•	0	•	•	0
SOILED	Control	0	0	0	0	0	0
	2500ppm	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
PILOERECTION	Control	1	2	1	1	1	1
	2500ppm	1	1	3	1	1	1
	5000ppm	0	0	0	1	1	1
	10000ppm	3	2	i	î	î	1
	Locoopput	•	•	*	•	•	•

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

															INOL .
Clinical sign	Group Name		stration W			-									
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ALLEN BOOK (BOLEMAN)		_	_	_									_	_	
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	3	3	5	5	5	5	5	5	7	7
XOPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	Ö	Ö	0	0	0	ō	Ō	0	0	0	0
	10000ррш	o	Ö	0	ō	0	0	0	0	0	ō	0	0	o	ő
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATDIANID IIIIOO	2500ppm	0	0	0	Ö	0	0	0	0	0	0	0	Ö	Ő	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	10000ppm	0	0	0	0	0	ő	0	0	0	0	0	ő	0	ō
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIDIUIL IIIIO	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NOSE		0	0	0	0	0	0	0	0	0	0	0	0	٥	0
. ACOM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	ook-day											
tinival digit	Oldp Name	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	Ö	Õ	Ö	Õ	Ö	Ö	0	0	0	0	0	0	0
	- 5000ppm	0	Ö	ō	Ö	0	0	Ö	1	1	1	1	1	1	i
	10000ppm	7	7	7	7	4	4	7	9	8	9	11	12	12	12
OPIITHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1 0	1	1 0	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	U	0	U	0	0	0	0	0	0	0	0	0	0	0
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	1	1	1	1	1	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
-		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	i
	10000ppm	15	15	15	15	15	15	15	15	14	14	14	14	14	14
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	i
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	2500թթm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	i	1	1	1
	10000ррт	0	0,	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	Ō	Ō	ō	0	0
	5000ppm	0	0	0	0	0	1	ĺ	ì	ō	0	Ö	ŏ	Ö	ő
	10000ppm	Ō	0	0	Ō	ō	ō	ō	ō	0	Ō	Ō	Ō	ō	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ō	0	Õ	0	0	0	ō	0	Ö	0	Ö	Ö	Ö	0
	5000ppm	0	0	Ö	0	Ö	0	Ö	0	0	Ö	Ö	Ö	0	0
	10000ppm	0	0	0	0	0	Ō	0	ō	0	ō	ō	0	ō	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ö	0	0	0	ő	0	Ö	0	0	0	0	0	0	0
	5000ppm	Õ	0	Ő	0	0	0	Ö	0	0	0	0	0	0	0
	10000ppm	ō	Ö	0	ő	0	0	0	ŏ	Ö	o	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IDAL MOOTH	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	1		1	0	0	0	0	0	0
			0		0			1		-	-				0
	10000ppm	0	U	0	U	0	0	0	0	0	0	0	0	0	U

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
	or out it is	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TESS TERT GENTIALIA	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	2	2	2	2	2	2	2	3	2	0
	10000ppm	14	14	14	17	17	18	18	17	16	16	16	16	16	13
OPHTHALMOS	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	i	1	1	1	1	1	1	1	1	I	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	1	1	I	1	1	1	1	1	1	1	1
DRNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1 0	1	1 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	-		2	
	5000ppm 10000ppm	2 0	2 0	2 0	2 0	2 0	2 0	2 0	2 0	2 0	2 0	2 0	2 0	0	0
VTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	.0	0
XTERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	1	1	1	1	2	2	2	3
	10000ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	Ü	U	U
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	-	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JOILED TERT CENTINEIN	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	10000ppm	12	12	12	10	10	14	13	13	13	15	15	15	14	13
XOPIITIIALMOS	Control	1	ı	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	ı	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	1	1	1	1	1	1	1	1	l	1	1	1
	10000ppm	1	1	1	1	1	1	1 .	1	1	1	1	1	1	1
ORNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	2	2	2	2	2	2	2	2	2	2	2
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	10000թբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	1	1	1	1	1	1	2	3	3	3	3	3	3	3
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm 10000ppm	3 0	3 0	4 0	3 0	3 0	2 0	2 0	2 0	2 1	2 1	2 2	2 2	2 1	2
															_
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NOSE	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	U	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	1	1	1	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	ek-day											
	•	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	2	2	2	2	1	0	0	0	0	0	0	0	0
	10000ppm	13	19	19	16	16	16	16	12	11	13	13	13	14	14
XOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	ī	i	I
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	2	2	2	2	2	2	3	3	3	3	3	3	3	3
	2500ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	5000ppm	I	1	1	1	1	1	2	2	2	2	2	2	2	2
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ORNEAL OPACITY	Control	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	1	1	0	0	0	0	0	0	0
	5000ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	3	3	3	3	3	3	3	5	6	6	6	6	7	5
	2500ppm	0	0	0	0	0	0	0	0	0	0	2	2	2	2
	5000ppm	3	2	2	2	3	2	2	2	2	2	2	2	3	3
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	2	2
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NOSE	Control	0	0	0	0	0	0	0	1	1	1	1	I	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DILED PERI-GENITALIA	Control	0	0	0	0	0	1	1	1	1	0	0	0	0	0
SILED FERI-GENITALIA	2500ppm	0 0	0	0	0	0	1 0	1 0	1	1 1		0	0	0	0
									1		0			1	0
	5000ppm 10000ppm	0 14	0 15	0 15	1 19	1 20	1 17	1 17	1 17	1 17	2 19	1 17	1 16	16	15
KOPHTHALMOS	Control	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	õ	Ô	Ö	0	0	Ö	Ö	0	0	0	Ō	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	I	2	2	2	2
	10000ppm	0	0	Ô	Ô	Ô	0	ō	0	0	Ô	ő	0	ō	0
TARACT	Control	4	3	4	4	4	4	5	5	7	7	7	7	8	8
	2500ppm	1	1	1	1	i	i	1	1	2	2	3	3	3	3
	5000ppm	3	3	4	4	4	4	4	4	4	4	4	4	4	4
	10000ррш	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DRNEAL OPACITY	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0
	5000ppm	2	2	2	2	2	2	2	2	2	2	2	1	2	2
	10000ppm	0	0	Õ	ō	ő	0	0	0	0	ō	0	ō	ō	0
TERIOR CHAMBER OPACITY	Control	1	i	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000րթո	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	6	5	6	5	6	6	6	6	7	7	7	6	6	7
	2500ppm	2	2	2	2	5	5	3	4	5	5	5	5	5	5
	5000ppm	4	4	5	5	6	6	7	7	7	7	7	7	7	7
	10000ppm	2	2	2	2	4	4	4	. 4	4	4	3	3	4	4
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	Ü	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	ō	0	0	0	0	0	0	0	0	0	0
NOSE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	ò	Ô	Ô	ō	ō	ō	0	ō	ō	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	2	2	1	0	0	0	0	0	1	1	1	0	0	0
	2500ppm	0	0	ō	Ö	Ō	0	0	0	ō	ō	0	0	0	0
	5000ppm	ō	0	ō	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ő	Õ	Õ	ŏ	0	Ö	Ŏ	Ö	0	Ö	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admin	istration '	Week-day			
•	•	99-7	100-7	101-7	102-7	103-7	104-7
SOILED PERI-GENITALIA	Control	1	1	0	0	0	0
	2500ppm	1	2	1	0	0	1
	5000ppm	1	1	1	0	0	1
	10000ppm	17	16	14	13	15	15
EVODUTUAL MOD				•		•	•
EXOPHTHALMOS	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	2 0	2 0	2	2 0	2	2
	10000ppm	U	U	0	U	0	0
CATARACT	Control	8	8	8	8	8	8
	2500ppm	3	3	3	4	4	4
	5000ppm	4	4	4	4	4	4
	10000ppm	1	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0
	2500ppm	0	0	0	. 0	0	0
	5000ppm	2	2	2	1	1	1
	10000ppm	0	0	0	0	0	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0
The state of the s	2500ррт	ő	0	0	0	0	0
	5000ррт	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
CALCONIA MAGO		-	-				
EXTERNAL MASS	Control	7	7	6	6	6	6
	2500ppm	6	6	7	4	5	4
	5000ppm	7	8	8	7 2	7	7
	10000ppm	4	3	2	2	3	3
INTERNAL MASS	Control	0	0	0	1	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
M. NOSE	Control	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
M. PERI-MOUTII	Control	0	0	0	0	0	0
The second secon	2500ppm	0	0	0	0	0	0
	5000ppm	Ö	0	0	0	0	0
	10000ppm	ō	0	Ō	Ō	Ö	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

WUD . UNI 1944/ DUOLIGIT J [1944/ DUOL]]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	eek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
						_							•	•	•
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ō	0	ō	ō	ō	0	o o	0	ō	0	0	0	٥	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ő	Õ	0	0	0	0	0	Ö	0	Ö	Ō	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	Ö	0	õ	0	0	0
	10000ppm	ő	0	0	0	0	0	0	Ö	0	Ö	Ö	0	Ö	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ILLINDUHU	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0
	10000pptn	0	0	0	0	Ô	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

inical sign	Group Name	Administration Week-day													
	oroup Rame	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	ő	ő	Ö	Ö	Ö	Ö	Ö	Ö	Ö	ő
	5000ppm	0	0	0	0	0	Ó	0	0	0	Ō	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000gm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	1	1	1	1	1	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	.0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Administration Week-day													
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
M. PERI EAR	Cantural	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Control 2500ppm	0 0	0 0	0 0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0
			0	0	0							0	0		0
	5000ppm 10000ppm	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0 0	0
	10000ррш	U	U	U	U	U	U	U	U	U	U	U	U	U	U
M. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ō	0	0	0	0	0	Ö	0	0	Ō	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	٥	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
i. Habomait	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm			-		-		-	0	0	0	0	0	0	0
	10000ppm	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
AMPERIOR PORCING		•	^	^	•	^			^	^	0	0	•	•	^
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	-	
	5000ppm	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	U	U	U	0	U	υ	U
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

			me Administration Week-day													
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7	
.PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	Ö	0	Ŏ	0	Ō	0	0	0	0	0	0	0	
	5000ppm	0	0	o O	0	0	0	0	0	0	Ö	0	0	0	0	
	10000ppm	0	0	0	0	0	o	0	0	0	0	0	0	0	0	
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
. I OKELIME	2500ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DILLIOT	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0		0	0	0		0	0	0	0	0	
	5000ppm					0	0	0		0	0		0		0	
	mqq00001	0	0	0	0	U	Ü	U	0	0	U	0	υ	0	U	
ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	2500թթտ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ANTERIOR, DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
and the second s	2500ppm	0	Õ	0	o	0	0	0	0	0	0	0	0	ō	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	l	ĭ	1	i	
	10000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	Ô	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	Oloup Muno	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
DCDI GAD	Control	0	0	0	0	0	٥	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0		0 0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	-	0		-			-	· ·			
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	1	1	1	1	0	0
1. ABDOMEN	Control	1	1	1	1	1	1	2 ,	2	2	. 2	2	2	2	2
	2500ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	ô	Ô	ō	ō	ō	ō	ō	ô	ō	õ	ō	0	0	0
A. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERTOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	o o	0	Ö	Ö	ő	ŏ	ő	0	0	Ö	Ō	0	0	0
	5000ppm	ő	ő	ő	ő	0	ŏ	0	Õ	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	ő	0	Õ	1	i	1	1
	Tooobbii	Ū	v	v	v	U	v					_		-	_
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
PERI EAR	Control	0	0	0	0	0	0	•	0	0	0	0	0	•	
LPERI EAR	Control 2500ppm	0 0	0 0	0 0	0	0	0	0 0	0	0	0	0	0	1 0	1 0
							0			0	0		0		
	5000ppm 10000ppm	0	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0	0	0	0
	10000ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	ō	0	Ö	0	0	0	0	Ō	0	0	0	0	0
	5000ppm	ō	o o	0	Ō	0	0	Ö	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N I ONDERNE	2500ppm	ŏ	0	0	0	0	0	0	0	0	Ö	0	0	Ö	ő
	5000ppm	0	0	0	0	0	0	0	0	0	0	Ů	0	0	0
	10000ppm	ō	0	ő	0	Ö	0	Ö	0	0	Ö	0	0	Ö	ō
A. BREAST	0.4.1	•		•	•		•	^	•	^	•	•	0	0	0
a. DREAST	Control 2500ppm	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0	0 1	1	1	1
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	тоооорра	U	U	Ü	Ü	U	v	U	U	U	U	U	0	U	v
A. ABDOMEN	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	i	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
A. ANTERIOR. DORSUM	Control	1	1	1	1	1	1	1	2	2	2	2	2	2	1
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	i	1	i	1	1	i	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I II . DATON DONOOM	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	1	0	0	0	0	0	0	0	Ĭ	1
	10000ppm	1	1	1	1	1	1	i	1	1	1	1	1	1	î
C LITATING TAMP	a	•		^	•	•	•	0	0		^	•	^	^	^
A. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	I o	1	i	1	1	1	1	1	1	1 0	1	1	1 0
•	10000ppm	0	0	0	0	0	0	0	0	0	0	U	0	U	Ü

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEDT EAD	0				_						_	_	_		
PERI EAR	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	1	1	1	1	1	1	1	i	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	1	1	2	2 '	2	2	2	2	2	2	2	3
	2500րթա	1	1	1	1	1	1	1	1	1	1	1	1	ī	1
	5000ppm	0	0	0	0	0	õ	1	ī	ī	ī	1	ī	Ī	ī
	10000ppm	0	0	0	0	1	1	1	1	1	1	1	1	2	2
ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	ō	õ	ō	ô	1	î	î	î	2	2	2	$\hat{2}$	2	2
	5000ppm	i	ĺ	1	i	1	î	ī	1	1	1	l	1	i	1
	10000ppm	ī	1	î	1	1	î.	1	1	I	1	1	1	I	i
ANTERIOR, DORSUM	Control	1	1	2	2	2	2	2	2	2	2	2	2	2	2
	2500ppm	Ô	Ō	0	0	0	0	0	1	1	1	1	1	1	1
	5000ppm	1	1	2	2	3	3	3	3	3	3	3	3	3	3
	10000ppm	ō	Ô	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOSTINION DONOUN	Control 2500ppm	0	0	0	0	0	0 0	0	0 0	0	0			0	0 0
						0		0		0	0	0	0	0	U
	5000ppm	i	1	1	1	i	1 -	1	1	1	1	I	1	1	1
	10000ppm	1	1	1	1	1	1	2	2	2	2	1	1	1	1
IIINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	i	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration V	Yeek-day	- ***		
	or a type of the second	99-7	100-7	101-7	102-7	103-7	104-7
M. PERI EAR	Control	0	0	0	0	0	0
M. I EKI LAK	2500ppm	1	1	1	0	1	1
	5000ppm	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0
	10000ррш	U	v	U	U	U	U
M. HEAD	Control	0	0	0	0	0	0 .
	2500ppm	1	1	1	1	1	1
	5000ppm	ō	0	Ô	Ô	Ô	Ô
	10000ppm	Ő	Ö	0	0	0	0
	1000011000	v	v	U	U	U	U
M. NECK	Control	0	0	0	0	0	0
	2500ppm	0	0	1	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
	roccoppili	U	v	v	v	V	v
M. FORELIMB	Control	0	0	0	0	0	0
W- I OKDDIED	2500ppm	0	0	0	0	0	0
	5000ppm	0	0 0	0 0	0 0	0 0	0
	10000ppm	Ų ·	U	U	U	U	U
M. BREAST	Camera 1	3	3	2	0	2	2
m. Dreasi	Control 2500ppm	3 1	3 1		2	0	0
				1	0		
	5000ppm	1	2 1	2 1	2	2	2
	10000բրա	2	i	1	1	1	1
M. ABDOMEN	Centr-1	1	T	1	1	1	1
m. ADDUNEN	Control	1	1	1	I	1	I .
	2500ppm	2	2	2	1	1	1
	5000ppm	1	1	1	1	1	1
	10000ppm	1	1	1	1	1	1
M ANTERTOR ROBERS		•	^				
M. ANTERIOR. DORSUM	Control	2	2	2	2	2	2
	2500ppm	2	2	2	2	2	1
	5000ppm	3	3	3	2	2	2
	10000ppm	0	0	0	0	1	1
W DOCTEDIOR DODCING	0 . 1	•		•	•	•	•
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	1	Į.	1	i	1	1
	10000ppm	1	1	0	0	0	0
M CONTROL TAND	A 1	^	^	^	^	^	^
M. HINDLIMB	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	l
	10000ppm	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini 1-7	stration W	eek-day 3-7	4-7	5-7	6-7	7-7	8-7	9-7	10.7	11.7	12-7	13-7	14-7
		1.1	4-1		#-1	0 -1	0-r	1_1	0-1	9-1	10-7	11-7	14-1	19-1	1.4-1
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	o	o	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000րբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	-	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
CINITALIA	0 . 1					•	•		•	•	•	•			0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ŏ	o o	ō	ŏ	ō	0	0	0	ō	ō	0	0	0	0
EMORRIJAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	Ö	0	ō	0	0	0	Ö	0	0	0	0
	5000ppm	0	0	0	0	ů.	o o	Ö	0	Ö	ō	Õ	0	0	0
	10000ppm	Ö	ŏ	ő	o o	ō	ő	ő	Ō	ō	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
011.1.000010	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	1	1	I	1	1	1	1	1	i	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	U	U	U	U	U	U	U	U	U	U	υ	U	U	U
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
			_	_	_							_		_	
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VEMTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	Ö	Ö	Ö	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRIJAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMORIGINOL.	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	10000ppm	Ö	0	0	0	0	0	0	0	ő	0	0	Ŏ	Ö	0
DMT GOLL TO			•	•	•		•		^	•	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	l	1	1	1	i	1	3	3	3	3	3	3	3
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
						_		_						0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
emia	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ō	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ö	ŏ	Ö	ŏ	Ö	ŏ	Ö	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	Ö	ō	0	0	0	0	0	0	0
	10000ррш	0	0	0	ŏ	ő	0	Ö	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WITOONIG	2500ppm	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0
		3	3	3	3	3	3	3	3	3	3	3	3	3	3
	5000ppm	ა 0	0	0	0	0	0	0	0	Õ	0	0	0	o O	0
	10000ppm	U	υ	υ	U	U	U	v	U	U	· ·	v			
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0			-	-
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name		stration W		CO 7	<u> </u>		CO 7	C4 7	CF 7		C7 7	68-7	69-7	70-7
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	1-60	1-60 	70-7
amirate to			•			•	•		•						0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррш	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	Ö	0	Ö	1	i	1	1	i	1	1	1	0
	10000ppm	0	Ŏ	0	0	0	Ô	Ô	Ô	Ô	Ô	Ô	ō	ô	0
MORRIJAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MONIGEROD	2500ppm	Ö	0	0	0	0	ő	0	0	0	ő	0	Ö	ŏ	ŏ
	5000ppm	ő	0	0	i	1	1	ō	0	0	0	0	0	0	1
	10000ррш	Ö	Ö	0	Ô	Ô	Ô	ů.	0	0	0	0	0	Ō	0
PRTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
, 3011/10	2500ppm	0	0	0	0	0	0	Ö	0	0	Ö	ő	Õ	Ö	Ö
	5000ppm	3	4	4	4	4	4	4	4	4	4	4	4	4	4
	10000ppm	0	0	0	0	0	0	0	0	0	Ô	Ô	ō	ô	ō
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WEOOPUL DEFULITION		0	0	0	0	0	0	0	0	0	0	0	0	0	Ċ
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
					0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	υ	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration F	Veek-dav											
TATION OIGH	Oroup Ramo	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
armirai i	0 . 1	•	2	•			•		0	0	•	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	2500ppm	0	0	0	0	0	0	0	9	0	0	0	0	0	0 0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
TEMIA	Control	0	0	1	1	1	1	i	1	1	1	1	ı	1	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
LCER	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	2500թբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000թբա	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	10000թթո	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	õ	0	0	ő	Ö	0	0	Ō	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	Ö	ő	0	0	0	0
	5000ppm	4	3	3	3	3	3	3	3	3	3	3	3	3	3
	10000ррш	0	0	o	0	0	ő	0	ő	ő	ő	ő	ő	ő	ő
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	1	1	2	1	1	1
WEGOPUK BURUIIING	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							0		0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0		0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	U	U	U	U	U	U	J

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	887	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
Travell 14				_						_			_		
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	2	2	1	1	1	1	1	1	1	1
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMTA	Control	0	1	ī	1	I	0	0	0	1	0	2	2	2	2
	2500ppm	Õ	ò	Ô	ō	Ō	Ö	Ö	0	Ô	Ō	Ī	0	0	0
	5000ppm	ŏ	0	0	ō	0	Ö	ō	0	Ö	0	i	i	2	2
	10000ррш	ō	0	0	ő	0	0	0	Ö	0	ő	2	1	1	2
CER	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	Ö	ō	0	0	ō	ō	ō	ō	ō	ō	õ	Õ	0	0
	5000ppm	ō	0	0	ŏ	ŏ	Ö	0	Ö	0	ŏ	ō	Ŏ	ō	0
	10000ppm	0	0	Ö	ő	0	0	0	Ô	0	ō	0	Ö	Ö	0
USTA	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ррш	Ō	0	Ô	Ô	ō	Ô	0	0	0	õ	ô	Ô	ô	ô
			2	2	2	2	2	2	2	2	2	1	1	1	1
	5000ppm	1 0		0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	U	0	U	U	U	U	U	U	U	U	U	U	U	U
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	1	1	2	2	2	2	2	2	2	2	2	2	2	2
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	2	2	0	0	0	0	1	1	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	ō	Õ	Ô	0	0	0	0	0
	5000ppm	0	0	1	0	0	0	0	0	0	1	ŏ	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	ő	ő	i	Ö
	rooonbu	v	v	v	v	ū	v	•	Ū	v	v	v	•	•	Ų

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

Clinical sign Group Name Administration Week-day 99-7 100-7 101-7 102-7 103-7 104-7 104-7 102-7 103-7 104-7
2500ppm
2500ppm
2500ppm 0
S000ppm O
M. TAIL Control O
M. TAIL Control 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2500ppm 0
2500ppm
SOOOppm
Control 2 2 2 2 2 2 2 2 2
ANEMIA Control 2 2 2 2 2 2 2 2 2
2500ppm 0
SOOOppm 1
S000ppm 1
ULCER
2500ppm 0 0 0 0 0 0 0 0 5000ppm 0 0 0 0 0 0 0 0 0 0 10000ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2500ppm 0 0 0 0 0 0 0 0 0
5000ppm 0 0 0 0 0 0 0 0 0
10000ppm 0 0 0 0 0 0 0 CRUSTA Control 1 1 1 0 0 0
CRUSTA Control 1 1 1 0 0 0
2500րթա 0 0 0 0 0
$5000 \mathrm{ppm}$ 1 1 1 1 1
10000рри 0 0 0 0 0
CICATRIX Control 0 0 0 0 0
$5000 \mathrm{ppm} 0 0 0 0 0 0 0 0 0 $
10000ppm 0 0 0 0 0
HEMORRHAGE Control 0 0 0 0 0
2500ppm 0 0 0 0 0
5000ppm 0 0 0 0 0
10000ррт 0 0 0 0 0
TORTION I TO
TORTICOLLIS Control 2 2 2 2 2 2
2500ppm 0 0 0 0 0
5000ppm 3 3 3 3 2
10000ppm 0 0 0 0 0
IRREGULAR BREATHING Control 0 1 0 0 0
2500ppm 0 2 2 1 1 1
5000ppm 0 0 0 0 1 1
10000ppm 1 2 0 0 0
10000ppiii 1 2 0 0 0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 33

Clinical sign	Group Name	Admini	stration W	eek-day											
	·	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
CYS LIDITAICS	0 . 1	•	•	•	•	•	•	•		•	0		0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
	2500ppm	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0		0		0 0	0	0	0	0	0
	10000ppm	0	0	0	0	U	0	0	0	U	0	U	U	U	U
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	i	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000рут	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
•	2500ppm	50	50	50	50	50	50	50	49	50	50	50	50	50	50
	5000ppm	50	50	50	50	50	50	50	50	50	48	49	49	49	49
	10000ppm	50	50	50	50	47	47	44	45	45	45	45	45	43	43

(IIAN190)

ANIMAL : RAT F344/DuCrlGrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 34

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	2	1	1	1	1	1	1	1	1	1	1	1
ELLOW URINE	Control	0	0	٥	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	49	49	48	48	48	48	48	49	49	49	49
	2500ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000ppm	49	49	49	48	48	48	48	47	47	47	47	47	47	47
	10000ppm	43	43	42	43	46	46	43	41	42	41	39	38	38	38

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

PAGE: 35

Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	2	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	49	49	49	48	48	48	48	47	47	47
	2500ppm	50	50	50	50	49	50	50	50	50	50	48	49	49	49
	5000ppm	47	47	47	47	47	46	46	44	45	44	44	44	44	44
	10000ppm	35	35	35	35	35	35	35	35	36	36	36	36	36	36

(IIAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

PAGE: 36

Clinical sign	Group Name	Admini	stration W	eek-dav											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	i	1	1	1	1	2
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	Ō	ō	ō	0	0	0	Õ	Ŏ	ŏ	ō	Ŏ	Ö
	5000ppm	Ö	0	0	Õ	ŏ	0	0	Õ	0	Ö	Ů.	Ö	Ö	Ö
	10000ppm	Ô	0	0	Ö	Ö	Ö	0	0	Ö	ŏ	Ö	Ŏ	ō	0
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	Ö	0	0	0	Ō	0	0	Ô	0	Ō	0
	5000ррт	0	0	0	0	0	0	0	Ō	0	Ō	0	0	0	0
	10000ррш	0	0	0	0	0	ō	0	0	Ö	Ō	0	0	0	ō
NON REMARKABLE	Control	47	47	47	47	47	47	47	47	47	47	47	47	47	47
	2500ррш	50	50	50	50	50	50	50	50	50	50	50	50	49	49
	5000ppm	44	44	44	44	43	43	43	43	43	43	42	41	42	44
	10000ppm	36	36	36	33	33	32	32	32	33	34	34	34	34	37

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 37

Clinical sign	Group Name	Admini	stration W	eek-day _											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
NOWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	2	2	1	1	1	1	1	1	1	1	1	1	1	1
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000րբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	47	47	47	47	47	47	46	45	45	45	44	44	44	44
	2500ppm	49	49	49	48	48	48	48	48	48	48	48	48	48	48
	5000ppm	44	44	42	42	42	42	43	43	43	43	43	43	43	44
	10000ppm	38	38	38	40	40	36	37	37	37	35	34	34	34	35

(IIAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 38

Clinical sign	Group Name	Admini	stration W	eek-day							•				
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
														•	
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	i
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	i	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	ō	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	I	1	Ō
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	1	0	1	2
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	0	0	0	0	0	1	0	0	0	0	0	0	1
	10000ppm	õ	0	0	0	0	0	ō	0	0	0	0	0	1	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	1	0	1	3
	2500թթա	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	5000ррт	1	0	0	0	0	0	0	0	0	0	0	0	0	1
	10000ррп	ō	0	0	Ō	0	0	0	0	0	ō	0	0	1	0
NON REMARKABLE	Control	44	44	43	43	43	43	43	41	40	40	37	36	35	33
	2500ppm	47	47	47	47	46	46	46	46	46	46	43	43	43	43
	5000ppm	43	41	41	41	40	42	42	43	43	43	43	43	42	40
	10000ppm	35	29	29	32	32	32	32	36	37	35	35	35	32	32

(IIAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104
SEX : MALE

PAGE: 39

Clinical sign	Group Name		stration W												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
RED URINE	Control	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	2500ppm	0	0	0	1	0	0	0	0	0	0	0 .	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	2	3	2	1	1	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	2	2	1	0	0	0	1	0	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	5000ppm	1	1	1	0	0	0	0	0	1	1	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	1	0	0	1	0
OLIGO-STOOL	Control	3	2	1	0	0	0	1	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	1	0	0	0	1	0	0	0	0	1
	5000ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	1	1	0	1	1
NON REMARKABLE	Control	33	33	29	31	31	30	29	29	28	28	27	25	24	23
	2500ppm	42	42	42	41	39	39	40	38	35	37	35	36	36	35
	5000ppm	39	38	37	36	35	35	34	34	34	34	34	35	33	34
	10000ppm	32	31	31	27	24	27	28	28	28	26	25	26	26	25

(IIAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 40

Clinical sign	Group Name	Admin	istration	Week-day _				
		99-7	100-7	101-7	102-7	103-7	104-7	
RED URINE	Control	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	
YELLOW URINE	Control	0	0	0	0	0	0	
	2500ppm	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	
	10000pm	1	1	0	0	0	1	
BROWN URINE	Control	0	0	0	0	0	0	
	2500ppm	0	0	0	0	1	1	
	5000ppm	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	-
SMALL STOOL	Control	0	0	0	0	0	0	
	2500ppm	2	3	2	0	1	0	
	5000ppm	0	0	1	1	1	0	
	10000ppm	2	i	0	0	0	0	
OLIGO-STOOL	Control	1	1	0	0	0	0	
	2500թթա	1	2	3	0	0	0	
	5000ррт	0	0	1	0	1	1	
	10000ppm	3	2	0	0	0	0	
NON REMARKABLE	Control	23	23	23	22	22	22	
	2500ppm	32	32	31	30	29	28	
	5000ppm	34	34	33	32	32	32	
	10000ppm	24	23	24	25	23	23	

(IIAN190)

APPENDIX B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Adminis	tration We	ek-day											
		1-7	2-7	3-7	4-7	5–7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/111	2500ppm	0	0	0	0	0	0	0	0	0	0	Ö	ő	Ö	Ö
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	ő	0	0
	10000ppm	0	ō	0	ō	0	ō	ō	o	0	0	ō	0	Ö	0
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	U
INCLIBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	5000ррт 10000ррт	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0 0
	2500ppm	0	1	0	0	0	0	0	0 0	0 0	0	0	0	0	0
	5000ppm	0	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0
	10000ppm	U	U	U		U						-			
OSS OF HATR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	1	0	0	0	0	0	2	2	5	3	3	3	3

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini 15-7	stration W	eek-day <u> </u>	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
												 .			
EATII	Control	0	0	0	0	0	0	0	I	1	1	1	1	1	i
EATH	2500ppm	0	0	0	0	0	0	Ŏ	0	ō	0	0	0	0	0
	5000ppm	0	0	0	0	Ö	Ö	Ö	ō	0	0	0	0	0	0
	10000ppm	0	0	0	ŏ	ő	Ö	Ō	ō	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	U	U		U
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	ő
	10000ppm	0	0	0	0	0	0	0	U	U	U	U	U	U	·
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	U	U	U	Ū	U	-
OSS OF HAIR	Control	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	-		0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0			0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	·
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0 8	0 8	0
	2500ppm	0	0	0	2	2	7	7	7	7	8	8			15
	5000ppm	0	2	5	3	1	5	5	7	6	6	6	6 15	15 19	19
	10000ppm	3	4	4	5	5	1,1	11	14	14	14	14	10	19	19

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	istration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	8	8	8	10	10	10	13	10	10	11	11	11	11	13
	5000ppm	16	16	16	15	15	17	19	20	20	24	24	24	25	26
	10000ppm	19	28	31	29	29	24	31	29	30	31	32	32	32	31

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Adminis	stration We												
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7 	56-7
BATH CALL	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EATH	2500ppm	ō	0	ō	Ô	Ô	Ō	ō	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	Ö	0	Ō	0	0	0	0	0	0	0
	10000ppm	0	o o	Ö	0	ō	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	U	Ü		
TUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0
	2500ppm	0	0	0	0	0	0	0	0	0		1	i	1	1
	5000ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	Ô
	10000ppm	0	0	0	0	0	0	0	U	U	U	U		·	
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0 1	0 1	0 1
	2500րբա	0	0	0	0	0	0	0	0	0	0	3	3	3	3
	5000ppm	0	0	0	0	0	0	0 0	0 0	0 0	0	1	1	2	2
	10000ppm	0	0	0	0	U	0	U	U	U	U	1	•		
SOILED	Control	0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0
	2500ppm	0	0	0	0	0	0				0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	U	U	U	U	U				
PILOERECTION	Control	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0
	2500ppm	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
	5000ppm	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	Ö
	10000ppm	0	0	U	U	U	U	U	U	U	U			-	
LOSS OF HAIR	Control	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0
	2500ppm	0	0	0	0	0			0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0		0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	U	U	Ū			
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0 14	0 16	0 16
	2500ppm	13	13	13	13	13	13	14	14	14	14	14 21	21	24	25
	5000ppm	25	25	25	24	21	20	23	20	21 32	21 31	33	33	34	34
	10000ppm	31	31	31	33	32	32	34	33	34	31	33	33	34	0.7

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

RAI P344/DUCTICTI][P344/DUCT]]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name		stration W	· —											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	1	1	1	1	1	1	1	1	1	1	2	2	2	3
2011)	2500ppm	0	0	0	0	0	0	0	0	Ô	ō	0	0	0	0
			_	0	0.	0	0	0	0	0	0	0	Ö	0	ō
	5000ppm	0	0 0	0	0	0	0	0	0	0	0	0	Ó	0	0
	10000ppm	U	U	U	U	U	Ū	v	v	v	Ū	v	v		-
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	2500ppm	ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOIDAGE FOSTITON	2500ppm	Ö	0	0	Ö	0	Õ	0	0	0	0	0	0	0	0
	5000ppm	0	0	ő	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	o	0	ő	ő	ő	ŏ	Ö	Ö	0	0	0	0	0	0
LCTTNIC	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	2500ppm	1	1	1	1	0	0	Ğ	0	0	Ö	0	0	0	0
		2	2	2	2	1	0	0	0	0	0	0	0	0	0
	5000թթա 10000թթա	3	3	3	3	0	0	0	0	0	Ö	o o	0	0	0
071 BB	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0		0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0						0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	U	U	U	U
ILOERECTION	Control	0	0	0	. 0	0	0	0	0	0	0	1	1	1	0
	2500ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	1	1	1	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	1	2	1
OIDDD FERT GENTIALIA	2500ppm	16	16	15	15	15	13	13	11	11	11	10	10	10	10
	2500ppm 5000ppm	25	27	25	23	24	23	23	22	22	22	22	21	21	21
	10000ppm	25 34	36	25 36	25 35	35	36	36	37	37	37	36	36	36	36

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name		stration W									01.7	82-7	83-7	94.7
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7 	79-7	80-7	81-7	82-7	83-1	84-7
					_		,		F	-	_	F	E	E	5
EATH	Control	4	4	4	4	4	4	5	5	5	5	5	5	5 2	2
	2500ppm	0	0	0	0	0	1	2	2	2	2	2	2		
	5000ppm	0	0	0	0	0	1	1	1	1	1	1	l.	1	I
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
DRIBUND SACRIFICE	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	o	0	ō	ō	ō	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SHOUBACK TOSTITON	2500ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	Ŏ	Ō	0	0	0	0
	10000ppm	0	0	ŏ	ŏ	ő	. 0	0	Ö	0	ō	1	0	0	0
ACTING	C1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	. 0	ő	Ö	Ö	0	0
	2500ppm		0	0	0	0	0	0	0	0	o o	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	U	U	U	U	U	· ·	v	Ū	J	v			
OILED	Control	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0
	2500ppm	0	0	0	0	0	0	0	0	-			-		0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	ő	0	ō	ō	0	0	0	0	0	0	0	0	0	(
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
OTDDD ADM ODMINDIA	2500ppm	8	8	7	7	8	7	5	5	4	3	5	5	3	;
	2500ppm 5000ppm	22	22	20	20	19	19	20	20	21	18	20	18	17	18
	10000ppm	44	36	38	38	37	37	34	34	36	33	32	31	28	28

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration We	ek-dav											
rinical Gign	oroup name	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
	0 . 1	-	r	-	F	c	c	7	7	7	8	8	8	8	8
HTA	Control	5	5	5	5	6 2	6 2	7 2	3	3	4	4	5	5	5
	2500ppm	2	2	2	2		2	2	2	3	3	3	3	3	4
	5000ppm	L	2	2	2	2		2	2	2	2	2	2	2	2
	10000ppm	1	1	1	1	2	2	2	۷	2	2	L	2	2	2
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	i	1	1	1	2	2	2
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	I	0	0	0	0	0	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	1	1	0	0	0	0	0	0	0	0
inoimient i obilion	2500ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	ō	0	ō	0	0	0	1	1	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1011110	2500րթա	ŏ	0	Ö	Ō	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	1	1	0	0	0	0	0	0	0	0
) LLED	2500ррш	0	0	0	0	Ô	ō	i	ō	Õ	0	0	0	0	0
			0	0	0	0	0	î	1	0	ō	0	0	0	0
	5000ррш 10000ррш	0	0	0	0	0	0	0	0	0	ő	0	ō	ō	ō
II OPPECTION	C 1	0	0	0	0	1	1	0	0	0	0	0	0	1	0
LOERECTION	Control	0		0	0	0	0	0	0	0	0	0	Ŏ	î	1
	2500ppm	0 0	0 0	0	0	0	0	1	1	0	0	l	0	1	ī
	5000ppm 10000ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	ō	0
				•			•	0	0	0	0	0	0	0	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0 0	0	0	0	0	1	1
	2500ppm	0	0	0	0	0	0					0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0		0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
OLLED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	2	2	2	2	2	2	2	3	2	1	1	1	1	1
	5000ppm	15	14	10	7	6	6	7	7	7	7	3	3	3	3
	10000ppm	24	24	25	24	24	24	23	23	19	19	15	16	15	15

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admin	istration '	Week-day			
offurear sign	or orbitalis	99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	9	10	10	10	11	11
	2500ppm	5	6	6	7	7	8
	5000ppm	6	7	7	7	8	8
	10000ppm	2	3	4	4	5	6
MORIBUND SACRIFICE	Control	0	0	0	0	0	0
MORIDOND BROKII IOD	2500ppm	Ö	1	1	1	1	2
	5000ppm	2	2	3	3	4	4
	10000ppm	0	1	1	2	2	3
	10000ppm	U	1		2	2	v
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0
	2500ppm	0	1	1	0	0	0
	5000ppm	1	0	0	0	0	0
	10000ppm	0	I	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	1
	5000ppm	ŏ	ō	ō	0	0	0
	10000ppm	0	0	1	1	1	0
			_	_	•	^	^
WASTING	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000թթա	0	0	1	1	1	0
SOILED	Control	0	0	0	0	0	0
	2500ppm	ŏ	o O	ő	Ō	0	0
	5000ppm	0	0	ő	0	0	0
	10000ppm	ŏ	ŏ	Ō	0	0	0
		_	•	^	0	0	1
PILOERECTION	Control	0	0	0	0	0	1
	2500ppm	1	1	1	0	0	1
	5000ppm	1	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
LOSS OF HAIR	Control	0	0	0	0	0	0
DOOD OF THIS	2500ppm	1	1	1	1	1	1
	5000ppm	Ô	0	0	ō	0	0
	10000ppm	0	0	0	0	ŏ	0
				_	_	_	•
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0
	2500ppm	1	1	1	1	2	2
	5000ppm	3	3	4	4	2	2
	10000ppm	17	15	15	15	12	12

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DOMESTI LIVON	1			•		•	•	•	•						
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	1	1	1	1	i	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0-	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VTARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	1	1	1	0	1	1
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5000ppm	o o	Ô	0	0	Ô	õ	0	0	0	0	0	0	0	0
	10000ppm	o	ō	0	0	ō	0	ő	ŏ	ŏ	ō	o	0	ō	0
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	ŏ	ő	ŏ	Ö	ŏ	0	0	Ö	Ŏ	Õ	0	Ō	0
	5000ppm	0	0	0	0	0	Ö	0	0	0	0	ŏ	Ö	ő	ő
	10000ppm	Ö	0	ő	0	0	0	Ŏ	0	0	ő	Ö	Ö	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0
PERI-MOUTH	Compter-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEVT_WOOTI	Control	0							0		0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0		0			-		
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	leek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
XOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	i	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	O.	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	i	1	1	1	1	1	1	1	I	2
	10000ppm	1	0	Õ	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	1	1	4	1
Old Miles Of Mozer	2500ppm	Ö	0	0	0	0	0	1	1	1	1	1	1	ì	1
	5000ppm	ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CIDATOR CIBADOR CINCIII	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000рут	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	ō	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	1	1	1	1	1	1	1	1	2	2
KIERRIL MISS	2500ppm	0	0	0	ő	ô	Ô	ō	0	0	0	0	0	0	0
		0	0	0	0	0	ő	ő	0	0	0	0	0	0	0
	5000ppm 10000ppm	0	0	0	ő	0	0	ō	0	0	Ō	0	0	0	C
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2500ppm	0	0	0	0	Õ	0	Ō	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	Ō	0	Ō	0	0	0	C
	10000ppm	0	0	0	Ô	ō	Ö	0	0	0	0	0	0	0	(
4. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	2500ppm	0	0	0	0	0	0	0	0	Ō	0	0	0	0	(
	5000ppm	0	0	0	0	Ö	0	0	0	0	0	0	0	0	(
			0	0	0	0	0	0	0	0	ő	0	0	0	(
	10000ppm	0	υ	U	U	U	U	v	J	v					
I. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0 0	0	0	0 0	1 0	
	2500ppm	0	0	0	0	0	0	0	0					0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0		
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration V	Yeek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
									_				•	į	,
XOPIITHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0,	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	1	1	1	1	1	1	i	1	1	1
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	1	i	1	1	1	1	1	1	1	1	1	1	2	2
	5000ppm	ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	1	1	1	1	1	1	1	0	0	0
	2500րթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	2	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	10000ppm	0	0	0	0	o	0	0	0	0	0	0	0	0	C
VTERNAL MASS	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	C
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
. PERI-MOUTH	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	(
. LEKT MOOTH	2500ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	(
	5000ppm	0	0	0	0	0	0	Ő	ō	Ŏ	Ö	0	0	0	
	10000ppm	0	0	0	0	0	0	Ö	Ŏ	Ō	0	0	0	0	

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

lCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 52

Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
·														_	
EXOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	4
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
old-bild of fior fi	2500ppm	2	2	2	2	2	2	2	2	2	2	2	2	1	1
	5000ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WILKION CHEMPEN OF HOTTI	2500ppm	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	3	2	2	2	3	3	2	2	2	2	2	2	2	2
MIDRIALD WASD	2500ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	i	1	i	1	1	0	0	0	1	1	2	1	1
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	0	(
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
1. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	5000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	1	1	1	1	1	1	1	1	1	1	1	1	0	•
I. PERI-MOUTII	Control	1	0	0	0	1	1	0	0	0	0	0	0	0	
IL LUAL ROOTI	2500ppm	0	0	0	ō	ō	0	0	0	0	0	0	0	0	
	2000ppm 5000ppm	0	0	0	0	0	Ö	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	Ö	Ö	0	0	0	0	0	0	

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

CLINICAL OBSERVATION (SUMMARY)

STUDY NO. : 0497 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini 57-7	stration W 58-7	eek-day <u> </u>	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
												. <u></u>			
EXOPIITIIALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	0	0	0
MOI IIIIIILMOS	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	ŏ	ō	Ō	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZIOREBIT TON	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Control	1	2	2	2	2	2	2	2	2	2	2	2	2	2
n navi	2500ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	4	4	4	4	4	4	5	5	5	5	5	5	5	5
	10000ppm	0	1	1	1	1	ì	1	1	1	1	1	1	1	2
CODMEAU ODACTEV	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
CORNEAL OPACITY		1	1	1	1	1	1	1	1	1	1 .	1	1	1	1
	2500ppm	0	0	0	0	ō	Ô	ō	0	0	0	0	0	0	0
	5000ppm 10000ppm	1	1	1	1	1	1	1	1	1	1	0	0	0	0
CONTRACTOR OF CONTRACTOR	01	0	0	0	0	0	0	0	0	0	1	1	0	0	0
ANTERIOR CHAMBER OPACITY	Control 2500ppm	0 0	0	0	0	0	Ö	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	ő	0	0	0	0	0	0	0	0	0	0
PUPULINIAL MADO	Control	2	2	2	3	3	3	3	3	3	4	4	4	4	4
EXTERNAL MASS		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	1	1	1	1	1	1	1	1	1	1	1	2	2	2
	5000ppm 10000ppm	0	0	0	0	0	0	ō	ô	ō	0	1	1	1	0
**************************************	C+1	0	0	0	0	0	0	0	0	0	0	1 .	1	1	1
INTERNAL MASS	Control		0	0	0	0	0	0	ő	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0		0	0	0	0	0	ő	0	0	0	0	0	0
	10000ppm	0	0	U	U	U	V	v						_	_
M. NOSE	Control	0	0	0	0	0	0 0	0	0 0	0 0	0	0	0	0 0	0
	2500ppm	0	0	0	0	0			0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
	10000ppm	0	0	0	0	0	0	0	U	U	U	3			
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0			0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	U

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75–7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
				•		2	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0		0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0		0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	U	U	U	U	U	v	J
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	U	U	U	U
ATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2500ppm	0	1	1	1	1	1	1	1	1	2	2	2	2	2
	5000ppm	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	10000ppm	2	2	2	3	3	3	3	3	3	3	3	3	3	3
ORNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	1	1	1	1	I	1	1	1	i	i	l
	10000ррт	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	2500ppm	0	1	1	1	1	1	0	1	1	1	1	1	1	1
	5000ppm	2	2	2	2	2	2	3	4	3	3	3	4	4	4
	10000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	1	i	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ö	Ô	ō	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTII	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	C
LEWI WOOTH	2500ppm	0	0	0	0	0	0	Ö	1	1	1	1	1	1	1
	2500ppm 5000ppm	0	0	0	0	0	0	Ŏ	0	Ô	ō	0	0	0	0
		0	0	0	0	0	ŏ	0	0	0	0	1	1	1	1
	10000ppm	U	U	υ	v	J	v	•	•	-	,				

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini:	stration W	eek-day 🔔								.	·	-	
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SYOUTHINEWOS	2500ppm	0	0	0	0	0	ő	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	Ö	Ö	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	ő	ō	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	3	3	3 2
	2500ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	
	5000ppm	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	10000ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CORNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1 1	1 1	1	1 1	1
	2500ppm	1	1	1	1	1	1	1	1	1		_	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	. 0	0	0	0	U	U	v	U	
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0
	2500ppm	0	0	0	0	0		1	i	I	1	ì	1	1	1
	5000ppm	I	1	1	1	1	1 0	0	0	0	0	0	0	Ô	0
	10000ppm	0	0	0	0	0	U	U	U						
EXTERNAL MASS	Control	4	4 1	4 1	5 1	4 1	5 1	4 1	4 1	4 1	4 1	4 1	4 1	4 1	5 1
	2500ppm	1				5	7	7	8	7	7	7	8	8	8
	5000ppm	4	4	4 1	4 1	0	0	0	0	1	2	2	2	2	3
	10000ppm	1	i	T	1	U	v	J							
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	1	0	0	1	1 1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	1	1		1
	5000ppm	1	0	0	0	0	0	0	0	0	0	0	0 0	1 1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	U	1	1
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0		0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	,
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0 1	(
	2500ppm	1	1	1	1	1	1	1	1	1	1	1	1		
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	1	1	1	1	0	0	0	0	1	1	1	1	1	4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ALL A

SEX : FEMALE

EXOPITIIALMOS LACRIMATION CATARACT	Control 2500ppm 5000ppm 10000ppm 10000ppm 10000ppm 10000ppm 10000ppm 10000ppm 2500ppm 5000ppm 5000ppm 5000ppm 10000ppm 10000ppm	99-7 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0
LACRIMATION	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
LACRIMATION	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0	0 0 0
LACRIMATION	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0	0 0 0
LACRIMATION	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0	0 0 0
	5000ppm 10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0	0 0	0
LACRIMATION	10000ppm Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0	0	0
	Control 2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0 0	0 0 0	0 0 0	0	0	
	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0	0 0 0	0	0		Ω
	2500ppm 5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 0	0 0 0	0	0		
CATARACT	5000ppm 10000ppm Control 2500ppm 5000ppm	0 0 3	0	0		- 17	Ö
CATARACT	10000ppm Contro1 2500ppm 5000ppm	0 3	0		U	ő	0
CATARACT	Control 2500ppm 5000ppm	3		U			
CATARACT	2500ppm 5000ppm				0	0	0
	2500ppm 5000ppm		3	3	3	3	3
	5000ppm		2	2	2	2	2
		5	5	5	5	4	4
	zoooppar	3	4	3	3	3	2
		-	-	*	-		
CORNEAL OPACITY	Control	1	1	1	1	1	1
	2500ppm	1	1	1	1	1	1
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
AMERICAN CHAMPS OF STATE	0 . 1	•	^	0	•	٥	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	1
	5000ppm	1	I	i	1	1 0	0
	10000թթա	0	0	0	0	U	U
EXTERNAL MASS	Control	5	6	6	6	6	6
ENTERGUE SEIOO	2500ppm	1	3	3	3	3	4
	5000ppm	7	7	7	8	8	9
	10000ppm	3	2	2	2	1	1
INTERNAL MASS	Control	0	0	0	0	0	0
	2500ppm	1	0	0	0	1	2
	5000ppm	0	0	0	0	0	0
	10000ppm	1	1	0	0	0	0
		•		•		0	0
M. NOSE	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
M. PERI-MOUTH	Control	0	1	1	1	1	1
ne i Dat "mooth	2500ppm	1	1	1	1	1	1
	5000ppm	0	0	0	0	Ô	ì
	10000ppm	2	2	2	2	1	1
	roooppu	٥		,		*	•

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ALL A

SEX : FEMALE

linical sign	Group Name	Admini	stration We	ek-day											
	-	1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
			•			•	•	0	0	0	0	0	0	0	0
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	. 0	0	0	0	0	0			0		0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	U	U	U	U	U
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. DRIMOT	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	5000ppm	Ö	Ŏ	0	Õ	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	Ö	0	ō	0	0	0	0	0	0	0	0	(
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	2500ppm	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5000ppm	0	Ö	Ō	0	0	0	0	0	0	0	0	0	0	C
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	5000ppm	ő	0	0	Ō	0	0	0	0	0	0	0	0	0	(
	10000ppm	Ö	ō	ő	Ö	Ō	Ô	0	0	0	0	0	0	0	(
CENTUALTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
. GENITALIA	2500ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	1
			0	0	0	0	0	0	0	o o	0	ő	0	0	(
	5000ppm	0 0	0	0	0	0	0	0	0	0	ő	Ŏ	ŏ	Ō	1
	10000ppm	U	U	U	U	U	U	v	v	•	•	•	•	-	

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	OZOGP NAMO	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
0.544 GANAMA								•	•	•	•	0	0	0	0
.ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	-	-	0	_	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	U	U	U	U	v
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	9	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. FORELIMB	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	o	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i e	5000ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ő	0	0	Ŏ	Ö	0	0	0	0	0	0	0	0	0
	5000ррш	ő	0	0	0	Ő	0	0	0	0	0	0	0	0	0
	10000ppm	Ö	0	0	ő	Ŏ	0	0	Ö	0	0	0	0	0	0
	1000001	v	v	J	v	•	v	•	-	•	-	•	-		

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ricrij[F344/Ducrj] ALL

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name		stration We								00.7	00.7	40.7	41.7	49.7
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oldib Oliviii	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	Ō	ō	0	0	0	0	0	0	0	0	0	0
	10000ppm	ō	Ö	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI BAR	Control	0	0	0	0	0	0	0 -	0	0	0	0	0	0 0	0 0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	U				
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500րբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт 10000ррт	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ŏ	Ō	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day			 								FO 5
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ODAL CANITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORAL CAVITY	Control		0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0				0	0	0	0	0	0	0	0	0	ő
	5000ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	o	0
	10000ppm	U	U	Ū	U	v	v	v	Ü	v	·	v	Ü	•	·
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. HDON	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	ő	Ö	0	0	0	0	0	0	0	. 0	0
	10000ppm	ŏ	0	0	o	0	0	0	0	0	0	0	0	0	0
							,	,	1	1	1	1	1	1	1
. FORELIMB	Control	1	1	1	1	1	1	1	1 0	0	0	0	0	0	Ċ
	2500ppm	0	0	0	0	0	0	0		0	0	0	0	0	(
	5000ppm	0	0	0	0	0	0	0	0 0	0	0	0	0	0	(
	10000ррт	0	0	0	0	0	0	0	U	U	U	U	U	v	
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
. ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	(
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	(
,	2500ppm	0	0	0	Ö	Ö	0	0	0	0	0	0	0	0	(
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10000ррш	0	0	0	0	0	0	ŏ	0	0	0	0	0	0	1
				•	•	•	•	0	0	0	0	0	0	0	,
. GENITALIA	Control	0	0	0	0	0	0	0 0	0	0	0	0	0	0	,
	2500ppm	0	0	0	0	0	0			0	0	0	1	0	ì
	5000ppm	1	i	1	1	1	1	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	U	U	U	v	v	`

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OME WITT	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. Dan															
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L PERT EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	2500ppm	0	0	0	0	0	0	_	0	0	0	-	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
. FORELIMB	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500բբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. BREAST	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
I. ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L HINDLIMB	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500ррш	Ö	0	0	0	0	Ô	0	0	Ô	Ö	Ô	0	Ô	Ô
	5000ppm	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0
	10000ррш	0	o	ő	0	0	ő	0	ő	0	ő	0	Ö	0	Ö
. GENITALIA	C. + 1	0	٥	٥	٥	0	0	٥	۸		0	٥	0	0	0
. ODNI FALIA	Control 2500ppm	0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0	0
		0		-						-		0	0	0	0
	5000ppm	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0
	10000ppm	0	U	U	U	U	υ	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration V	leek-day _			_								
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ORAL CAVITY	Comtue	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
LUMAL CAVITI	Control							0	0	0		0	0	0	0
	2500ppm	0	0	0	0	0	0				0		i	1	1
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	_	-	-
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	i	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	ő	0	0	Ö	0	ō	ō	ō	Ō	0	0	ō	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEOR	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	1	1	l	i	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô
	Toooobbm	U	U	U	U	U	v	U	U	U	Ū	v	0	v	v
. FORELIMB	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500բբա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	i	1	1	1	1	1	1	1	1	1	1	1	1	i
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	ō	0	0	0	0	0	0	0	0	0	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ABDOMEN	Control	1	1	1	1	1	1	1	1	1	1	1	1 -	1	i
	2500ppm	0	Ô	0	Ô	ō	Ô	Ō	Ô	Ô	Õ	0	Ô	Ô	ō
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	U	U	U	U	υ	U	v	U	U	U	v	v	U	U
. HINDLIMB	Control	1	1	1	1	I	1	1	1	1	1	1	1	1	1
	2500ppm	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ő	Ô	0	Õ	0	Ö	Ŏ	Ö	0	0	0	0	0	0
	5000ppm	Ö	0	0	0	Ö	ő	1	1	ő	Ö	0	0	Ō	0
	10000ppm	ő	0	Ö	Ö	Ö	Ŏ	ō	Ô	0	Ŏ	Ö	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ODAL CANAMA		_	_			_	_	_	_	_	_	_	_		_
ORAL CAVITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	i	i	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	1	1	1	i	1	I	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1	1	1	1	1	1	i	1	1
	10000ppm	ō	0	0	ō	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	1	i	1	1	1	1	1	1	1	1	1	1	1	1
	2500ррт	Ö	0	0	0	0	0	0	0	ō	Ō	0	0	0	0
	5000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	1	1	1	1	1	1	1	1	1	1	1	1	ı	1
	2500ppm	Õ	ō	ō	ō	Ō	ō	ō	Ô	Ô	Ô	ō	ō	ō	ō
	5000ppm	1	1	1	1	i	2	2	2	2	2	2	2	2	2
	10000ppm	ō	ō	õ	ô	0	ō	0	ō	0	1	1	1	1	1
. ABDOMEN	Control	i	1	1	1	0	0	0	0	0	0	0	0	0	1
	2500ppm	ō	0	Ô	Ô	0	0	0	0	0	0	Ö	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	i
	10000ppm	0	0	0	0	0	0	0	0	0	Ö	0	0	Ô	Ô
HINDI THE													•	•	
. HINDLIMB	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.GENITALIA	Control	0	0	0	1	1	2	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	1	2	2	3	2	2	2	3	3	3
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day	•		
		99-7	100-7	101-7	102-7	103-7	104-7
M. ORAL CAVITY	Control	0	0	0	0	0	0
m. oldib oliviii	2500ppm	0	0	0	0	0	0
	5000ppm						
	10000ppm	1 0	1	1 0	1 0	1	1 0
	TOOOOppm	U	U	U	U	U	Ū
M. EAR	Control	0	0	0	0	0	0
in Lair	2500ppm	Ö	0	0	Ö	0	0
	5000ppm	1					
			1	1	1	1	1
	10000ppm	0	0	0	0	0	0
M. PERT EAR	C1	0	•	^	^	^	•
m. FERT EAK	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0
N NECV	0 . 1	•	^	•			•
M. NECK	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	1	1	2	2	2	2
	10000ppm	0	0	0	0	0	0
W FOREI TIM	0 . 1						
M. FORELIMB	Control	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
M DOCKOR					_		_
M. BREAST	Control	1	1	1	1	1	1
	2500ppm	0	1	1	1	1	1
	5000ppm	2	2	2	3	3	4
	10000ppm	1	0	0	0	0	0
M. ABDOMEN	Control	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	1
	5000ppm	1	1	1	1	1	1
	10000ppm	0	0	0	0	0	0
M. HINDLIMB	Control	1	1	1	1	1	1
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
M. GENITALIA	Control	1	1	1	1	1	1
	2500ppm	0	1	1	1	1	1
	5000ppm	2	2	2	2	2	2
	10000ppm	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

L : RAT F344/DuCrtCrtjtF344/DuCrjt ALL

SEX : FEMALE

	-														
Clinical sign	Group Name		stration We												
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
		_		_											
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ŏ	0	ŏ	Ö	Ö	Ö	Ö	ő	0	0	ŏ	Ö	ŏ	ō
	5000ppm	ő	Ö	0	Ö	0	Ö	0	0	ő	0	0	Ŏ	Ö	Ö
	10000ppm	Ö	Ö	0	Ö	0	Ö	Ö	0	ŏ	Ö	Ö	Ŏ	0	ō
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	Ö	Ö	ŏ	0	Ô	0	0	Ö	ő	0	ŏ	Ö
	5000ppm	0	0	0	0	ő	Ö	0	0	0	0	0	Ö	Ö	0
	10000ррш	0	0	0	Ö	ő	0	ō	0	0	Ö	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INNEGOEM BREATHING	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED UDINE	0 . 1	•			•		•		•	•			•	•	^
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	Ó	0	0	0	0	0	1	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Adminie	tration W	aak-day											
· ·	Oroup Name	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
NEM1A	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRIJAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ō	0	Ō	Ō	ō	ō	0	0	Ŏ	0	Ö	Ŏ	Ŏ	Ö
	5000ppm	0	0	0	0	0	Ö	Ö	0	ŏ	ő	Ŏ	Ö	0	Ö
	10000ррш	ō	ō	0	ő	o	ő	o o	0	0	0	0	ő	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	ů	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	0	ő	ő	Ö	ő	ő	ő	Ö	ő	Ö	ő	ő
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SSS ORLING	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	ő	0	0	0	ő	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JULIE GIOOD	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm 5000ppm	0										0			
		0	0	0	0 0	0	0	0	0	0	0		0	0	0
	10000ppm	U	U	U	U	0	0	0	U	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name		stration W												
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
NIIAY A	0 - 1 - 1	0	•	0			0		0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRIIAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ŏ	Ŏ	Ö	Ö	Ö	0	0	0	0	0	0	0	0	0
	5000ppm	Ö	0	0	Ö	Ö	0	Ö	0	Ö	0	0	0	0	0
	10000ppm	0	0	0	ő	0	0	ő	0	0	ō	0	ō	ō	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGOLAR BREATHING		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm			-						0				0	0
	5000ppm	0	0	0	0	0	0	0	0		0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррш	0	0	_ 0	0	0	0	0	0	0	0	0	0	0	0
WALL STOOL	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	2500ppm	ō	Ō	Ō	ō	0	0	ō	0	0	0	0	0	0	0
	5000ppm	ő	0	0	ŏ	0	ŏ	ŏ	0	0	Ō	0	0	0	0
	10000ppm	ő	ő	0	Õ	0	Ŏ	ŏ	0	Ŏ	Õ	0	Ō	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration N	leek-day _											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500թթm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	i	0
	10000թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	Ō	0	0	ō	Ō	0	Ō	0	ō	0	0	0	Ō	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· -	2500ppm	ō	0	ō	Ŏ	ő	ō	0	0	0	ŏ	Ŏ	0	ō	ō
	5000ppm	0	0	0	0	0	0	0	ő	ō	0	Õ	0	ō	Ö
	10000ppm	Ö	Ö	0	Ö	0	ő	Ŏ	Ŏ	0	ō	Ŏ	0	ő	ő

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
IEMIA	(Same 1)	0			0				•		•	•		•	0
NEWIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
	5000ppm	Ö	0	Ö	Ō	0	Ö	Ö	ő	0	Ö	0	1	í	i
	10000ppm	Ö	ō	0	0	o o	Ō	Ō	0	Ö	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OHIKIA	2500ppm	Ö	0	0	0	0	0	0	Ŏ	Ô	0	0	0	0	0
												0		0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0		0		-
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ррт	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	Ö	Õ	Ö	0	Õ	Õ	0	Ö	0	0	0	0	0
	5000ppm	0	ů 0	ő	ő	0	ŏ	ŏ	0	Ŏ	0	0	Ö	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	ő	Ö	ő	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SIMON ORTHE		0		0				0		0	0	0	0	0	0
	2500ppm		0		0	0	0		0	-	-		-		
	5000ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	2500ррш	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	OZOGP NOMO	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
VEM1A	Control	0	0	0	0	0	0	0	1	0	0	0	0	1	I
VERTITI	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
	тооофры	v	v	U	U	v	J	U	U	1	1	1	Ū	U	Ū
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	I	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	1	i	1	1	1	1	1	1	1	1	I	ī	1	1
	2500ppm	Ô	0	Ô	0	0	Ō	o o	0	0	Ô	ō	0	0	0
	5000ppm	ő	0	0	Ö	0	0	0	0	0	0	ō	0	0	0
	10000ppm	ő	0	0	0	0	0	0	0	0	0	0	o	0	o
TCATRIV	0	^	^	^	•	^	^	^	^	^	^	^	^	^	^
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500րթա	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Cambria 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KKEGOLAK DKEATILING	Control	0		-		0		0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0		0							_	
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	0 0	0	0
	10000ppm	0	0	0	0	0	0	0	0	υ	0	0	U	U	O
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sold Otting	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
							0		0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	υ	0	υ	U	U	U	U	U	U
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	1	1	1	2	1	1	1	1
	10000ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

															I NOL .
Clinical sign	Group Name		stration W												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
NEMIA	Control	1	1	1	2	2	2	2	1	2	1	1	1	1	1
	2500ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	1
	5000ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	2
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500ppm	0	0	0	1	1	2	2	2	1	1	1	1	l	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	1	1	1	1	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	2500ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ррт	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	10000ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	1	1	0	1	1	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	1	1	0	0	0	0	0	1
	10000ppm	0	0	0	0	0	0	ō	0	0	0	0	0	1	2
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	Ö	ī	1	1	1	1	1	1	1	1	1	1	1	1
	5000ppm	Ō	Õ	Õ	0	Ô	ô	0	Ô	0	ō	ō	Õ	0	0
	10000ppm	0	0	0	0 .	0	0	0	Ō	0	Ō	Ō	1	1	1
ELLOW URINE	Control	0	0	0	0	0	0	0	1	1	0	0	0	0	0
DDD ORTHO	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	i
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	U	Ū	υ	U	U	Ų	U	U	U	U	U	U	U	U
MALL STOOL	Control	0	1	1	1	1	2	1	1	1	0	. 0	1	1	1
	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	1	0	0	0	0	1	0	1	0	0	0	0	1	2
	10000ppm	0	1	1	2	1	0	0	0	0	0	0	1	2	2

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration V	Week-day		-	
	or oap mano	99-7	100-7	101-7	102-7	103-7	104-7
		•					
ANEMIA	Control	2	2	2	2	3	3
	2500ppm	1	0	2	3	3	1
	5000ppm		0	0	0	0	1
		1		2	2	2	
	10000ppm	0	0	2	2	2	1
JAUNDICE	Control	0	0	0	0	0	0
3.10.10.10.1	2500ppm	1	Ö	Õ	Ö	1	Ö
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
CRUSTA	Control	1	1	1	1	1	1
	2500ppm	1	ō	Ô	Ô	0	0
	5000ppm	Ö	0	ů 0	Ő	0	0
	10000ppm	0	0	0	0	0	0
•	Zoooopput	•	ŭ	·	-	•	•
CICATRIX	Control	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0
	2500թթա	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0
	10000րրա	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	1
	2500ppm	1	1	1	0	1	0
	5000ppm	1	0	0	0	0	0
	10000ppm	2	0	0	0	0	0
DED TIDING				•	•	•	^
RED URINE	Control	0	0	0	0	0	0
	2500ppm	1	1	2	2	2	1
	5000ppm	0	0	1	i	0	0
	10000pm	1	0	1	1	0	0
WELLOW VIDTAGE			•		•	•	•
YELLOW URINE	Control	0	0	0	0	0	0
	2500ppm	1	0	1	1	1	0
	5000ppm	I	0	0	0	0	1
	10000ppm	0	0	1	i	i	1
CHAIL CTOOL	0 1	^	0	0	^	0	1
SMALL STOOL	Control	0	0	0	0	0	1
	2500ppm	2	1	0	3	4	2
	5000ppm	1	0	0	0	0	0
	10000ppm	3	2	1	1	1	1

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 73

Clinical sign	Group Name	Admini	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
N 100 CENTRAL	0.4.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.1GO-STOOL	Control 2500ppm	0	0	n	0	0	0	0	0	0	0	0	Ŏ	0	0
	2500ppm 5000ppm	0	0	n	0	n	0	0	0	Ô	0	0	0	0	0
	10000ppm	0	0	ő	0	0	0	ő	ō	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	49	49	49	49	49	49
OIT KENETITIEDE	2500ppm	50	49	50	50	49	49	50	50	50	50	50	50	49	50
	5000ppm	50	50	50	50	50	50	50	50	50	50	49	49	49	49
	10000ppm	50	49	50	50	50	50	50	48	47	44	46	47	46	46

(HAN190)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 74

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3100 01000	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	48	48	48	47	47	47	47	47	46	46
	2500ppm	50	50	50	48	48	43	42	42	42	41	41	41	41	41
	5000ppm	49	47	44	46	48	44	44	42	43	43	42	42	34	33
	10000ppm	46	46	46	45	45	39	39	36	35	35	35	34	30	30

(HAN190)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 75

Clinical sign	Group Name	Admini	stration W	eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EIGO BIOOE	2500ppm	0	0	0	0	Ö	Ö	0	0	Ö	Ö	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	46	47	47	47	46	46	45	46	46	46	46	46	46	46
	2500ppm	41	41	41	39	39	39	36	39	39	38	38	38	37	36
	5000ppm	32	31	32	33	33	30	29	28	28	24	24	24	22	21
	10000pm	30	21	18	20	20	25	18	20	19	18	17	17	17	18

(HAN190)

BATS 4

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 76

Clinical sign	Group Name	Admini	stration W	eek-day											
	·	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3300 01000	2500ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	44	45	45	45	44	44	45	45	45	45	45	45	45	45
	2500ppm	36	36	36	36	35	35	34	34	34	34	33	33	32	32
	5000ppm	22	22	22	24	27	27	25	28	27	26	24	24	20	19
	10000ppm	18	18	18	16	17	17	15	16	17	18	16	16	14	14

(HAN190)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 77

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
		_	_								•	٨	0	0	0
OLIGO-STOOL	Control	0	U	U	0	0	0	0	0	0	0	0	0	0	0
	2500ppm	0	0	0	0	0	0	0	0	0	0	U	•	U	U
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	45	45	45	44	44	44	44	44	44	43	40	40	40	40
	2500ppm	32	32	33	33	34	35	35	38	38	38	39	38	39	39
	5000ppm	20	18	20	22	23	23	23	24	24	24	24	25	25	25
	10000ppm	14	12	12	13	13	12	12	11	11	11	13	13	13	13

(HAN190)

BATS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

PAGE : 78

Clinical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
N ICO PTYNI	0.4.1		0	0	0	•	0	0							
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	U	0	0
	2500ppm	0	0	0	0	0	0	O	0	0	0	0	0	0	0
	5000ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	1
	10000ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
ON REMARKABLE	Control	39	39	39	39	39	39	38	38	38	38	38	38	38	38
	2500ppm	41	39	40	39	38	39	41	40	42	41	39	39	41	41
	5000ppm	24	24	26	26	26	26	24	24	24	26	25	24	25	25
	10000ppm	13	13	11	11	12	12	15	15	13	16	17	17	20	20

(HAN190)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 79

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
OLIGO-STOOL	Control	0	1	1	2	1	2	1	1	1	0	0	1	1	1
	2500ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	5000ppm	1	0	0	0	0	1	1	1	0	0	0	0	0	3
	10000ppm	0	0	0	1	0	0	0	0	0	0	0	1	1	1
NON REMARKABLE	Control	38	37	37	37	36	35	35	35	35	35	35	33	32	32
	2500ppm	42	41	41	40	40	39	38	37	39	39	38	37	35	35
	5000ppm	28	28	30	32	32	31	29	28	28	28	31	30	28	27
	10000ppm	24	24	23	24	23	23	24	24	28	27	31	30	31	30

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : FEMALE

PAGE: 80

Clinical sign	Group Name	Admin	istration	Week-day _			
		99-7	100-7	101-7	102-7	103-7	104-7
OLIGO-STOOL	Control	0	0	0	0	0	1
	2500ppm	2	1	0	2	2	1
	5000ppm	1	0	0	0	0	1
	10000ppm	1	1	2	2	1	1
NON REMARKABLE	Control	. 32	30	30	30	28	27
	2500ppm	35	33	31	29	29	29
	5000ppm	27	27	25	24	25	23
	10000ppm	29	28	24	24	26	26
(1111100)							

(HAN190)

APPENDIX C 1

BODY WEIGHT CHANGES: MALE

BODY WEIGHT CHANGES

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : AI 104

SEX : MALE

PAGE: 1

p Name	Adminis	stration	week											
	0		1		2		3		4		5		6	
Control	126±	5	157±	8	187 <u>±</u>	10	214±	10	235±	11	249±	12	261±	13
2500ppm	126±	5	156±	7	185±	10	209±	11	228±	12**	243±	13*	254士	13*
5000ppm	126±	5	155±	7	184±	9	209±	10*	228±	11**	243±	12*	256±	14
10000ppm	126±	5	150±	7**	176±	9**	200±	10**	218±	10**	233±	10**	246±	[[**
Significant differen	ce; *: P ≤ 0.	. 05	**: P ≤ 0.0	1			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : MALE

PAGE: 2

p Name	Admini	stration	week										·	
	7		8		9		10		11		12		13	
Control	274±	14	283±	14	292±	14	299±	14	305±	15	313±	16	319上	16
2500ррт	267 ±	14*	275±	15*	286±	16	293±	15	300±	16	307±	15	313±	16
5000ppm	269±	14	279±	16	289±	17	296±	17	303±	18	309±	18	316±	20
10000ppm	257±	13**	265±	13**	274±	13**	279±	13**	288±	13**	293±	14**	299±	<u>[</u> 4**
														
Significant difference	ce; *:P≦(). 05	**: P ≤ 0.0	01			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

Name	Admini	stration	week											
	17		21		25		29		33		37		41	
Control	334 <u>-</u> t-	17	350±	16	357±	18	367±	17	374±	18	381 <u>+</u>	20	385 土	19
2500ppm	328±	16	345±	18	354±	19	365±	19	373±	22	379±	24	384±	26
5000ррш	332±	20	349±	22	356±	23	368±	23	376±	24	385±	25	388±	27
10000ppm	314±	15₩	328±	17**	336±	20**	348±	19**	353±	22**	362±	23**	366±	23**
														
Significant difference ;	* : P ≤ (0.05 *	*: P ≦ 0.0	01			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : MALE

up Name	Admini	istration	week											
	45		49		53		57	· · · · · · · · · · · · · · · · · · ·	61		65		69	
Control	396±	20	398±	20	406±	22	411±	22	416±	23	423±	23	423土	24
2500ppm	392±	26	396±	28	402±	29	409±	29	417±	27	423±	27	425±	26
5000ppm	396±	26	401±	26	408±	26	413±	26	420±	27	424±	29	424±	30
mqq00001	374±	24**	378±	26**	384±	26**	390±	27**	397±	25**	403±	27**	404±	27**
Significant differenc	ce; *:P≦(0.05 =	**: P ≦ 0.0)1			Test of D	unnett						

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

77 429± 432±	27	78 		82 429±	42	86 419±	41	90 420±	29	94 422±	27
				429±	42	419±	41	420±	29	422±	27
432±	27	***									
		431±	27	431±	25	431±	26	428±	26	424±	25
429±	27	429±	28	428±	27	425±	37	426±	28	421±	36
410±	26**	409±	26**	409±	28*	411±	26	407±	30	399±	39**

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : AI 104

SEX : MALE

up Name	Admin	istration	week							
	98		102		104					
									···	
Control	423±	25	419±	31	415±	34				
2500ppm	418±	29	412±	29	408±	28				
,	***									
5000ppm	420±	26	411±	27	405±	26				
mqq00001	398±	30**	397±	25**	389±	30**				
Significant differenc	e; *:P≦	0. 05	**: P ≤ 0.0	1			Test of Dunnett	 	 	
				 .				 	 	

(HAN260)

BAIS 4

APPENDIX C 2

BODY WEIGHT CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

Name	Admini	stration	week							<u> </u>	···			
	0		1		2		3		4		5		6	
Control	99±	3	115±	4	129±	4	137±	5	144±	5	151±	6	155±	7
2500ррш	99±	3	114±	3	126±	5 * *	133±	5 **	140±	6**	145±	6**	149±	7**
5000ppm	99±	3	114±	4	124±	4 **	132±	5 **	138±	6***	143±	7**	147±	8**
10000ррш	99±	3	111±	4**	122±	5**	129±	5**	135±	6**	140±	7**	144±	8**
											· · · · · · · · · · · · · · · · · · ·			
ignificant differenc	e; *:P≦(). 05	**: P ≦ 0.0)1			Test of Du	unnett						

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

UNIT : g
REPORT TYPE : AI 104

SEX : FEMALE

PAGE: 8

Name	Admini	istration	week											
· · · · · · · · · · · · · · · · · · ·	7		8		9		10		11		12		13	
Control	158±	8	162±	8	166土	9	168±	9	171土	9	174土	9	177±	9
2500ppm	152±	8 ≠ *	154±	9**	159±	9**	161±	9**	164±	9**	168±	10**	170±	10**
5000ppm	151±	9**	154±	9**	158±	10**	161±	10**	164±	10**	168±	11**	169±	11**
10000pm	147±	8**	148±	8**	152±	9**	154±	10**	157±	10**	160±	11**	162±	11**
Significant differenc	e; *:P≦(0.05	**: P ≤ 0.01	L			Test of D	unnett						

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES (SUMMARY)

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

ALL ANIMALS

ip Name	Administration	week					
	17	21	25	29	33	37	41
Control	183土 10	188± 11	193± 10	199± 11	203± 11	206± 11	211± 12
2500ррш	175± 11 **	180± 11**	183± 1 1 **	190± 12 **	194± 12≉≉	196± 13**	201± 14**
5000ppm	174± 12 **	180± 13**	184± 13 **	190± 14**	194± 15**	196± 15**	200± 16**
10000ppm	166± 11≠	170± 11**	174± 12 **	180± 13**	183± 14≯	185土 14**	190± 15**
Significant difference	e; *:P≦ 0.05 =	**: P ≦ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

up Name	Admin	istration	week									
·	45		49	53		57	61		65		69	
Control	216±	13	219± 14	224±	15	229± 16	233±	17	241±	19	244土	21
2500ррт	205±	15 **	208± 16	** 213±	16**	217± 16**	221±	17**	228±	19*	231±	20**
5000ррт	204±	17**	208± 18	** 213±	20**	219± 21*	223±	22*	230±	24*	233±	25*
10000ppm	193±	16**	196± 17	** 200±	<u>1</u> 7**	205± 18**	209±	: 19**	214±	20**	216±	22**
								 				
Significant differenc	e; *:P≦	0.05 *	r : P ≤ 0.01			Test of Dunnett						
260)	·											

(HAN260)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

lane	Admini	istration v	week					<u></u> _		<u>-</u>				
	73		77		78		82		86		90		94	
Control	252±	25	257±	26	258土	26	265±	29	271±	33	270±	36	275土	35
2500ррш	237±	21**	241±	20**	243±	21*	249±	20*	255±	21**	257±	23	257±	23*
5000ppm	239±	26*	244±	26*	245±	26*	250±	28*	256±	29	256±	29	260±	29
10000ppm	220±	23**	224±	24**	225±	25**	231±	24**	236±	26**	238±	24**	241±	25**

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 12

Name	Admin	istration	week				
	98		102		104		
Control	277±	35	276±	38	273±	40	
2500ррт	261±	24*	260±	28	260±	27	
5000ррш	262±	31	263±	30	261±	30	
	***-						
100001	239±	27≉*	240±	30**	243±	21**	
Significant differenc	e; *:P≦	0.05	**: P ≤ 0.0	1			Test of Dunnett

(HAN260)

APPENDIX D 1

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

Name	Administration	week					
	1	2	3	4	5	6	7
		•					
Control	13.8± 0.8	15.2± 1.0	-	16.2± 0.8	15.8± 0.9	15.4± 0.9	15.4生 0.9
2500ppm	13.9± 0.8	15.3± 1.1	15.8± 0.9	15.7± 0.9*	15.6± 0.9	15.2± 1.1	15.1± 0.9
5000ppm	13.6± 1.0	14.9± 0.9	15.2± 0.9	15.6± 0.7**	15.5± 0.8	15.4± 0.9	15.4± 0.9
10000ppm	12.6± 0.8★	13.9± 1.0**	14.6± 0.9	15.0± 1.0**	14.8± 0.8**	14.6± 0.9**	14.6± 1.0**
Significant differenc	e; *:P≦0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Name	Administration	week					
	8	9	10	11	12	13	17
Control	15.4± 0.8	15.4± 0.7	15.1± 0.7	14.9± 0.8	14.8± 0.9	14.7± 1.0	14.6生 0.9
2500ppm	15.1± 0.9	15.4± 1.2	14.9± 0.8	15.0± 0.9	14.8± 0.8	14.7± 0.8	14.6± 0.8
5000ррш	15.3± 1.0	15.4± 1.2	15.1± 0.9	15.2± 1.0	14.8± 0.9	14.8± 0.9	14.7± 1.0
10000ppm	14.5± 0.9★	14.3± 0.9**	14.3± 0.9★	14.5± 0.9	14.3± 1.0*	14.3± 0.9*	14.0± 0.9**
Significant difference ;	*: P ≤ 0.05	⇒ : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

FOOD CONSUMPTION CHANGES (SUMMARY)

UNIT : g REPORT TYPE : AI 104

SEX : MALE

PAGE: 3

ıp Name	Administration	week					
	21	25	29	33	37	41	45
Control	15.1± 0.9	15.9± 0.8	15.2± 0.8	15.4± 0.7	14.9± 0.8	14.8± 0.9	15.3 ± 0.9
2500ppm	14.9± 0.9	15.7± 1.0	15.3± 0.8	15.4± 1.0	15.0± 1.1	14.9± 1.1	15.2± 1.1
5000ppm	15.1± 1.0	15.9± 1.3	15.5± 1.0	15.6± 1.0	15.3± 0.9	15.1± 1.0	15.2± 0.8
10000ррш	14.4± 1.0**	15.3± 0.9**	14.8± 0.9	14.7± i.0**	14.5± 0.9	14.4± 1.0	14.8± 1.0
Significant difference 	e; *: P ≦ 0.05 =	⊫: P ≦ 0.01		Test of Dunnett			

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : AI 104 SEX : MALE

PAGE: 4

oup Name	Administration	week						
	49	53	57	61	65	69	73	
Control	15.5± 1.0	15.7± 1.0	16.1± 1.0	15.9± 1.0	16.1± 1.1	15.9± 1.1	15.9± 0.9	
2500ppm	15.6± 1.1	15.7± 1.1	16.3± 1.2	16.3± 0.9	16.4± 1.1	16.5± 1.0*	16.2± 1.3	
5000ppm	15.9± 1.0	15.9± 1.1	16.4± 1.1	16.1± 1.0	16.2± 1.0	16.3± 1.0	16.1± 1.1	
10000ррш	15.4± 1.1	15.4± 1.0	16. I ± 1. 0	15.9± 1.0	16.1± 1.1	16.0± 0.9	15.8± 0.9	
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				
AN260)								J

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Name	Administration	week					
	77	78	82	86	90	94	98
Control	16.1± 0.9	16.1± 1.0	15.4± 1.4	15.5± 2.8	15.8± 1.0	16.1± 1.2	16.1± 1.4
2500ppm	16.6± 1.0	16.4± 1.0	15.8± 1.6	16.4± 0.9*	16.3± 1.2	16.3± 1.5	16.1± 1.5
5000ppm	16.2± 1.2	16.1± 1.1	16.0± 1.5	16.2± 1.4	16.1± 1.3	16.0± 2.3	16.0± 1.7
10000pm	16.0± 0.9	15.7± 0.9	15.2± 1.4	16.0± 1.1	15.4± 1.4	15.4± 2.3	15.2± 2.{*
Significant differen	ce; *: P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

oup Name	Administration	ı week		
	102	104		
Control	16.2± 1.4	16.2± 1.6		
2500ррш	16.2± 1.9	16.2± 1.5		
5000ppm	15.7± 1.9	15.7± 1.5		
10000ррт	15.4± 1.2	15.3± 1.5*		
Significant difference	ce; *: P ≤ 0.05	**: P ≤ 0.01	Test of Dunnett	
AN260)				BAIS

APPENDIX D 2

FOOD CONSUMPTION CHANGES: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 7

Name	Administration	week					
	1	2	3	4	5	6	7
Control	10.4± 0.6	10.9± 0.5	11.1± 0.6	10.8± 0.6	10.7± 0.6	10.4± 0.6	10.2生 0.9
2500ррш	10.5± 0.5	10.6± 0.9	10.5± 0.6**	10.5± 0.6*	10.2± 0.6**	10.0± 0.6≠*	9.7± 0.7**
5000ppm	10.3± 0.6	10.2± 0.7**	10.2± 0.6**	10.2± 0.7**	10.2± 0.8**	9.9± 0.8**	9.8± 0.8*
10000ppm	9.6± 0.6*	10.0± 0.6**	9.8± 0.7**	9.8± 0.6**	9.8± 0.6★	9.5± 0.7**	9.4± 0.7**
Significant difference	e; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 8

Name	Administration	week					
	8	9	10	11	12	13	17
Control	10.1± 0.6	10.2± 0.7	9.9± 0.6	10.1± 0.6	10.2± 0.6	10.1± 0.6	10.4生 0.6
2500ppm	9.5± 0.7**	9.7± 0.6**	9.6± 0.6	9.9± 0.6	9.7± 0.6≯≉	9.7± 0.7*	10.0± 0.7**
5000ppm	9.5± 0.8**	9.7± 0.7**	9.6± 0.8	9.9± 0.7	9.9± 0.8*	9.8± 0.7*	10.0± 0.7**
10000ppm	9.1± 0.7**	9.1± 0.7**	9.0± 0.7★	9.3± 0.7**	9.2± 0.7≉	9.4± 0.7**	9.4± 0.6**
Significant difference	ce; *: P ≦ 0.05	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Name	Administration	week					
	21	25	29	33	37	41	45
Control	10.2± 0.7	10.5± 0.7	10.7± 0.8	10.5± 0.5	10.3± 0.6	10.6生 0.7	11.1± 0.9
2500ppm	9.9± 0.6	10.2± 0.6*	10.1± 0.7**	10.4± 0.7	9.8± 0.7**	10.2± 0.7*	10.8± 0.7
5000ppm	9.8± 0.7*	10.2± 0.7*	10.1± 0.9**	10.2± 0.8*	9.8± 0.7**	10.3± 0.8*	10.6± 0.9*
10000ppm	9.3± 0.7**	9.6± 0.7**	9.6± 0.7≉	9.7± 0.7**	9.3± 0.7**	9.8± 0.7**	10.1± 0.9**
ignificant difference	$*: P \leq 0.05$	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Name	Administration week							
	49	53	57	61	65	69	73	
Control	10.9± 0.7	11.1± 0.8	11.7± 0.9	11.7± 0.8	11.7± 1.0	11.7± 0.9	12.0± 1.0	
2500ррш	10.5± 0.8*	11.0± 0.8	11.0± 0.8**	11.4± 0.9	11.6± 0.9	11.2± 0.9*	11.6± 1.0	
5000ppm	10.6± 0.8	10.8± 0.8	11.4± 0.9	11.3± 0.9*	11.4± 1.0	11.5± 1.1	11.6± 1.0	
10000ррт	10.1± 0.8≠	10.3± 0.8**	10.8± 0.9**	10.9± 0.8**	11.1± 1.0**	10.9± 0.8**	11.2± 1.0**	
gnificant difference;		+*: P ≤ 0.01		Test of Dunnett				

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Name	Administration	week					
	77	78	82	86	90	94	98
Control	12.2± 1.0	12.0± 1.0	12.2± 1.1	12.7± 1.6	12.3± 1.8	12.8± 1.6	12.7± 2.0
2500ррт	11.8± 0.9	11.7± 0.8	11.9± 0.9	12.2± 0.9	12.0± 1.1	12.1± 1.0**	12.4± 1.1
5000ppm	11.8± 0.9	11.5± 0.9*	11.5± 1.1**	12.2± 1.0	11.6± 1.7*	12.2± 1.0	11.7± 2.5*
10000ррт	11.3± 0.9**	11.1± 0.8**	1i.3± 0.9₩	11.6± 1.1**	11.6± 0.9**	11.8± 1.0**	11.5± 1.8**
Significant differenc	e; *: P ≤ 0.05	+ : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 12

oup Name	Administration	week		
	102	104		
Control	12.6生 1.5	12.5± 2.2		
2500ppm	11.9± 2.5	12.2± 2.0		
5000ррт	12.0± 1.6	12.1± 1.9		
19000ppm	11.4± 2.0*	11.7± 2.0		
Significant differen	ce; *: P ≤ 0.05	to*: P ≤ 0.01	Test of Dunnett	

(HAN260)

APPENDIX E 1

WATER CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 1

p Name	Administration	week					
	I	2	3	4	5	6	7
Control	18.8± 5.2	19.3生 2.6	20.1± 1.9	20.5± 2.1	19.7± 2.1	19.5生 2.0	19.1± 2.3
2500ррш	17.2± 1.6	18.7± 2.2	19.6± 2.1	19.8± 2.5*	19.4± 4.1*	18.8± 2.5	18.8± 3.5
5000ppm	16.3± 2.0**	17.1± 2.1**	17.8± 1.5**	18.1± 1.3**	17.6± 1.5**	18.1± 1.5**	17.8± 2.2**
10000ррш	14.7± 1.8≠≠	15.4± 3.1**	17.3± 5.5≉	16.5± 4.2 * *	15.2± 1.5**	15.6± 2.2**	14.9± 1.8**
ignificant differenc	re; *:P≤0.05	** : P ≤ 0.01		Test of Dunnett			
260)				Too or builded			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

9 10 18.9± 2.1 18.8± 3.1 18.3± 2.3 18.2± 3.6		12 18.3± 2.2 17.3± 1.9*	13 18.1± 2.2 17.8± 3.7	17.2± 2.8 16.6± 2.0
18.3± 2.3 18.2± 3.6	17.2± 2.1*	17.3± 1.9*	17.8± 3.7	16.6± 2.0
18.4± 3.8* 17.6± 2.5	16.9± 2.2**	16.8± 1.7**	16.8± 1.5**	16.4± 1.3
15.2± 2.0** 15.7± 3.1	±± 16.3± 3.5*±	16.4± 6.5**	15.1± 1.7**	15.0± 2.2**
· D < 0.01	Test of Dunnett			
	**: P ≤ 0.01	**: P ≤ 0.01 Test of Dunnett	**: $P \le 0.01$ Test of Dunnett	**: P ≤ 0.01 Test of Dunnett

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

up Name	Administration	week					
	21	25	29	33	37	41	45
Control	18.0± 2.7	17.7± 2.9	17.7± 2.6	17.5± 1.8	17.3± 2.1	16.0生 2.0	17.8± 2.1
2500ррш	17.1± 2.0	17.4± 1.7	17.0± 1.8	17.2± 1.8	17.3± 1.9	16.1± 1.9	17.5± 2.1
5000ppm	16.8± 1.6*	18.7± 6.0	16.9± 1.4	17.2± 1.4	17.3± 1.4	16.8± 1.8**	17.8± 1.6
10000ppm	15.6± 2.7≠	16.8± 2.8 * *	15.9± 3.7 * *	16. 2± 2. 0 **	17.7± 3.4	16.8± 3.6	17.8± 5.5*
	pe; *: P ≤ 0.05 ::	** : P ≤ 0.01		Test of Dunnett			
Significant different	ce, *·r≥ 0.05	₩ . r ≥ v.V1		lest of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Name	Administration week								
	49	53	57	61	65	69	73		
Control	17.6± 2.2	18.2± 2.5	17.8± 2.1	17.7± 2.4	18.1± 2.4	18.1± 2.6	18.4± 3.0		
2500ppm	17.4± 2.1	17.6± 2.1	17.7± 2.0	17.7± 2.0	18.1± 2.5	18.2± 2.2	18.1± 2.1		
5000ppm	18.1± 1.7	18.7± 4.6	18.8± 3.7	19.5± 5.2**	18.8± 3.5	18.9± 3.1	19.1± 2.3*		
10000ррт	18.3± 4.6	17.9± 5.1**	18.7± 5.0	19.2± 6.7	18.3± 4.7	19.7± 5.6	20.2± 5.3*		
			· · · · · · · · · · · · · · · · · · ·						
Significant difference	e; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett					

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104 SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Name	Administration	week					
	77	78	82	86	90	94	98
Control	18.3± 3.0	18.8± 3.1	18.9± 4.7	17.8± 3.8	18.9± 3.2	19.4± 3.8	19.5± 3.8
2500ppm	18.8± 2.3	18.8± 2.8	18.7± 2.9	19.0± 3.2	20.0± 3.7	21.1± 4.5	20.9± 5.4
5000ppm	18.9± 3.0	19.5± 3.2	20.0± 4.2	19.4± 4.8	21.0± 4.8*	20.4± 5.4	20.1± 4.9
10000ррт	20.4± 5.6*	20.4± 5.2	19.5± 4.7	20.5± 5.5	21.2± 5.8	21.0± 6.5	19.9± 6.7
Significant difference	* : P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
1260)							

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

oup Name	Administrati	on week		
	102	104		
Control	20.9± 4.7	21. 4± 5. 1		
2500ppm	20.7± 4.9	22.3± 7.1		•
5000ppm	20.8± 3.8	22.2± 6.4		
10000ppm	20.2± 5.3	20.1± 4.8		
Significant difference	; *: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
AN260)				BAT

APPENDIX E 2

WATER CONSUMPTION CHANGES: FEMALE

APPENDIX E 2

WATER CONSUMPTION CHANGES: FEMALE

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 7

oup Name	1		Administration week							
		2	3	4	5	6	7			
Control	15.0± 1.1	16.4± 1.0	16.3± 1.2	17.4生 4.8	17.2± 6.7	18.4± 7.9	17. I± 6. 0			
2500ppm	14.5± 1.1*	15.4± 1.5**	15.6± 3.0≭	15.2± 2.9 * *	14.3± 2.7**	14.5± 6.1**	13.3± 1.7**			
5000ppm	13.5± 0.9★★	14.3± 2.8**	14.4± 1.9**	14.5± 2.4**	14.3± 3.8**	13.9± 3.1**	13.9± 4.7**			
10000թրm	11.7± 0.9**	12.4± 1.4**	12.3± 2.1 * *	12.4± 1.9**	12.1± 2.8**	12.0± 2.6**	11.9± 3.5**			
Si	# · D < 0.05			T. A. C. D						
Significant difference; N260)	*: P ≥ 0.05	**: P ≤ 0.01		Test of Dunnett			Bé			

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Name	Administration	week					
	8	9	10	11	12	13	17
Control	17.7± 6.9	17.6± 5.8	18.4± 7.7	19.1± 8.5	18.1± 6.8	20.4 ± 10.2	19.5± 7.5
2500ррт	13.7± 2.1**	14.3± 4.2**	14.4± 6.9**	15.0± 5.6 * *	14.4± 4.4**	15.6± 7.8**	15.7± 6.9**
5000ppm	14.5± 6.7**	14.9± 5.9**	14.2± 4.9★	14.8± 6.6**	15.7± 8.8**	14.7± 5.1**	15.1± 4.8**
10000ррт	11.4± 1.7≠	12.1± 6.4**	12.1± 6.9**	12.1± 5.9**	12.7± 6.5**	12.8± 5.3★	12.3± 3.4**
imificant difference	* · D < 0.05	· D < 0.01		Test of Duppost			
ignificant difference;	$*: P \leq 0.05$	**: P ≤ 0.01		Test of Dunnett			

WATER CONSUMPTION CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

n Name	Administration	week					
	21	25	29	33	37	41	45
Control	20.2± 8.6	18.7± 7.5	17.6± 5.2	18.2± 7.3	17.2± 5.1	17.7生 5.4	16.9± 4.8
2500ppm	15. 2± 4. 9≯≠	14.8± 4.6**	15.9± 7.8**	15.9± 6.3*	15.9± 6.0	16.8± 8.5**	15.8± 4.7
5000ppm	17.8± 9.6**	15.9± 4.7**	15.4± 5.2★★	15.7± 5.8*	15.6± 5.6	16.3± 5.1	16.0± 5.1
mqq00001	13.6± 6.7₩	14.6± 6.3**	14.7± 5.8 **	13.8± 3.4**	15.0± 6.1	16.2± 6.4**	15.3± 5.3
Significant differen	ce; *:P≤0.05	b*: P ≤ 0.01		Test of Dunnett			
organiticant different	·····································			rest of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

up Name	Administration week						
	49	53	57	16	65 	69	73
Control	17.3± 6.4	16.9± 4.7	15.2± 2.5	16.4± 4.4	15.1生 2.9	15.2± 2.5	15.5± 3.1
2500ррт	15.9± 7.4*	15.7± 6.4	17.0± 8.0	16.4± 7.0	14.8± 2.9	14.4± 2.2	15.8± 3.9
5000ррт	16.8± 9.6	16.4± 5.3	15.5± 4.9	15.4± 4.2	14.9± 3.2	15.5± 4.8	15.6± 3.0
(0000ppm	15.1± 6.0₩	15.1± 5.4	16.3± 5.9	16.2± 5.2	16.2± 4.4	17.6± 6.7	17.7± 5.4
Significant differenc	te; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
Significant differenc	ce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

oup Name	Administration week							
	77	78	82	86	90	94	98	
Control	15.0± 2.6	15.5± 3.0	15.5± 2.2	16.2± 3.2	17.4± 6.2	17.1± 4.2	19.0± 7.7	
2500ppm	15.7± 4.5	16.2± 4.4	15.2± 2.3	16.0± 2.4	15.5± 2.7	16.4± 3.0	16.8± 3.1	
5000ppm	14.6± 2.0	15.3± 3.7	14.5± 2.4	14.9± 2.4	15.5± 4.2	16.4± 4.1	16.5± 5.3	
mqq00001	17.2± 5.2	18.0± 5.5*	17.6± 5.9	17.6± 5.8	18.5± 6.9	18.9± 5.3	18.9± 5.9	
Significant difference;	* : P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				
N260)								r

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

roup Name	Administrati	Administration week					
	102	104					
Control	18.9生 6.5	18.8± 8.0					
2500ppm	17.5± 4.2	18.1± 4.4					
5000ppm	17.2± 5.3	17.3± 5.4					
осоорраг	11.22 0.0	11.02 0.4					
10000ppm	19.1± 6.9	19.3± 6.2					
Significant differen	ce; *: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett				
(AN260)		<u> </u>		BAIS			

APPENDIX F 1

CHEMICAL INTAKE CHANGES: MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g/kg/day
REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

oup Name	Administration (weeks)							
	1	2	3	4	5	6	7	
Control	0.000 生 0.000	0.000± 0.000	0.000± 0.000	0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
2500ррт	0.275± 0.022	0.253± 0.026	0.234± 0.023	0.217± 0.025	0.200± 0.046	0.185± 0.024	0.176± 0.030	
5000ppm	0.527± 0.055	0.465± 0.048	0.428± 0.038	0.397± 0.024	0.361± 0.023	0.353± 0.023	0.332± 0.039	
10000ppm	0.982± 0.105	0.874± 0.178	0.861± 0.256	0.756± 0.192	0.652± 0.064	0.635± 0.077	0.577± 0.064	

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g/kg/day
REPORT TYPE : A1 104
SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Administration (weeks)							
	8	9	10	11	12	13	17	
Control	0.000 ± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000 ± 0.000	
2500ррт	0.172± 0.030	0.161± 0.019	0.155± 0.029	0.144± 0.016	0.141± 0.014	0.142± 0.030	0. 127± 0. 013	
5000ррт	0.317± 0.027	0.320± 0.072	0.298± 0.049	0.279± 0.028	0.272± 0.022	0.266± 0.015	0.247± 0.014	
10000ppm	0.570± 0.061	0.553± 0.073	0.562± 0.106	0.567± 0.110	0.557± 0.215	0.505± 0.052	0.478± 0.067	

(HAN300)

BAIS 4

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g/kg/day

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

roup Name	Administration	(weeks)					
	21	25	29	33	37	41	45
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
2500ррт	0.124± 0.013	0.123± 0.011	0.117± 0.012	0.116± 0.012	0.114± 0.012	0.105± 0.011	0.111± 0.013
5000ppm	0.242± 0.022	0.263± 0.080	0.229± 0.016	0.229± 0.016	0.225± 0.015	0.216± 0.021	0.225± 0.019
10000ppm	0.476± 0.092	0.502± 0.097	0.460± 0.117	0.460± 0.062	0.490± 0.102	0.460± 0.104	0.477± 0.140

(HAN300)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g/kg/day
REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)									
	49	53	57	61		65		69		73	
Control	0.000± 0.000	0.000± 0.	000 0.000±	0.000 0.000-	0.000	0.000±	0.000	0.000±	0.000	0.000生	0.000

2500ppm	0.110± 0.013	0.110± 0.013	0.108± 0.014	0.106± 0.014	0.107± 0.017	0.108± 0.016	0.106± 0.014
5000ррт	0.225± 0.019	0.229± 0.053	0.227± 0.040	0.231 ± 0.055	0.223± 0.046	0.225± 0.050	0.224± 0.026
10000ррт	0.486± 0.128	0.469± 0.134	0.481± 0.133	0.485± 0.169	0.455± 0.115	0.489± 0.144	0.500± 0.143

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS

UNIT : g/kg/day

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Administration	(weeks)					
	77	78	82	86	90	94	98
Control	0.000 ± 0.000	0.000± 0.000	0.000± 0.000	0.000 ± 0.000	0.000± 0.000	0.000± 0.000	0.000 ± 0.000
2500ppm	0.109± 0.016	0.109± 0.019	0.109± 0.019	0.111± 0.021	0.117± 0.023	0.125± 0.029	0.126± 0.035
5000ppm	0.221± 0.033	0.227± 0.037	0.004.10.047	0.226± 0.055	0.247± 0.057	0.041 + 0.000	0.240-10.050
эоооррия	0.221 ± 0.033	0.221± 0.031	0.234 ± 0.047	0.220± 0.055	0.247± 0.057	0.241± 0.062	0.240± 0.058
10000թթա	0.500 ± 0.149	0.501 ± 0.147	0.481 ± 0.140	0.503± 0.152	0.525± 0.161	0.536 ± 0.200	0.507 ± 0.205

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g/kg/day REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

roup Name	Administration 102	eeks)	
Control	0.000± 0.000	0.000± 0.000	
2500ppm	0.126± 0.035	0.138± 0.053	
5000ppm	0.255± 0.049	0.276± 0.086	
mqq00001	0.509± 0.137	0.517± 0.130	

(HAN300)

APPENDIX F 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
UNIT : g / kg / d a y
REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

roup Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
2500ppm	0.317± 0.020	0.306± 0.031	0.291± 0.052	0.271 ± 0.055	0.248± 0.048	0.245± 0.110	0.218± 0.022
5000ppm	0.595± 0.031	0.576± 0.105	0.544± 0.067	0.525± 0.078	0.498± 0.128	0.473± 0.101	0.462± 0.159
10000ррш	1.054± 0.076	1.019± 0.101	0.951± 0.153	0.915± 0.131	0.862± 0.186	0.833± 0.172	0.809± 0.221

(HAN300)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

UNIT : g/kg/day
REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

oup Name	Administration	(weeks)	-				
	8	9	10	11	12	13	17
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000土 0.000
2500ррт	0.220± 0.032	0.224± 0.066	0.223± 0.103	0.229± 0.085	0.215± 0.070	0.228± 0.108	0.225± 0.100
5000ppm	0.470± 0.213	0.473± 0.185	0.441± 0.153	0.449± 0.198	0.468± 0.263	0.435± 0.146	0.432± 0.133
10000pm	0.769± 0.099	0.793± 0.392	0.781± 0.416	0.767± 0.345	0.786± 0.378	0.785± 0.297	0.738± 0.180

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g / kg / d a y
REPORT TYPE : Al 104

ALL ANIMALS

SEX : FEMALE

PAGE: 9

oup Name	Administration	(weeks)					
	21	25	29	33	37	41	45
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
2500ррт	0.210± 0.064	0.202± 0.062	0.209 ± 0.102	0.204± 0.075	0.203± 0.074	0.209± 0.102	0.193± 0.058
5000ppm	0.496± 0.269	0.433± 0.126	0.405± 0.130	0.403± 0.147	0.399± 0.135	0.407± 0.118	0.391± 0.120
10000ppm	0.792± 0.368	0.837± 0.344	0.818± 0.307	0.754± 0.167	0.806± 0.294	0.851± 0.328	0.794± 0.266

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g/kg/day

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

Administration	(weeks)					
49	53	57	61	65	69	73
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000生 0.000
0.192± 0.095	0.184± 0.072	0.195± 0.090	0.186± 0.080	0.162± 0.031	0.156± 0.025	0.167± 0.044
0.401± 0.221	0.385± 0.118	0.354± 0.101	0.346± 0.099	0.325± 0.061	0.332± 0.096	0.328± 0.060
0.766± 0.287	0.751± 0.241	0.796± 0.279	0.772± 0.222	0.756± 0.188	0.814± 0.288	0.806± 0.232
	0.000± 0.000 0.192± 0.095 0.401± 0.221	49 53 0.000± 0.000 0.000± 0.000 0.192± 0.095 0.184± 0.072 0.401± 0.221 0.385± 0.118	49 53 57 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.192± 0.095 0.184± 0.072 0.195± 0.090 0.401± 0.221 0.385± 0.118 0.354± 0.101	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49 53 57 61 65 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.192± 0.095 0.184± 0.072 0.195± 0.090 0.186± 0.080 0.162± 0.031 0.401± 0.221 0.385± 0.118 0.354± 0.101 0.346± 0.099 0.325± 0.061 0.766± 0.287 0.751± 0.241 0.796± 0.279 0.772± 0.222 0.756± 0.188	49 53 57 61 65 69 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.192± 0.095 0.184± 0.072 0.195± 0.090 0.186± 0.080 0.162± 0.031 0.156± 0.025 0.401± 0.221 0.385± 0.118 0.354± 0.101 0.346± 0.099 0.325± 0.061 0.332± 0.096 0.766± 0.287 0.751± 0.241 0.796± 0.279 0.772± 0.222 0.756± 0.188 0.814± 0.288

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g/kg/day REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Administration	(weeks)					
77	78	82	86	90	94	98
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
0.165± 0.057	0.168± 0.048	0.154± 0.024	0.157± 0.024	0.152± 0.028	0.160± 0.031	0.162± 0.033
0.299± 0.033	0.314± 0.075	0.292± 0.040	0.292± 0.037	0.304± 0.081	0.317± 0.070	0.316± 0.095
0.771± 0.215	0.798± 0.228	0.759± 0.226	0.745± 0.221	0.772± 0.255	0.782± 0.198	0.800± 0.276
	0.000± 0.000 0.165± 0.057 0.299± 0.033	77 78 0.000± 0.000 0.000± 0.000 0.165± 0.057 0.168± 0.048 0.299± 0.033 0.314± 0.075	77 78 82 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.165± 0.057 0.168± 0.048 0.154± 0.024 0.299± 0.033 0.314± 0.075 0.292± 0.040	77 78 82 86 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.165± 0.057 0.168± 0.048 0.154± 0.024 0.157± 0.024 0.299± 0.033 0.314± 0.075 0.292± 0.040 0.292± 0.037	77 78 82 86 90 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.165± 0.057 0.168± 0.048 0.154± 0.024 0.157± 0.024 0.152± 0.028 0.299± 0.033 0.314± 0.075 0.292± 0.040 0.292± 0.037 0.304± 0.081	77 78 82 86 90 94 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.165± 0.057 0.168± 0.048 0.154± 0.024 0.157± 0.024 0.152± 0.028 0.160± 0.031 0.299± 0.033 0.314± 0.075 0.292± 0.040 0.292± 0.037 0.304± 0.081 0.317± 0.070

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

UNIT : g/kg/day REPORT TYPE : Al 104

SEX : FEMALE

Group Name	Administration	
	102	104
Control	0.000 ± 0.000	0.000 ± 0.000
2500ppm	0.168± 0.041	0.174± 0.040
5000ppm	0.328 ± 0.090	0.332± 0.093
10000ррш	0.801 ± 0.329	0.786± 0.213
	·	
AN300)		

APPENDIX G 1

HEMATOLOGY: MALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

oup Name	NO. of Animals	RED BLO 1 O⁵∕µ	OD CELL	HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f l		MCH pg		MCHC g/dl		PLATELE 1 0³/µ	
Control	36	8.40±	1.74	14.3±	3. 0	41.8±	7. 4	50.6±	7.3	17.1±	2. 5	33.9±	2. 3	807 <u>±</u>	368
2500ppm	37	8.39±	0.93	13.5±	2. 1	40.2±	4.9	47.9±	3. 2	16.1±	1. 7*	33.6±	1.8	877±	289
5000ppm	44	8.04±	1.51	13.3±	2.7	39.7±	6.6	50.0±	5.8	16.6±	1.8	33.2±	1.9	883±	300
10000ppm	39	7.93±	1.47	13.2±	2. 5	39.4±	6. 4	50.2±	4. 7	16.8±	1.8	33.5±	1.6	835±	280

(HCL070)

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME : 1 SEX : MALE

REPORT TYPE : AI

PAGE: 2

up Name	NO. of Animals	RETICUL %	OCYTE	
Control	36	4.6±	6. 5	
2500ррт	37	3.8±	2. 0	
5000ppm	44	5.2±	6. 5	
mqq00001	39	5.3±	4. 3	

(HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

оир Мавне	NO. of Animals	₩BC 1 0³/		Dif N-BAND	ferentia	L WBC (9 N-SEG	6)	BOSINO		BAS0		MONO		LYMPHO		OTHER	
Control	36	6.65±	8. 56	1±	1	44±	11	1±	1	0±	0	4±	2	45±	10	1 <u>+</u>	14
2500ppm	37	5.51±	4. 77	0±	1	44±	11	Ι±	1	0±	0	4±	1	48±	10	2±	3
5000ppm	44	12. 12±	45. 71	· 1±	ı	47±	13	±1	1	0±	0	4±	2	41±	13	6 ±	19
10000ppm	39	5. 19±	1.71	Ι±	1	46±	9	1±	1	0±	0	$5\pm$	1	45±	8	2±	4

APPENDIX G 2

HEMATOLOGY: FEMALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

STUDY NO. : 0497
ANIMAL : RAT F344/DuCr1Cr1;[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

ip Name	NO. of Animals	RED BLO	rl DOD CELL	HEMOGLO g/dl	BIN	HEMATOC %	RIT	MCV f £		MCH pg		MCHC g/dl		PLATELE 1 O³/µ	
Control	38	7.76±	1. 50	14.0±	3. 0	40.3±	6.8	52.5±	5. 2	17.9±	1.8	34.3±	3.0	626±	200
2500ppm	39	7.93±	1.72	14.4±	2.8	41.4±	7. 4	54.5±	11.5	18.7±	2.8	34.6±	1.6	584±	124
5000ppm	38	7.68±	1. 53	14.1±	2. 4	40.7±	6. 2	54.6±	9.5	18.8±	2.3	34.6±	1.5	633±	180
10000ppm	41	7.90±	1. 38	14.6±	2. 1	42.4±	5.6	55.0±	8.5**	18.8±	1.7	34.3±	1.6**	610±	116

(HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

SEX : FEMALE	REPORT 1	TYPE : A1		PAGE: 5
Group Name	NO. of Animals	RETICULOCYTE %		
Control	38	6.1± 10.4		
2500ppm	39	4.4± 6.8		
5000ppm	38	4.9± 6.7		
10000ppm	41	4.5± 9.4		
Significant	difference ;	*: P ≤ 0.05	Test of Dunnett	
(HCL070)				BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

p Name	NO. of Animals	WBC 1 O³/µl	Di: N-BAND	fferentia	1 WBC (% N-SEG	6)	EOSINO		BASO		MONO		LYMPIIO		OTHER	
Control	38	3. 40 ± 2. 38	1±	1	41±	14	2±	2	0±	0	4生	2	50±	13	3±	1
2500ppm	39	4.58± 6.86	0±	1	37±	12	ί±	1	0±	0	4±	2	52±	15	5±	1
5000ppm	38	5.54± 9.91	1±	1	39±	12	2±	1	0±	0	4±	2	49±	15	6±	2
10000ppm	41	5.03± 11.22	Ι±	Ĺ	41±	11	2±	1	0±	0	5±	2	48±	13	5±	ı

APPENDIX H 1

BIOCHEMISTRY: MALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

np Name	NO. of Animals	TOTAL P g/dl	ROTEIN	albumin g/dl		A/G RAT	10	T-BILII mg/dl		GLUCOSE mg/dl		T-CHOLE: mg/dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	36	6.8±	0. 4	3.1±	0.2	0.8±	0.1	0.22±	0. 25	156生	23	189生	53	103生	70
2500ppm	37	6.7±	0.3	3.0±	0.3	0.8±	0. 1	0.17±	0.04	151±	15	175±	66	103±	125
5000ppm	44	6.7±	0.4	3.0±	0.2	0.8±	0. 1	0.19±	0.13	149±	24	175±	57	101±	68
10000ppm	39	6.6±	0.3*	3.0±	0.3	0.8±	0. 1	0.25±	0.37	146±	20	167±	47	94±	69

(HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2

up Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST IU/1	!	ALT IU/1	! 	LDH IU/1		ALP IU/I	2	G-GTP IU/1		CK IU/2	
Control	36	260±	71	102土	85	43±	16	168±	44	231±	101	7±	3	114±	54
2500ррт	37	244土	87	99±	28	47±	13	173±	44	259±	112	8±	6	103±	18
5000ppm	44	248±	87	117±	93	47±	22	189±	90	265±	126	8±	10	112±	33
10000ppm	39	235±	54	148±	175**	65±	51**	178±	63	271±	96	8±	4	106±	25

BAIS 4 (HCL074)

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME : 1
SEX : MALE REPORT TYPE : A1

REPORT TYPE : A1

PAGE: 3

oup Name	NO. of Animals	UREA NI mg/dl	TROGEN	CREATIN mg/dl	INE	sodium m Eq / l		POTASSI mEq/		CILORIDE m Eq / L		CALCIUM mg/dl		INORGAN mg/dl	IC PHOSPHORU
Control	36	17.8±	2. 1	0.6±	0.1	142±	1	3.7±	0.3	105±	2	10.5生	0.3	4.1±	0.6
2500ppm	37	18.8±	3. 8	0.6±	0. 1	142士	1	3.7±	0.3	105±	2	10.5±	0.4	4. l±	0.7
5000ppm	44	19.1±	5. 3	0.6±	0.1	142±	1	3.8±	0.5	105±	2	10.4±	0.4	4.1±	0.8
10000ppm	39	18.9±	3. 5	0.5±	0.1*	142±	2	3.7±	0.3	105±	1	10.3±	0.3	4.0±	0.6

(HCL074)

APPENDIX H 2

BIOCHEMISTRY: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME : 1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

up Name	NO. of Animals	TOTAL F g/dl		ALBUMIN g/dl		A/G RAT	10	T-BILI) ng/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	39	6.8±	0.6	3.5±	0.4	1.1±	0. 1	0.17±	0. 15	147±	19	125±	24	71士	65
2500ppm	39	7.0±	0.5	3.6±	0.4	1.1±	0.1	0.18±	0.17	146±	17	126±	27	57±	49
5000ppm	38	7.0±	0.5	3.6±	0.3	1.1±	0.1	0.39±	1. 47	144土	17	128±	26	52±	38
10000ppm	41	7.0±	0.4	3.6±	0.3	1.1±	0. 1	0.21±	0.48**	148±	12	120±	19	40±	31**

(HCL074)

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

up Name	NO. of Animals	PHOSPHOI mg/dl	LIPID	AST I U/s	2	ALT I U/l		LDH IU/	£	ALP IU/s	2	G-GTP I U/l		CK IU/J	2
Control	39	219土	38	150±	92	57±	26	241±	133	160±	124	2±	1	112±	134
2500ppm	39	221±	50	159±	142	62±	28	265±	229	151±	88	2±	1	93±	30
5000ppm	38	223±	50	189±	215	76±	53	273±	238	180±	119	3±	2	102±	48
10000ppm	41	210±	36	164±	230	71±	69	546±	1992	155±	71	2±	2	94±	54

(HCL074) BAIS 4

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1

PAGE: 6

oup Name	NO. of Animals	UREA NI mg/dl	TROGEN	CREATIN mg/dl	INE	sodium m Eq / l		POTASSI m Eq /		chloride m Eq / l		CALCIUM mg/dl		INORGAN mg/dl	IC PHOSPHORU
Control	39	17.4±	3. 4	0.5±	0.0	142±	2	3.6±	0.4	104±	2	10.4±	0.5	4. 1 ±	0.8
2500ppm	39	17.5±	3. 5	0.5±	0.1	141±	1	3.5±	0.5	103±	2	10.4±	0.4	3.7±	0.7
5000рри	38	17.4±	2. 3	0.5±	0.0	142±	1	3.6±	0.4	103±	2	10.5±	0.4	4.0±	0.9
10000ppm	41	18.8±	3. 4*	0.5±	0.0	142±	2	3.6±	0.4	103±	2	10.5±	0.4	4.1±	0.8

(HCL074)

APPENDIX I 1

URINALYSIS: MALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : AI

PAGE: 1

p Name	NO. of	pH_							Protein	n			Glu	icos	e			Ket	one l	ody			Bili	rubin		
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5 CHI	- ±	+ 2	+ 3+	4+ CH	I –	±	+ 2	+ 3+	4+ CHI	_	± +	2+	3+ 4	+ CHI		- 2+	3+	CIII
Control	36	0	1	1	9	20	5	0	0 0	0	2 25	9	36	0	0	0 0	0	32	4 (0 0	0	0	35	1 0	0	
2500ррт	38	0	1	3	8	23	2	1	0 0	1	0 26	11	38	0	0	0 0	0	33	4 (0	0	i	37	1 0	0	
5000ppm	45	0	2	4	10	21	7	1	0 0	1	2 33	9	45	0	0	0 0	0	41	4	0	0	0	45	0 0	0	
10000ppm	40	0	5	4	7	19	5	0	0 0	0	4 30	6	40	0	0	0 0	0	35	5 1	0	0	0	37	2 0	1	

(HCL101)

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CIII		
Control	36	35 1 0 0 0	36 0 0 0 0		
2500ppm	38	35 1 2 0 0	38 0 0 0 0		
5000ppm	45	39 4 0 2 0	45 0 0 0 0		
10000ррв	40	36 0 1 0 3	39 1 0 0 0		
Significant	difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(HCL101)	<u> </u>				BAIS 4

APPENDIX I 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : AI

PAGE: 3

roup Name	NO. of	llq	llq							Protein Glucose				Ketone body	Bilirubin			
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	- ± + 2+ 3+ 4+ (CHI	- ± + 2+ 3+ 4+	CHI	- ± + 2+ 3+ 4+ CIII	- + 2+ 3+ CIII			
Control	39	0	1	3	1	8	23	3		0 0 8 12 11 8		39 0 0 0 0 0	ı	5 34 0 0 0 0	38 1 0 0			
2500ррт	41	0	1	3	5	6	21	5		0 2 5 14 16 4		41 0 0 0 0 0	3	10 30 1 0 0 0	38 2 0 1			
5000ppm	38	0	0	4	3	10	16	5		0 2 10 12 10 4		38 0 0 0 0 0)	8 29 1 0 0 0	36 1 0 1			
10000ppm	42	0	1	12	12	6	10	i	**	0 5 14 14 9 0	**	42 0 0 0 0 0)	22 20 0 0 0 0 **	40 0 1 1			

(HCL101)

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX: FEMALE

REPORT TYPE : A1

PAGE: 4 Group Name NO. of Occult blood Urobilinogen Animals - ± + 2+ 3+ CHI ± + 2+ 3+ 4+ CHI 39 0 0 0 0 Control 39 35 1 1 1 1 2500ppm 41 39 1 0 0 1 39 2 0 0 0 5000ppm 38 36 0 1 0 1 38 0 0 0 0 10000ppm 42 39 0 1 0 2 40 0 1 1 0 Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of CHI SQUARE

(HCL101)

APPENDIX J 1

GROSS FINDINGS: MALE

ALL ANIMALS

: 0497

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

rgan	Findings	Group Name NO. of Animals	50	Control (%)	50	2500ppm (%)	50	5000ppm (%)	50	10000ppm (%)
kin/app	nodule		3	(6)	2	(4)	6	(12)	1	(2)
	scab		0	(0)	0	(0)	1	(2)	0	(0)
ubcutis	jaundice		0	(0)	0	(0)	0	(0)	1	(2)
	mass		5	(10)	9	(18)	4	(8)	6	(12)
ung	white zone		1	(2)	1	(2)	2	(4)	1	(2)
	red zone		1	(2)	2	(4)	3	(6)	0	(0)
	nodule		1	(2)	1	(2)	2	(4)	0	(0)
ymph node	enlarged		1	(2)	2	(4)	5	(10)	2	(4)
pleen	enlarged		4	(8)	4	(8)	4	(8)	4	(8)
	white zone		1	(2)	2	(4)	0	(0)	0	(0)
	black zone		1	(2)	0	(0)	0	(0)	0	(0)
	nodule		0	(0)	2	(4)	0	(0)	0	(0)
	deformed		0	(0)	0	(0)	0	(0)	1	(2)
eart	white zone		2	(4)	1	(2)	1	(2)	1	(2)
	hypertrophy		0	(0)	0	(0)	1	(2)	0	(0)
	dilated		0	(0)	0	(0)	0	(0)	1	(2)
	fluid		1	(2)	0	(0)	0	(0)	0	(0)
alivary gl	enlarged		1	(2)	0	(0)	0	(0)	0	(0)
orestomach	ulcer	-	1	(2)	1	(2)	1	(2)	0	(0)
l stomach	ulcer		0	(0)	1	(2)	0	(0)	0	(0)
mall intes	nodule		1	(2)	3	(6)	1	(2)	0	(0)
	diverticula		0	(0)	0	(0)	1	(2)	0	(0)

STUDY NO. : 0497 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	2500ppm 50 (%)	5000ppm 50 (%)	10000ppm 50 (%)
iver	enlarged	2 (4)	0 (0)	0 (0)	0 (0)
	pale	0 (0)	1 (2)	1 (2)	0 (0)
	white zone	0 (0)	2 (4)	0 (0)	1 (2)
	red zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodule	3 (6)	2 (4)	1 (2)	3 (6)
	rough	1 (2)	1 (2)	1 (2)	1 (2)
	granular	0 (0)	0 (0)	1 (2)	1 (2)
	herniation	8 (16)	2 (4)	6 (12)	9 (18)
idney	dark	0 (0)	0 (0)	0 (0)	1 (2)
	white zone	0 (0)	1 (2)	0 (0)	1 (2)
	nodule	1 (2)	2 (4)	0 (0)	0 (0)
•	granular	11 (22)	14 (28)	16 (32)	15 (30)
urin bladd	nodule	i (2)	1 (2)	0 (0)	0 (0)
	urine:marked retention	3 (6)	1 (2)	0 (0)	1 (2)
	urine:red	0 (0)	0 (0)	0 (0)	2 (4)
pituitary	enlarged	6 (12)	8 (16)	8 (16)	3 (6)
	red zone	4 (8)	6 (12)	5 (10)	2 (4)
	nodule	5 (10)	3 (6)	2 (4)	6 (12)
	cyst	1 (2)	0 (0)	0 (0)	1 (2)
hyroid	enlarged	2 (4)	3 (6)	3 (6)	5 (10)
	red	0 (0)	0 (0)	0 (0)	1 (2)
	nodule	1 (2)	1 (2)	3 (6)	2 (4)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE

rgan	Findings	Group Name NO. of Animals	50 (%	Control 6) 50) :	2500ppm (%)	50	5000ppm (%)	50	10000ppm (%)
					•					
Irenal	enlarged		0 (0) 1	l	(2)	2	(4)	1	(2)
	cyst		0 (0) 0)	(0)	0	(0)	1	(2)
estis	atrophic		1 (2) 0)	(0)	0	(0)	0	(0)
	nodule		30 (60) 31	ı	(62)	37	(74)	35	(70)
rostate	nodule		0 (0) 1	l	(2)	0	(0)	0	(0)
rep/cli gl	nodule		2 (4) 0)	(0)	0	(0)	1	(2)
rain	red zone		0 (0) 1	1	(2)	0	(0)	0	(0)
	brown zone		1 (2) 0	0	(0)	0	(0)	0	(0)
	deformed		0 (0)	0	(0)	1	(2)	0	(0)
pinal cord	red zone		1 (2) 1	1	(2)	0	(0)	0	(0)
ye	turbid		1 (2)	0	(0)	1	(2)	0	(0)
	white		8 (16)	4	(8)	1	(8)	i	(2)
	red		2 (4)	0	(0)	0	(0)	0	(0)
arder gl	nodule		1 (2)	0	(0)	0	(0)	0	(0)
ymbal gl	nodule		1 (2)	0	(0)	0	(0)	0	(0)
one	nodule		0 (0)	0	(0)	2	(4)	0	(0)
leura	nodule		1 (2)	0	(0)	0	(0)	0	(0)
ediastinum	nodule		I (2)	0	(0)	0	(0)	0	(0)
eritoneum	nodule		1 (2)	2	(4)	3	(6)	1	(2)
bdominal c	hemorrhage		1 (2)	1	(2)	0	(0)	0	(0)
	ascites		0 (0)	0	(0)	1	(2)	1	(2)
noracic ca	pleural fluid		. 0 (0)	1	(2)	1	(2)	0	(0)

GROSS FINDINGS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name NO. of Animals 50	Control (%)	2500ppm 50 (%)	5000ppm 50 (%)	50	10000ppn (%)
other	upper jaw:nodule	1	(2)	0 (0)	0 (0)	0	(0)
	nose:nodule	ı	(2)	0 (0)	0 (0)	0	(0)
	tail:scab	0	(0)	0 (0)	1 (2)	0	(0)
hole body	anemic	0	(0)	0 (0)	2 (4)	0	(0)

APPENDIX J 2

GROSS FINDINGS : MALE

DEAD AND MORIBUND ANIMALS

: RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1 SEX : MALE

gan	Findings	Group Name (NO. of Animals 14 (%	Control 6) 13	2500ppm (%) 5	5000ppm (%) 10	10000ppm (%)
cin/app	nodule	0 (0) 1	(8) 1	(20)	(10)
bcutis	jaundice	0 (0) 0	(0) 0	(0)	(10)
	mass	2 (14) 6	(46) 0	(0)	2 (20)
ing	red zone	0 (0) 1	(8) 1	(20)	(0)
	nodule	1 (7) 1	(8) 0	(0)	(0)
mph node	enlarged	1 (7) 1	(8) 0	(0)	(0)
oleen	enlarged	2 (14) 3	(23) 0	(0)	2 (20)
	black zone	1 (7) 0	(0) 0	(0)	(0)
	nodule	0 (0) 2	(15) 0	(0)	(0)
art	white zone	1 (7) 0	(0) 0	(0)	1 (10)
	hypertrophy	0 (0) 0	(0) 1	(20)	(0)
	fluid	1 (7) 0	(0) 0	(0)	(0)
divary gl	enlarged	1 (7) 0	(0) 0	(0)	(0)
restomach	ulcer	0 (0) 1	(8) 1	(20)	(0)
stomach	ulcer	0 (0) 1	(8) 0	(0)) (0)
mall intes	${\tt nodule}$	0 (0) 1	(8)	(0)	(0)
iver	enlarged	1 (7) 0	(0)	(0)	0)
	pale	0 (0) 1	(8)	(0)	(0)
	white zone	0 (0) 1	(8)	(0)	1 (10)
	nodule	1 (7) 1	(8) 0	(0)	(0)
	granular	0 (0) 0	(0)	(0)	1 (10)
	herniation	1 (7) 2	(15)	. (20)	2 (20)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

gan	Findings_	Group Name NO. of Animals 1-	Control 4 (%)	2500ppm 13 (%)	5000ppm 5 (%)	1000 10 (%)	mqq00
dney	dark		0 (0)	0 (0)	0 (0)	1 (10))
	nodule	1	0 (0)	1 (8)	0 (0)	0 (0))
	granular		1 (7)	2 (15)	1 (20)	1 (10))
in bladd	nodule		1 (7)	0 (0)	0 (0)	0 (0)	,
	urine:marked retention	:	3 (21)	1 (8)	0, (0)	1 (10)	ı
	urine:red	1	0 (0)	0 (0)	0 (0)	2 (20)	į
tuitary	enlarged	:	3 (21)	4 (31)	1 (20)	2 (20)	;
	red zone	1	0 (0)	2 (15)	0 (0)	1 (10)	,
	nodule		1 (7)	2 (15)	0 (0)	3 (30)	,
yroid	enlarged	1	0 (0)	1 (8)	0 (0)	0 (0))
	nodule	:	0 (0)	0 (0)	0 (0)	1 (10))
lrenal	enlarged	:	0 (0)	0 (0)	1 (20)	0 (0))
estis	atrophic		1 (7)	0 (0)	0 (0)	0 (0))
	nodule		4 (29)	2 (15)	2 (40)	3 (30))
rep/cli gl	nodule		1 (7)	0 (0)	0 (0)	0 (0))
ain	red zone		0 (0)	1 (8)	0 (0)	0 (0))
	brown zone		1 (7)	0 (0)	0 (0)	0 (0))
	deformed		0 (0)	0 (0)	1 (20)	0 (0))
inal cord	red zone		1 (7)	1 (8)	0 (0)	0 (0))
е	turbid		1 (7)	0 (0)	0 (0)	0 (0))
	white		1 (7)	0 (0)	0 (0)	1 (10))
	red		2 (14)	0 (0)	0 (0)	0 (0))

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name NO. of Animals 14 (Control %) 13	2500ppm (%)	5000ppm 5 (%) 1	10000pm 0 (%)
llarder gl	nodule	1 (7) 0	(0)	0 (0)	0 (0)
Zymbal gl	nodule	1 ((0)	0 (0)	0 (0)
pleura	nodule .	1 (7) 0	(0)	0 (0)	0 (0)
mediastinum	nodule	1 (7) 0	(0)	0 (0)	0 (0)
peritoneum	nodule	1 (7) 1	(8)	1 (20)	0 (0)
abdominal c	hemorrhage	1 (7) 1	(8)	0 (0)	0 (0)
thoracic ca	pleural fluid	0 ((0) 1	(8)	1 (20)	0 (0)
other	nose:nodule	1 (0	(0)	0 (0)	0 (0)
	tail:scab	0 ((0) 0	(0)	1 (20)	0 (0)
whole body	anemic	. 0 ((0) 0	(0)	2 (40)	0 (0)

(HPT080)

BAIS 4

APPENDIX J 3

GROSS FINDINGS: MALE

SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

rgan	Findings	Group Name NO. of Animals	36 (9	Control 6) :	37	2500ppm (%)	45 ——	5000ppm (%)	40	10000ppm (%)
kin/app	nodule		3 (8)	1	(3)	5	(11)	0	(0)
	scab		0 (0)	0	(0)	1	(2)	0	(0)
ubcutis	mass		3 (8)	3	(8)	4	(9)	4	(10)
ing	white zone		1 (3)	1	(3)	2	(4)	1	(3)
	red zone		1 (3)	1	(3)	2	(4)	0	(0)
	nodule		0 (0)	0	(0)	2	(4)	0	(0)
ymph node	enlarged		0 (0)	1	(3)	5	(11)	2	(5)
pleen	enlarged		2 (6)	1	(3)	4	(9)	2	(5)
	white zone		1 (3)	2	(5)	0	(0)	0	(0)
	deformed		0 (0)	0	(0)	0	(0)	1	(3)
eart	white zone		1 (3)	1	(3)	1	(2)	0	(0)
	dilated		0 (0)	0	(0)	0	(0)	1	(3)
orestomach	ulcer		1 (3)	0	(0)	0	(0)	0	(0)
mall intes	nodule		1 (3)	2	(5)	1	(2)	0	(0)
	diverticula		0 (0)	0	(0)	1	(2)	0	(0)
iver	enlarged		1 (3)	0	(0)	0	(0)	0	(0)
	pale	,	0 (0)	0	(0)	1	(2)	0	(0)
	White zone		0 (0)	1	(3)	0	(0)	0	(0)
	red zone		0 (0)	0	(0)	1	(2)	0	(0)
	nodule		2 (6)	1	(3)	1	(2)	3	(8)
	rough		1 (3)	1	(3)	1	(2)	1	(3)
	granular		0 (0)	0	(0)	1	(2)	0	(0)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

GROSS FINDINGS (SUMMARY)
SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE.

gan	Findings	Group Name NO. of Animals	36	Control (%)	37	2500ppm (%)	45	5000ppm (%)	40	10000ppm (%)
ver	herniation		7	(19)	0	(0)	5	(11)	7	(18)
dney	white zone		0	(0)	1	(3)	0	(0)	1	(3)
	nodule		1	(3)	1	(3)	0	(0)	0	(0)
	granular		10	(28)	12	(32)	15	(33)	14	(35)
in bladd	nodule		0	(0)	1	(3)	0	(0)	0	(0)
tuitary	enlarged		3	(8)	4	(11)	7	(16)	1	(3)
	red zone		4	(11)	4	(11)	5	(11)	1	(3)
	nodule		4	(11)	1	(3)	2	(4)	3	(8)
	cyst		1	(3)	0	(0)	0	(0)	1	(3)
yroid	enlarged		2	(6)	2	(5)	3	(7)	5	(13)
	red		0	(0)	0	(0)	0	(0)	1	(3)
	noduIe		1	(3)	1	(3)	3	(7)	1	(3)
renal	enlarged		0	(0)	1	(3)	1	(2)	1	(3)
	cyst		0	(0)	0	(0)	0	(0)	1	(3)
stis	nodule		26	(72)	29	(78)	35	(78)	32	(80)
ostate	nodule		0	(0)	1	(3)	0	(0)	0	(0)
ep/cli gl	nodule		1	(3)	0	(0)	0	(0)	1	(3)
e	turbid		0	(0)	0	(0)	1	(2)	0	(0)
	white		7	(19)	4	(11)	4	(9)	0	(0)
ne	nodule		0	(0)	0	(0)	2	(4)	0	(0)
ritoneum	nodule	•	0	(0)	1	(3)	2	(4)	1	(3)
dominal c	ascites		0	(0)	0	(0)	1	(2)	i	(3)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

Control 2500ppm 5000ppm 10000ppm

Group Name NO. of Animals Organ____ Findings__ 36 (%) 37 (%) 45 (%) 40 (%) other upper jaw:nodule 1 (3) 0 (0) 0 (0) 0 (0) (HPT080) BAIS 4

APPENDIX J 4

GROSS FINDINGS : FEMALE

ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	2500ppm 50 (%)	5000ppm 50 (%)	10000ppm 50 (%)
kin/app	nodule	3 (6)	1 (2)	4 (8)	1 (2)
	scab	1 (2)	1 (2)	1 (2)	0 (0)
ıbcutis	edema	0 (0)	1 (2)	0 (0)	0 (0)
	jaundice	0 (0)	1 (2)	1 (2)	1 (2)
	mass	5 (10)	4 (8)	8 (16)	3 (6)
nıg	White zone	0 (0)	2 (4)	2 (4)	1 (2)
	edema	1 (2)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	1 (2)	1 (2)	1 (2)
mph node	enlarged	1 (2)	1 (2)	0 (0)	0 (0)
leen	enlarged	7 (14)	7 (14)	6 (12)	3 (6)
	nodule	0 (0)	0 (0)	1 (2)	0 (0)
ongue	nodule	0 (0)	0 (0)	0 (0)	1 (2)
orestomach	ulcer	1 (2)	1 (2)	0 (0)	0 (0)
	erosion	0 (0)	1 (2)	0 (0)	0 (0)
l stomach	erosion	0 (0)	0 (0)	1 (2)	0 (0)
ecum	nodule	0 (0)	1 (2)	0 (0)	0 (0)
iver	White zone	0 (0)	3 (6)	5 (10)	2 (4)
	red zone	2 (4)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	3 (6)	1 (2)	1 (2)
	deformed	0 (0)	0 (0)	1 (2)	0 (0)
	rough	2 (4)	1 (2)	3 (6)	2 (4)
	nodular	0 (0)	1 (2)	0 (0)	1 (2)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name NO. of Animals	50	Control (%)	50	2500ppm (%)	50	5000ppm (%)	50	10000ppm (%)
iver	herniation		12	(24)	11	(22)	7	(14)	10	(20)
ancreas	nodule		0	(0)	1	(2)	0	(0)	0	(0)
idney	deformed		0	(0)	1	(2)	0	(0)	0	(0)
	granular		2	(4)	0	(0)	1	(2)	2	(4)
	hydronephrosis		0	(0)	0	(0)	0	(0)	1	(2)
rin bladd	nodule		0	(0)	1	(2)	0	(0)	0	(0)
	urine:marked retention		i	(2)	0	(0)	1	(2)	3	(6)
ituitary	enlarged		9	(18)	8	(16)	4	(8)	3	(6)
	red zone		8	(16)	10	(20)	12	(24)	15	(30)
	black zone		1	(2)	1	(2)	0	(0)	2	(4)
	nodule		0	(0)	4	(8)	8	(16)	3	(6)
	cyst		1	(2)	0	(0)	0	(0)	0	(0)
hyroid	enlarged		1	(2)	1	(2)	0	(0)	1	(2)
	red zone		1	(2)	0	(0)	0	(0)	0	(0)
	nodule		1	(2)	2	(4)	0	(0)	0	(0)
drenal	enlarged		0	(0)	1	(2)	1	(2)	0	(0)
vary	enlarged		0	(0)	0	(0)	1	(2)	1	(2)
	cyst		0	(0)	0	(0)	1	(2)	0	(0)
terus	nodule		5	(10)	8	(16)	9	(18)	11	(22)
	cyst		0	(0)	0	(0)	1	(2)	0	(0)
agina	nodule		1	(2)	0	(0)	0	(0)	0	(0)
cep/cli gl	nodule		1	(2)	1	(2)	1	(2)	0	(0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 7

lrgan	Findings	Group Name Control NO. of Animals 50 (%)	2500ppm 50 (%)	5000ppm 50 (%)	50	10000ppm (%)
rain	enlarged	1 (2)	0 (0)	0 (0)	0	(0)
	red zone	1 (2)	1 (2)	1 (2)	0	(0)
	brown zone	1 (2)	0 (0)	0 (0)	0	(0)
ye	turbid	0 (0)	2 (4)	0 (0)	0	(0)
	white	2 (4)	2 (4)	4 (8)	4	(8)
uscle	nodule	2 (4)	1 (2)	0 (0)	0	(0)
one	nodule	0 (0)	0 (0)	1 (2)	0	(0)
eritoneum	nodule	0 (0)	1 (2)	0 (0)	0	(0)
	mass	0 (0)	0 (0)	1 (2)	0	(0)
etroperit	mass	1 (2)	1 (2)	0 (0)	0	(0)
bdominal c	hemorrhage	1 (2)	0 (0)	0 (0)	0	(0)
	ascites	1 (2)	1 (2)	0 (0)	0	(0)
lioracic ca	pleural fluid	0 (0)	0 (0)	1 (2)	1	(2)
hole body	anemic	0 (0)	0 (0)	0 (0)	2	(4)

(IIPT080)

BAIS 4

APPENDIX J 5

GROSS FINDINGS : FEMALE

DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

DEAD AND MORIBUND ANIMALS (0-105W)

GROSS FINDINGS (SUMMARY)

REPORT TYPE : A1

: FEMALE

rgan	Findings	Group Name NO. of Animals	11	Control (%)	10	2500ppm (%)	12	5000ppm (%)	9	10000ppm (%)
kin/app	scab		0	(0)	1	(10)	0	(0)	0	(0)
ubcutis	edema		0	(0)	1	(10)	0	(0)	0	(0)
	jaundice		0	(0)	1	(10)	0	(0)	1	(11)
	mass		2	(18)	1	(10)	1	(8)	1	(11)
ung	edema		1	(9)	C	(0)	0	(0)	0	(0)
	nodule		0	(0)	C	(0)	1	(8)	0	(0)
ymph node	enlarged		1	(9)	c	(0)	0	(0)	0	(0)
spleen	enlarged		2	(18)	4	(40)	4	(33)	1	(11)
Corestomach	erosion		0	(0)	1	(10)	0	(0)	0	(0)
l stomach	erosion		0	(0)	C	(0)	1	(8)	0	(0)
iver	white zone		0	(0)	C	(0)	1	(8)	0	(0)
	nodule		0	(0)	ī	(10)	1	(8)	0	(0)
	rough		1	(9)]	(10)	2	(17)	2	(22)
	herniation		3	(27)	2	(20)	1	(8)	1	(11)
pancreas	nodule		0	(0)	1	(10)	0	(0)	0	(0)
idney	hydronephrosis		0	(0)	((0)	0	(0)	1	(11)
ırin bladd	urine:marked retention		1	(9)	((0)	i	(8)	3	(33)
oituitary	etilarged		1	(9)	5	(20)	3	(25)	2	(22)
	red zone		0	(0)	2	(20)	2	(17)	0	(0)
	black zone		1	(9)	1	(10)	0	(0)	2	(22)
	nodule		0	(0)	((0)	2	(17)	0	(0)
ovary	enlarged		0	(0)	((0)	1	. (8)	0	(0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name Control NO. of Animals 11 (%)	2500ppm 10 (%)	5000ppm 12 (%)	10000ppm 9 (%)
terus	nodule	1 (9)	4 (40)	3 (25)	4 (44)
agina	nodule	1 (9)	0 (0)	0 (0)	0 (0)
rain	enlarged	1 (9)	0 (0)	0 (0)	0 (0)
	red zone	1 (9)	1 (10)	1 (8)	0 (0)
	brown zone	1 (9)	0 (0)	0 (0)	0 (0)
у́е	turbid	0 (0)	1 (10)	0 (0)	0 (0)
	white	0 (0)	0 (0)	0 (0)	2 (22)
ıscle	nodule	0 (0)	1 (10)	0 (0)	0 (0)
ne	nodule	0 (0)	0 (0)	1 (8)	0 (0)
eritoneum	nodule	0 (0)	1 (10)	0 (0)	0 (0)
	mass	0 (0)	0 (0)	1 (8)	0 (0)
etroperit	mass	1 (9)	1 (10)	0 (0)	0 (0)
dominal c	hemorrhage	1 (9)	0 (0)	0 (0)	0 (0)
	ascites	1 (9)	1 (10)	0 (0)	0 (0)
noracic ca	pleural fluid	0 (0)	0 (0)	1 (8)	0 (0)
nole body	anemic	0 (0)	0 (0)	0 (0)	1 (11)

APPENDIX J 6

GROSS FINDINGS : FEMALE

SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

rgan	Findings	Group Name NO. of Animals 39	9 (Control %) 4	10	2500ppm (%)	38	5000ppm (%)	41	10000ppm (%)
kin/app	nodule		3 (8)	1	(3)	4	(11)	1	(2)
•	scab		1 (3)	0	(0)	1	(3)	0	(0)
ubcutis	jaundice	ı	0 (0)	0	(0)	1	(3)	0	(0)
	mass	:	3 (8)	3	(8)	7	(18)	2	(5)
ung	white zone		0 (0)	2	(5)	2	(5)	1	(2)
	nodule		0 (0)	1	(3)	0	(0)	1	(2)
ymph node	enlarged		0 (0)	1	(3)	0	(0)	0	(0)
pleen	enlarged		5 (13)	3	(8)	2	(5)	2	(5)
	nodule		0 (0)	0	(0)	i	(3)	0	(0)
ongue	nodule		0 (0)	0	(0)	0	(0)	1	(2)
orestomach	ulcer		1 (3)	1	(3)	0	(0)	0	(0)
ecum	nodule		0 (0)	1	(3)	0	(0)	0	(0)
iver	white zone		0 (0)	3	(8)	4	(11)	2	(5)
	red zone		2 (5)	0	(0)	0	(0)	0	(0)
	nodule		0 (0)	2	(5)	0	(0)	1	(2)
	deformed		0 (0)	0	(0)	1	(3)	0	(0)
	rough		1 (3)	0	(0)	1	(3)	0	(0)
	nodular		0 (0)	1	(3)	0	(0)	1	(2)
	herniation		9 (23)	9	(23)	6	(16)	9	(22)
idney	deformed		0 ((0)	1	(3)	0	(0)	0	(0)
	granular		2 (5)	0	(0)	1	(3)	2	(5)
rin bladd	nodule		0 ((0)	1	(3)	0	(0)	0	(0)

ANIMAL : RAT F344/DuCr1Crlj[F344/DuCrj]

REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : FEMALE

Organ	Findings	Group Name NO. of Animals	39	Control (%)	40	2500ppm (%)	38	5000ppm (%)	41	10000ppm (%)
pituitary	enlarged		8	(21)	6	(15)	1	(3)	1	(2)
	red zone		8	(21)	8	(20)	10	(26)	15	(37)
	nodule		0	(0)	4	(10)	6	(16)	3	(7)
	cyst		1	(3)	0	(0)	0	(0)	0	(0)
thyroid	enlarged		1	(3)	1	(3)	0	(0)	1	(2)
	red zone		1	(3)	0	(0)	0	(0)	0	(0)
	nodule		1	(3)	2	(5)	0	(0)	0	(0)
drenal	enlarged		0	(0)	1	(3)	1	(3)	0	(0)
vary	enlarged		0	(0)	0	(0)	0	(0)	1	(2)
	cyst		0	(0)	0	(0)	1	(3)	0	(0)
iterus	nodule		4	(10)	4	(10)	6	(16)	7	(17)
	cyst		0	(0)	0	(0)	1	(3)	0	(0)
orep/cli gl	nodule		1	(3)	1	(3)	1	(3)	0	(0)
ye	turbid		0	(0)	1	(3)	0	(0)	0	(0)
	white		2	(5)	2	(5)	4	(11)	2	(5)
uscle	nodule		2	(5)	0	(0)	0	(0)	0	(0)
horacic ca	pleural fluid		0	(0)	0	(0)	0	(0)	1	(2)
hole body	anemic		0	(0)	0	(0)	0	(0)	1	(2)

APPENDIX K 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

ip Name	NO. of Animals	Body	Weight	ADRE	NALS	TEST	is 	HEAR	r 	LUNGS	3	KIDNI	sys
Control	36	390±	35	0.066生	0.009	2.770±	1. 193	1.215±	0. 102	1.356±	0. 191	2. 767±	0. 417
2500ppm	37	382±	28	0.081±	0. 054*	2.868±	1. 215	1.204±	0.099	1.331±	0. 101	2.789±	0. 334
5000ppm	44	378±	26	0.092±	0.116**	2.961±	1.300	1.214士	0. 104	1.450±	0.630	2.782±	0. 267
10000ppm	39	366±	30**	0.088±	0.121	2.866±	1. 140	1.166±	0.088	1.336±	0. 266	2.849±	0. 245

(HCLO40) BAIS 4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 2

oup Name	NO. of Animals	SPLI	CEN	LIV	ER	BRA:	
Control	36	1. 458±	2. 238	11.282±	3. 522	2.062±	047
2500ppm	37	1.044±	0.383	10.933±	1. 795	2.068±	048
5000ppm	44	1.448±	2. 178	11.105±	1. 940	2.059±	045
10000ppm	39	1.260±	1.329	10.328±	1. 241	2.063±	034

(IICL040)

BAIS 4

APPENDIX K 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

REPORT TYPE : SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

p Name	NO. of Animals	Body '	Weight	ADRE	NALS	OVAR	IES	HEAR	T	LUNGS	; 	KIDN	EYS	
Control	39	254土	39	0.075±	0.015	0.119±	0.025	0.895±	0.090	1.059±	0. 409	1.806±	0. 133	
2500ppm	40	241±	26	0.100±	0. 176	0.128±	0. 022	0.893±	0. 092	1.037±	0. 267	1.787±	0.134	
5000ppm	38	242±	29	0.076±	0.041	0.151±	0. 185	0.860±	0.085	1.005±	0. 161	1.809±	0.148	
10000ppm	41	227±	21**	0.067±	0.007*	0.142±	0.097	0.853±	0.071	0.952±	0. 153	1.891±	0.175*	

(IICL040)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1
SEX : FEMALE
UNIT: R

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

oup Name	NO. of Animals	SPLEEN		LIVE	R	BRA		
Control	39	1.148± 1.	790	6. 923±	1. 585	1.892±	048	
2500ppm	40	1.169± 2.	153	6.990±	1.885	1.891±	043	
5000ppm	38	1.031± 1.	507	6.772±	1. 367	1.881±	034	
10000ppm	41	0.810± 1.	199	6. 434生	0. 949	1.864±	.058	

(HCLU4U)

BAIS 4

APPENDIX L 1

ORGAN WEIGHT, RELATIVE : MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	Body Weig (g)		ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	36	390± 35	;	0.017± 0.003	0.713± 0.298	0.314± 0.033	0.350± 0.051	0.714± 0.114
2500ppm	37	382± 28	3	0.021± 0.013*	0.749± 0.303	0.316± 0.024	0.350± 0.037	0.734± 0.105
5000ppm	44	378± 26	i	0.024± 0.029**	0.784± 0.341	0.322± 0.036	0.388± 0.196	0.738± 0.086
10000ppm	39	366± 30) **	0.025± 0.035*	0.784± 0.310	0.319± 0.021	0.368± 0.089	0.783± 0.101*

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

Test of Dunnett

PAGE: 1

(IICL042) BAIS 4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

roup Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
· Control	36	0.381± 0.622	2.892± 0.792	0.533± 0.044	
2500ppm	37	0.275± 0.105	2.872± 0.472	0.544± 0.035	
5000ppm	44	0.390± 0.618	2.950± 0.576	0.547 ± 0.036	
10000ppm	39	0.349± 0.379	2.831 ± 0.377	0.567± 0.049≠≠	

(IICL042)

BAIS 4

APPENDIX L 2

ORGAN WEIGHT, RELATIVE : FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

o Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS	
Control	39	254土 39	0.030± 0.009	0.047± 0.008	0.359± 0.053	0.424± 0.156	0.726± 0.116	
2500ppm	40	241± 26	0.044± 0.083	0.054± 0.013*	0.376± 0.069	0.445± 0.197	0.751± 0.121	
5000ppm	38	242± 29	0.032± 0.018	0.063± 0.080	0.358± 0.037	0.421± 0.084	0.755± 0.088	
10000pm	41	227± 21**	0.030± 0.003	0.063± 0.043**	0.378± 0.034**	0.424± 0.092	0.839± 0.110≠*	

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE UNIT: %

PAGE: 4

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	39	0.463± 0.703	2.759± 0.590	0.762± 0.120	
2500ppm	40	0.570± 1.299	2.982± 1.310	0.793± 0.097	
5000ppm	38	0.432± 0.636	2.795± 0.420	0.789± 0.111	
10000ppm	41	0.374± 0.605	2.846± 0.426	0.829± 0.085*	
Significant	difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Test of Dunnett	
(101.040)					nivo.

(IICL042)

BAIS 4

APPENDIX M 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 50	2500րթա 50	5000րµm 50	10000ppm 50
Organ	Findings	Grade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
(Integumenta	ry system/appandage}				
skin/app	inflammation	(0) (0) (0) (0)	<pre></pre>	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	scab	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	epidermal cyst	0 1 0 0 (0) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)
ubcutis	hematoma	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Respiratory	system)				
asal cavit	thrombus	\(\frac{50}{1} \) \(1 \) \(0 \) \(0 \) \(2 \) \(0 \) \(0 \) \(0 \)	<50> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	mineralization	9 0 0 0 0 (18) (0) (0) (0)	10 0 0 0 0 (20) (0) (0)	10 0 0 0 (20) (0) (0) (0)	13 0 0 0 (26) (0) (0) (0)
Grade (a > b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1

SEX

: MALE

Organ		up Name of Animals on Study de 1 (%)	50 2	3 (%)	1 <u>4</u> (%)	1(%)	2 (%)	50 3		4 (%)	<u>1</u> (%)	50 2 (%)	3 (%)	9 (%)		1 (%)	2 (%)	50	3 (%)	n <u>4</u> (%)
{Respiratory	system)																				
nasal cavit	hyper plasia:cartilage	(0)	<50> 0 (0) (0	0 0)	0 (0)		(50> 0) (0	;	0 0)	0 (0) (<49 1 2) () 0 0)	0 (0)	(0	0		0 (0 0)
	eosinophilic change:olfactory epithelium	19 (38)	18 (36) (0 0) (0 (0)	20 (40)	15 (30)			0 0)	12 (24		25 51) (0 0)	0 (0)	(18 36)	24 (48		1 2) (0 0)
	eosinophilic change:respiratory epitheliu		0 (0) (0 0) (0 (0)	1 (2)	0 (0)			0 0)	2	:	0 0) (0 0)	0 (0)	(4 8)	0		0 0) (0 0)
	inflammation:foreign body	11 (22)	2 (4) (0	0 (0)	14 (28)	4 (8			0 0)	14 (29		6 12) (0 0)	0 (0)	(7 14)	4		0 (0 0)
	inflammation:respiratory epithelium	0 (0)	0 (0) (0	0 (0)	0 (0)	0 (0			0 0)	0		1 2) (0	0 (0)	(3 6)	0 (0		0 (0 0)
	respiratory metaplasia:olfactory epitheli		0 (0) (0	0 (0)	1 (2)	0 (0			0 0)	3		0	0 (0)	0 (0)	(2 4)	0 (0		0 0) (0
	respiratory metaplasia:gland	12 (24)	0 (0) (0	0	6 (12)	0			0 0)	(10		0 (0	0 (0)	0 (0)	(7 14)	0 (0		0 (0
	squamous cell metaplasia:respiratory epit		0 (0) (0 0)	0	0 (0)	0			0	((0	0 (0)	0 (0)	(2 (4)	0 (0		0 0) (0 0)

Grade

l : Slight

2 : Moderate

3 : Marked

1 : Severe

< a > b

a: Number of animals examined at the site

(c)

b: Number of animals with lesion

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ		up Name Control of Animals on Study 50 de 1 2 3 4 (%) (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000μpm 50 1 2 3 4 (%) (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%) (%)
{Respiratory :	system)				
nasal cavit	atrophy:olfactory epithelium	<pre></pre>		0 1 0 0 (0) (2) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
lung	congestion	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	accumulation of foamy cells	0 0 0 0 0 (0) (0)		0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	bronchiolar-alveolar cell hyperplasia	0 1 0 0 (0) (0)		2 0 0 0 0 (4) (0) (0) (0)	1 1 0 0 (2) (2) (0) (0)
	inflammation:foreign body	0 0 0 0 0		0 0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
{ lematopoieti	c system)				
bone marrow	granulation	(50> 1 0 0 0 (2) (0) (0) (0)		<49> 1 0 0 0 (2) (0) (0) (0)	<50> i 0 0 0 (2) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 lifference; $*: P \le 0.05$ **: $P \le 0$				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

SEX : MALE

Organ	Group Name No. of Anima Grade Findings		2500ppm	5000ppm	10000ррт
			1 2 3 4 (%) (%) (%) (%)	50 (%) (%) (%) (%)	50 1 2 3 4 (%) (%) (%) (%)
Hematopoieti	c system)				
one marrow	increased hematopoiesis	50> 5 0 0 0 (10) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<49> 3 0 0 0 (6) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
lymph node	deposit of hemosiderin	0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	granulation	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	lymphadenitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
spleen	congestion	<50> 6 1 0 0 (12) (2) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)	<50> 7 0 0 0 (14) (0) (0) (0)	(50) 7 0 0 0 (14) (0) (0) (0)
	deposit of hemosiderin	13 10 0 0 (26) (20) (0) (0)	11 4 0 0 (22) (8) (0) (0)	13 1 0 0 * (26) (2) (0) (0)	9 4 0 0 (18) (8) (0) (0)
	fibrosis:focal	1 1 0 0 (2) (2) (0) (0)	0 2 0 0 (0) (4) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)
Grade (a > b (c)	1: Slight 2: Moderate 3: W a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.				

(IIPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

(HPT150)

PAGE: 5

BAIS4

Organ	N	roup Name Conc. of Animals on Study 50 rade 1 2 3 (%) (%) (%)		2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000ррт 50 <u>i 2 3 4</u> (%) (%) (%) (%)	10000 _р рш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
				(10) (10) (10)	(10) (10) (10)	(10) (10)
{Hematopoi	stic system)					
spleen	increased extramedullary hematopoiesis	3 1 (6) (2) (:		3 2 1 0 (6) (4) (2) (0)	(50) 6 2 0 0 (12) (4) (0) (0)	<50> 5 2 0 0 (10) (4) (0) (0)
{Circulato	ry system}					
heart	thrombus	(50) 0 I (0)(2)(0 0 0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	mineralization	0 0 (0) (0 0 0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	myocardial fibrosis	27 3 (54) (6) (0 0 0) (0)	31 5 0 0 (62) (10) (0) (0)	29 3 0 0 (58) (6) (0) (0)	31 3 0 0 (62) (6) (0) (0)
	subendocardial fibrosis	0 0 (0) (0 0 0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Digestive	system)					
tooth	inflammation	<50> 0 0 (0) (0) (0 0 0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	\(\frac{\50\rightarrow}{0} \) \(0 \)	<50> 0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significan	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 t difference; *: P ≤ 0.05 **: P ≤					

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 6

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 (%) (%) (%) (%)	2500ppm 50 4 1 2 3 4 %) (%) (%) (%)	5000ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)	10000ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
(Digestive syst	tem}				
tongue	arteritis	<50> 0 1 0 (0) (2) (0) (<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
stomach	epidermal cyst	(50) 1 0 0 (2) (0) (0) (<50> 0 0 0 0 0 0) (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	erosion:forestomach	1 0 0 (2) (0) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	ulcer:forestomach	1 0 0 (2) (0) (0) (0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:forestomach	1 0 0 (2) (0) (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
	erosion:glandular stomach	0 0 0 0 (0) (0) (0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	ulcer:glandular stomach	0 0 0 0 (0) (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
small intes	diverticula	(50) 0 0 0 (0) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 7

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000ррш 50 1 2 3 4 (%) (%) (%)	10000ррт 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive sys	stem)				
small intes	inflammation	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)
	fibrosis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
liver	herniation	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)	(50) 9 0 0 0 (18) (0) (0) (0)
	thrombus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
	necrosis:central	0 1 0 0 (0) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	granulation	6 2 0 0 (12) (4) (0) (0)	4 4 0 0 (8) (8) (0) (0)	4 2 0 0 (8) (4) (0) (0)	4 0 0 0 0 (8) (0) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a > a : Number of animals examined at the site ь b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

ALL ANIMALS (0-105W)

REPORT	IYPE	٠	AI
SEX		:	MALE

Organ	Findings	Group Name Con No. of Animals on Study 50 Grade 1 2 3 (%) (%) (%)		2500ppm 50 2 3 4 (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%)
{Digestive	system)					
liver	inflammatory cell nest	<50> 0 0 ((0) (0) (0	0 0 0	<50> 0 0 0 (0) (0) (0)	<pre></pre>	\(\langle 50 \rangle \) \[1 1 0 0 \\ (2) (2) (0) (0) \]
	clear cell focus	3 2 (6) (6) (4) (6)	0 0 3	0 0 0	3 1 0 0 (6) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)
	acidophilic cell focus	0 0 0 (0 0 1 (2)	0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
	basophilic cell focus	1 0 (0 0 4 0) (8)	1 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	spongiosis hepatis	3 0 (6) (0) (0 0 4 0) (8)	0 0 0	3 0 0 0 0	1 2 0 0 (2) (4) (0) (0)
	bile duct hyperplasia	4 46 (8) (92) (0 0 3	46 0 0 0 (92) (0) (0)	3 47 0 0 (6) (94) (0) (0)	10 39 0 0 (20) (78) (0) (0)
	focal fatty change	0 0 (0) (0 0 2 0 (4)	0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
pancreas	atrophy	<50> 7 5 (14) (10) (0 0 7 0) (0) (14)	<50> 9 1 0) (18) (2) (0)	<50> 9 8 0 0 (18) (16) (0) (0)	<50> 4 9 0 0 (8) (18) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a > a : Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0497 HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 9

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 50 2 3 4 (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive sy	stem}					
pancreas	arteritis	(0)	<50> 0 0 0 (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)
{Urimary syst	em}					
kidney	scar	(2)	<50> 0 0 0 (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)
	chronic nephropathy	13 (26)	30 3 0 (60) (6) (0)	8 34 3 1 (16) (68) (6) (2)	8 35 5 0 (16) (70) (10) (0)	12 33 2 0 (24) (66) (4) (0)
	tubular necrosis	0 (0)	1 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)
	papillary necrosis	0 (0)	1 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	3 1 0 0 (6) (2) (0) (0)
	mineralization:papilla	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	6 0 0 0 * (12) (0) (0) (0)
	mineralization:pelvis	0 (0)	0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade 1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b: Number of animals with lesion

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(IIPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 10

Organ	Findings		2500ppm 50 4 1 2 3 4 6) (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%) (%)	10000ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Urinary syst	em)				
kidney	mineralization:cortex	(50) 0 0 0 (0) (0) (0) ((50) 0 0 0 0 0) (0) (0) (0)	(50) (0)(0)(0)(0)	2 0 0 0 (4) (0) (0) (0)
	urothelial hyperplasia:pelvis	1 0 0 (2) (0) (0) (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (2) (0) (0)	5 3 0 0* (10) (6) (0) (0)
urin bladd	inflammation	(0) (0) (0) ((50) 0 0 0 0 0 0) (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
{Endocrine sy	rstem)				
pituitary	angiectasis	(50) 1 1 0 (2) (2) (0) ((50) 0 1 0 0 0 0) (2) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 2 0 0 0 (4) (0) (0) (0)
	cyst	1 0 0 (2) (0) (0) (0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	6 3 0 (12) (6) (0) (0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 0 0 (16) (8) (0) (0)	4 4 0 0 (8) (8) (0) (0)

b

b: Number of animals with lesion

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 11

Organ		Froup Name Control No. of Animals on Study 50 Frade 1 2 3 4 (%) (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%) (%)
{Endocrine s	ystem)				
pituitary	Ratlike pouch	<50> 2 0 0 0 (4) (0) (0) (0)	<pre></pre>	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
thyroid	follicular hyperplasia	<50> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	C-cell hyperplasia	6 6 0 0 (12) (12) (0) (0)	10 4 0 0 (20) (8) (0) (0)	9 5 0 0 (18) (10) (0) (0)	3 2 0 0 (6) (4) (0) (0)
adrenal	cyst	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)
	hyperplasia:medulla	3 1 0 0 (6) (2) (0) (0)	3 0 0 0 0 (6) (0) (0)	1 2 0 0 (2) (4) (0) (0)	2 2 0 0 (4) (4) (0) (0)
	focal fatty change:cortex	0 1 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
{Reproductiv	e system)				
testis	atrophy	<50> 0 3 0 0 (0) (6) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; * : P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

	1	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4	2500ppm 50 _1 2 3 4	5000ppm 50 1 2 3 4	10000ppm 50 1 2 3 4
Organ	Findings	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)
{Reproductive	e system)				
testis	mineralization .	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(50) 0 1 0 0 (0) (2) (0) (0)	<pre></pre>
	arteritis	1 4 0 0 (2) (8) (0) (0)	5 2 0 0 (10) (4) (0) (0)	4 2 0 0 (8) (4) (0) (0)	4 1 0 0 (8) (2) (0) (0)
	interstitial cell hyperplasia	17 1 0 0 (34) (2) (0) (0)	14 0 0 0 (28) (0) (0) (0)	16 2 0 0 (32) (4) (0) (0)	16 3 0 0 (32) (6) (0) (0)
prostate	inflammation	(0) (0) (0) (0)	(50) 0 2 0 0 (0) (4) (0) (0)	(50) 0 2 0 0 (0) (4) (0) (0)	<pre></pre>
	hyperplasia	4 1 0 0 (8) (2) (0) (0)	9 3 0 0 (18) (6) (0) (0)	8 1 0 0 (16) (2) (0) (0)	5 2 0 0 (10) (4) (0) (0)
mammary gl	galactocele	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
Nervous sys	tem)				
brain	inflammation	(50) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
Grade <a> b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; * : P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

		Group Name Control No. of Animals on Study 50	2500ppm 50	5000թթm 50	10000թրm 50
organ		Grade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Special sens	se organs/appendage)				
eye	cataract	<50> 6 1 0 0 (12) (2) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<pre></pre>
	retinal atrophy	12 14 0 0 (24) (28) (0) (0)	13 5 0 0 (26) (10) (0) (0)	10 7 0 0 (20) (14) (0) (0)	21 4 0 0 * (42) (8) (0) (0)
	keratitis	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0
	hemorrhage:cornea	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
Harder gl	degeneration	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
{Musculoskel	etal system}				
bone	osteosis	(0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(49) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; $*: P \le 0.05$ **: P ≤ 0.05				

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W) $\,$

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name No. of Animals on Stu Grade	Control dy 50 1 2 3 4 (%) (%) (%) (%)	2500ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%) (%)
{Body caviti	es)					
peritoneum	arteritis	(<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
Grade (a) b (c) Significant	I: Slight 2: Moder a: Number of animals exami b: Number of animals with c: b/a * 100 difference; *: P ≤ 0.05	ned at the site lesion	Severe Square			
(HPT150)			•			BA

APPENDIX M 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

Organ	Group Name No. of An: Grade Findings	Control imals on Study 14 1 2 3 4 (%) (%) (%) (%)	2500ppm 13 1 2 3 4 (%) (%) (%) (%)	5000ppm 5 1 2 3 4 (%) (%) (%)	10000ppm 10 10 1 2 3 4 (%) (%) (%)
{Integumentar	y system/appandage}				
skin/app	scab	0 0 0 0 (0) (0) (0) (0)	(13) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(10) 0 0 0 0 (0) (0) (0) (0)
	epidermal cyst	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (8) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
subcutis	hematoma	0 0 0 0 (0) (0) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)	< 5> 0 0 0 0 (0) (0) (0) (0)	(0) (0) (0) (0)
{Respiratory	system)				
nasal cavit	thrombus	(14) 1 0 0 0 (7) (0) (0) (0)	(13> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	mineralization	3 0 0 0 (21) (0) (0) (0)	3 0 0 0 (23) (0) (0) (0)	2 0 0 0 0 (40) (0) (0)	1 0 0 0 0 (10) (10) (10)
	eosinophilic change:olfactory epithelium	4 2 0 0 (29) (14) (0) (0)	3 1 0 0 (23) (8) (0) (0)	0 1 0 0 (0) (20) (0) (0)	3 4 0 0 (30) (40) (0) (0)
Grade <a>a> <a>c <a>c<	I: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference: $*: P \le 0.05$ **: $P \le 0.01$	4 : Severe Test of Chi Square			

(HPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

SEX : MALE

	Group No. of	Name Control Animals on Study 14	2500ppm	5000ррш 5	10000ppm
rgalı	Findings	14 1 2 3 4 (%) (%) (%) (%)	13 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)	10 1 2 3 4 (%) (%) (%) (%)
Respiratory	system}				
asal cavit	eosinophilic change:respiratory epithelium	0 0 0 0 (0) (0) (0) (0)	(13> 1 0 0 0 (8) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
	inflammation:foreign body	1 0 0 0 0 (7) (0) (0) (0)	6 0 0 0 (46) (0) (0) (0)	1 0 0 0 0 (20) (0) (0)	2 0 0 0 0 (20) (0) (0) (0)
	inflammation:respiratory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (20) (0) (0) (0)
	respiratory metaplasia:olfactory epithelium	2 0 0 0 0 (14) (0) (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)
	respiratory metaplasia:gland	3 0 0 0 (21) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)
	squamous cell metaplasia:respiratory epithel	ium 0 0 0 0 0 (0) (0) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (0) (0)
	atrophy:olfactory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (20) (0) (0)	1 0 0 0 0 (10) (10) (10)
ung	congestion	1 0 0 0 0 (7) (0) (0) (0)	<pre></pre>	<pre></pre>	0 0 0 0 0 (0) (0) (0) (0)
rade a > b	l: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	ed 4: Severe			

STUDY NO. : 0497 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

MAIF

Organ		Group Name No. of Animals on Study Grade(%)	14 2		4 %) 	<u>(%)</u>	13 2 (%)	3	<u>4</u> (%)	1 (%)	<u>2</u> (%	5	3 %)	4 (%)	<u>1</u> (%)	(10 2	3 (%)	pm 4 (%)
{Respiratory	system)																		
lung	inflammatory infiltration	0 (0)	<14> 0 (0) (0 0)	0 (0)	<13 1 (8) (0 (0) (0 0)	0 (0)	0	< 5> (0 0) (0 0)	0 (0)		<10: 0 0) (0	0 (0)
	accumulation of foamy cells	0 (0)	0 (0) (0 0)	0 (0)	0 (0) (0 (0) (0	0 (0)	0 (0			0	1 (10)		0 0) (0)	0 (0)
	bronchiolar—alveolar cell hyperplasia	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0) (0)	1 (20)	0 () (0 0) (0 0)	0 (0)) (o o) (0	0 (0)
{Hematopoieti	c system)																		
oone marrow	increased hematopolesis	4 (29)	<14> 0 (0) (0 0)	2 (15)	(0)	3> 0 (0) (0 0)	1 (20)	0		0 0) (0 0)	0 (0)		<10 0 0) (0	0 (0)
spleen	congestion	1 (7)	〈14〉 0 (0) (0	0 0)	0 (0)	<1: 0 (0)		0 0)	0 (0)	C		0 0) (0 0)	0 (0)		<10 0 0) (0	0 (0)
	deposit of hemosiderin	4 (29)	4 (29) (0 0)	1 (8)	1 (8)	0 (0) (0 0)	1 (20)	((0 0) (0	0 (0)		1 10) (0	0 (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤																		

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

Organ	1	Froup Name Control No. of Animals on Study 14 Grade 1 2 3 4 (%) (%) (%) (%)	2500ppm 13 12 3 4 (%) (%) (%) (%)	5000ppm 5 1 2 3 4 (%) (%) (%)	10000ррв 10 10 4 (%) (%) (%) (%) (%)
{Hematopoie	tic system}				
spleen	increased extramedullary hematopoiesis	0 1 0 0 (0) (7) (0) (0)	(13) i 2 1 0 (8) (15) (8) (0)	<pre></pre>	(10) 0 1 0 0 (0) (10) (0) (0)
{Circulator	y system)				
heart	thrombus	0 1 0 0 (0) (7) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(10) 0 0 0 0 (0) (0) (0) (0)
	mineralization	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)
	myocardial fibrosis	9 2 0 0 (64)(14)(0)(0)	5 2 0 0 (38) (15) (0) (0)	3 1 0 0 (60) (20) (0) (0)	7 2 0 0 (70) (20) (0) (0)
	subendocardial fibrosis	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)
{Digestive	system)				
stomach	erosion:forestomach	(14) i 0 0 0 (7) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(10) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				
(UDT1EO)					RA

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE

PAGE: 5

Organ	Findings	Group Name No. of Animals on Study Crade 1	2500ppm 13 1 2 3 4 (%) (%) (%) (%)	5000ppm 5 1 2 3 4 (%) (%) (%) (%)	10000ррпп 10 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive s	system)				
stomach	ulcer:forestomach	1 0 0 0 (7) (0) (0) (0)	3 0 0 0 (23) (0) (0) (0)	(5> 1	<10> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia:forestomach	0 0 0 0 0 (0) (0)	1 0 0 0 0 (0) (0) (8)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	erosion:glandular stomach	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (15) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	ulcer:glandular stomach	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
liver	herniation	\(\lambda 1 \) \(1 \) \(0 \) \(7 \) \(0 \) \(0 \) \(0 \)	<13> 2 0 0 0 (15) (0) (0) (0)	(5) 1 0 0 0 (20) (0) (0) (0)	<10> 2 0 0 0 (20) (0) (0) (0)
	necrosis:central	0 1 0 0 (0) (7) .(0) (0)	0 1 0 0 (0) (8) (0) (0)	2 0 0 0 * (40) (0) (0)	0 0 0 0 0 (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory cell nest	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (10) (10) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1 SEX : MALE DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 14	2500թթm 13	5000րրա 5	10000ppm 10
Organ	Findings	Grade 1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)
Digestive s	ystem)				
iver	clear cell focus	(14> 0 0 0 0 (0) (0) (0) (0)	(13> 1 0 0 0 (8) (0) (0) (0)	< 5> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 (0) (0) (0) (0)
	basophilic cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (8) (9) (9)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	spongiosis hepatis	0 0 0 0 0 (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0
	bile duct hyperplasia	2 12 0 0 (14) (86) (0) (0)	2 10 0 0 (15) (77) (0) (0)	0 5 0 0 (0) (100) (0) (0)	5 4 0 0 (50) (40) (0) (0)
	focal fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (9) (9)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
ancreas	atrophy	<14> 2 0 0 0 (14) (0) (0) (0)	(13> 1 0 0 0 (8) (0) (0) (0)	<pre></pre>	<10> 2 0 0 0 (20) (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Urinary sys	stem}				
kidney	scar	\(\lambda 14 \rangle \) \[1 0 0 0 \) \(\lambda 7 \rangle \) \(\lambda 0 \) \(\lambda 0 \) \(\lambda 7 \rangle \) \(\lambda 0 \) \(\lambda 0 \)	0 0 0 0 (0) (0) (0) (0)	< 5> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion (c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animals on Study	C 14	ontro]	l		1	2500 13	ppm			Ę	5000p	pm			1000	mqq0	
rgan	Findings	Grade <u>1</u> (%)	2	3 (%)	(%)	(%)	(%)	(%)	(%)	(9	6)	(%)	(%)	(%)	(%)	<u>2</u> (%	3	,)	4 (%)
Jrinary syst	em)																		
idney	chronic nephropathy	6 (43)	<14> 3 (21) (1	0	3 (23)	5	13> 0 (0)	1 (8)		l)) (2 40)	1	0 (0)	3 (30)	4			0 0)
	tubular necrosis	(0)	1 (7) (0) (0	0 (0)	0 (0)	(0)	0 (0)	((0	0 (0)	0 (0)	(0)	(0			0
	papillary necrosis	0 (0)	(7) (0 (0	0 (0)	0 (0)	(0)	0 (0)	(0 0)	0 (0)	0 (0)	(10)	1 (10			0
	mineralization:papilla	0 (0)	0 (0) (0	0	0 (0)	0 (0)	(0)	0 (0)))) (0	0 (0)	0 (0)	4 (40)	(0			0
	mineralization:cortex	0 (0)	0 (0) (0	0 0)	0 (0)	0 (0)	(0)	0 (0)) ()	0 0)	0 (0)	0 (0)	2 (20)	(0			0
	urothelial hyperplasia:pelvis	0 (0)	0 (0) (0 (0 0)	0 (0)	0 (0)	(0)	0 (0)))) (0	0 (0)	0 (0)	2 (20)	(0			0
rin bladd	inflammation	0 (0)	<14> 0 (0) (0	0 0)	0 (0)	0	13> 0 (0)	0 (0)		0 0) (0 0)	0	0 (0)	1 (10)	0	<10> (0
Endocrine sy	rstem}																		
ituitary	angiectasis	0 (0)	<14> 0 (0) (0	0 0)	1 (8)	0		0 (0)		0 0) (0 0)	0	0 (0)	1 (10)	C			0

b: Number of animals with lesion

c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1

SEX : MALE

DEAD AND MORIBUND ANIMALS (0-105W)

		oup Name of Animals on Study	Contr 14	ol		13	2500թյ	om				5000p	рm				10000 .0	ppm
Organ	Findings		2 3 (%) (%)	(%)	<u>1</u> (%)	2 (%)	3 (%)	(%)	(9	<u>1</u> %)	2 (%)	3 (%)	(%)		1 (%)	(%)	(%)	
(Endocrine s	ystem)																	
pituitary	hyperplasia	0 (0)	<14> 0 0 (0) (0)	0 (0)	0 (0) (<13 0 (0) (0	0 (0)		0 0) (0 0 0)		0 (0)		1.0) (0	(0)	0 (0)
	Rathke pouch	0 (0)	0 0 (0)	0 (0)	i (8)	0 (0) (0 (0)	0 (0)	(0 0) (0	0 (0)	0 (0)		0 0) (0 0)	0 (0)	0 (0)
thyroid	C-cell hyperplasia	1 (7)	<14> 1 0 (7) (0)	0 (0)	1 (8)	<13 0 (0) (0	0 (0)		0 0) (0 0)	5> 0 (0)	0 (0)	(0 0) (0		0 (0)
adrenal	hyperplasia:medulla	0 (0)	<14> 0 0 (0) (0)	0 (0)	1 (8)	(13 0 (0)	0	0 (0)		0 0) ((0 0)		0 (0)	(0 0) (1		0 (0)
(Reproducti	ve system)																	
testis	atrophy	0 (0)	<14> 2 0 (14) (0)	0 (0)	0 (0)	<13 0 (0)	0	0 (0)	(0 0) ((0 0)	5> 0 (0)	0 (0)	(0 0) (0	10> 0 (0)	0 (0)
	arteritis	1 (7)	0 0	0 (0)	2 (15)	0	0 (0)	0 (0)	(0 0) (0	0 (0)	0 (0)	(0	0 (0)	0 (0)	0 (0)
Grade <a> b (c) Significant	1: Slight 2: Moderate 3: 1 a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.			·						_								

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	N	roup Name Control o. of Animals on Study 14 rade 1 2 3 4 (%) (%) (%) (%)	2500ppm 13 1 2 3 4 (%) (%) (%) (%)	5000ppm 5 1 2 3 4 (%) (%) (%) (%)	10000ppm 10 10 1 2 3 4 (%) (%) (%)
{Reproductive	system)				
testis	interstitial cell hyperplasia	(14) 4 0 0 0 (29) (0) (0) (0)	\(\lambda 13 \rangle \) \(1 0 0 \\ (8) (0) (0) (0) \)	<pre></pre>	3 1 0 0 (30) (10) (0) (0)
prostate	inflammation	<14> 0 0 0 0 0 0 0 0 0	<pre></pre>	<pre></pre>	(0) (0) (0) (0) (0)
	hyperplasia	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (10) (10) (10)
ammary gl	galactocele	(14) 0 0 0 0 (0) (0) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)	< 5> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Special sens	se organs/appendage)				
ye	cataract	(14) 1 0 0 0 (7) (0) (0) (0)	(13> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	1 0 0 0 (10) (0) (0) (0)
	retinal atrophy	0 1 0 0 (0) (7) (0) (0)	2 0 0 0 0 (15) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Grade (a) b (c) Significant (1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

Group Name Control 2500ppm 5000ppm 10000ppm No. of Animals on Study 5 10 14 13 Grade Organ_ Findings_ (%) (%) (%) (%) (%) (%) (Special sense organs/appendage) <13> eye <14> < 5> keratitis 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(7)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) hemorrhage:cornea 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(7)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) Harder gl <14> <13> < 5> <10> degeneration 0 0 0 0 0 0 0 0 0 (7)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Body cavities} peritoneum <14> < 5> arteritis 0 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(8)(0) (0) (0) (0) (0) (0)(0)(0)(0) 1 : Slight Grade 2 : Moderate 3 : Marked 4 : Severe < a > a: Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(IIPT150)

BAIS4

APPENDIX M 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

Organ	Group i No. of Grade Findings	Name Control Animals on Study 36 1 2 3 4 (%) (%) (%) (%)	2500ppm 37 1 2 3 4 (%) (%) (%) (%)	5000ppm 45 1 2 3 4 (%) (%) (%) (%)	10000ppm 40 1 2 3 4 (%) (%) (%) (%)
{Integumenta	ry system/appandage)				
skin/app	inflammation	<36> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)	(45> 1 0 0 0 (2) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
	epidermal cyst	0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
Respiratory	system)				
uasal cavit	mineralization	<36> 6 0 0 0 (17) (0) (0) (0)	<pre></pre>	<444> 8 0 0 0 (18) (0) (0) (0)	440> 12 0 0 0 (30) (0) (0) (0)
	hyper plasia:cartilage	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 0 (0) (0)
	eosinophilic change:olfactory epithelium	15 16 0 0 (42) (44) (0) (0)	17 14 0 0 (46) (38) (0) (0)	12 24 0 0 (27) (55) (0) (0)	15 20 1 0 (38) (50) (3) (0)
	eosinophilic change:respiratory epithelium	7 0 0 0 (19) (0) (0) (0)	0 0 0 0 *	2 0 0 0 0 (5) (0) (0) (0)	4 0 0 0 0 (10) (10) (10)
	inflammation:foreign body	10 2 0 0 (28) (6) (0) (0)	8 4 0 0 (22) (11) (0) (0)	13 6 0 0 (30) (14) (0) (0)	5 4 0 0 (13) (10) (0) (0)

Grade 1: Slight

light 2: Moderate

3 : Marked

1 : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: MALE

PAGE: 2

		Group Name No. of Animals on Study	3	Cont	trol				3	2500 7)ppm					50 4 5	լգ00(p m					1000 10	00թք	מט
Organ	Findings	Grade <u>1</u> (%)	<u>2</u> (%)	(%)		<u>4</u> (%)	(5	(6)	2 (%)	(%)	+	<u>4</u> (%)		(%)	(%)		3 (%)	(%)		<u>1</u> (%)		2 (%)	(9	3 %)	(%)
{Respiratory	system)																•								
nasal cavit	inflammation:respiratory epithelium	0 (0)		36> 0 (0)		0 0)))) ((3 0 0)	0		0 0)	(0	1	44>	0 0)	0	(1 3)	(0		0 0) (0 (0)
	respiratory metaplasia olfactory epit		0 (0)	0 (0)		0) (0 0)	0 (0)		0 0)	(3 7)	0 (0)	(0 0)	0 (0)	(1	(0 0)		0 0) (0 (0)
	respiratory metaplasia:gland	9 (25)	0 (0)	0 (0)		0	(1	6 6) (0	0 (0)) (0 0)	(5 11)	0 (0)	(0	0 (0)	(6 15)	(0		0 0) (0 (0)
	squamous cell metaplasia:respiratory		0 (0)	0)) (0 0)	(0 0) (0	0 (0)) (0 0)	(0	0 (0)	(0 0)	0 (0)	(1 3)	(0 0)		0 0) (0 (0)
lung	inflammatory infiltration	0 (0)	(0)	36> 0 (0		0 0)		0 0) (<3 0 0)	7> 0 (0)		0	(1 2)	1 (2)	(45> (0 0)	0 (0)	(0 0)		0		0 0) (0 (0)
	accumulation of foamy cells	0 (0)	0 (0)	0		0		0 0) (0 0)	0 (0)) (0 0)	(0 0)	0 (0)	(0	0 (0)	(1	(0 0)		0 0) (0
	bronchiolar—alveolar cell hyperplasia		1 (3)	0		0		0 0) (0	0 (0)		0 0)	(1 2)	0 (0)		0 0)	0 (0)	(1	(1 3)		0 0} (0 (0)
	inflammation:foreign body	0 (0)	0 (0)	0 (0		0		0 0) (0 0)	0 (0)) (0 0)	(0 0)	0 (0)		0	0 (0)	(2 5)		0 0)		0 0) (0

Grade

l : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(IIPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: MALE

	Group N No. of Grade	ame Control Animals on Study 36 1 2 3 4	2500ppm 37 1 2 3 4	5000թթա 45 1 2 3 4	10000թթm 40 1 2 3 4
rgan	Findings	(%) (%) (%) (%)	(%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	(%) (%) (%)
Hematopoieti	c system)				
one marrow	granulation	<36> 1 0 0 0 (3) (0) (0) (0)	37> 0 1 0 0 (0) (3) (0) (0)	\(\langle 44 \rangle \) 1	(40) 1 0 0 0 (3) (0) (0) (0)
	increased hematopoiesis	i 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (5) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
ymph node	deposit of hemosiderin	(0) (0) (0) (0)	(37) 1 0 0 0 (3) (0) (0) (0)	<45> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
	granulation	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0
	lymphadenitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	i i 0 0 (2) (2) (0) (0)	1 0 0 0 0
leen	congestion	(36) 5 1 0 0 (14) (3) (0) (0)	(37) 6 0 0 0 (16) (0) (0) (0)	7 0 0 0 (16) (0) (0) (0)	7 0 0 0 (18) (0) (0) (0)
	deposit of hemosiderin	9 6. 0 0 (25) (17) (0) (0)	10 3 0 0 (27) (8) (0) (0)	12 1 0 0 (27) (2) (0) (0)	9 3 0 0 (23) (8) (0) (0)
rade a > b	1: Slight 2: Moderate 3: Marke a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	d 4: Severe			

: RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

(HPT150)

SEX : MALE

Group Name Control 2500ppm 5000ppm 10000ppm 37 40 No. of Animals on Study Grade Findings_ (%) (%) (%) (%) {Hematopoietic system} spleen <36> <37> <45> fibrosis:focal 2 0 0 0 0 0 (3)(3)(0)(0) (0)(5)(0)(0) (0)(0)(0)(0) (3)(3)(0)(0) increased extramedullary hematopoiesis 3 0 1 0 2 0 0 6 0 0 0 5 1 (13) (0) (0) (0) (13) (3) (0) (0) (8)(0)(3)(0) (5)(0)(0)(0) {Circulatory system} heart <36> <40> 26 2 0 0 24 1 0 0 myocardial fibrosis 1 0 0 26 3 0 0 (50) (3) (0) (0) (70) (8) (0) (0) (58) (4) (0) (0) (60) (3) (0) (0) {Digestive system} <45> <36> ⟨37⟩ tooth 1 0 0 0 0 inflammation 0 (0)(0)(0)(0) (0)(3)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) <36> (37> <45> <40> tongue arteritis 0 1 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(3)(0)(0) (3)(0)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe (a) a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100 Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: MALE

Organ	N	roup Name Contro o. of Animals on Study 36 rade 1 2 3 (%) (%) (%)	1 2500ppm 37 4 1 2 3 4 (%) (%) (%) (%)	5000ppm 45 1 2 3 4 (%) (%) (%) (%)	10000ppm 40 1 2 3 4 (%) (%) (%) (%)
Digestive sy	stem)				
tomach	epidermal cyst	(36) 1 0 0 (3) (0) (0) (0 0 0 0 0 0 0) (0) (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	hyperplasia:forestomach	1 0 0 (3) (0) (0) (0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
small intes	diverticula	(36) 0 0 0 (0)(0)(0)(37> 0 0 0 0 0 0 0 0 0	\(\langle 45 \rangle \) \(1 0 0 0 \) \(2) \((0) (0) (0) \)	0 0 0 0 (0) (0) (0) (0)
	inflammation	0 1 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 0 (0)
	fibrosis	0 0 0 0 (0) (0) (0 1 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
iver	herniation	7 0 0 (19) (0) (0) ((37> 0 0 0 0 0 0 * (0) (0) (0) (0) (0)	5 0 0 0 (11) (0) (0) (0)	7 0 0 0 (18) (0) (0) (0)
	thrombus	0 0 0 0 (0) (0) (0 0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
Grade (a > b (c)	1 : Slight 2 : Moderate 3 : a : Number of animals examined at the sit b : Number of animals with lesion c : b / a * 100 tifference ; * : P ≤ 0.05 ** : P ≤				

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX

: MALE

SACRIFICED ANIMALS (105W)

rgali	Findings	Group Name No. of Animals on Study Grade(%)	36 2	3 4 (%) (%)	1 2 (%) (%)	2500ppm 17 3 4 (%) (%)	1 (%)	500 45 2 3 (%) (%	Oppm 4_ 5) (%)	1 2	3 4 %) (%)
)igestive	system)										
iver	fatty change	0 (0)	<36> 0 (0) (0 0 0 0) (0)	1 0 (3) (0)	0 0 (0) (0)	1 (2) (<45> 0 ((0) (0		0 0 (0) (0) (0 0 0) (0)
	granulation	6 (17)	2 (6) (0 0	4 4 (11) (11)	0 0 (0)	4 (9) (2 (0 0) (0)	4 0 (10) (0) (0 0 0) (0)
	clear cell focus	3 (8)	2 (6) (0 0 0 0) (0)	2 0 (5)(0)	0 0 (0)	3 (7)	1 (0) (0)	1 1 (3) (3) (0 0 0) (0)
	acidophilic cell focus	0 (0)	0 (0) (0 0 0 0) (0)	1 0 (3) (0)	0 0 (0)	0 (0)	0 (0) (0)	1 0 (3) (0) (0 0
	basophilic cell focus	1 (3)		0 0 0 0) (0)	3 1 (8) (3)	0 0 (0)	(2)	0 (0 0 0)	2 0 (5) (0) (0 0
	spongiosis hepatis	3 (8)	0 (0) (0 0 0 0) (0)	3 0	0 0 (0)	3 (7)	0 (0 0	1 2 (3) (5) (0 0
	bile duct hyperplasia	2 (6)	34 (94) (0 0 0 0) (0)	1 36 (3) (97)	0 0 (0)	3 (7)	42 ((93) ()	0 0	5 35 (13) (88) (0 0 0) (0
	focal fatty change	0 (0)	0 (0) (0 0 0) (0)	1 0 (3) (0)	0 0	0 (0)	0 (0 0	0 0 (0) (0 0

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

(a)

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 7

		Group Name No. of Animals on Study	36		1		3				,	45		-				40	100ppi	
Organ	Findings	Grade <u>1</u> (%)	(%)	(%)	(%)	(%)	2 (%)	(%)	(%)	<u>1</u> (%)	(%)	(%)	(%)		(%)	(%)		3 (%)	(%)
{Digestive s	ystem)																			
pancreas	atrophy	5 (14)	<36 5 (14) (0	0 (0)	6 (16)	<3 9 (24)	1	0 (0)	9 (20	ı i) ((45 8 18)	0	0 (0)	(2 5)	9 (23)		0 0) (0 0)
Urinary sys	tem)																			
kidney	scar	0 (0)	<36 0 (0) (0	0 (0)	0 (0)	<3 1 (3)	0	0 (0)	0 (<48 0 0)	5> 0 (0)	0 (0)	(0 0)	0 (0)		0 0) (0 (0)
	chronic nephropathy	7 (19)	27 (75) (2 6)	0 (0)	5 (14)	29 (78)	3 (8)	0 (0)	7 (16		33 73)	4 (9)	0 (0)	(9 23)	29 (73)) (2 5) (0 (0)
	papillary necrosis	0 (0)	0 (0) (0 (0)	0	1 (3)	0 (0)	0 (0)	0 (0)	(())) (0	0 (0)	0 (0)	(2 5)	(0)) (0 0) (0 (0)
	mineralization:papilla	0 (0)	0 (0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2		0 0)	0	0 (0)	(2 5)	(0)		0 0) (0 (0)
	mineralization:pelvis	0 (0)	0 (0) (0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	(())) (0	0 (0)	0 (0)	(1	0 (0)		0	0
	urothelial hyperplasia:pelvis	i (3)	0 (0) (0 (0)	0	(3)	0 (0)	0 (0)	0 (0)		l 2) (0	0	0 (0)	(3 8)	3 (8		0 (0)	0 (0)

(a) a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj]

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE SEX

5000ppm Group Name Control 2500ppm 10000ppm 37 40 No. of Animals on Study 36 Grade (%) Findings_ (%) (%) (%) (%) (%) (%) (%) Organ_ (Endocrine system) <36> (37> <45> <40> pituitary 0 0 0 0 0 0 0 1 0 angiectasis (3)(3)(0)(0) (0)(0)(0)(0) (2)(0)(0)(0) (3)(0)(0)(0) cyst 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 (3)(0)(0)(0) (3)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 6 3 0 0 0 0 8 0 3 4 0 0 hyperplasia (8)(10)(0)(0) (17) (8) (0) (0) (11) (0) (0) (0) (18) (9) (0) (0) Rathke pouch 2 0 0 0 3 0 0 0 0 0 0 0 2 0 (5)(0)(0)(0) (6)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) ⟨36⟩ (37) **<45>** <40> thyroid 1 0 0 0 0 0 0 0 0 follicular hyperplasia 0 0 (0)(0)(0)(0) (0)(3)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) C-cell hyperplasia 5 5 (14) (14) (0) (0) (24) (11) (0) (0) (20) (11) (0) (0) (8) (5) (0) (0) adrenal <36> ⟨37⟩ <45> <40> 0 0 0 0 0 0 0 0 1 0 0 cyst (0)(0)(0)(0) (0)(0)(0)(0) (0)(3)(0)(0) (0)(0)(0)(0) Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

< a > a: Number of animals examined at the site

(IIPT150)

BAIS4

b b: Number of animals with lesion (c)

c : b / a * 100

Significant difference : *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj]

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

2500ppm 5000ppm 10000ppm Group Name Control No. of Animals on Study 37 40 36 Grade Organ__ Findings_ (%) (%) (%) (%) (%) (%) (Endocrine system) adrenal <36> <37> <45> <40> hyperplasia:medulla 2 0 0 0 2 0 (8)(3)(0)(0) (5)(0)(0)(0) (2)(4)(0)(0) (5)(3)(0)(0) focal fatty change:cortex 0 1 0 0 0 0 0 0 0 0 0 0 1 0 (0)(3)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (3)(0)(0)(0) {Reproductive system} testis <36> <37> <45> atrophy 1 0 0 0 0 0 0 0 0 0 0 0 0 (0)(3)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 mineralization 0 0 1 0 0 0 1 0 0 0 0 (0)(0)(0)(0) (3)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) arteritis (9)(4)(0)(0) (10) (3) (0) (0) (0)(11)(0)(0) (8) (5) (0) (0) interstitial cell hyperplasia 13 13 14 (33) (5) (0) (0) (36) (3) (0) (0) (35) (0) (0) (0) (31) (2) (0) (0) <40> prostate <36> <45> inflammation 0 0 0 0 0 0 0 2 0 0 0 1 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(4)(0)(0) (0)(3)(0)(0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a > b b: Number of animals with lesion

a: Number of animals examined at the site

(c)

c:b/a * 100

Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 10

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

(IIPT150)

SEX : MALE

ti 104% baci totti fi otti baci ji

		oup Name Control	2500ppm	5000րրա 45	10000ррт 40
Organ		. of Animals on Study 36 ade 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Reproductiv	e system)				
prostate	hyperplasia	<36> 4 1 0 0 (11) (3) (0) (0)	<37> 8 3 0 0 (22) (8) (0) (0)	<pre></pre>	4 2 0 0 (10) (5) (0) (0)
{Nervous sys	tem)			-	
brain	inflammation	\(\langle 36 \rangle \) \[1 0 0 \\ (3) (0) (0) (0) \]	<37> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<45> 0 0 0 0 0 0 0 0 0 0 0	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
{Special sen	use organs/appendage)				
eye	cataract	<pre></pre>	4 0 0 0 (11) (0) (0) (0)	<pre></pre>	<pre></pre>
	retinal atrophy	12 13 0 0 (33) (36) (0) (0)	11 5 0 0 * (30) (14) (0) (0)	10 7 0 0 * (22) (16) (0) (0)	21 4 0 0 * (53) (10) (0) (0)
{Musculoskel	letal system}				
bone	osteosis	<36> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 0 0 0 0 0 0 0	<44> 1 0 0 0 (2) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0
Grade <a>> b (c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a*100	Marked 4: Severe e			

APPENDIX M 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

SEX

: FEMALE

Organ	No	oup Name of Animals on Study ade 1 (%)	5 2 (%)	Contr 0 3 (%)	4 (%)	(%)	2 (%)	2500 50 3 (%)	4_	(<u>1</u> %)	5 2 (%)	5000 ₁ 0 3 (%)	(%)		1 (%)	<u>2</u> (%)	50	3 (%)	om 4 (%)
Integumentary	y system/appandage)																			
kin/app	inflanmation	1 (2)	<5 1 (2)	0	0 (0)	0 (0)	1	50> 0 (0)	0 (0)	(0 0) (<5 0 0)	0	0 (0)	. (0	1 (2)		0	0 (0)
	scab	(0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(1 2) (0	0 (0)	0 (0)	(0 0)	(0)		0	0 (0)
	epidermal cyst	(0)	2 (4)	0 (0)	0 (0)	0 (0)	(0)	0 (0)	0 (0)		1 2) (0 0)	0 (0)	0 (0)	(0 0)	(0)		0 (0	0 (0)
Respiratory :	system}																			
masal cavit	thrombus	. (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0)	0	50> 0 (0	0 (0)			<5 1 2)		0 (0)	(0	0 (0)		0	0 (0)
	mineralization	2 (4)	0 (0)	0 (0)	0 (0)	3 (6)	(0)	0	0 (0)	(2 4) (0	(0)	0 (0)	(1 2)	0 (0)		0 0)	0 (0)
	eosinophilic change:olfactory epithelium		36 (72)	4 (8)	0 (0)	2 (4)	41 (82)	5 (10	0 (0)		6 .2) (41 82)	2 (4)	0 (0)	(2 4)	40 (80)		6 12)	0 (0)
	eosinophilic change:respiratory epithel		0 (0)	0 (0)	0 (0)	15 (30)	0 (0)	0	0 (0)		.7 34) (0	0 (0)	0 (0)		17 34)	0 (0)		0	0 (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

< a >

a: Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(IIPT150)

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

	No.	oup Name of Animals on Study ade I	50 2	ontro	1 4	1	2	50	00ppn 3	ı 4		1	2	500 50	00ppn 3	ı 4		1	2	10: 50	3 3	om 4
gan	Findings	(%)	(%)	(%)	(%)	(%)	(%)) (9	%)	(%)	(%)	(%)	(9	%)	(%)		(%)	(%)	(%)	(%)
espiratory	system}																					
sal cavit	inflammation:foreign body	5 (10)	<50> 0 (0) (0	0 0)	4 (8)	0	<50> (0 0) (0 0)		2 4) ((0 0)		o 0) (0	(3 6)	0		0	0 (0)
	inflammation:respiratory epithelium	1 (2)	0 (0) (0) (0 0)	0 (0)	0)		0 0) (0)		0 0) (0 (0)		0 0) (0	(0	0)		0	0 (0)
	respiratory metaplasia:gland	5 (10)	0 (0) (0 0) (0 0)	7 (14)	0 (0) (0 0) (0 0)	(1	9 .8) (0 (0)		o 0) (0 0)	(10 20)	0)		0 0)	0 (0)
arynx	inflammatory infiltration	0 (0)	<50> 0 (0) (0	0 (0)	1 (2)	0		0 0) (0 0)		0 0) (0 (0)		0 0) (0 0)	(0 0)	0		0	0 (0)
lig	inflammatory infiltration	0 (0)	<50> 0 (0) (0	0 (0)	1 (2)	0		0 0) (0		0 0) (0 (0)		0 0) (0 0)	(0	(0	0 (0)
	fibrosis:focal	0 (0)	0 (0) (0	0 (0)	0 (0)	(0) (0 0) (0	(0	0 (0)	(0 0) (0 0)	(1 2)	((0 0)	0 (0)
	accumulation of foamy cells	(0)	0 (0) (0	0 (0)	0 (0)	0 (0 0) (0		0	1 (2)		0 0) (0 0)	(0 0)	(())) (0 0)	(0)
a > b	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	Marked 4: Severe	•									_	•									

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NBOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name		Contro	01				2500	ppm						00ppn	1)00pp	ım
rgan	Findings	No. of Animals on Study Grade(%)	50 2 (%)	<u>3</u> (%)	(%)	<u>1</u> (%)	50 2 (%)	(%)	(%	4 %)	(9	<u>1</u> %)	2 (%)	50 (9		<u>4</u> (%)	•	<u>1</u> (%)	(0) (0 0 0 0 0 0 0 0 0 (0) (0 2 0 2 0 0 0 0 0 0 0 0 0 0 0		<u>4</u> (%)	
Respiratory s	system}																						
ung	bronchiolar-alveolar cell hyperplasia		<50) 0 (0) (0	0 (0)	0 (0		<50 0 0) (0	((0 0)	('	2 4) ((! 1 2)	50> ((0 0)	(4 8)	0		0 0) (0 (0)
	inflammation:foreign body	0 (0)	0 (0) (0 0)	0 (0)	0 ())) (i 2) (0 (0)	((0 0)		0 0) (0	((0	(0 0)			0	0 (0)
	granulomatous pneumonia	(0)	1 (2) (0 0)	0 (0)	(0		0	0 (0)	((0 0)		0 0) (0 0)))) (0	(0	0 (0)	(0 (0)	0 (0)
Hematopoietic	: system)																						
ohe marrow	granulation	4 (3)	<50: 2 (4) (0	0	; (6		<50 1 2)	0	((0 0)		5 0) (0 0 0)) ()	0 0>	(4 8)	2		0	0 (0)
	increased hematopoiesis	6 (12)	0 (0) (0	0 (0)	(4	S (0	0 (0)	((0 0)	(1 2) (0 0)) ((0	(1 2)) (0 0)	0 (0)
	granulopoiesis:increased	0 (0)	0 (0) (0)	0 (0)	(2	l 2) (0	0 (0)	((0 0)		0 0) (0 0)) ()	0 0>	(0 0)			0	0 (0)
pleen	congestion	4 (8)	<50 0 (0) (0	0 (0)		} i) (<50 0 0)	0	((0 0)		3 6) (1 2)		0 0) (0	(3 6)			0	0

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : FEMALE

ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	50	Contr	οl			250 50	100թյո	m			50	5000p	pm			5	10000 0	ppm	
rgan	Findings.	Grade <u>1</u> (%)	2 (%)	<u>3</u> (%)	(%)	<u>1</u> (%)	(%)		3 %)	(%)	(9	<u>(</u>	(%)	3 (%)	(%)	<u></u>	<u>(</u> (6)	2 (%)	(%)		4 (%)
Hematopoieti	c system)									٠											
pleen	deposit of hemosiderin	15 (30)	<50 21 (42)	0	0 (0)	14 (28)	21		0 0) (0 0)	12		<50 20 40)	0 (0)	0 (0)	14 (28		<5 25 50)	0> 0 (0)		0 0)
	increased extramedullary hematopoiesi		4 (8)	2 (4)	(0)	7 (14)	3 (6)		0 0) (0	(14		4 8)	0 (0)	0 (0)	(6		1 2)	0 (0)		0 0)
Circulatory	system)																				
eart	thrombus	0 (0)	<5(0 (0)	0	0 (0)	1 (2)	0		0 0) (0		1 2) ((50 0 0)	0 (0)	0 (0)	(1	0> 0 (0)		0
	inflammatory cell nest	(0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)		0 0) (0 0)))) (0	0 (0)	0 (0)))) (0 0)	-0 (0)		0
	myocardial fibrosis	11 (22)	0 (0)	0 (0)	0 (0)	11 (22)	0 (0)		0 0) (0		3 6) (0 0)	0 (0)	0 (0)		7 4) (1 2)	0 (0)	(0 0)
	subendocardial fibrosis	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	()	0 0) (0 0)		1 2) (0	0 (0)	0 (0))) (0	0 (0)		0
Digestive sy	vstem)																				
Lomach	mineralization	0 (0)	(2)	0	0 (0)	0 (0)	0		0 0) (0 0)		0 0) (<56 0 0)	0	0 (0)		o o) (0	0> 0 (0)		0

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 19

		Group Name No. of Animals on Study	Ę	Contr 50	rol		50	2500pj	pm			5 50	000pp	m				100 50	00ppn	n
Organ	Findings	Grade <u>1</u> (%)	(%)	3 (%)	(%)	(%)	2 (%)	(%)	(%)	(%)	(%		3 (%)	(%)	-	<u>1</u> (%)	2 (%)		3 (%)	<u>4</u> (%)
{Digestive s	ystem)																			
stomach	ulcer:forestomach	1 (2)	(0)	50> 0 (0)	0 (0)	5 (10) (<50 0 0) (0	0 (0)	4 (8)	1		0	0 (0)	(1 2)	0		0 0) (0 0)
	hyperplasia:forestomach	0 (0)	0 (0)	0 (0)	0 (0)	1 (2) (0	0 (0)	0 (0)	3 (6)	(())) (0	0 (0)	(0 0)	0	, (0 0) (0
	erosion:glandular stomach	0 (0)	0 (0)	0 (0)	0 (0)	1 (2) (0	0 (0)	0 (0)	2 (4)	(())) (0	0 (0)	(0 0)	0 (0)		0 0) (0 0)
	ulcer:glandular stomach	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0	0 (0)	0 (0)	1 (2)	((0 0)	0 (0)	(0 0)	0 (0)		0 0) (0
liver	herniation	12 (24)	0	50> 0 (0)	0 (0)	11 (22) (<50 0 0)	0	0 (0)	7 (14)	((0	0 (0)		10 20)	0		0 0) (0 0)
	peliosis-like lesion	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	1 (2)	((0 0)	0 (0)	(0 0)	0 (0)		0 0) (0 (0)
	necrosis:central	1 (2)	0 (0)	0 (0)	0 (0)	0 (0) (1 2)	1 (2)	0 (0)	1 (2)))) (0	0 (0)	(1 2>	0 (0)		0 0) (0 (0)
	necrosis:focal	0 (0)	(0)	0 (0)	0 (0)	(2) (1 2)	0 (0)	0 (0)	3 (6)	(:	L 2) (0 0)	0 (0)	(1 2)	0 (0)		0	0 (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

<a>⟩

a : Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : FEMALE ALL ANIMALS (0-105W)

Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 50 2 3 4 (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	500Оррш 50 1 2 3 4 (%) (%) (%) (%)	10000ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive	system)					
liver	fatty change:central	0 (0)	<50> 0 0 0 (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 1 0 (0) (0) (2) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	fatty change:peripheral	0 (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	lymphocytic infiltration	0 (0)	1 0 0 (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	granulation	15 (30)	3 4 0 (6) (8) (0)	15 6 3 0 (30) (12) (6) (0)	11 5 2 0 (22) (10) (4) (0)	10 3 2 0 (20) (6) (4) (0)
	inflammatory cell nest	2 (4)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	clear cell focus	(0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	15 (30)	6 0 0 (12) (0) (0)	14 4 0 0 (28) (8) (0) (0)	8 4 0 0 (16) (8) (0) (0)	8 5 0 0 (16) (10) (0) (0)
	bile duct hyperplasia	12 (24)	1 0 0 (2) (0) (0)	14 3 0 0 (28) (6) (0) (0)	18 1 1 0 (36) (2) (2) (0)	15 3 0 0 (30) (6) (0) (0)

Grade

1 : Slight

2 : Moderate

3 : Marked

4 : Severe

(a)

a: Number of animals examined at the site

b

b : Number of animals with lesion

c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

ANIMAL

RT TYPE : A1

Group Name Control 2500ррш 5000ppm 10000ppm No. of Animals on Study 50 50 50 50 Grade Organ__ Findings_ (%) (%) (%) (%) (%) (%) (%) (Digestive system) liver ⟨50⟩ <50> ⟨50⟩ <50> bile ductular proliferation 0 0 0 0 0 0 0 0 0 0 0 (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) pancreas <50> ⟨50⟩ ⟨50⟩ <50> atrophy 4 1 0 0 3 4 0 0 2 0 0 0 4 2 0 0 (8)(2)(0)(0) (6)(8)(0)(0) (8)(4)(0)(0) (4)(0)(0)(0) islet cell hyperplasia 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) {Urinary system} kidney ⟨50⟩ <50> deposit of hemosiderin 0 0 0 2 0 0 0 0 0 (0)(0)(0)(0) (0)(4)(0)(0) (2)(0)(0)(0) (0)(2)(0)(0) inflammatory cell nest 0 0 0 0 (0)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) scar 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 (2)(0)(0)(0) (2)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1

: FEMALE SEX

PAGE: 22

Organ		Group Name No. of Animals on Study Grade	Cont 50 2 3 (%) (%)	4_	50 1 2 (%) (%)	2500ppm 3 4 (%) (%)	<u>1</u> (%)	50 2	ооррш 3 <u>4</u> %) (%)	<u>1</u> (%)	10000p 50 2 3 (%) (%)	эрш <u>4</u> (%)
{Urinary syst	em)											
kidney	chronic nephropathy	20 (40)	<50> 10 0 (20) (0)	0 (0) (<50 19 9 38) (18) (0 0	13 (26)	<50> 11 (22) (1 0 2) (0)	21 (42) (<50> 7 1 14) (2)	0 (0)
	papillary necrosis	1 (2)	0 0	0 (0)	0 0 0 0 0 0	0 0	0 (0)	0 (0) (0 0	0 (0) (1 0 2) (0)	0 (0)
	mineralization:cortico-medullary junct		0 0	0 (0) (0 0 0 0 0 0 0 0	0 0	0 (0)	0 (0) (0 0	0 (0) (0 0	0 (0)
	mineralization:papilla	0 (0)	0 0	0 (0) (0 0 0 0 0 0	0 0	0 (0)	0 (0) (0 0	1 (2) (0 0	0 (0)
	atypical tubule hyperplasia	0 (0)	0 0	0 (0) (0 0 0 0 0 0	0 0	0 (0)	1 (2) (0 0	0 (0) (0 0	0 (0)
	dilated pelvis	3 (6)	0 0	0 (0) (0 0 0 0 0 0	0 0	2 (4)	0 (0) (0 0	1 (2) (1 0 2) (0)	0 (0)
urin bladd	nodular hyperplasia:transitional epith		<50> 0 0 (0) (0)		<50 0 0 0) (0) (0 0	0 (0)	<50> 0 (0) (0 0 0 0) (0)	0 (0) (<50> 1 0 2) (0)	0 (0)
{Endocrine sy	ystem)											
pituitary	angieclasis	3 (6)	<50> 1 0 (2) (0		3 1 6) (2)	0 0	3 (6)	<50> 0 (0) (0 0 0 0) (0)	6 (12) (<50> 1 0 2) (0)	0 (0)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%) (%)	10000ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Endocrine sy	vstem)				
pituitary	cyst	(50) 1 1 0 0 (2) (2) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	3 0 0 0 (6)(0)(0)(0)
	hyperplasia	7 2 0 0 (14) (4) (0) (0)	7 4 0 0 (14) (8) (0) (0)	9 4 0 0 (18) (8) (0) (0)	9 2 0 0 (18) (4) (0) (0)
	Rathke pouch	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
thyroid	C-cell hyperplasia	50> 5 3 0 0 (10) (6) (0) (0)	<50> 8 3 0 0 (16) (6) (0) (0)	3 2 0 0 (6) (4) (0) (0)	\$50> 5 6 0 0 (10) (12) (0) (0)
adrenal	peliosis-like lesion	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)
	hyperplasia:cortical cell	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	hyperplasia:medulla	1 0 0 0 (2) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)

Grade

1 : Slight 2 : Moderate 3 : Marked

4 : Severe

< a > b

a: Number of animals examined at the site

(c)

b: Number of animals with lesion

c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	No	roup Name	2500ррш 50 <u>1 2 3 4</u> (%) (%) (%) (%)	5000ppm 50 1 2 3 4 (%) (%) (%) (%)	10000ppm 50 1 2 3 4 (%) (%) (%)
(Endocrine sy	rstem)				
adrenal	focal fatty change:cortex	(50) 1 1 0 0 (2) (2) (0) (0)	(50) 5 1 0 0 (10) (2) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	(50) 5 0 0 0 (10) (0) (0) (0)
{Reproductive	e system)				
ovary	hemorrhage	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(50) 1 0 0 0 (2) (0) (0) (0)
	cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
uterus	cystic endometrial hyperplasia	<50> 2 2 0 0 (4) (4) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<pre></pre>
mammary gl	galactocele	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	(50) 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
(Nervous syst	tem)				
brain	gliosis	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Grade (a) b (c) Significant	a: Number of animals examined at the sitb: Number of animals with lesionc: b / a * 100				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE : A1 SEX : FEMALE

	Group Nam No. of An Grade	e Control imals on Study 50 1 2 3 4	2500ррш 50 I 2 3 4	5000թթm 50 1 2 3 4	10000ррш 50 1 2 3 4
rgalı	Findings	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
Special sens	se organs/appendage)				
ye	cataract	<50> 2 0 0 0 (4) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	(50) 4 0 0 0 (8) (0) (0) (0)	(50) 4 0 0 0 (8) (0) (0) (0)
	retinal atrophy	16 10 0 0 (32) (20) (0) (0)	22 8 0 0 (44) (16) (0) (0)	14 12 0 0 (28) (24) (0) (0)	19 15 0 0 (38) (30) (0) (0)
	keratitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
	vascularization:cornea	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
asolacr d	inflaumation	(50) 0 6 0 0 (0) (12) (0) (0)	(50) 0 2 0 0 (0) (4) (0) (0)	(50) i 2 0 0 (2) (4) (0) (0)	(50) 0 i 0 0 (0) (2) (0) (0)
Musculoskele	etal system)				
uscle	mineralization	<pre></pre>	<pre></pre>	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Grade (a> b (c) Significant (1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference: *: P ≤ 0.05 **: P ≤ 0.01	4 : Severe Test of Chi Square			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Group Name No. of Anima Grade	Control als on Study 50 1 2 3 4 (%) (%) (%) (%)	2500ppm 50 1 2 3 4 (%) (%) (%) (%)	5000ppm 50 <u>1 2 3 4</u> (%) (%) (%)	10000 μm 50 1 2 3 4 (%) (%) (%) (%)
{Musculoske	letal system)				
bone	osteosclerosis	<50> 5 0 0 0 (10) (0) (0) (0)	\$50> 9 0 0 0 (18) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	4 0 0 0 (8) (0) (0) (0)
{Body cavit	ies)				
adipose	hemorrhage	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 0 0 0 0 0 0 0 0	(50) 0 1 0 0 (0) (2) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01 Tex	4 : Severe			

APPENDIX M 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

DEAD AND MORIBUND ANIMALS

: 0497 STUDY NO.

ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE DEAD AND MORIBUND ANIMALS (0-105W)

10000ppm 5000ppm Group Name Control 2500ppm No. of Animals on Study 9 11 10 12 Grade 3 3 (%) (%) (%) (%) (%) (%) (%) (%) Findings_ (%) {Integumentary system/appandage} <11> <10> <12> < 9> skin/app 0 0 0 0 1 0 0 inflammation 0 0 (0)(0)(0)(0) (0) (10) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 epidermal cyst 0 0 0 0 0 (0)(9)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) {Respiratory system} <11> <10> <12> nasal cavit thrombus 0 0 0 0 0 0 1 0 0 0 (0)(8)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 1 0 mineralization 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (8)(0)(0)(0) (0)(0)(0)(0) 0 0 * 1 6 0 8 0 2 10 cosinophilic change:olfactory epithelium 0 (0)(80)(0)(0) (17) (83) (0) (0) (11) (67) (0) (0) (36) (36) (0) (0) 0 eosinophilic change:respiratory epithelium 0 0 1 0 (25) (0) (0) (0) (11) (0) (0) (0) (9)(0)(0)(0) (10) (0) (0) (0) 0 inflammation:foreign body 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (30) (0) (0) (0) (9)(0)(0)(0)

Grade

1 : Slight

2 : Moderate

3 : Marked

1 : Severe

(a)

a: Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Contr No. of Animals on Study 11 Grade 1 2 3 (%) (%)	10 4 <u>1 2 3</u>	5000ppm 12 4 1 2 3 4 (%) (%) (%) (%)	10000ppm 9 1 2 3 4 (%) (%) (%) (%)
{Kespiratory sy	ystem}				
asal cavit	respiratory metaplasia:gland	(11) 0 0 0 (0) (0) (0)	(10) (0) (0) (0) (0) (0 1 0 0 0 0) (8) (0) (0) (0)	<pre></pre>
arynx	inflammatory infiltration	(11) 0 0 0 (0) (0) (0)		0 0 0 0 0 0) (0) (0) (0) (0)	(0) (0) (0) (0)
ung	inflammatory infiltration	(11) 0 0 0 (0) (0) (0)		0 0 0 0 0 0) (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0) (0)
	inflammation:foreign body	0 0 0 0 (0) (0)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
Hematopoietic	system)				
one marrow	granulation	(11) 1 0 0 (9) (0) (0)	0 0 0 0 (0) (0) (0) (0) (0 0 0 0 0 0) (0) (0) (0) (0)	(0) (0) (0) (0)
	increased hematopoiesis	3 0 0 (27) (0) (0)	0 2 0 0 (20) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 (11) (0) (0) (0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: RAT F344/DuCrlCrlj[F344/DuCrj] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

ANIMAL

Organ	Group Nam No. of An Grade Findings	Control imals on Study 11 1 2 3 4 (%) (%) (%) (%)	2500ppm 10 1 2 3 4 (%) (%) (%) (%)	5000ppm 12 1 2 3 4 (%) (%) (%) (%)	10000ppm 9 1 2 3 4 (%) (%) (%) (%)
{Hematopoiet	cic system)				
spleen	congestion	1 0 0 0 (9) (0) (0) (0)	(0) (0) (0) (0)	<12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	deposit of hemosiderin	2 4 0 0 (18) (36) (0) (0)	0 3 0 0 (0) (30) (0) (0)	3 3 0 0 (25) (25) (0) (0)	5 0 0 0 (56) (0) (0) (0)
	increased extramedullary hematopoiesis	1 2 0 0 (9) (18) (0) (0)	1 2 0 0 (10) (20) (0) (0)	1 3 0 0 (8) (25) (0) (0)	1 1 0 0 (11) (11) (0) (0)
{Circulatory	y system}				
lieart	thrombus	(11) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	(0) (11) (0) (0) (0) (11) (0) (0)
	inflammatory cell nest	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	3 0 0 0 (27) (0) (0) (0)	4 0 0 0 (40) (0) (0) (0)	3 0 0 0 (25) (0) (0) (0)	1 1 0 0 (11) (11) (0) (0)
	subendocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01	4 : Severe Test of Chi Square			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 14

Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 11 2 3 4 (%) (%) (%)	2500ppm 10 1 2 3 4 (%) (%) (%) (%)	5000ppm 12 1 2 3 4 (%) (%) (%) (%)	10000ppm 9 1 2 3 4 (%) (%) (%) (%)
(ne						
{Digestive s	system) mineralization	0 (0)	<11> 1 0 0 (9) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0	<12> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	ulcer:forestomach	0 (0)	0 0 0	3 0 0 0 0 (30) (0) (0) (0)	3 1 0 0 (25) (8) (0) (0)	1 0 0 0
	hyperplasia:forestomach	0 (0)	0 0 0	1 0 0 0 0 (10) (10) (10)	2 0 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0) (0)
	erosion:glandular stomach	0 (0)	0 0 0	1 0 0 0 0 (10) (10) (10)	2 0 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0)
	ulcer:glandular stomach	0 (0)	0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)
liver	herniation	3 (27)	<11> 0 0 0 0 0 0 0 0 0 0 0	<10> 2 0 0 0 (20) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	(11) (0) (0) (0)
	necrosis:central	1 (9)	0 0 0	0 1 1 0 (0) (10) (10) (0)	1 0 0 0 0 (8) (9) (9)	1 0 0 0 0 (11) (0) (0) (0)
	necrosis:focal	0 (0)	0 0 0	0 0 0 0 0 (0) (0)	2 0 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0) (0)

4 : Severe

Grade l : Slight 2 : Moderate 3 : Marked

< a > a : Number of animals examined at the site b : Number of animals with lesion b

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 : FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 11 Grade 1 2 3 4 (%) (%) (%) (%)	2500 _{DDm} 10 1 2 3 4 (%) (%) (%) (%)	5000ррт 12 12 3 4 (%) (%) (%) (%)	10000ppm 9 1 2 3 4 (%) (%) (%) (%)
{Digestive :	system}				
liver	fatty change:central	0 0 0 0 (0) (0) (0) (0)	(10) 0 1 0 0 (0) (10) (0) (0)	0 0 1 0 (0) (0) (8) (0)	<pre></pre>
	fatty change:peripheral	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	granulation	2 0 0 0 0 (18) (0) (0) (0)	2 0 0 0 0 (20) (0) (0) (0)	2 0 0 0 (17) (0) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory cell nest	1 0 0 0 0 (9) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (8) (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	1 0 0 0 0 (9) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (11) (0) (0) (0)
	bile duct hyperplasia	0 1 0 0 (0) (0)	4 2 0 0 * (40) (20) (0) (0)	3 0 0 0 (25) (0) (0) (0)	3 0 0 0 (33) (0) (0) (0)
pancreas	atrophy	<11> 0 0 0 0 0 0 0 0 0 0 0 0	(10) 0 1 0 0 (0) (10) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	islet cell hyperplasia	0 0 0 0 0 (0)	0 0 0 0 0 (0) (0)	0 1 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade l : Slight 2 : Moderate 3 : Marked 4 : Severe

< a > a: Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

SEX

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105%)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1

: FEMALE

	Group Na		2500ррт	5000ррт	10000ppm 9
rgan	No. of A Grade Findings	nimals on Study 11 1 2 3 4 (%) (%) (%) (%)	10 1 2 3 4 (%) (%) (%) (%)	12 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
{Urinary sys	tem)				
kidney	deposit of hemosiderin	(0) (0) (0) (0)	(10) 0 2 0 0 (0) (20) (0) (0)	<pre></pre>	<pre></pre>
	inflammatory cell nest	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0
	chronic nephropathy	1 1 0 0 (9) (9) (0) (0)	i i 0 0 (10) (10) (0) (0)	3 1 1 0 (25) (8) (8) (0)	0 2 1 0 (0) (22) (11) (0)
	papillary necrosis	1 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (11) (0) (0)
	mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (11) (0) (0) (0)
	dilated pelvis	2 0 0 0 0 (18) (0) (0) (0)	0 0 0 0 0 (0)	2 0 0 0 0 (17) (0) (0) (0)	1 1 0 0 (11) (11) (0) (0)
{Endocrine s	system}				
pituitary	angiectasis	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 (20) (0) (0) (0)	<pre></pre>	(0) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: Marke a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	d 4: Sovere			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

Organ		np Name	2500 _{ppm} 10 1 2 3 4 (%) (%) (%) (%)	5000ppm 12 12 3 4 (%) (%) (%) (%)	10000ppm 9 1 2 3 4 (%) (%) (%) (%)
{Endocrine s	system)				
pituitary	cyst	<11> 0 0 0 0 0 0 0 0 0 0 0 0	(10) 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	hyperplasia	1 0 0 0 0 (9) (0) (0)	0 1 0 0 (0) (10) (0) (0)	1 0 0 0 0	0 0 0 0 0 (0) (0)
thyroid	C-cell hyperplasia	(11) 0 1 0 0 (0) (9) (0) (0)	3 0 0 0 (30) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 2 0 0 (11) (22) (0) (0)
adrenal	peliosis-like lesion	1 0 0 0 (9) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<12> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	hyperplasia:medulla	1 0 0 0 0 (9) (9) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0)
	focal fatty change:cortex	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (17) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)
{Reproductiv	ve system)				
uterus	cystic endometrial hyperplasia	<pre></pre>	(10) 1 0 0 0 (10) (0) (0) (0)	(12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Grade < a > b (c)	1: Slight 2: Moderate 3: M a: Number of animals examined at the site b: Number of animals with lesion c: b/a*100 difference; *: P≤ 0.05 **: P≤ 0.				

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE

		2500ppm	5000թ բ ա	10000թթու 9			
Findings	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	12 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)			
system)							
galactocele	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(10) 0 1 0 0 (0) (10) (0) (0)	(12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>			
e organs/appendage)							
cataract	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>			
retinal atrophy	0 0 0 0 0 (0) (0)	1 1 0 0 (10) (10) (0) (0)	1 1 0 0 (8) (8) (0) (0)	2 1 0 0 (22) (11) (0) (0)			
keratitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (11) (0) (0) (0)			
vascularization:cornea	0 0 0 0 0 (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0			
inflammation	0 1 0 0 (0) (9) (0) (0)	(10) 0 1 0 0 (0) (10) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)			
1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤ 0.01	ed 4: Severe Test of Chi Square						
	No. of Grade Findings system) galactocele corgans/appendage) cataract retinal atrophy keratitis vascularization:cornea inflammation 1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with losion c: b / a * 100	No. of Animals on Study	No. of Animals on Study	No. of Anissis on Study			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

344/DuCr1Cr1i[F344/DuCri] DEAD

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

	Group Name No. of Animals on Stu		Control dy 11			2500ppm 10		5000ppm 12			10000pm 9									
rgan	Findings	Grade <u>1</u> (%)	(%)	(%)	(%)	(%)	2 (%)	(%)	(%)	(%)	(9	2 %)	(%)	(%)	(9)	2 (%)	(%		(%)
Musculoskele	tal system)																			
nuscle	mineralization	0 (0)	<111 0 (0) (0	0	0 (0)	0	(10> 0 (0)	0 (0)	1 (8)	((<12: 0 0) (0	(((0 0)))) (0
one	osteosclerosis	1 (9)	<111 0 (0) () 0 0) 1	0 (0)	1 (10)	0		0	2 (17)		<12: 0 0) (0	0 (0)	(11	:	0)) (0

(IIPT150)

BAIS4

APPENDIX M 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

	Group Name		2500ррт	5000ppm	10000ррт
Organ	No. of Ans	mals on Study 39 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	38 1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
(Integumentar	y system/appandage}				
kin/app	inflammation	<pre></pre>	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(38) 0 0 0 0 (0)(0)(0)(0)	(41) 0 1 0 0 (0) (2) (0) (0)
	scab	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
	epidermal cyst	0 1 0 0 (0) (0)	0 0 0 0 0 (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0
{Respiratory	system}				
nasal cavit	mineralization	<pre></pre>	3 0 0 0 (8) (0) (0) (0)	(38) 1 0 0 0 (3) (0) (0) (0)	(41) 1 0 0 0 (2) (0) (0) (0)
	eosinophilic change:olfactory epithelium	2 32 4 0 (5) (82) (10) (0)	2 33 5 0 (5) (83) (13) (0)	4 31 2 0 (11) (82) (5) (0)	1 34 6 0 (2) (83) (15) (0)
	eosinophilic change:respiratory epithelium	17 0 0 0 (44) (0) (0) (0)	14 0 0 0 (35) (0) (0) (0)	14 0 0 0 (37) (0) (0) (0)	16 0 0 0 (39) (0) (0) (0)
	inflammation:foreign body	4 0 0 0 0 (10) (10) (10)	1 0 0 0 0	2 0 0 0 0 (5) (0) (0)	3 0 0 0 0 (7) (0) (0)
Grade (a) b (c) Significant (1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01	4 : Severe			

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		roup Name No. of Animals on Study	Co. 39	ntrol		4	2500pj	om				5000p	рm				10000	ppm	
rgan		rade 1 (%)	_ 2	3 <u>4</u> %) (%)	(%)	2 (%)	3 (%)	(%)	<u>1</u> (%))	38 2 (%)	3 (%)	(%)	<u>1</u> (%) (41 2 (%)	3 (%)		<u>4</u> %)
Respiratory s	ystem}																		
asal cavit	inflammation:respiratory epithelium	1 (3)	<39> 0 (0) (0 0 0) (0)	0 (0)	<4 0 (0)	0	0 (0)	0		<38 0 0) (0	0 (0)	0) (<41 0 0) (0		0 0)
	respiratory metaplasia:gland	5 (13)	0 (0 0 0) (0)	7 (18)	0 (0)	0 (0)	0 (0)	8 (21		0 (0	0 0)	0 (0)	9 (22	s) (0 0) (0 (0)		0 0)
lung	fibrosis:focal	0 (0)	<39> 0 (0) (0 0 0) (0)	0 (0)	<4 0 (0)	0	0 (0)	0 (0		<38 0 0) (0 (0)	0 (0)	1 (2		(41 0 0) (0		0 0)
	accumulation of foamy cells	0 (0)	0 (0) (0 0 0) (0)	0 (0)	0 (0)	0 (0)	0 (0)	0		1 3) (0 (0)	0 (0)	0)) (0	0 (0)		0 0)
	bronchiolar-alveolar cell hyperplasia	3 (8)	0 (0) (0 0 0 0) (0)	0 (0)	0 (0)	0 (0)	0 (0)	· 2) (1 3) (0 (0)	0 (0)	4 (10	l)) (0	0 (0)		0 0)
	granulomatous pneumonia	(0)	1 (3) (0 0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0		0	0 (0)	0 (0)	0)))) (0	0 (0)		0 0)
{ lematopoietic	: system)																		
bone marrow	granulation	3 (8)	<39> 2 (5) (0 0	3	1	0 (0)	0 (0)	5 (13		<38 0 0) (0	0 (0)	4 (10	1	<41 2 5)	0		0 0)
くa> b	a : Number of animals examined at the si b : Number of animals with lesion c : b / a * 100																		

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 39	2500ppm 40	5000ppm 38	10000ppm 41
Organ		Grade <u>1 2 3 4</u> (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%)
{Hematopoieti	ic system)				
oone marrow	increased hematopoiesis	3 0 0 0 (8) (0) (0) (0)	<pre></pre>	38> 1 0 0 0 (3) (0) (0) (0)	<41> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	granulopoiesis:increased	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
spleen	congestion	39) 3 0 0 0 (8) (0) (0) (0)	3 0 0 0 (8) (0) (0) (0)	3 1 0 0 (8) (3) (0) (0)	3 0 0 0 (7) (0) (0) (0)
	deposit of hemosiderin	13 17 0 0 (33) (44) (0) (0)	14 18 0 0 (35) (45) (0) (0)	9 17 0 0 (24) (45) (0) (0)	9 25 0 0 (22) (61) (0) (0)
	increased extramedullary hematopoiesis	4 2 2 0 (10) (5) (5) (0)	6 I 0 0 (15) (3) (0) (0)	6 1 0 0 (16) (3) (0) (0)	2 0 0 0 0 (5) (0) (0)
(Circulatory	system)				
neart	thrombus	39> 0 0 0 0 (0) (0) (0) (0)	40> · 1 0 0 0 (3) (0) (0) (0)	<38> 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)
Grade < a > b (c) Significant	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤		,		

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: FEMALE PAGE: 14

	Grade <u>1</u> (%) (2 3 4 (%) (%)	1 2 3 4 (%) (%) (%) (%)	38 1 2 3 4 (%) (%) (%) (%)	41 1 2 3 4 (%) (%) (%) (%)
system)					
myocardial fibrosis		<39> 0 0 0 0) (0) (0)	7 0 0 0 (18) (0) (0) (0)	38> 5 0 0 0 (13) (0) (0) (0)	6 0 0 0 (15) (0) (0) (0)
etem)					
ulcer:forestomach			<40> 2 0 0 0 (5) (0) (0) (0)	38> 1 0 0 0 (3) (0) (0) (0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hyperplasia:forestomach		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
herniation		<39> 0 0 0 0) (0) (0)	9 0 0 0 (23) (0) (0) (0)	<38> 6 0 0 0 (16) (0) (0) (0)	9 0 0 0 (22) (0) (0) (0)
peliosis-like lesion	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
necrosis:focal		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 (3) (3) (0) (0)	1 1 0 0 (3) (3) (0) (0)	1 0 0 0 0 (2) (0) (0)
• 1	myocardial fibrosis tem) ulcer:forestomach hyperplasia:forestomach herniation peliosis-like lesion	myocardial fibrosis 8 (21) (tem) ulcer:forestomach 1 (3) (hyperplasia:forestomach 0 (0) (herniation 9 (23) (peliosis-like lesion 0 (0) (necrosis:focal 0 (0) (myocardial fibrosis	The image is a second content of the image is a second content o	Market M

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

c:b/a * 100 (c)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0497 HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE

REPORT TYPE : A1

rgalı	Findings	Group Name Control No. of Animals on Study 39 Grade 1 2 3 4 (%) (%) (%) (%)	2500ppm 40 1 2 3 4 (%) (%) (%)	5000ppm 38 1 2 3 4 (%) (%) (%)	10000μpm 41 1 2 3 4 (%) (%) (%) (%)
Digestive sys	etem)				
iver	lymphocytic infiltration	39> 0 1 0 0 (0) (3) (0) (0)	<pre></pre>	38> 0 1 0 0 (0) (3) (0) (0)	<pre></pre>
	granulation	13 3 4 0 (33) (8) (10) (0)	13 6 3 0 (33) (15) (8) (0)	9 5 2 0 (24) (13) (5) (0)	10 3 2 0 (24) (7) (5) (0)
	inflammatory cell nest	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0)
	clear cell focus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	14 6 0 0 (36) (15) (0) (0)	14 4 0 0 (35) (10) (0) (0)	8 4 0 0 (21) (11) (0) (0)	7 5 0 0 (17) (12) (0) (0)
	bile duct hyperplasia	12 0 0 0 (31) (0) (0) (0)	10 1 0 0 (25) (3) (0) (0)	15 1 1 0 (39) (3) (3) (0)	12 3 0 0 (29) (7) (0) (0)
	bile ductular proliferation	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
oancreas	atrophy	<pre></pre>	3 3 0 0 (8) (8) (0) (0)	<38> 2 0 0 0 (5) (0) (0) (0)	<11> 4 2 0 0 (10) (5) (0) (0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCr1cr1j[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 16

		roup Name Co. of Animals on Study 39	ontrol	2500ppm 40	5000թթm 38	10000թբm 41
rgan	Findings	(%) (%)	3 4 (%) (%) (%)	2 3 4 (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%)
Urinary syst	em}					
xidney	deposit of hemosiderin	399) 0 0 (0) (0) (0 0 0	<40> 0 0 0 (0) (0) (0)	38> 1 0 0 0 (3) (0) (0) (0)	<41> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	scar	1 0 (3) (0) (0 0 1 0 0 (3)	0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	chronic nephropathy	19 9 (49) (23) (0 0 18 0) (0) (45)	8 0 0 (20) (0) (0)	10 10 0 0 (26) (26) (0) (0)	21 5 0 0 (51) (12) (0) (0)
	minoralization:cortico-medullary junct	ion 1 0 (3) (0) (0 0 0 0	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)
	atypical tubule hyperplasia	0 0 (0) (0 0 0 0	0 0 0	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	dilated pelvis	1 0 (3) (0) (0 0 0 0	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
urin bladd	nodular hyperplasia:transitional epith	(0) (0) (0 0 0	<40> 0 0 0 0 (0) (0) (0)	<pre></pre>	0 1 0 0 (0) (2) (0) (0)
(Endocrine sy	ystem)	•				
pituitary	angiectasis	3 1 (8) (3) (0 0 1	<40> 1 0 0 0 (3) (0) (0)	3 0 0 0 (8) (0) (0) (0)	6 1 0 0 (15) (2) (0) (0)

(c)

c:b/a * 100

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 17

		Group Name No. of Animals on Study	Control 39	2500րթա 40	5000թրա 38	10000թթա 41
Organ	Findings	Grade 1 (%)	2 3 <u>4</u> (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
(Endocrine s	ystem)					
pituitary	cyst	1 (3)	<39> 1 0 0 (3) (0) (0)	(40) 1 0 0 0 (3) (0) (0) (0)	38> 3 0 0 0 (8) (0) (0) (0)	<pre></pre>
	hyperplasia	6 (15)	2 0 0 (5) (0) (0)	7 3 0 0 (18) (8) (0) (0)	8 4 0 0 (21) (11) (0) (0)	9 2 0 0 (22) (5) (0) (0)
	Rathke pouch	0 (0)	0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	2 0 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)
thyroid	C-cell hyperplasia	5 (13)	<39> 2 0 0 (5) (0) (0)	<40> 5 3 0 0 (13) (8) (0) (0)	38> 3 2 0 0 (8) (5) (0) (0)	<41> 4 4 0 0 (10) (10) (0) (0)
adrenal	peliosis-like lesion	1 (3)	<39> 0 0 0 0 0 0	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0)	<41> 1 0 0 0 (2) (0) (0) (0)
	hyperplasia:cortical cell	1 (3)	0 0 0	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)
	hyperplasia:medulla	0 (0)	0 0 0 0	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (5) (0) (0) (0)

Grade

1 : Slight 2 : Moderate 3 : Marked

4 : Severe

(a)

a : Number of animals examined at the site

b

b: Number of animals with lesion c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

: 0497

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX : FEMALE

Organ		up Name	2500ppm 40 1 2 3 4 (%) (%) (%) (%)	5000ppm 38 1 2 3 4 (%) (%) (%) (%)	10000ррт 41 1 2 3 4 (%) (%) (%) (%)
{Endocrine sy	stem)				
adrenal	focal fatty change:cortex	<39> 1 1 0 0 (3) (3) (0) (0)	5 1 0 0 (13) (3) (0) (0)	0 0 0 0 0 (0) (0) (0) (0)	4 0 0 0 (10) (0) (0) (0)
{Reproductive	system)				
ovary	hemorrhage	39> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0	<38> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	cyst	(0) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
uterus	cystic endometrial hyperplasia	39> 2 2 0 0 (5) (5) (0) (0)	(40) 0 1 0 0 (0) (3) (0) (0)	38> 0 1 0 0 (0) (3) (0) (0)	2 2 0 0 (5) (5) (0) (0)
mammary gl	galactocele	39> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0	<38> 0 1 0 0 (0) (3) (0) (0)	(41) 0 0 0 0 (0) (0) (0) (0)
{Nervous syst	cem}				
brain	gliosis	<pre></pre>	<40> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant of	a: Number of animals examined at the siteb: Number of animals with lesionc: b / a * 100	Marked 4: Severe			

SEX

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 : FEMALE

PAGE: 19

BAIS4

Organ		Group Name Control No. of Animals on Study 39 Grade 1 2 3 4 (%) (%) (%) (%)	2500ppm 40 1 2 3 4 (%) (%) (%)	5000 μμπ 38 1 2 3 4 (%) (%) (%) (%)	10000υμπ 41 1 2 3 4 (%) (%) (%)
{Special sens	e organs/appendage)				
eye	cataract	<pre></pre>	3 0 0 0 (8) (0) (0) (0)	<pre></pre>	2 0 0 0 (5) (0) (0) (0)
	retinal atrophy	16 10 0 0 (41) (26) (0) (0)	21 · 7 · 0 · 0 (53) (18) (0) (0)	13 11 0 0 (34) (29) (0) (0)	17 14 0 0 (41) (34) (0) (0)
nasolacr d	inflammation	(39) 0 5 0 0 (0) (13) (0) (0)	0 1 0 0 (0) (3) (0) (0)	(38) 1 1 0 0 (3) (3) (0) (0)	0 1 0 0 (0) (2) (0) (0)
{Musculoskele	etal system)				·
bone	osteosclerosis	<39> 4 0 0 0 (10) (0) (0) (0)	<pre></pre>	<pre></pre>	3 0 0 0 (7) (0) (0) (0)
{Body cavitie	{ze				
adipose	hemorrhage	39> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
Grade <a>a> b (c) Significant of	a: Number of animals examined at the sb: Number of animals with lesionc: b / a * 100				

APPENDIX N 1

STUDY NO. : 0497 NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1 SEX : MALE

: MALE

me-related Weeks	Items	Group Name	Control	2500ррт	5000ppm	10000ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	0	0	0	
	NO. OF ANIMALS WITH TUMORS		n	0	0	0	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	0	0	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	0	0	0	
	NO. OF TOTAL TUMORS		0	0	0	0	
53 - 78	NO. OF EXAMINED ANIMALS		1	3	1	1	
	NO. OF ANIMALS WITH TUMORS		1	2	1	1	
	NO. OF ANIMALS WITH SINGLE TUMORS		1	2	1	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	1	
	NO. OF BENIGN TUMORS		0	0	1	1	
	NO. OF MALIGNANT TUMORS		1	2	0	1	
	NO. OF TOTAL TUMORS	<u></u>	1	2	1	2	
79 - 104	NO. OF EXAMINED ANIMALS		13	10	4	9	
	NO. OF ANIMALS WITH TUMORS		13	10	4	8	
	NO. OF ANIMALS WITH SINGLE TUMORS		7	4	2	4	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		6	6	2	4	
	NO. OF BENIGN TUMORS		16	17	3	11	
	NO. OF MALIGNANT TUMORS		5	8	4	3	
	NO. OF TOTAL TUMORS		21	25	7	14	
105 - 105	NO. OF EXAMINED ANIMALS		36	37	45	40	
	NO. OF ANIMALS WITH TUMORS		34	37	45	39	
	NO. OF ANTMALS WITH SINGLE TUMORS		15	10	9	13	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		19	27	36	26	
	NO. OF BENIGN TUMORS		60	70	83	62	
	NO. OF MALIGNANT TUMORS		5	13	11	13	
	NO. OF TOTAL TUMORS		65	83	94	75	

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

REPORT TYPE : A1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

SEX : MALE

Time-related	Items	Group Name	Control	2500ppm	5000ppm	10000ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		48	49	50	48	
	NO. OF ANIMALS WITH SINGLE TUMORS		23	16	12	17	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		25	33	38	31	
	NO. OF BENIGN TUMORS		76	87	87	74	
	NO. OF MALIGNANT TUMORS		11	23	15	17	
	NO. OF TOTAL TUMORS		87	110	102	91	

(HPT070) BATS4

APPENDIX N 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE

Time-related Weeks	Items	Group Name	Control	2500ppm	5000ppm	10000ppm	
0 - 52	NO. OF EXAMINED ANIMALS		1	0	0	0	
	NO. OF ANIMALS WITH TUMORS		0	0	0	0	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	0	0	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	ō	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	0	0	0	
	NO. OF TOTAL TUMORS		0	0	0	0	
53 - 78	NO. OF EXAMINED ANIMALS		4	2	I	0	
	NO. OF ANIMALS WITH TUMORS		3	2	1	0	
	NO. OF ANIMALS WITH SINGLE TUMORS		3	2	0	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	1	0	
	NO. OF BENIGN TUMORS		0	0	2	0	
	NO. OF MALIGNANT TUMORS		3	2	0	0	
	NO. OF TOTAL TUMORS		3	2	2	0	
79 - 104	NO. OF EXAMINED ANIMALS		6	8	11	9	
	NO. OF ANIMALS WITH TUMORS		6	. 8	11	6	
	NO. OF ANIMALS WITH SINGLE TUMORS		6	6	7	3	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	2	4	3	
	NO. OF BENIGN TUMORS		2	4	9	8	
	NO. OF MALIGNANT TUMORS		4	6	8	3	
	NO. OF TOTAL TUMORS		6	10	17	11	
105 - 105	NO. OF EXAMINED ANIMALS		39	40	38	41	
	NO. OF ANIMALS WITH TUMORS		23	29	27	22	
	NO. OF ANIMALS WITH SINGLE TUMORS		14	16	16	16	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		9	13	11	6	
	NO. OF BENICN TUMORS		27	34	30	20 .	
	NO. OF MALIGNANT TUMORS		8	10	12	8	
	NO. OF TOTAL TUMORS		35	44	42	28	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

SEX : FEMALE

Time-related	Items	Group Name	Control	2500ррт	5000ppm	10000ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		32	39	39	28	
	NO. OF ANIMALS WITH SINGLE TUMORS		23	24	23	19	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		9	15	16	9	
	NO. OF BENIGN TUMORS		29	38	41	28	
	NO. OF MALIGNANT TUMORS		15	18	20	11	
	NO. OF TOTAL TUMORS		44	56	61	39	
							

(HPT070)

BAIS4

APPENDIX O 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS : MALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name No. of animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
Integumentary	system/appandage)					
kin/app	squamous cell papilloma		<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	trichoepithelioma		0 (0%)	0 (0%)	1 (2%)	1 (2%)
	keratoacanthoma		i (2%)	0 (0%)	4 (8%)	0 (0%)
	squamous cell carcinoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
ubcutis	fibroma		<50> 4 (8%)	<50> 3 (6%)	<50> 1 (2%)	<50> 3 (6%)
	lipoma		1 (2%)	1 (2%)	0 (0%)	0 (0%)
	schwannoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
	schwannoma:malignant		0 (0%)	1 (2%)	0 (0%)	0 (0%)
	histiocytic sarcoma		1 (2%)	0 (0%)	0 (0%)	0 (0%)
Respiratory :	system)					
asal cavit	chondroma		<50> 0 (0%)	<50> 0 (0%)	<49> 1 (2%)	<50> 0 (0%)
ung	bronchiolar-alveolar adenoma		<50> 2 (4%)	<50> 2 (4%)	<50> 3 (6%)	<50> 0 (0%)
Ilematopoieti	c system)					
one marrow	xanthoma		<50> 0 (0%)	<50> 1 (2%)	<49> 0 (0%)	<50> 0 (0%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

rgan	Findings No. of anima	Control ls on Study 50	2500ppm 50	5000ppm 50	10000ppm 50
Hematopoieti	c system)				
ymph node	mastcytoma:malignant	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
hymus	thymoma:malignant	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
pleen	mononuclear cell leukemia	<50> 6 (12%)	<50> 9 (18%)	<50> 8 (16%)	<50> 10 (20%)
	hemangiosarcoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
(Digestive sy	rstem)				
oral cavity	squamous cell papilloma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	squamous cell carcinoma	1 (2%)	0 (0%)	0 (0%)	0 (0%)
ooth	ameloblastoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
mall intes	leiomyoma	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	leiomyosarcoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
iver	hepatocellular adenoma	<50> 2 (4%)	<50> 2 (4%)	<50> 0 (0%)	<50> 3 (6%)
	hemangiosarcoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
	hepatocellular carcinoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name No. of animals on Study		Control 50		2500ppm 50		5000ppm 50		10000ppm 50
Digestive sys	stem)									
pancreas	islet cell adenoma			(50> (6%)	1	<50> (2%)	2	<50> (4%)	3	<50> (6%)
Urinary syste	em)									
idney	renal cell carcinoma			(50> (2%)	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)
	nephroblastoma		0 ((0%)	1	(2%)	0	(0%)	0	(0%)
rin bladd	transitional cell papilloma			(50> (2%)	1	<50> (2%)	1	<50> (2%)	0	<50> (0%)
Endocrine sys	stem)									
ituitary	adenoma	1		(50> (30%)	21	<50> (42%)	15	<50> (30%)	12	<50> (24%)
hyroid	C-cell adenoma			(50> (14%)	6	<50> (12%)	9	<50> (18%)	10	<50> (20%)
	follicular adenoma		0 ((0%)	1	(2%)	1	(2%)	0	(0%)
	C-cell carcinoma		0 ((0%)	1	(2%)	1	(2%)	1	(2%)
drenal	pheochromocytoma			(50> (2%)	4	<50> (8%)	4	<50> (8%)	1	<50> (2%)
	pheochromocytoma:malignant		0 ((0%)	2	(4%)	3	(6%)	1	(2%)
(Reproductive	system)									
testis	interstitial cell tumor	;		(50> (70%)	39	<50> (78%)	40	<50> (80%)	40	<50> (80%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

PAGE: 4

ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

SEX : MALE

MALE

Organ	Findings	Group Name No. of animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
{Reproductive	system)					
mammary gl	adenoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	fibroadenoma		0 (0%)	1 (2%)	2 (4%)	0 (0%)
prep/cli gl	adenoma		<50> 2 (4%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
Nervous syst	cem)					
brain	glioma		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
{Special sens	se organs/appendage)					
Zymbal gl	Zmbal gland tumor:benign		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	Zymbal gland tumor:malignant		1 (2%)	1 (2%)	0 (0%)	0 (0%)
{Musculoskele	etal system)					
bone	osteosarcoma		<50> 0 (0%)	<50> 1 (2%)	<49> 0 (0%)	<50> 1 (2%)
{Body cavitie	es}					
peritoneum	mesothelioma		<50> 0 (0%)	<50> 1 (2%)	<50> 2 (4%)	<50> 2 (4%)
retroperit	neuroendocrine cell tumor:malignant		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
(a) b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c:b/a*1	.00				
(IIPT085)						

APPENDIX O 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

rgan	Findings	Group Name No. of animals on Study		Control 50		2500ppm 50	,,, <u>-</u>	5000ppm 50		10000ppm 50
Integumentary	system/appandage)									
skin/app	squamous cell papilloma			<50> (0%)	1	<50> (2%)	1	<50> (2%)	0	<50> (0%)
	squamous cell carcinoma		1	(2%)	0	(0%)	0	(0%)	1	(2%)
ubcutis	fibroma			<50> (2%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
	fibrosarcoma		1	(2%)	0	(0%)	0	(0%)	0	(0%)
(Respiratory s	ystem)									
lung	bronchiolar-alveolar adenoma			<50> (0%)	2	<50> (4%)	0	<50> (0%)	0	<50> (0%)
(Hematopoietic	system)									
oone marrow	histiocytic sarcoma		1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
spleen	mononuclear cell leukemia		5	<50> (10%)	11	<50> (22%)	11	<50> (22%)	5	<50> (10%)
{Digestive sys	tem)									
tongue	squamous cell papilloma		0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)
large intes	lipoma		0	<50> (0%)	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)
liver	hepatocellular adenoma		0	<50> (0%)	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)

b (c) b: Number of animals with neoplasm c:b/a*100

STUDY NO. : 0497 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

												-
transitional cell papilloma	0			1			0			0		(50> (0%)
	·		· · · · · · · · · · · · · · · · · · ·	·	`		·		· •///	·		· • • • • • • • • • • • • • • • • • • •
adenoma	10			13			12			10		(50> (20%)
adenocarcinoma	1	I	(2%)	0	(0%)	0) ((0%)	0	((0%)
C-cell adenoma	6			4			4			2		(50) (4%)
follicular adenoma	0)	(0%)	0	(0%)	C) ((0%)	1	((2%)
C-cell carcinoma	0)	(0%)	1	(2%)	1	. ((2%)	1	((2%)
pheochromocytoma	2			1			3			0		(50> (0%)
cortical adenoma	C	0	(0%)	0	(0%)	C) ((0%)	i	((2%)
pheochromocytoma: malignant	0	0	(0%)	1	(2%)	1	į I	(2%)	0	((0%)
ystem)												
granular cell tumor:malignant	C			0			1			0		(50> (0%)
adenoma	C			0			1			0		(50> (0%)
,	transitional cell papilloma adenoma adenocarcinoma C-cell adenoma follicular adenoma C-cell carcinoma pheochromocytoma cortical adenoma pheochromocytoma:malignant ystem) granular cell tumor:malignant adenoma	adenoma 10 adenocarcinoma 10 adenocarcinoma 10 C-cell adenoma 10 C-cell carcinoma 10 pheochromocytoma 10 cortical adenoma 10 pheochromocytoma 10 pheochromocytoma 10 pheochromocytoma 10 pheochromocytoma:malignant 10 granular cell tumor:malignant 10	transitional cell papilloma 0 adenoma 10 adenocarcinoma 1 C-cell adenoma 6 follicular adenoma 0 C-cell carcinoma 0 pheochromocytoma 2 cortical adenoma 0 pheochromocytoma:malignant 0 ystem) granular cell tumor:malignant 0	30 30 30 30 30 30 30 30	transitional cell papilloma 0 (0%) 1 adenoma 10 (20%) 13 adenocarcinoma 1 (2%) 0 C-cell adenoma 6 (12%) 4 follicular adenoma 0 (0%) 0 C-cell carcinoma 0 (0%) 1 pheochromocytoma 2 (4%) 1 cortical adenoma 0 (0%) 1 cortical adenoma 0 (0%) 1 stem)	transitional cell papilloma 10 (0%) 1 (2m) 3denoma 10 (20%) 13 (3denoma 10 (20%) 13 (3denoma 10 (20%) 13 (3denoma 10 (20%) 13 (3denoma 10 (20%) 14 (3denoma 6 (12%) 4 (3denoma 6 (12%) 4 (3denoma 10 (0%) 1 (3denoma 10	transitional cell papilloma 0 (0%) 1 (2%) 1	transitional cell papilloma 0 (0%) 1 (2%) 0 adenoma 10 (20%) 13 (26%) 12 adenocarcinoma 1 (2%) 0 (0%) 13 C-cell adenoma 6 (12%) 4 (8%) 4 follicular adenoma 0 (0%) 1 (2%) 1 c-cell carcinoma 0 (0%) 1 (2%) 1 pheochromocytoma 2 (4%) 1 (2%) 3 cortical adenoma 0 (0%) 0 (0%) 0 (0%) 3 pheochromocytoma 2 (4%) 1 (2%) 3 cortical adenoma 0 (0%) 0 (0%) 0 (0%) 3 granular cell tumor:malignant 7 (50) (50) (50) granular cell tumor:malignant 0 (0%) 0 (0%) 1 (2%) 3	transitional cell papilloma 1	transitional cell papilloma 10 (0%) 1 (2%) 0 (0%) adenoma 10 (20%) 13 (26%) 12 (24%) adenoma 10 (20%) 13 (26%) 12 (24%) adenocarcinoma 11 (2%) 0 (0%) 0 (0%) C-cell adenoma 12 (2%) 0 (0%) 0 (0%) C-cell adenoma 13 (2%) 0 (0%) 0 (0%) C-cell carcinoma 14 (2%) 0 (0%) 0 (0%) 15 (2%) 16 (12%) 4 (8%) 17 (2%) 18 (2%) 19 (0%) 19 (0%) 10 (0%) 10 (0%) 10 (0%) 10 (0%) 10 (0%) 11 (2%) 11 (2%) 12 (2%) 13 (26%) 14 (8%) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (50) 15 (2%) 16 (2%) 17 (2%) 18 (2%)	transitional cell papilloma 0 (0%) 1 (2%) 0 (0%) 0 omportant cell papilloma 10 (20%) 13 (26%) 12 (24%) 10 adenoma 10 (2%) 0 (0%) 0	transitional cell papilloma 0 (0%) 1 (2%) 0 (6%) 0 (6%) comparison 10 (20%) 13 (26%) 12 (24%) 10 (26%) 12 (24%) 10 (26%) 13 (26%) 12 (24%) 10 (26%) 13 (26%) 12 (24%) 10 (26%)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE

rgan	Findings Group No. o	Name Control Fanimals on Study 50	2500ppm 50	5000ppm 50	10000ppm 50
Reproductive	system)				
terus	endometrial stromal polyp	<50> 5 (10%)	<50> 10 (20%)	<50> 11 (22%)	<50> 9 (18%)
	adenocarcinoma	0 (0%)	2 (4%)	0 (0%)	1 (2%)
	endometrial stromal sarcoma	3 (6%)	2 (4%)	4 (8%)	3 (6%)
ragina	squamous cell papilloma	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
ammary gl	adenoma	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
	fibroadenoma	4 (8%)	2 (4%)	6 (12%)	3 (6%)
prep/cli gl	adenoma	<50> 1 (2%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
Nervous syste	em}				
rain	glioma	<50> 2 (4%)	<50> o (0%)	<50> 0 (0%)	<50> 0 (0%)
(Special sense	e organs/appendage)				
Zymbal gl	Zymbal gland tumor:malignant	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
Musculoskelet	tal system)				
muscle	leiomyosarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name No. of animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
Musculoskele	tal system)					
oone	osteosarcoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
{Body cavitie	s)					
peritoneum	sarcoma:NOS		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
<a>> b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c: b	/ a * 100				
(IIPT085)						

APPENDIX P 1

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

	_				
Group Name	Control	2500ррш	5000ppm	10000ppm	
	SITE : skin/appendage				
	TUMOR : keratoacanthoma				
fumor rate	1/50/ 0.0	0/50/ 0.0)	4/50/ 0.0	0(50(0.0)	
Overall rates(a) Adjusted rates(b)	1/50 (2.0) 2.78	0/50(0.0) 0.0	4/50 (8. 0) 8. 89	0/50(0.0) 0.0	
Terminal rates(c)	1/36(2.8)	0/37(0.0)	4/45(8.9)	0/40(0.0)	
Statistical analysis Peto test	1/30(2.0)	0,31(0.0)	1/10(0.0)	0/40(0.0)	
Standard method(d)	P =				
Prevalence method(d)	P = 0.6171				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.8183			•	
Fisher Exact test(e)		P = 0.5000	P = 0.1811	P = 0.5000	
	SITE : subcutis				
	TUMOR : fibroma			•	
Tumor rate				2 (22 (2 2 2)	
Overall rates(a)	4/50(8.0)	3/50 (6. 0)	1/50(2.0)	3/50(6.0)	
Adjusted rates(b)	6. 98	7. 14	2. 22	7.50	
Terminal rates(c)	2/36(5.6)	1/37(2.7)	1/45(2.2)	3/40(7.5)	
Statistical analysis					
Peto test Standard method(d)	P = 0.9201 ?				
Prevalence method(d)	P = 0.5858				
Combined analysis (d)	P = 0.7191				
Cochran-Armitage test(e)	P = 0.6370				
Fisher Exact test(e)	1 0.00.0	P = 0.5000	P = 0.1811	P = 0.5000	
TOTAL DIRECT COOKEY					
	SITE : lung				
Tumor rate	TUMOR : bronchiolar-alveolar adenom	a			
Overall rates(a)	2/50(4.0)	2/50(4.0)	3/50(6.0)	0/50(0,0)	
Adjusted rates(b)	5.56	5.41	6.67	0.0	
Terminal rates(c)	2/36(5.6)	2/37(5.4)	3/45(6.7)	0/40(0.0)	
Statistical analysis	2, 551 0.07	3,01(0.1)	0, 10 (0.1)	V, 10 1 01 0,	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.8938				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.2689				
Fisher Exact test(e)	. =	P = 0.6913	P = 0.5000	P = 0.2475	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : MALE

Group Name	Control	2500րթա	5000րթա	10000ррш	
	SITE : spleen			·	
S	TUMOR : mononuclear cell leuken	nia			
Cumor rate Overall rates(a)	6/50(12.0)	9/50(18.0)	8/50(16.0)	10/50(20.0)	
Adjusted rates(b)	11. 11	9/50(18.0/ 16.22	8/50(16. 0) 17. 78	20.00	
Terminal rates(c)	4/36(11.1)	6/37 (16. 2)	8/45(17.8)	8/40(20. 0)	
Statistical analysis	1/00(11: 1/	0,0,(10.2)	0,40(11.0)	0/10(20.0)	
Peto test					
Standard method(d)	P = 0.6407				
Prevalence method(d)	P = 0.1612				
Combined analysis(d)	P = 0.2508				
Cochran-Armitage test(e)	P = 0.3504				
Fisher Exact test(e)		P = 0.2883	P = 0.3871	P = 0.2070	
Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e)	SITE : liver TUMOR : hepatocellular adenoma 2/50(4.0)	2/50(4.0) 5.26 1/37(2.7)	0/50(0.0) 0.0 0/45(0.0)	3/50(6.0) 7.50 3/40(7.5)	
Fisher Exact test(e)	1 - 0.0409	P = 0.6913	P = 0.2475	P = 0.5000	
Tumor rate	SITE : liver TUMOR : hepatocellular adenoma	hepatocellular carcinoma		•	
Overall rates(a)	2/50(4.0)	3/50(6.0)	0/50(0.0)	3/50(6.0)	
Adjusted rates(b)	5. 56	7. 89	0.0	7. 50	
Terminal rates(c)	2/36(5.6)	2/37(5.4)	0/45(0.0)	3/40(7.5)	
Statistical analysis Peto test Standard method(d) Prevalence method(d)	P = P = 0.4421				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.8073				
Fisher Exact test(e)		P = 0.5000	P = 0.2475	P = 0.5000	

(A036TAH)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 3

BAIS4

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

(HPT360A)

Group Name	Control	2500րթա	5000ррш	10000ppm
	SITE : pancreas			
_	TUMOR : islet cell adenoma			
Tumor rate				
Overall rates(a)	3/50(6.0)	1/50(2.0)	2/50(4.0)	3/50(6.0)
Adjusted rates(b)	6. 25	2. 70	4. 44	7. 50
Terminal rates(c) Statistical analysis	2/36(5.6)	1/37 (2.7)	2/45(4.4)	3/40(7.5)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.4085			
Combined analysis (d)	P =			
Cochran-Armitage test(e)	P = 0.7731			
Fisher Exact test(e)		P = 0.3087	P = 0.5000	P = 0.6611
Tumor rate	SITE : pituitary gland TUMOR : adenoma	01/50/ 40.0		40/70/ 04 0
Overall rates(a) Adjusted rates(b)	15/50 (30. 0) 32. 43	21/50 (42. 0)	15/50(30.0)	12/50(24. 0)
Terminal rates(c)	32. 43 11/36(30. 6)	42. 86 14/37 (37. 8)	31. 11 14/45(31. 1)	22. 22
Statistical analysis	11/30(30.6)	14/3/(3/.8)	14/45(31.1)	7/40(17.5)
Peto test				
Standard method(d)	P = 0.7587			
Prevalence method(d)	P = 0.9208			
Combined analysis(d)	P = 0.9441			
Cochran-Armitage test(e)	P = 0.2469			
Fisher Exact test(e)		P = 0.1488	P = 0.5862	P = 0.3264
	SITE : thyroid TUMOR : C-cell adenoma			
Tumor rate				
Overall rates(a)	7/50(14.0)	6/50(12.0)	9/50(18.0)	10/50(20.0)
Adjusted rates(b)	19. 44	16. 22	20.00	22. 50
Terminal rates(c)	7/36(19.4)	6/37 (16.2)	9/45(20.0)	9/40(22.5)
Statistical analysis				
Peto test Standard method(d)	P =			
Prevalence method(d)	P = 0.2047			
Combined analysis(d)	P = 0.2047 P =			
Cochran-Armitage test(e)	P = 0. 2968			
Fisher Exact test(e)	1 - 0.2500	P = 0.5000	P = 0.3929	P = 0.2977
		1 0.000	1 0.0000	I - V+ 0011

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 4

STUDY No. : 0497

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]
SEX : MALE

Tumor rate Overall rates(a) 7/50(14. Adjusted rates(b) 19. Terminal rates(c) 7/36(19. Statistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) P = 0.2199 Fisher Exact test(e) Tumor rate Overall rates(a) 1/50(2. Adjusted rates(b) 2. Terminal rates(c) 1/36(2. Statistical analysis Peto test Standard method(d) P =	ell adenoma, C-cell carcinoma 0) 7/50(14.0) 14 16.22	10/50 (20.0) 21.74 9/45 (20.0) P = 0.2977	11/50(22.0) 25.00 10/40(25.0) P = 0.2178
Numor rate Overall rates(a) 7/50(14. Adjusted rates(b) 19. Terminal rates(c) 7/36(19. itatistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) P = 0.2199 Fisher Exact test(e) SITE : add TUMOR : ph 2 Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis P =	7/50 (14. 0) 14. 16. 22 1) 6/37 (16. 2) P = 0. 6129	21. 74 9/45(20. 0)	25. 00 10/40(25. 0)
Overall rates(a) 7/50(14. Adjusted rates(b) 19. Terminal rates(c) 7/36(19. Statistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) P = 0.2199 Fisher Exact test(e) SITE : add TUMOR : ph Tumor rate 0verall rates(a) 1/50(2 Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis P =	14 16. 22 4) 6/37 (16. 2) P = 0. 6129	21. 74 9/45(20. 0)	25. 00 10/40(25. 0)
Adjusted rates(b) 19. Terminal rates(c) 7/36(19. Statistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.12199 Fisher Exact test(e) Tumor rate Overall rates(a) 1/50(2 Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis Peto test Standard method(d) P = 0.6777 Combined analysis(d) P = 0.6777 Combined analysis(d) P = 0.7421 Fisher Exact test(e) Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) 0/36(0	14 16. 22 4) 6/37 (16. 2) P = 0. 6129	21. 74 9/45(20. 0)	25. 00 10/40(25. 0)
Terminal rates(c) 7/36(19. Statistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) P = 0.2199 Fisher Exact test(e) Tumor rate Overall rates(a) 1/50(2 Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis Peto test Standard method(d) P = Standard method(d) P = 0.6777 Combined analysis(d) P = Fisher Exact test(e) Tumor rate Overall rates(a) 1/36(2 Statistical analysis Peto test Standard method(d) P = 0.6777 Combined analysis(d) P = Fisher Exact test(e) Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) 0/36(0)	P = 0.6129	9/45(20.0)	10/40(25.0)
Statistical analysis Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) Fisher Exact test(e) SITE : add TUMOR : photography Tumor rate	P = 0.6129		
Peto test Standard method(d) P = 0.6092 Prevalence method(d) P = 0.1134 Combined analysis(d) P = 0.1383 Cochran-Armitage test(e) Fisher Exact test(e) SITE : add TUMOR : photographic photographi		P = 0. 2977	P = 0.2178
Standard method(d)		P = 0. 2977	P = 0.2178
Prevalence method(d)		P = 0.2977	P = 0.2178
Combined analysis (d)		P = 0.2977	P = 0.2178
Cochran-Armitage test(e) P = 0.2199		P = 0.2977	P = 0.2178
SITE : add TUMOR : photograph Tumor rate		P = 0.2977	P = 0.2178
SITE : ad TUMOR : ph		P = 0.2977	P = 0.2178
Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) 1/50(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(3	nal gland		
Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) 1/50(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(2 1/36(3	Saute		
Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis Peto test Standard method(d) P = Combined analysis(d) P = Tisher Exact test(e) Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) Terminal rates(c) 1/36(2	ochromocytoma		
Adjusted rates(b) 2 Terminal rates(c) 1/36(2 Statistical analysis Peto test Standard method(d) P = 0.6777 Combined analysis(d) P = 0.7421 Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) 1/36(2			
Terminal rates(c)	9) 4/50(8.0)	4/50(8.0)	1/50(2.0)
Statistical analysis Peto test Standard method(d) P = P = 0.6777 P = 0.6777 P = 0.6777 P = P = 0.7421 P	78 10. 81	8.89	2. 50
Peto test	8) 4/37(10.8)	4/45(8.9)	1/40(2.5)
Standard method(d)			
Prevalence method(d)			
Combined analysis (d) P =			
Cochran-Armitage test(e) P = 0.7421 Fisher Exact test(e) SITE : ad TUMOR : ph Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) 0 Terminal rates(c) 0/36(0		•	
Fisher Exact test(e) SITE : ad TUMOR : ph Tumor rate Overall rates(a)			
SITE : ad TUMOR : ph Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) 0 Terminal rates(c) 0/36(0			
TUMOR : ph Tumor rate Overall rates(a)	P = 0.1811	P = 0.1811	P = 0.7525
TUMOR : ph Tumor rate Overall rates(a)			
Tumor rate Overall rates(a) 0/50(0 Adjusted rates(b) 0/36(0 Terminal rates(c) 0/36(0	enal gland ochromocytoma:malignant		
Overall rates(a) 0/50(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	your omood come mattghane		
Adjusted rates(b) 0/36(0	0) 2/50(4.0)	3/50(6.0)	1/50(2.0)
Terminal rates(c) 0/36(0		4.44	2. 50
		2/45(4.4)	1/40(2.5)
Statistical analysis			
Peto test			
Standard method(d) P = 0.4100			
Prevalence method(d) P = 0.3814			
Combined analysis(d) P = 0.3686			
Cochran-Armitage test(e) P = 0.6742			
Fisher Exact test(e)		P = 0.1212	P = 0.5000

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE :

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : MALE

Group Name	Control	2500ppm	5000ppm	10000ррш
	SITE : adrenal gland			
	TUMOR : pheochromocytoma, pheoc	hromocytoma:malignant		
fumor rate	1/50(0.0)	n (== (, , , , ,)	# (== ()	
Overall rates(a)	1/50(2.0)	6/50 (12. 0)	7/50(14.0)	2/50(4.0)
Adjusted rates(b)	2.78	16. 22	13. 33	5.00
Terminal rates(c)	1/36(2.8)	6/37 (16. 2)	6/45(13.3)	2/40(5.0)
Statistical analysis Peto test				
Standard method(d)	P = 0.4100			,
Prevalence method(d)	P = 0.5853			
Combined analysis(d)	P = 0.5674			
Cochran-Armitage test(e)	P = 1.0000			
Fisher Exact test(e)		P = 0.0559	P = 0.0297*	P = 0.5000
		-		
	SITE : testis			
ъ.	TUMOR : interstitial cell tumo	r		
Tumor rate	05 (50 (50 0)	22 (72 (22 2)	10 (TO (OO O)	10 (TO (OO O)
Overall rates(a)	35/50 (70.0)	39/50 (78. 0)	40/50 (80. 0)	40/50(80.0)
Adjusted rates(b)	81. 40	91.89	85. 11	88. 10
Terminal rates(c)	28/36(77.8)	34/37(91.9)	38/45(84. 4)	35/40(87.5)
Statistical analysis				
Statistical analysis Peto test	D =			
itatistical analysis Peto test Standard method(d)	P = P = 0.4675			
tatistical analysis Peto test Standard method(d) Prevalence method(d)	P = 0.4675			
itatistical analysis Peto test Standard method(d)	= = = = = = = = = = = = = = = = = = = =			

(HPT360A)

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

⁽a): Number of tumor-bearing animals/number of animals examined at the site.

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽c): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{?:} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

N.C.: Statistical value cannot be calculated and was not significant.

APPENDIX P 2

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 6

BAIS4

STUDY No. : 0497

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE

(HPT360A)

Group Name	Control	2500թրա	5000ppm	10000ррт
	SITE : spleen			
fumor rate	TUMOR : mononuclear cell leukemia			
Overall rates(a)	5/50(10.0)	11/50(22.0)	11/50(22.0)	5/50(10.0)
Adjusted rates(b)	10. 26	17. 50	18. 42	9. 76
Terminal rates(c)	4/39(10.3)	7/40(17.5)	7/38(18.4)	4/41(9.8)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.6587			
Prevalence method(d)	P = 0.6148			
Combined analysis(d)	P = 0.6885			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.6956	P = 0.0857	P = 0.0857	P = 0.6297
FISHER EXACT TEST(e)		1 - 0.0001		, 0.0201
	SITE : pituitary gland			
	TUMOR : adenoma			
Tumor rate			(-, (, , , ,)	10 (50 (00 0)
Overall rates(a)	10/50(20.0)	13/50 (26. 0)	12/50(24.0)	10/50(20. 0) 18. 75
Adjusted rates(b)	25. 00	27.50 11/40(27.5)	19. 15 5/38(13. 2)	7/41 (17. 1)
Terminal rates(c)	9/39(23.1)	11/40(27.5)	3/30(13.2/	1/41(11:1/
Statistical analysis Peto test				
Standard method(d)	P = 0.3702			
Prevalence method(d)	P = 0.7138			
Combined analysis (d)	P = 0.6514			
Cochran-Armitage test(e)	P = 0.8412			
Fisher Exact test(e)		P = 0.3176	P = 0.4048	P = 0.5984
				
	SITE : pituitary gland			
.	TUMOR : adenoma, adenocarcinoma			
Tumor rate	11/50/ 99 0)	13/50 (26. 0)	12/50(24.0)	10/50(20.0)
Overall rates(a) Adjusted rates(b)	11/50(22. 0) 27. 50	27. 50	12/50(24.0/	18.75
Terminal rates(c)	10/39(25.6)	11/40(27.5)	5/38(13.2)	7/41(17.1)
Statistical analysis	10/00(20.0/	11/10/ 21.0/	0,000 10.0,	.,
Peto test				
Standard method(d)	P = 0.3702			
Prevalence method(d)	P = 0.7811			
Combined analysis(d)	P = 0.7205			
Cochran-Armitage test(e)	P = 0.6909			
Fisher Exact test(e)		P = 0.4076	P = 0.5000	P = 0.5000

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE PAGE : 7

Group Name	Control	2500ррт	5000ppm	10000թթա
	SITE : thyroid			
р .	TUMOR : C-cell adenoma			
Tumor rate Overall rates(a)	6/50(12.0)	4/50(8.0)	4/50(8.0)	2/50(4.0)
Adjusted rates(b)	15. 38	10.00	10.53	4.88
Terminal rates(c)	6/39(15.4)	4/40(10.0)	4/38(10.5)	2/41(4.9)
Statistical analysis	0,00(10.4)	4/40(10.0)	4,00(10.0)	2, 22 (2.0,
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.9315			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.1586			
Fisher Exact test(e)		P = 0.3703	P = 0.3703	P = 0.1343
T	SITE : thyroid TUMOR : C-cell adenoma, C-cell c	arcinoma		
Tumor rate Overall rates(a)	6/50(12.0)	5/50 (10. 0)	5/50(10.0)	3/50(6.0)
Adjusted rates(b)	15. 38	12.50	13. 16	7. 32
Terminal rates(c)	6/39(15.4)	5/40(12.5)	5/38(13.2)	3/41(7.3)
Statistical analysis	0, 00 (100 1)	5, 25 (25, 5,	.,	
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.8614			
Combined analysis(d)	P =			
combined analysis(u)				
Cochran-Armitage test(e)	P = 0.3082			
	P = 0.3082	P = 0.5000	P = 0.5000	P = 0.2435
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.3082 SITE : adrenal gland TUMOR : pheochromocytoma	P = 0.5000	P = 0.5000	P = 0.2435
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate	SITE : adrenal gland TUMOR : pheochromocytoma			
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0)	1/50(2.0)	3/50(6.0)	0/50(0.0)
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0) 5.13	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0)	1/50(2.0)	3/50(6.0)	0/50(0.0)
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0) 5.13	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0) 5.13 2/39(5.1)	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0)	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0) 5.13 2/39(5.1)	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0
Cochran-Armitage test(e) Fisher Exact test(e) Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	SITE : adrenal gland TUMOR : pheochromocytoma 2/50(4.0)	1/50(2.0) 2.50	3/50(6.0) 6.82	0/50(0,0) 0.0

BAIS4

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE

Group Name	Control	2500րթա	5000րրա	10000թրա	
	SITE : adrenal gland				
_	TUMOR : plieochromocytoma, plie	ochromocytoma:malignant			
Tumor rate	0/50/ 4.0	0 (50 (* /m * /	- 4 4	
Overall rates(a)	2/50(4.0)	2/50 (4. 0)	4/50 (8.0)	0/50(0.0)	
Adjusted rates(b) Terminal rates(c)	5. 13 2/39(5. 1)	5. 00	9.09	0.0	
terminal rates(c) Statistical analysis	2/39(5.1)	2/40 (5.0)	3/38(7.9)	0/41(0.0)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.8607				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.3291	•			
Fisher Exact test(e)		P = 0.6913	P = 0.3389	P = 0.2475	
Tumor rate	SITE : uterus TUMOR : endometrial stromal				
Overall rates(a)	5/50(10.0)	10/50 (20. 0)	11/50(22. 0)	9/50(18.0)	
Adjusted rates(b)	12. 82	21. 43	23. 68	19. 51	
Terminal rates(c) Statistical analysis	5/39(12.8)	8/40 (20. 0)	9/38(23.7)	8/41(19.5)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.2431				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.3957				
Fisher Exact test(e)		P = 0.1312	P = 0.0857	P = 0.1940	
	SITE : uterus TUMOR : endometrial stromal	sarcoma			
Tumor rate					
Overall rates(a)	3/50(6.0)	2/50(4.0)	4/50(8.0)	3/50(6.0)	
Adjusted rates(b)	0.0	0.0	5. 26	2.44	
Terminal rates(c)	0/39(0.0)	0/40(0.0)	2/38(5.3)	1/41(2.4)	
Statistical analysis Peto test					
Standard method(d)	P = 0.6808				
Prevalence method(d)	P = 0. 6808 P = 0. 1600				
Combined analysis(d)	P = 0. 4567				
Cochran-Armitage test(e)	P = 0.8405				
Fisher Exact test(e)	- 0.0100	P = 0.5000	P = 0.5000	P = 0.6611	

(HPT360A)

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

SEX : FEMALE

Group Name	Control	2500րրա	5000թթm	10000թյա
	SITE : manmary gland			
T	TUMOR : fibroadenoma			
Tumor rate	4/50/ 0.0)	0/50/ 4.0)	0/50/ +0 0)	0 (50 (- (1-0)
Overall rates(a)	4/50(8.0)	2/50 (4.0)	6/50(12.0)	3/50(6.0)
Adjusted rates(b)	7. 69	5. 00	13. 64	6. 38
Terminal rates(c)	3/39(7.7)	2/40(5.0)	5/38(13.2)	1/41 (2.4)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.9261 ?			
Prevalence method(d)	P = 0, 4515			
Combined analysis(d)	P = 0.5790			
•				
Cochran-Armitage test(e)	P = 0.9638			
Fisher Exact test(e)	•	P = 0.3389	P = 0.3703	P = 0.5000

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference; $*: P \le 0.05$ $**: P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

PAGE:

9

BAIS4

APPENDIX Q 1

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

rgan		roup Name No. of Animals on Study	Control 50	2500 _{ррт} 50	5000ppm 50	10000ppm 50
				·		
Respiratory s	ystem}					
asal cavit			<50>	<50>	<49>	<50>
	leukemic cell infiltration		0	0	1	0
	metastasis:oral cavity tumor		1	0	0	0
arynx			<50>	<50>	<50>	<50>
	metastasis:thyroid tumor		0	1	0	0
rachea	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
	metastasis thyroid tumor		0	1	0	0
			-	1		
	metastasis:subcutis tumor		0	1	0	0
lung	leukemic cell infiltration		<50>	<50>	<50> 3	<50> 4
			4	4		-
	metastasis:thyroid tumor		0	1	0	0
	metastasis:bone tumor		0	1	0	0
	metastasis:zymbal gland tumor		1	0	0	0
	metastasis:thymus tumor		1	0	0	0
 lematopoietic	system)					
one marrow			<50>	<50>	<50>	<50>
	leukemic cell infiltration		2	2	2	2
lymph node			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	1	3	0
	metastasis:thyroid tumor		0	1	0	0
(a) b	a: Number of animals examined at the si b: Number of animals with lesion	te				

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

PAGE: 2

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ Findi	lius	Group Name No. of Animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
1.1101	про					
(Digestive system)						
salivary gl metas	etasis:subcutis tumor		<50> 1	<50> 1	<50> 0	<50> 0
sophagus metas	tasis:thyroid tumor		<50> 0	<50> 1	<50> 0	<50> 0
metas	stasis:subcutis tumor		0	1	0	0
liver leuke	emic cell infiltration		<50> 4	<50≻ 3	<50≻ 2	<50> 4
oancreas leuke	emic cell infiltration		<50>	(50)	<50> 0	<50> 0
(Urinary system)						
kidney leuke	emic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
(Endocrine system)						
adrenal leuk	emic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
{Reproductive system)					
prostate meta:	stasis:retroperitoneum tumor		<50> 0	<50> 1	<50> 0	<50> 0
(Nervous system)						
brain leuk	emic cell infiltration		<50> 1	<50> 2	<50> 1	<50> 0
	Number of animals examined at t Number of animals with lesion	he site				
(JPT150)						······································

STUDY NO. : 0497
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ		Group Name No. of Animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
Nervous syste	an)					
pinal cord	leukemic cell infiltration		<50> 1	<50> 1	<50> 0	<50> 0
Body cavities						
leura	metastasis:thymus tumor		<50> 1	<50> 0	<50> 0	<50> 0
ediastinum	metastasis:thymus tumor		<50> 1	<50> 0	<50> 0	<50> 0
peritoneum	metastasis:thymus tumor		<50> 1	<50> 0	<50> 0	<50> 0
(a)	a : Number of animals examined at the si b : Number of animals with lesion	te				
(JPT150)		.,, ,, ,				

APPENDIX Q 2

HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE

ANIMAL

(JPT150)

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 4 Group Name Control 2500ррш 5000ppm 10000ppm No. of Animals on Study 50 50 50 Organ_ Findings_ (Respiratory system) lung <50> ⟨50⟩ <50> <50> leukemic cell infiltration 3 5 metastasis:adrenal tumor metastasis:thyroid tumor metastasis:bone tumor metastasis:ovary tumor 0 metastasis:bone marrow tumor {Hematopoietic system} bone marrow <50> <50> <50> <50> leukemic cell infiltration 2 lymph node <50> ⟨50⟩ <50> <50> leukemic cell infiltration 0 metastasis:uterus tumor 1 0 0 0 spleen ⟨50⟩ <50> <50> <50> metastasis:uterus tumor 1 0 metastasis:ovary tumor 0 metastasis:bone marrow tumor 0 (Digestive system) large intes <50> ⟨50⟩ <50> <50> metastasis:peritoneum tumor 0 0 1 0 (a) a : Number of animals examined at the site b b: Number of animals with lesion

BAIS4

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

Organ		Group Name No. of Animals on Study	Control 50	2500ppm 50	5000ppm 50	10000ppm 50
{Digestive sys	stem)					
liver	leukemic cell infiltration		<50> 5	<50> 8	<50> 8	<50> 4
	metastasis:uterus tumor		0	1	0	0
	metastasis:bone marrow tumor		1	0	0	0
pancreas			<50> 0			
	metastasis:uterus tumor		0	1	0	0
	metastasis:ovary tumor		0	0	1	0
{Urinary syst	em)					
kidney	leukemic cell infiltration		<50> 0	<50> 2	<50> 1	<50> 0
urin bladd	metastasis:peritoneum tumor		<50> 0	<50> 0	<50> 1	<50> 0
{Endocrine sy	rstem)					
pituitary	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
{Reproductive	e system)					
uterus	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 0
	metastasis:peritoneum tumor		0	0	1	0
<a>>	a: Number of animals examined at the sib: Number of animals with lesion	ite				

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Study	Control 50	2500ppm 50	5000ppm 50	10000թթ 50
rgan	Findings					
Reproductive	system)					
/agina	metastasis:uterus tumor		<50> 2	<50> 0	<50> 0	<50> 0
	metastasis:peritoneum tumor		0	0	1	0
{Nervous syste	em)					
brain	leukemic cell infiltration		<50> 0	<50> 1	<50> 2	<50> 0
	metastasis:pituitary tumor		1	0	0	0
spinal cord	leukemic cell infiltration		<50> 0	<50> 2	<50> 2	<50> 0
{Musculoskelet	tal system)					
muscle	metastasis:subcutis tumor		<50> 1	<50> 0	<50> 0	<50> 0
	metastasis:ovary tumor		0	0	1	0
bone	metastasis:ovary tumor		<50> 0	<50> 0	<50> 1	<50> 0
{Body cavities	s)					
peritoneum	metastasis:uterus tumor		<50> 0	<50> 1	<50> 0	<50> 0
retroperit	metastasis:bone tumor		<50> 0	<50> 1	<50> 0	<50> 0
(a)	a: Number of animals examined at the s b: Number of animals with lesion	ite	·		-	

APPENDIX R

METHODS, UNITS AND DECIMAL PLACE FOR
HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR
DRINKING WATER STUDY OF 2-PHENOXYETHANOL

METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 2-YEAR DRINKING WATER STUDY OF 2-PHENOXYETHANOL

Item	Method	Unit	Decimal
			place
Hematology			
Red blood cell (RBC)	Light scattering method ¹⁾	$\times 10^6/\mu L$	2
Hemoglobin(Hgb)	Cyanmethemoglobin method 1)	g/dL	1
Hematocrit(Hct)	Calculated as RBC×MCV/10 1)	%	1
Mean corpuscular volume(MCV)	Light scattering method 1)	fL	1
Mean corpuscular hemoglobin(MCH)	Calculated as Hgb/RBC×10	pg	1
Mean corpuscular hemoglobin concentration	Calculated as Hgb/Hct×100 1	g/dL	1
(MCHC)			
Platelet	Light scattering method 1)	$ imes 10^3 / \mu ext{L}$	0
Reticulocyte	Light scattering method 1)	%	1
White blood cell(WBC)	Light scattering method 1)	$\times 10^{3}/\mu\mathrm{L}$	2
Differential WBC	Pattern recognition method ²⁾ (Wright staining)	%	0
Biochemistry			
Total protein(TP)	Biuret method 3)	g/dL	1
Albumin (Alb)	BCG method 3)	g/dL	1
A/G ratio	Calculated as Alb/(TP-Alb) 3)	_	1
T-bilirubin	Alkaline azobilirubin method 3)	mg/dL	2
Glucose	GlcK·G-6-PDH method 3)	mg/dL	0
T-cholesterol	CE·COD·POD method 3)	mg/dL	0
Triglyceride	LPL·GK·GPO·POD method 3)	mg/dL	0
Phospholipid	PLD·ChOD·POD method 3)	mg/dL	0
Aspartate aminotransferase (AST)	JSCC method 3)	IU/L	0
Alanine aminotransferase (ALT)	JSCC method 3)	IU/L	0
Lactate dehydrogenase (LDH)	SFBC method 3)	IU/L	0
Alkaline phosphatase (ALP)	GSCC method 3)	IU/L	0
γ -Glutamyl transpeptidase (γ -GTP)	JSCC method 3)	IU/L	0
Creatine kinase (CK)	JSCC method 3)	IU/L	0
Urea nitrogen	Urease·GLDH method 3)	mg/dL	1
Creatinine	Jaffé method 3)	mg/dL	1
Sodium	Ion selective electrode method 3)	mEq/L	0
Potassium	Ion selective electrode method 3)	mEq/L	1
Chloride	Ion selective electrode method 3)	mEq/L	0
Calcium	OCPC method ³⁾	mg/dL	1
Inorganic phosphorus	PNP·XOD·POD method 3)	mg/dL	1

¹⁾ Automatic blood cell analyzer (ADVIA120 : Bayer Corporation)

²⁾ Automatic blood cell differential analyzer (MICROX HEG-120NA: OMRON Corporation)

³⁾ Automatic analyzer (Hitachi 7080 : Hitachi, Ltd.)