1 - ブロモブタンのラットを用いた 吸入によるがん原性試験報告書

試験番号:0560

TABLES

TABLES

TABLE ACONCENTRATIONS OF 1 - BROMOBUTANE IN THE INHALATION
CHAMBER OF THE 2-YEAR INHALATION STUDY

- TABLEB 1SURVIVAL ANIMAL NUMBERS: MALE
- TABLEB 2SURVIVAL ANIMAL NUMBERS: FEMALE
- TABLE C 1 CLINICAL OBSERVATION: MALE
- TABLEC 2CLINICAL OBSERVATION: FEMALE
- TABLED 2BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
- TABLE D 3 BODY WEIGHT CHANGES: MALE
- TABLED 4BODY WEIGHT CHANGES: FEMALE
- TABLEE 1FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL
NUMBERS: MALE
- TABLEE 2FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL
NUMBERS: FEMALE
- TABLE E 3 FOOD CONSUMPTION CHANGES: MALE
- TABLEE 4FOOD CONSUMPTION CHANGES: FEMALE
- TABLE F 1 HEMATOLOGY: MALE
- TABLEF 2HEMATOLOGY: FEMALE
- TABLE G 1 BIOCHEMISTRY: MALE
- TABLE G 2 BIOCHEMISTRY: FEMALE

TABLES (CONTINUED)

- TABLE H 1 URINALYSIS: MALE
- TABLE H 2 URINALYSIS: FEMALE
- TABLE I 1 GROSS FINDINGS: MALE: ALL ANIMALS
- TABLEI 2GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS
- TABLE
 I 3
 GROSS FINDINGS: MALE: SACRIFICED ANIMALS
- TABLEI 4GROSS FINDINGS: FEMALE: ALL ANIMALS
- TABLEI 5GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
- TABLE
 I 6
 GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
- TABLE J 1 ORGAN WEIGHT, ABSOLUTE: MALE
- TABLE J 2 ORGAN WEIGHT, ABSOLUTE: FEMALE
- TABLE K1 ORGAN WEIGHT, RELATIVE: MALE
- TABLE K 2 ORGAN WEIGHT, RELATIVE: FEMALE
- TABLEL 1HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
- TABLEL 2HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: DEAD AND MORIBUND ANIMALS
- TABLEL 3HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS
- TABLEL 4HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
- TABLEL 5HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
- TABLEL 6HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

- TABLEM 1NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: MALE
- TABLEM2NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: FEMALE
- TABLE N 1 HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
- TABLEN 2HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS:
FEMALE
- TABLE
 O 1
 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
- TABLE
 O 2
 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
- TABLE P 1 HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
- TABLEP 2HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:
FEMALE
- TABLEQHISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC
LESIONS IN JAPAN BIOASSAY RESEARCH CENTER :
F344/DuCrlCrlj MALE RATS
- TABLE RCAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY
OF 1 BROMOBUTANE

TABLE A

CONCENTRATIONS OF 1 - BROMOBUTANE IN THE INHALATION CHAMBER OF THE 2-YEAR INHALATION STUDY

CONCENTRATIONS OF 1-BROMOBUTANE IN THE INHALATION CHAMBER OF THE 2-YEAR INHALATION STUDY

Group Name	Concentration(ppm) Mean \pm S.D.
Control	0.0 ± 0.0
125 ppm	125.2 ± 0.4
$250~{ m ppm}$	250.5 ± 1.0
500 ppm	500.8 ± 1.9

TABLE B1

SURVIVAL ANIMAL NUMBERS : MALE

p Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100. 0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

ip Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	98.0	98. 0	98.0	98.0	98.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

SURVIVAL ANIMAL NUMBERS

BAIS4

(HAN360)

up Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
250 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Survival rate(%)

(HAN360)

BAIS4

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

SURVIVAL ANIMAL NUMBERS

Name	Animals		ration (Wee												
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0
250 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

BAIS4

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE SURVIVAL ANIMAL NUMBERS

PAGE : 4

1

ıp Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
001101		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100.0	98.0
250 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	98.0
	Number of survi	ival/ Number o Survival rat		animals						<u>.</u>					

SURVIVAL ANIMAL NUMBERS

Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50
CONTIN	50	100.0	100.0	100.0	100.0	100.0	100.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0
125 ppm	50	49/50	49/50	48/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	45/50	45/50	44/50	44/50
		98.0	98.0	96.0	94. 0	94.0	94.0	94. 0	94.0	92.0	92.0	90.0	90.0	88.0	88.0
250 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
500 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0	96.0	94.0

BAIS4

PAGE: 6

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	48/50	48/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	46/50	46/50
		96.0	96.0	96.0	96.0	94.0	94.0	94. 0	94.0	94.0	92.0	92.0	92.0	92.0	92.0
125 ppm	50	44/50	44/50	43/50	43/50	43/50	42/50	42/50	42/50	41/50	41/50	40/50	39/50	38/50	38/50
		88.0	88.0	86.0	86.0	86.0	84.0	84.0	84.0	82.0	82.0	80.0	78.0	76.0	76.0
250 ppm	50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	47/50	46/50	46/50	46/50	46/50	46/50	46/50
		98.0	98.0	98.0	98.0	98.0	96.0	96.0	94.0	92.0	92.0	92.0	92.0	92.0	92.0
500 ppm	50	47/50	47/50	45/50	44/50	44/50	44/50	44/50	43/50	43/50	43/50	43/50	42/50	42/50	42/50
		94.0	94.0	90.0	88.0	88.0	88.0	88.0	86.0	86.0	86.0	86.0	84.0	84.0	84.0

BAIS4

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE SURVIVAL ANIMAL NUMBERS

. Станция:

roup Name	Animals	Administ	ration (Wee	eks)				
-	At start	98	99	100	101	102	103	104
							· · · · · · · · · · · · · · · · · · ·	
Control	50	45/50	45/50	45/50	45/50	44/50	42/50	39/50
		90.0	90.0	90. 0	90.0	88.0	84.0	78.0
125 ppm	50	38/50	38/50	38/50	38/50	37/50	36/50	35/50
		76.0	76.0	76.0	76.0	74.0	72.0	70.0
250 ppm	50	44/50	44/50	44/50	43/50	43/50	43/50	41/50
		88.0	88.0	88.0	86.0	86.0	86.0	82.0
500 ppm	50	41/50	40/50	40/50	40/50	40/50	40/50	37/50
		82.0	80.0	80.0	80.0	80.0	80.0	74.0

BAIS4

PAGE: 8

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : MALE

SURVIVAL ANIMAL NUMBERS

TABLE B2

SURVIVAL ANIMAL NUMBERS : FEMALE

up Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
	Number of survi			animals											
		Survival rat	;e(%)												

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

o Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Contro1	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

BAIS4

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

SURVIVAL ANIMAL NUMBERS

~

up Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100. 0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0

STUDY NO. : 0560

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

(HAN360)

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0
125 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0

-

(HAN360)

STUDY NO. : 0560

REPORT TYPE : A1 104 SEX : FEMALE

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

BAIS4

up Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0	100. 0
125 ppm	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	47/50	47/50
		100.0	100.0	100. 0	100. 0	100. 0	100.0	100. 0	100.0	100.0	100.0	98.0	98.0	94.0	94.0

BAIS4

PAGE : 13

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE \sim

ıp Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
125 ppm	50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
		98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0
250 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50
		100.0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.0
500 ppm	50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	46/50	46/50	45/50	44/50	44/50	44/50	44/50
		94.0	94.0	94.0	94.0	92.0	92.0	92.0	92.0	92.0	90.0	88.0	88.0	88.0	88.0

(HAN360)

STUDY NO. : 0560

up Name	Animals	Administ	ration (Wee	eks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	49/50	47/50	46/50	46/50	45/50	45/50	45/50	44/50	44/50	43/50	43/50	43/50	42/50	41/50
		98.0	94.0	92.0	92.0	90. 0	90.0	90.0	88.0	88.0	86.0	86.0	86.0	84.0	82.0
125 ppm	50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	47/50	46/50	46/50
		96.0	96.0	96.0	96.0	96.0	96. 0	96.0	96.0	96.0	94.0	94.0	94.0	92.0	92.0
250 ppm	50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	45/50	45/50	45/50	44/50	44/50	44/50
		94. 0	94.0	94.0	94.0	94. 0	92. 0	92.0	92.0	90.0	90.0	90.0	88.0	88.0	88.0
500 ppm	50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	42/50	42/50
		88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	84.0	84.0

 \sim

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104 SEX : FEMALE

(HAN360)

p Name	Animals	Administ	ration (Wee	eks)					
	At start	98	99	100	101	102	103	104	
Control	50	39/50	39/50	39/50	39/50	38/50	38/50	38/50	
		78.0	78.0	78.0	78.0	76.0	76.0	76.0	
125 ppm	50	46/50	45/50	45/50	45/50	44/50	44/50	43/50	
		92.0	90.0	90.0	90.0	88.0	88.0	86.0	
250 ppm	50	43/50	43/50	43/50	42/50	42/50	41/50	41/50	
		86.0	86.0	86.0	84. 0	84.0	82.0	82.0	
500 ppm	50	42/50	41/50	40/50	39/50	38/50	37/50	37/50	
		84.0	82.0	80.0	78.0	76.0	74.0	74.0	

(HAN360)

STUDY NO. : 0560

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 104

TABLE C1

CLINICAL OBSERVATION : MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	ek-dav											
-		17	2-7	3-7	4-7	5–7	6–7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEATH	Castural	0	0	0	<u>^</u>	<u>,</u>	<u>^</u>	<u>^</u>	•						_
JEATH	Control	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm			0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATERAL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	Ō	Ō	0 0	Ő	Õ	Õ	õ
	250 ppm	0	0	0	0	0	0	Ō	Ō	Õ	Õ	Ő	ŏ	Ő	ů
	500 ppm	0	0	0	0	Ō	0	0	Õ	0	ů ů	ů	Õ	Ő	õ
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	Ó	0	0 0	0	Ō	õ	0	ů	õ	0 .	Õ
	250 ppm	0	0	0	0	0	0	0	0	0	Ő	Ő	ŏ	ů	ů í
	500 ppm	0	0	0	0	0	0	0	0	Õ	õ	Ő	Ő	Ő	Ő
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ō	Ő	Õ	õ	õ	ů	õ	0 0	0	0	0	ŏ	0	0
	250 ppm	Õ	õ	Õ	õ	ů	0	Ő	0	0	0 0	0	0	0	0
	500 ppm	0	Õ	0 0	Õ	ů 0	õ	0 0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	•
	125 ppm	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0		0	0		0	0	0
	500 ppm	õ	õ	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0 0	0 0
ILOERECTION	Control	0	0	0	•	•		•	<u>^</u>				•		
	Control	0 0	-	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm 250 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 15-7 16-7 18-7 19-7 20-7 21-7 17 - 722-7 23 - 724-7 25-7 26-7 27-7 28-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm LATERAL Control 125 ppm 250 ppm 500 ppm PARALYTIC GAIT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm 500 ppm SOILED Control 125 ppm 250 ppm 500 ppm PILOERECTION Control 125 ppm 250 ppm 500 ppm LOSS OF HAIR Control 125 ppm

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

SEX : MALE

															11102
Clinical sign	Group Name	Admin: 29-7	istration W 30-7	/eek-day 31-7	32-7	33-7	34-7.	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
							ente i							···· .	
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LATERAL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	Ō	Ō	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0 0	Ō	0	Ő	Õ	0 0	õ	Ő	õ	ů	õ
	250 ppm	0	Ō	Õ	Ő	ů	0 0	0	0	0	0	0	0	0	0
	500 ppm	0	0	Õ	Ő	0	ů 0	Ő	0	0	õ	0	Ő	Ő	0
LOSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ŭ.	õ	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0.	0	
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	ooo ppu	v	v	v	U	v	U	v	U	U	U	U	U	U	v

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 43-7 47-7 48~7 44-7 45-7 46-7 49-7 50-7 51-7 52-7 53-7 54-7 55-7 56-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm LATERAL Control 125 ppm 250 ppm 500 ppm PARALYTIC GAIT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm Ó 500 ppm SOILED Control 125 ppm 250 ppm 500 ppm PILOERECTION Control 125 ppm 250 ppm 500 ppm LOSS OF HAIR Control 125 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

`~-----

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

.

.

linical sign	Group Name	Admini	istration W	eek-day											
		57-7	58 ~ 7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
• • • • • • • • • • • • • • • • • • •		PAQ													
ATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	1	1
	250 ppm	1	1	1	1	1	1	1	- 1	ĩ	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	ō	Ō	Ō	ō	0	ō	0	Ō
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	ů.	0 0	Ō	0 0	Õ	0 0	0	Ő
	250 ppm	Ō	Õ	Ő	Ő	Ő	õ	Ő	Ő	õ	0	0 0	Ő	Ő	Ő
	500 ppm	Ő	Ő	0	Ő	0	0	õ	0	õ	õ	0	0 0	1	1
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Õ	Ő	Õ	Õ	Ő	õ	Õ	ů 0	0	Ő	Ő	Ő	. Õ
	250 ppm	õ	0	ů 0	0	0	0	0 0	0	0	Ő	Ő	0	0	0
	500 ppm	0	0	0	0	0	0	0 0	0	0	0	0	1	0	0
TERAL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	Ő	Õ	õ	õ	Õ	0	0 0	Ő	Ő	õ	Ő
	250 ppm	Õ	Ő	ů 0	ů 0	Ő	0	0	0	0	Ő	0	0	0	Ő
	500 ppm	0	Ő	0	õ	0	0	õ	0	0	õ	0	1	0	ŏ
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	125 ppm	0	0	Ō	Ō	0	Ō	0	0	0	Ő	0	Ő	Õ	Ő
	250 ppm	0	Õ	Ő	Õ	Ŭ.	Ő	Ő	Ő	ů 0	ů 0	0	ů 0	Ő	ŏ
	500 ppm	Ő	0	0	ů	0	0	õ	0	õ	õ	0	ů 0	0	Ŭ Ŭ
STING	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	125 ppm	0	Ō	0 0	0 0	Ō	Ő	õ	õ	õ	õ	0	Ō	Ō	ō
	250 ppm	Ő	Õ	Ő	Ő	Ő	Ő	Ő	Ő	Ő	õ	Ő	0	0	Ő
	500 ppm	0	0	0	0 0	0	0	0	0	0	0	0	1	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Õ	ů	ů 0	0 0	õ	0 0	õ	ů 0	0 0	Ő	0	0	ŏ
	250 ppm	Ő	Ő	0 0	0	0	0	0 0	0	0	Ő	0	0 0	0	ŏ
	500 ppm	0	. 0	0	0	0	0	0	0	õ	0	1	1	0	0
OERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	õ	0	0	0	0	ŏ	0	0 0	0	0	0 0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0											
		0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0
	500 ppm	v	U	U	U	U	0	0	0	0	0	0	0	0	0

125 ppm

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 71-7 72-7 73-7 74-7 75-7 76-7 77-7 78-7 79-7 80-7 81-7 82-7 83-7 84-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm LATERAL Control 125 ppm 250 ppm 500 ppm PARALYTIC GAIT Control 125 ppm 250 ppm 500 ppm Ω WASTING Control 125 ppm 250 ppm 500 ppm SOILED Control 125 ppm 250 ppm 500 ppm PILOERECTION Control 125 ppm 250 ppm 500 ppm LOSS OF HAIR Control

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	/eek-day											
		857	86-7	87-7	88-7	89-7	90-7	91–7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EATH	Control	1	1	1	2	2	2	2	2	2	2	2	2	2	2
	125 ppm	4	4	4	4	4	4	4	5	5	5	5	5	5	5
	250 ppm	1	1	1	1	2	2	3	4	4	4	4	4	4	4
	500 ppm	1	2	2	2	2	2	3	3	3	3	3	3	3	3
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	2	2	2	2	2	3
	125 ppm	2	3	3	3	4	4	4	4	4	5	6	7	7	7
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	500 ppm	2	3	4	4	4	4	4	4	4	4	5	5	5	6
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATERAL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	250 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	125 ppm	0	0	1	1	0	0	1	1	1	1	1	1	1	1
	250 ppm	1	1	1	1	0	0	0	1	0	0	1	1	1	0
	500 ppm	2	1	0	0	0	0	0	0	0	1	0	1	1	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	1	0	0	0	0	0	0	0	· 0	0	0
	250 ppm	1	0	0	0	0	0	0	0	0	0	0	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	· 0	0	0	0	0	0	0 0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0 0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō	0
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0 0	õ	õ	0	0 0	Õ	- Õ	Õ	õ	Ő	0	0	ů	õ
	250 ppm	Ő	õ	Ő	ů 0	0	0 0	0	0	0	1	1	1	1	1
	500 ppm	0	0	õ	õ	ů 0	õ	Õ	ů	ů ů	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration N	Veek-dav						
		99-7	100-7	101-7	102-7	103-7	104-7			
	·									
DEATH	Control	2	2	2	2	3	3			
	125 ppm		5	5						
	125 µµm	5			6	6	6			
	250 ppm	4	4	4	4	4	4			
	500 ppm	3	3	3	3	3	3			
MORIBUND SACRIFICE	Control	3	3	3	4	5	8			
	125 ppm	7	7	7	7	8	9			
	250 ррт	2	2	3	3	3	5			
	500 ppm	7	7	7	7	7	10			
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0			
	125 ppm	Ő	õ	õ	Õ	õ	Ő			
	250									
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0			
LATERAL	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	ŏ	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0			
PARALYTIC GAIT	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	0	1	0	0	0	0			
	500 ppm	ů 0	0	1	1		1			
	500 ppm	U	Ū	1	1	1	1			
WASTING	Control	0	1	1	2	1	0			
	125 ppm	1	1	1	0	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	ŏ	0 0	õ	ŏ	1	0			
		-								
SOILED	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	1	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	Õ	õ	Ő	ŏ	õ	0 0			
NI OFFICIATON					_					
PILOERECTION	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0			
OSS OF HATD	0	0	0	•	•	•				
OSS OF HAIR	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	1	1	1	1	1	0			
	500 ppm	0	0	0	0	0	0			

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration We	eek−dav						÷					
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
RAUMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	0	0 0	· 0	0	0	0	Ő	0	0	0	0	0	0
	250 ppm	õ	0	0	0	0	0	0	Ö	0	0	0	0	0	0
	500 ppm	õ	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	Ō	0	0	Ő	Ō	õ	Õ	Ő	0 0	Ő	ů 0	Ő
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	Ő
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	1	1	1	1	1	1	1	. 1	1	1	1	1
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
	250 ppm	0	0	0	. 0	0	0	0	0	Ò	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(TERNAL MASS	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	· 0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	/eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
			•												
TRAUMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0
	500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CATARACT	Control	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	125 ppm	0	0	0	. 0	0	0	0	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	ō	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	1	2	2
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	.0	0	0	1	- 1	1	1
	125 ppm	0	õ	õ	ů	õ	ů	ů 0	õ	õ	0	0	0	0	0
	250 ppm	õ	õ	õ	ů	ů 0	ů 0	0 0	0 0	0	Ö	0	0	0	· 0
	500 ppm	Õ	Ő	Ő	0	0	ŏ	ů	õ	0	0	0	0	0 0	0
ABNORMAL GROWTH OF TEETH	Control	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0
	125 ppm	ŏ	ŏ	0	0 0	0	0	0	0	0	0	0	0	0	0
	250 ppm	Ő	0	0	Ő	0	0	0	0	0	0	0	0	0	0
	500 ppm	õ	õ	0	0	Ő	0	0	0	0	0	0	0	0	0
ALOCCLUSION	Control	0	0	0	0	0	0	•		^	<u>^</u>	0		0	0
	Control 125 ppm	0 0	0	0	. 0 0	0	0	0	0	0	0	0	0	0	0
		0	-			0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0
EXTERNAL MASS		•	0	0	•	•	•				-	-	,	-	-
TATTINUT WUSD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

TRAUMA

Clinical sign Group Name Administration Week-day 29-7 30-7 31-7 32-7 33-7 34-7 35-7 36-7 37-7 38-7 40-7 39-7 41-7 42-7 Control 125 ppm 250 ppm 500 ppm SOILED PERI-GENITALIA Control 125 ppm 250 ppm 500 ppm EXOPHTHALMOS Control 125 ppm 250 ppm . 0 500 ppm CATARACT Control 125 ppm 250 ppm 500 ppm CORNEAL OPACITY Control 125 ppm 250 ppm 500 ppm ABNORMAL GROWTH OF TEETH Control 125 ppm

250 ppm 500 ppm MALOCCLUSION Control 125 ppm 250 ppm 500 ppm EXTERNAL MASS Control 125 ppm 250 ppm 500 ppm M. PERI-MOUTH Control 125 ppm Û 250 ppm 500 ppm

PAGE : 11

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 43-7 44-7 45-7 46-7 47-7 48-7 49-7 50-7 51-7 52-7 53-7 54-7 55-7 56-7 TRAUMA Control 125 ppm 250 ppm 500 ppm SOILED PERI-GENITALIA Control 125 ppm 250 ppm 500 ppm EXOPHTHALMOS Control 125 ppm 250 ppm 500 ppm CATARACT Control 125 ppm 250 ppm 500 ppm CORNEAL OPACITY Control 125 ppm 250 ppm 500 ppm ABNORMAL GROWTH OF TEETH Control 125 ppm 250 ppm 500 ppm MALOCCLUSION Control 125 ppm 250 ppm 500 ppm EXTERNAL MASS Control 125 ppm 250 ppm 500 ppm M. PERI-MOUTH Control 125 ppm 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	-	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
RAUMA	Control	0	0	0	٥	•	0	0	•	0	0	•	<u>^</u>	<u>^</u>	<u>^</u>
CTORIA .	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	, 0	0	0	0	0	1	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	Ō	0	õ	Ő	Õ	Ő	Õ
	250 ppm	0	0	0	0	0	Ō	Ō	0	Ő	Ő	Ő	Ő	ů	Ő
	500 ppm	1	1	1	1	1	1	1	1	1	1	ĩ	1	1	1
TARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	250 ppm	0	0	0	0	0	0	0	1	1	1	1	2		
	500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	$\frac{1}{2}$	1 2
RNEAL OPACITY	Control	0	0	0	0	0	0	•	0	0	•	•	<u>^</u>	•	
		0		-	-	-	-	0	0	•	0	0	0	0	0
	125 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	Ó	0	0	Ō
,	250 ppm	0	0	0	0	0	Ō	0	Ō	0	Õ	Ő	Ő	ů	ů ů
	500 ppm	0	0	0	0	õ	Õ	õ	ő	Ő	õ	Ő	Õ	Ő	0.
FERNAL MASS	Control	1.	1	1	1	1	1	1	1	1	1	1	1	1	4
	125 ppm	1	1	1				1	1	1	1	1	1	1	1
	250 ppm	0	0	0	1	1	1	0	1	2	3	3	3	3	3
	250 ppm 500 ppm	0 4	0 4	4	0 4	1 4	1 4	1 4	0 4	0 4	0 4	0 4	0 4	1 4	1 4
PERI-MOUTH	0	0	0	•							_	_			
IBAT MUUIN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration W	eek-day											
	<u></u>	71–7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
TRAUMA	Control	0	0	0	0	0	0	•	<u>^</u>	0		0	<u>^</u>	A 1	<u>^</u>
INTORA			-	-		0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	0	0	Ő	0	0	0	0	0	0 0	0	0	0	0
	250 ppm	0	0					-							
			0	0	0,	0	0	0	0	0	0	0	0	0	0 .
	500 ppm	0	U	0	0	0	1	1	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	0	0
CATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	3
	125 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	2	3	3	3	3	3	3	3	3	3	3	3	3	3
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	Ō	Ō	0	Ő	ŏ	1	ı 1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	Ō	Õ	Ő	õ	õ	Õ	õ	õ	0	õ	0 0	. 0
	250 ppm	0	0	Ő	õ	Ő	Ő	Ő	ů	0 0	0	0	· 0	0	0
	500 ppm	0	õ	õ	Õ	Ŭ ¹	0	Ŭ j	ů 0	Ő	0	0 0	0	ŏ	0
MALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	1	1	1	1	0	0	0	0	0	0	0	0		0
MILLIGULL REIDO		1	1	1	1	2	2	2	2	2	2	3	3	3	3
	125 ppm 250 ppm	4	4	4	4	4	4	4	6	6	5	5	5	5	5
	250 ppm	1	1	1	1	1	1	1	1	1	1	3	2	2	2
	500 ppm	4	4	4	4	4	4	4	4	4	4	5	5	5	5
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
_	·	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
RAUMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	.0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	1	0	0	0	0	0	0	0	1	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	1	1	1	0	0	0
	125 ppm	Ō	õ	Õ	õ	0 0	ů	ů	Õ	0	0	0	ŏ	0	Ő
	250 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
ATARACT	Control	3	3	3	3	3	3	3	3	2	2	2	2	2	9
	125 ppm	2	2	2	2										2
						2	2	2	2	2	2	2	2	2	2
	250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ppm	3	3	3	3	3	3	5	5	5	5	5	5	5	5
ORNEAL OPACITY	Control	0	0	1	1	1	. 1	1	. 1	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	Ó	1	0
	500 ppm	0	1	0	0	0	0	0	0	0	0	0	0	Ō	0
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ō	Õ	Õ	Õ	õ	ů	ŏ	õ	õ	0	ů 0	0 0	0 0	Ő
	250 ppm	Ő	Ő	0	0	õ	0	0	0	0	0	0	0	0	0
	500 ppm	Ő	1	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	3	3	4	л	4	F	F	F	F	0	. 0	0	0	0
				4	4	4	5	5	5	5	8	8	8	9	8
	125 ppm	5	5	6	9	8	8	8	8	-8	7	6	6	6	6
	250 ppm	2	3	3	3	2	2	5	5	7	8	9	9	9	9
	500 ppm	5	6	4	5	4	4	4	5	6	7	8	8	8	7
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	1	1	1	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

-

.

Clinical sign	Group Name	Admin	istration N	Veek-dav								
U		99-7	100-7	101-7	102-7	103-7	104-7				 	
								· · · ·				
RAUMA	Control	0	0	0	0	0	0					
	125 ppm	õ	Ő	õ	õ	0	0					
	250 ppm	ŏ	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					
CATLED DEDT OFNIGHT T			_	_								
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	1	1	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	1	1	1	1	1	0					
EXOPHTHALMOS	Control	0	0	0	1	1	. 1					
	125 ppm	Õ	ŏ	Ő	0	0	0					
	250 ppm											
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					
CATARACT	Control	2	2	2	2	2	2					
	125 ppm	2	2	2	2	2	2					
	250 ppm	2	2	2	2	2	2					
	500 ppm	5	5	5	5	5	4					
CORNEAL OPACITY	Control	2	2	2	1	1	1					
	125 ppm	ō	õ	õ	0	0	0					
	250 ppm											
		0	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	Ũ	ŏ	õ					
MALOCCLUSION	C->+1	0	•	0	0	•	<u>^</u>			•		
1010000001011	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	.0	0	0					
EXTERNAL MASS	Control	8	8	8	8	8	7					
	125 ppm	6	6	6	5	4	4					
	250 ppm	9	9	9	9	9	8					
	500 ppm	7	9	10	10	11	10					
A. PERI-MOUTH	Cast: 1	0	0	0								
a i lat moulli	Control	0	0	0	0	0	. O					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 1-7 2-7 3-7 4-7 5-7 6-7 7-7 8-7 9-7 10-7 11-7 12-713-7 14-7 M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm n 250 ppm 500 ppm M. BREAST Control 125 ppm 250 ppm 500 ppm M. ABDOMEN Control 125 ppm 250 ppm 500 ppm M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. HINDLIMB Control 125 ppm 250 ppm 500 ppm M. GENITALIA Control 125 ppm 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim \sim$

SEX : MALE

.

PAGE: 18

-

Clinical sign	Group Name	Admini	stration W	eek-day											
	_	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
						•									
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	Ó	0	0	0 0	Õ
	250 ppm	0	0	0	0	. 0	0	0	Õ	0	0	0	Õ	0 -	Ő
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	Õ	Ő	Õ
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ō	Ō	Ő	Õ	õ	ů	ů	õ	0	0	0	0	0	0
	250 ppm	Ō	Ō	Ő	0 0	õ	ů	0	0	0	0	0	0	0 0	0
	500 ppm	0	0	0	Ő	ő	õ	õ	0	Ő	0	0	0	0	0
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	Ō	Ő	Õ	Ů.	Õ	ů	Ő	Ő	0	0	õ	0	0
	250 ppm	0	0	Õ	õ	ŏ	ů	Ő	0	Ő	0	0	0	0	0
	500 ppm	0	0	0	Ő	0	Ő	Ő	0	0	0	0	0	0	0
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	õ	õ	ů	õ	õ	0	ŏ	0	ŏ	0	0	0
	250 ppm	õ	- Õ	ů	0	0	Ő	0	0	0	0	0	0	0	0
	500 ppm	0	0	ů 0	0	Õ	õ	0 0	0	0 0	0	0	0	0	0
I. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ů	Õ	ŏ	0	. 0	0	0	0	0	0	0	0	0	0
	250 ppm	ů	0 0	0 0	0	0	0	0	0	0		-	÷ .		0
	500 ppm	õ	0	õ	0	õ	0	0	0	0	0 0	0 0	0	0 0	0 0
. POSTERIOR DORSUM	Control	. 0	0	0	0	0	0	٥	0	0	0	0	0	•	^
	125 ppm	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0					0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0
	ooo hhm	v	U	v	U	U	U	0	0	0	0	0	0	0	0
I. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
÷	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 29 - 730-7 31-7 32-7 33--7 34-7 35-7 36-7 37-7 38-7 39-7 40-7 41-7 42-7 M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm 250 ppm 500 ppm M. BREAST Control 125 ppm Ω Ω 250 ppm 0. 500 ppm M. ABDOMEN Control 125 ppm 250 ppm 500 ppm M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. HINDLIMB Control 125 ppm 250 ppm 500 ppm M. GENITALIA Control 125 ppm 250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 43-7 44-7 45-7 46-7 47-7 48-7 49-7 50-7 51-7 52-7 53-7 54-7 55-7 56-7 M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm 250 ppm 500 ppm M. BREAST Control 125 ppm 250 ppm 500 ppm M. ABDOMEN Control 125 ppm 250 ppm 500 ppm M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. HINDLIMB Control 125 ppm 250 ppm 500 ppm M. GENITALIA Control 125 ppm 250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 60-7 57-7 58-7 59-7 61-7 62-7 63-7 64-7 65-7 66-7 67-7 68-7 69-7 70-7 M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm 250 ppm 500 ppm M. BREAST Control 125 ppm 250 ppm 500 ppm M. ABDOMEN Control 125 ppm 250 ppm 500 ppm M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. HINDLIMB Control 125 ppm 250 ppm 500 ppm M. GENITALIA Control 125 ppm 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 71-7 72-7 73-7 74-7 75-7 76-7 77-7 79-7 80-7 81-7 82-7 78-7 83-7 84-7 M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm 250 ppm 500 ppm M. BREAST Control 125 ppm 250 ppm 500 ppm M. ABDOMEN Control 125 ppm 250 ppm 500 ppm M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. HINDLIMB Control 125 ppm 250 ppm

PAGE : 22

M. GENITALIA

500 ppm

Control

125 ppm

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

M. HINDLIMB

M. GENITALIA

•

Control

125 ppm

250 ppm

500 ppm

Control

125 ppm

250 ppm

500 ppm

Clinical sign	Group Name	Admini	stration N	Veek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91–7	92-7	93-7	94-7	95-7	967	97-7	98-7
M. EAR	Control	1	1 ·	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	1 0	0	1	1 0	0	1 0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ooo ppm	v	v	0	U	U	U	U	U	0	U	U	U	U	U
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0.	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	500 ppm	1	1	0	0	0	0	0	0	0	1	2	2	2	1
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	1	1	1	0	0	Ó	Ó	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	1	1	1	1	2	2	2	2	2
	125 ppm	Ő	Õ	1	1	1	1	1	1	1	1	1	1	1	1
	250 ppm	0	0	Ō	Ō	Ō	0	0	0	0	1	1	1	1	1
	500 ppm	0	0	0	1	1	1	1	2	2	2	2	2	2	2
M. ABDOMEN	Control	1	1	2	2	2	2	2	2	2	2	2	2	2	2
	125 ppm	1	1	1	3	3	3	3	3	3	3	2	2	2	2
	250 ppm	ō	Ō	ō	0 0	Ő	Ő	2	2	3	3	4	4	4	4
	500 ppm	2	2	2	2	2	2	2	2	3	3	3	3	3	3
W ANTERTOR RODOLL				· _	-										
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	125 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	250 ppm	0	1	1	1	1	1	1	1	2	2	2	2	2	2
	500 ppm	1	1	0	0	0	0	0	0	1	1	1	2	2	2
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	1	1	1	2	1
	125 ppm	1	1	1	2	2	2	2	2	2	1	· 1	1	1	1
	250 ppm	1	1	1	1	1	1	2	2	2	2	2	2	2	2
	500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1

PAGE : 23

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration N	Vook-dav								
		99-7	100-7	101-7	102-7	103-7	104-7					
M. EAR	Control	1	1	1	1	1	1					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					
M. PERI EAR	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	1	1	1	1	1	1					
M. NECK	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	0	0	0	0	0					
M. BREAST	Control	2	2	2	2	2	2					
	125 ppm	1	1	1	1	0	0					
	250 ppm	1	1	1	1	1	1					
	500 ppm	2	2	2	2	2	3					
M. ABDOMEN	Control	2	2	2	2	2	1					
	125 ppm	2	2	2	2	2	2		,			
	250 ppm	4	4	3	3	3	3					
	500 ppm	3	4	4	4	4	3					
M. ANTERIOR. DORSUM	Control	-1	1	1	1	1	1					
	125 ppm	2	2	2	2	2	2					
	250 ppm	2	2	2	2	2	2					
	500 ppm	2	2	3	3	3	3					
M. POSTERIOR DORSUM	Control	1	1	1	1	1	1					
	125 ppm	1	1	1	0	0	0					
	250 ppm	2	2	3	3	3	2					
	500 ppm	1	1	1	1	2	2					
M. HINDLIMB	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	0	0	0					
	500 ppm	0	. 1	1	1	1	0					
M. GENITALIA	Control	0	0	0	0	0	0					
	125 ppm	0	0	0	0	0	0					
	250 ppm	0	0	0	Ō	0	Õ					
	500 ppm	0	0 0	õ	õ	Ő	ů 0					

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

• •

Clinical sign	Group Name	Admini	stration We	eek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9 -7	10-7	11-7	12-7	13–7	14-7
. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	Ó	0	· 0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0 0	0 0	Ő	õ	Ő	õ
	500 ppm	0	0	0	0	0	0	Õ	õ	0	ő	õ	Ő	Ő	0
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	Õ	õ	Ő	ů 0	õ	Ő	0	0	0	0 0	ŏ	0
	250 ppm	Ő	Ő	Ő	0	0	0	0 0	0	0	0	0	0	0	0
	500 ppm	õ	0 0	0	0	0	. 0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	^
loo m	125 ppm	0	Ő	0	0	0	0	0					0	0	0
	250 ppm	0	0		0	0			0	0	0	0	0	0	0
	230 ppm 500 ppm	. 0	0	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0
	Soo bhu	. 0	v	v	U	U	U	U	U	U	U	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	Ő	Õ	Ő	· Õ	Õ	ů 0	õ
	250 ppm	0	0	0	Ō	õ	õ	ŏ	ů	ů 0	Ő	Ő	Ő	0 0	0 0
	500 ppm	0	0	0 0	Õ	õ	õ	Ŏ	õ	0	0 ·	0	õ	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Õ	Ő	0 0	Ő	0	0	0	Ő	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0		0				-
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
OF ADOR OF DESITO							-		·	-	-	-	Ţ		
OLAPSE OF PENIS	Control 125 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	0	0
	250 ppm	0	0	0			-			-	0.	0	0	0	0
		0			0	0	0	0	0	0	0	0	0	0	0
	500 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
CODOMINE							_								
SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	Ō	0	0	Ő	õ	Ő	Õ	õ	õ
	250 ppm	0	0	0	0	0	0	0	Ő	õ	Õ	ů .	Õ	ŏ	ő
	500 ppm	0	0	0	0	0	0	0	õ	0	0	0	0	Ő	ů
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	Ō	Ō	0	õ	õ	Õ	õ	õ	ŏ	Õ	Õ	õ	ŏ
	250 ppm	Ō	Õ	õ	õ	ŏ	ŏ	õ	0	Õ	õ	0	Ő	0	ŏ
	500 ppm	õ	Õ	Ő	õ	Ő	Õ	õ	õ	Õ	0	Ő	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ō	Ō	Ō	Ō	õ	õ	õ	õ	ů	õ	õ	Ő	Ő	ů 0
	250 ppm	õ	ŏ	0	0 0	Ő	Ő	Ő	0	0	0	0	0	0	0
	500 ppm	ů	õ	0	0	Ő	0	0	0	0 0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	ŏ	0	0	0 0	0	0	0	0	0	0	0	0	0
	250 ppm	Ő	Ő	0	0		-				-	-			-
	500 ppm	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0
MORRHAGE		~	•	<u> </u>	•						-				
MONTHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	.0	0	0	0	0	0	0	Ō	Ō	0	0	Ő	Ő	Ő
	500 ppm	0	0	0	0	0	Ō	ů 0	õ	Õ	0 0	Õ	õ	õ	Ő

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	istration W	eek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
bonorem	125 ppm	Ő	0 0	0	0	0	0	0	0			-	0		-
	250 ppm									0	0	0	-	0	0
		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolit	125 ppm	0 0	0	0	0	0	0	0	0			0		-	0
	250 ppm	0	0	0	0				-	0	0	-	0	0	0
	500 ppm	0	0	0	0	0	0	0 0	0	0 0	0 0	0	0 0	0	0
	200 hhm	, v	v	U	U	U	U	U	U	U	U	U	U	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	Ō	0	Ő	õ	Ő	õ	õ	Ő	ů 0	Ő	Ő	õ
	250 ppm	0	Ō	Ō	Õ	ů	Ő	ů	ů	0	Ő	0	Ő	Ő	0
	500 ppm	õ	õ	õ	õ	0	Ŏ	õ	Ö	0	0	0	0	0	0
ICATRIX	0 . 1	<u>,</u>	<u>^</u>	•	•				_		_				
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ó
	250 ppm	0	0	0	0	0	0	Ó	0	0	0	0	0	Ō	õ
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	õ
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ŏ	0	0	· 0	0	0	0	0 0	0	0	0	0	0	0
	250 ppm	0	0	0		0	0				0	•		0	0
	500 ppm	0 .	0	0	0 0	0	0	0 0	0 0	0 0	0 0	0	0 0	0	0 0
	ooo ppm	v	v	v	v	v	v	v	v	U	U	U	v	v	v
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY)

SEX : MALE

.

ALL ANIMALS

Clinical sign	Group Name	Admini	stration W	eek-day					-						
	-	43-7	44–7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
I. SCROTUM	Control	0	0	0	0	0	0	0	٥	0	0	0	0	0	0
I. SCROTOM	125 ppm	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
	осо ррш	v	v .	v	U	U	U	U	U	U	U	U	U	0	U
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILCER	Control	0	0	0	•	0	0	•	•	•	0	•	•	•	
ILCER		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm 250 ppm	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0	0	0	0 0	0	0 0	0						
	ooo hbu	v	v	U	U	U	U	U	U	U	U	U	U	U	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
MOD III	125 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	•	-	0	0
	500 ppm	0	· 0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
	FF			· ·	,		v	• .	Ū	v	Ū	v	v	v	v
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	Ő	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	500 ppm	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Ő	0	õ	0	0	0	0	0.	0	0	0	0	0
	250 ppm	ő	õ	0	0	ő	0	0	0	0	0	0	0	0	0

PAGE: 28

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day				<u> </u>							
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
CODORING				_	_	_									
I. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	Ō	0	0	0	Ō	Ő	Õ	Õ	Õ	Õ	Õ
	250 ppm	0	0	0	Ō	0	Ō	Ő	õ	Õ	0 0	ů 0	õ	Ő	0
	500 ppm	0	0	Ō	0	0	0	ů 0	ů	ů	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	õ	Ő	Ő	1	1	õ	Ő	Õ	õ	· Õ	õ
	250 ppm	0	Ō	0	Õ	Õ	Ő	0	0	Ő	Ő	Ő	Õ	Ő	õ
	500 ppm	0	0	0	Ő	0	ů 0	Ŏ	ů	0 -	ů	0	0	0	0
ICATRIX	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	125 ppm	Õ	ů	Õ	õ	0 0	Ő	Õ	0	0	õ	Ő	Ő	0	Ő
	250 ppm	Ő	ů	Ő	Ő	õ	0 0	õ	0	0	0	0	0	0	0
	500 ppm	ů 0	ů	ů 0	Ő	0	0	Ő	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	٥	0	0	0
	125 ppm	0	0	0	0	0	-	0	-		-	0	0	0	0
	125 ppm 250 ppm	0	-		-		1	-	0	0	0	0	0	0	0
			0 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	U	0	. 0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name		istration W												
		717	72-7	73-7	74-7	75-7	76-7	77-7	78–7	79–7	80-7	81-7	82-7	83-7	84-7
M. SCROTUM	Control	0	0	0	0	0	٥	0	0	0	0	0	0	0	٥
a. Sokorom	125 ppm	0	0	0	0 0										
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	.0	0	0	0	1	0	0	0	0	0	0	0	1
	125 ppm	0	0	0	0	0	0	0	0	0	1	. 1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	500 ppm	0	0	0	0	0	0	Q	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CICATRIX	Control	0	0	0	0	0	0	1	1	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	500 ppm	0	0	0	0	0	0	1	1	1	1	1	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500	•	•		-	-									

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 85-7 86-7 87-7 88-7 89-7 90-7 91-7 92-7 93-7 95-7 96-7 97-7 94-7 98-7 M. SCROTUM Control 125 ppm 250 ppm 500 ppm ANEMIA Control 125 ppm 250 ppm 500 ppm ULCER Control 125 ppm 250 ppm 500 ppm EROSION Control 125 ppm 250 ppm 500 ppm CRUSTA Control 125 ppm 250 ppm 500 ppm CICATRIX Control 125 ppm 250 ppm 500 ppm HEMORRHAGE Control 125 ppm 250 ppm 500 ppm TORTICOLLIS Control 125 ppm 250 ppm 500 ppm PROLAPSE OF PENIS Control 125 ppm 250 ppm 500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

.

•

Clinical sign	Group Name	Admin	istration	Week-dav				
	-	99-7	100-7	101-7	102-7	103-7	104-7	
I. SCROTUM	Control	. 1	1	1	.		1	
a. Solorom	105	1		1	1	1	1	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	. 0	0	
	500 ppm	0	0	0	0	0	0	
ANEMIA	Control	0	0	0	2	2	0	
	125 ppm	1	1	1	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
ULCER	Control	1	1	1	1	1	0	
	125 ppm	4	4	4	3	3	3	
	250 ppm	Ō	ō	Ō	Ő	1	1	
	500 ppm	1	1	3	3	3	2	
		-						
EROSION	Control	0	0	0	0	0	0	
	125 ppm	0	0	. 0	0	0	0	
	250 ppm	0	0	0	0	0	· 0	
	500 ppm	0	0	0	0	0	0	
CRUSTA	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0 0	ů 0	ů 0	
CICATRIX	Control	0	0	0	0	0	0	
	125 ppm	Ő	0	0	0	0	0	
	250 ppm							
	250 ppm 500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	
		v	v	v	Ū	v	v	
HEMORRHAGE	Control	1	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	· 0	0	0	
TORTICOLLIS	Control	0	0	0	0	0	0	
	125 ppm	0	0	Ō	0	0	Ő	
	250 ppm	Ŭ,	Ő	0	0	0	Ő	
	500 ppm	0	0 0	0	0	0	0	
PROLAPSE OF PENIS		0	0	^	•	<u>^</u>	•	
INOLATOL OF PENIS	Control 125 ppm	0	0 0	0	0	0	0	
		0			0	0	0	
	250 ppm 500 ppm	0	0	0	0	0	0	
	500 mm	0	^	0	0	0	0	

SEX : MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IOISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOOSE STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	Ō	Ö	0	0 0
	250 ppm	0	0	0	0	0	0	0	0	0	Õ	Ő	Ő	Ő	Ő
	500 ppm	0	0	0	0	0	0	0	Õ	õ	ů 0	ů	Ô	õ	õ

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

.

Clinical sign	Group Name	Admini	stration W	eek-dav					~						
	-	15-7	16-7	17-7	18-7	19–7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
IRREGULAR BREATHING	Control	0	0	0	0	0	、 0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESPIRATORY SOUND ABNOR	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VOISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	Ó	0	0	-0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OOSE STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0 0	0	õ	Ō	Õ	Õ	Õ	õ
	250 ppm	0	0	0	0	0	0	Ő	õ	õ	õ	Õ	Õ	Õ	ŏ
	500 ppm	0	0	0	0	Ő	Ő	ŏ	Ő	õ	õ	0°	Ő	õ	õ

(HAN190)

BAIS 4

500 ppm

Control

125 ppm

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY)

SEX : MALE

NOISY

Clinical sign Group Name Administration Week-day 29-7 30-7 31--7 32-7 33-7 34-7 35-7 36-7 37-7 41-7 42-7 38-7 39-7 40-7 IRREGULAR BREATHING Control 125 ppm 250 ppm 500 ppm RESPIRATORY SOUND ABNOR Control 125 ppm 250 ppm 500 ppm Control 125 ppm 250 ppm 500 ppm DEEP BREATHING Control 125 ppm 250 ppm 500 ppm Control 125 ppm 250 ppm

(HAN190)

RED URINE

LOOSE STOOL

BAIS 4

PAGE : 35

ALL ANIMALS

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 36

Clinical sign	Group Name	Admini	stration W	eek-day											
		437	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ů 0	Ő	0 0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	ů 0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	0	0
	500 ppm	ů 0	0	õ	0	0 -	0	0	0	0	0	0	0	0	0
	••			•	•	Ŧ	·	· ·	· ·	Ŭ	Ŭ	Ũ	Ū	Ũ	v
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	• 0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VOISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ŏ	Õ	õ	0 0	0 0	0	0	0	õ	õ	0	0	ŏ	0
	250 ppm	õ	ů 0	ů 0	0 0	0	0	0	0	0	0	0	0	0	0
	500 ppm	õ	0	õ	0	õ	0	Ő	0	0	0	0	0	0	0
							-		•	Ŧ	-	•	•	•	·
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REDURINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ŏ	õ	° Ö	0	0	0	0 0	õ	0	0	0	0	0	0
	250 ppm	Ő	0	0	0	0	Ő	0 0	0	0	0	0	0	0	0
	500 ppm	ŏ	ů	õ	0	0	0	0	0	0	0	0	0	0	0
												·			-
LOOSE STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· · · ·	250 ррт	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign Group Name Administration Week-day 57-7 58-7 59-7 60-7 61-7 62-7 63-7 64-7 65-7 66-7 67-7 68-7 69-7 70-7 IRREGULAR BREATHING Control 125 ppm 250 ppm 500 ppm RESPIRATORY SOUND ABNOR Control 125 ppm 250 ppm 500 ppm NOISY Control 125 ppm 250 ppm 500 ppm DEEP BREATHING Control 125 ppm 250 ppm 500 ppm RED URINE Control 125 ppm 250 ppm 500 ppm LOOSE STOOL Control 125 ppm 250 ppm Ó 500 ppm

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 38

-

Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
RREGULAR BREATHING	Control	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Interesting Distribution	125 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	· 1
	500 ppm	ů	õ	õ	ő	1	1	1	Ő	0	0 0	0	õ	0	. 1
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1.	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OISY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0
EEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OOSE STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 39

linical sign	Group Name	Admini	istration W	/eek-day											
	-	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
				_			_								
RREGULAR BREATHING	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	0	0	1	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DISY	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	125 ppm	0	Ó	0	0	0	Ō	0	0 0	Ō	0	Ő	õ	Õ	Õ
	250 ppm	0	0	0	0	Õ	Ő	0 0	Ő	õ	Õ	õ	1	1	õ
	500 ppm	0	0	0	0	0	0	0	Ő	0	0	0	0	0	õ
SEP BREATHING	Control	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	125 ppm	1	õ	Ő	õ	ŏ	Õ	Ő	0 0	õ	Ő	Ő	õ	õ	ŏ
	250 ppm	0	Ő	0	0 0	Ő	0 0	0	0	0	0	0	0	0	ŏ
	500 ppm	0 0	0 0	0	0 0	0	0	0	õ	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	õ	0	Ő	Ő	0	0	0 0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ooo hhm	v	v	v	v	v	U	v	U	U	U	U	U	U	U
OSE STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 40

Clinical sign	Group Name	Admin	istration	Week-day						
		99-7	100-7	101-7	102-7	103-7	104-7			
-							·····			
IRREGULAR BREATHING	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0.			
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0			
	125 ppm	0	Ó	0	0	0	· O			
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	Ō	0	0	0	0			
IOISY	Control	0	0	0	0	0	0			
·····	125 ppm	0	õ	0 0	° Ö	0 0	0 0			
	250 ppm	Ő	ŏ	0 0	Ő	0	õ			
	500 ppm	ŏ	0	õ	0	0 0	0			
		_		_						
DEEP BREATHING	Control	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0			
ED URINE	Contro1	0	0	0	0	0	0			
	125 ppm	0	0	0	0	0	0			
	250 ppm	0.	0	0	0	0	0			
	500 ppm	0	0	0	0	0	0			
OOSE STOOL	Control	0	0	0	0	0	0			
ŧ	125 ppm	0	0	0	0	0	0			
	250 ppm	0	0	0	0	0	0			
	500 ppm	0	0	0	0	Ō	0			

(HAN190)

TABLE C2

CLINICAL OBSERVATION : FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-dav			- newskie								
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8–7	9–7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0.	0	0	0	0	0	0	0	0	٥		0	0
	125 ppm	0	0	0	0	0	0	0	0			0	0	0	
	250 ppm	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0 0	0 0
	500 ppm	0	õ	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0 0	Ő	Õ	Õ	ŏ	Ő	õ	õ	õ
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
and the second sec	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

125 ppm

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 15-7 16-7 17-7 18-7 19-7 20-7 21-7 22-7 23-7 24-7 25-7 26-7 27-7 28-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm HUNCHBACK POSITION Control 125 ppm 250 ppm 500 ppm ATAXIC GAIT Control 125 ppm 250 ppm 500 ppm ABNORMAL GAIT Control 125 ppm 250 ppm 500 ppm EXCITEMENT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm 500 ppm SOILED Control

PAGE: 42

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 29-7 30-7 31-7 32-7 33-7 34-7 36-7 37-7 35-7 38-7 39-7 40-7 41-7 42-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm HUNCHBACK POSITION Control 125 ppm 250 ppm 500 ppm ATAXIC GAIT Control 125 ppm 250 ppm 500 ppm ABNORMAL GAIT Control Δ Δ ^ ^ ^ .

ADNORMAL GAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Õ	0 0	0	0	0	0	0	0	0	0		0	0
	250 ppm	ů n	ů 0	0	0	0	0	0	0	0	0	-	0	0	0
	500 ppm	0	0	0	0	0	0	-	0	0	0	0	0	0	0
	ooo ppm	U	0	U	U	0	0	0	0	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	٥	0
	125 ppm	0	0	0	õ	0 0	ů N	0	ñ	0 0	0 0	0	0	0	0
	250 ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0 0	õ	0	õ	0	0	0	0	0	0	0
	ooo ppm	·	Ū	Ū	0	v	0	0	U	U .	0	U	0	U	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0.	ů.	ů.
	250 ppm	0	0	0	0	0	0	0	0	0 0	0 0	ů N	0	ů 0	ñ
	500 ppm	0	0	0	õ	0	õ	0	õ	0 0	0	0	0	0	ñ
		-	-	•	•	U .	v	v	v	v	v	v	v	0	v

.

250 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 43-7 44-7 45-7 46-7 47-7 49-7 48-7 50-7 51-7 52-7 53-7 54-7 55-7 56-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 ppm 250 ppm 500 ppm HUNCHBACK POSITION Control 125 ppm 250 ppm 500 ppm ATAXIC GAIT Control 125 ppm 250 ppm 500 ppm ABNORMAL GAIT Control 125 ppm 250 ppm 500 ppm EXCITEMENT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm 500 ppm SOILED Control 125 ppm

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 57-7 58 - 759-7 60-7 61-7 62-7 63-7 64-7 65-7 67--7 66-7 68-7 69 - 770-7 DEATH Control 125 ppm 250 ppm 500 ppm MORIBUND SACRIFICE Control 125 ppm 250 ppm 500 ppm LOCOMOTOR MOVEMENT DECR Control 125 DDM Λ 250 ppm 500 ppm HUNCHBACK POSITION Control 125 ppm 250 ppm 500 ppm ATAXIC GAIT Control 125 ppm 250 ppm 500 ppm ABNORMAL GAIT Control 125 ppm 250 ppm 500 ppm EXCITEMENT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm 500 ppm SOILED Control 125 ppm 0, 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-dav											
		71-7	72–7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
						a - na raidhean Adda									***
EATH	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	1	1	2	2	2	2	2	2	2	2	2	2	2	$\frac{1}{2}$
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	2
	500 ppm	1	1	1	2	2	2	2	2	3	4	4	4	4	4
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	125 ppm	0	0	0	0	0	0	Ő	0	Ő	ů 0	Ő	Õ	Ő	0
	250 ppm	0	0	0	Ō	0	Ő	õ	õ	Ő	0	0	Ő	1	Ő
	500 ppm	0	0	0	0	0	0	õ	õ	1	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Õ	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0								
	500 ppm	0	0	0	0	0	0	0 0	0 0	0 0	0 0	. 0 0	0 0	0 0	0 0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	•	0	0	0
	125 ppm	õ	0 0	0	0	0	0	0	0	0	0	0	0	0	0
								0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	Ō	0	Õ	Ő	Õ	0
KCITEMENT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0 0	Ō	Õ	õ	ů 0	õ	õ	ů	Ő
	250 ppm	Ő	ů	ů 0	0	0	0	0 0	0	0	0	0	0	0	0
	500 ppm	Õ	Õ	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	125 ppm	0	0	0	0	0	0			1	1	1	1	1	2
	250 ppm	0	0	0	0			0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0	0	0	0 0	0 0	0	0 1	0	0	0 0	0	0 0	0 0
DILED		0	•	0	<u>^</u>					-		Ţ			
ענוידר	Control 125 ppm	0 0	0	0	0 0	0	0	0	0	0	0	1	1	1	0
	250 ppm	0				-			•	Ŷ	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	v	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

SEX : FEMALE															PAGE
Clinical sign	Group Name	Admini	istration W	Veek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93–7	94-7	95–7	96-7	97-7	98-7
DEATH	Cetter 1	0		0	0			<u>,</u>					_	_	
DERIN	Control 125 ppm	2	2	2	3	3	3	3	3	4	4	4	5	5	6
		2	$\frac{2}{1}$	2 1	2	2	2	2	2	2	2	2	2	2	2
	250 ppm	1			1	2	2	2	2	2	2	3	3	3	4
	500 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
MORIBUND SACRIFICE	Control	1	2	2	2	2	- 2	3	3	3	3	3	3	4	5
	125 ppm	0	0	0	0	0	0	0	0	1	1	1	2	2	2
	250 ppm	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	500 ppm	4	4	4	4	4	4	4	4	4	4	4	6	6	6
LOCONOTOD NOVENENT DECD	a	•	•												
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	125 ppm	0	0	0	0	0	0	õ	0	Õ	Õ	Õ	õ	Ô	ů
	250 ppm	0	0	0	0	0	0	õ	0	Õ	Õ	ů	õ	ů	Ő
	500 ppm	0	0	0	0	0	0	Ő	Ő	0	ů 0	õ	õ	õ	õ
ATAXIC GAIT	Control	0	0	0	0	0	0	•	0		•	•	•		•
MINICO MIT		0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	125 ppm			-	0	0	0	0	0	0	0	0	0	0	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	125 ppm	0	0	0	0	0	0	0 0	Õ	Õ	Õ	Õ	0	ů	õ
	250	0	•	0					ő	ő	ů	•	0		

n ABNOR n 250 ppm 500 ppm EXCITEMENT Control 125 ppm 250 ppm 500 ppm WASTING Control 125 ppm 250 ppm · 0 500 ppm SOILED Control 125 ppm 250 ppm 500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 48

.

Clinical sign	Group Name	Admini	stration	Week-day _				
		99-7	100-7	101-7	102-7	103-7	104-7	
EATH	Control	6	6	6	7	7	7	
	125 ppm	3	3	3	4	4	4	
	250 ppm	4	4	4	4	5	5	
	500 ppm	2	3	3	3	4	4	
ORIBUND SACRIFICE	Control	5	5	5	5	5	5	
	125 ppm	2	2	2	2	2	3	
	250 ppm	3	3	4	4	4	4	
	500 ppm	7	7	8	9	9	9	
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
JUNCHBACK POSITION	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
TAXIC GAIT	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	Õ	0	
	250 ppm	0	0	0	0	Ō	Õ	
	500 ppm	0	0	0	0	0	0	
BNORMAL GAIT	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	Ő	Ő	- Û	
	250 ppm	0	0	0	Õ	ů	Ő	
	500 ppm	0	0	0	0	0	0	
XCITEMENT	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	Ō	0	0	
	250 ppm	0	0	0	0	Ő	Ő	
	500 ppm	0	0	0	0	0	0	
ASTING	Control	0	0	0	0	0	1	
	125 ppm	1	1	1	ŏ	0	0	
	250 ppm	1	1	0	Ő	0 0	0	
	500 ppm	0	0	ů 0	õ	0	0	
OILED	Control	0	0	0	0	0	0	
	125 ppm	õ	0 0	0	ŏ	0	0	
	250 ppm	0	0 0	0	0	0	0	
	500 ppm	0	0	0	0	0		
	200 hhm	v	v	U	U	U	0	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-dav											
	•	1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	Õ	0	0	Õ	Ő
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	Ō	0	0 0	0 0	Ů.	Ő	õ
	250 ppm	0	0	Õ	Ő	Ő	ŏ	Ő	Ő	ő	Ő	ů	0	0	ŏ
	500 ppm	0	0	0	0	0	0	0	0	Õ	0	Õ	Û.	õ	Ő
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	õ	Õ	ŏ	Ő	Ő
	250 ppm	Ō	Ō	õ	õ	ŏ	ů	Ő	0 0	õ	0	0	Ő	ů 0	0
	500 ppm	0	0	0	0	0	0	Ő	0	õ	0	0	Ő	ŏ	0
ACRIMATION	Control	0	0	0	0	0	0	. 0	· 0	0	0	0	1	0	0
	125 ppm	0	Õ	õ	ů 0	õ	õ	0	õ	ŏ	Ő	0 0	0	ŏ	ů
	250 ppm	ů 0	0 0	Ő	0	0	ŏ	0	0	0	0	0	0	0	0
	500 ppm	0	0	õ	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	ů 0	0	ů.	0 0	õ	ŏ	0	1	1	1	3	3	3	3
	250 ppm	0	0	0 0	Ö	0 0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	^	^
Statute VINCIII	125 ppm	0	0	0	0	0	0	0		0	0		0	0	0
	250 ppm	0	0	0					0			0		0	0
	250 ppm 500 ppm	0	0	0	0 0	0 0	0 0	0 0	0 Ò	0 0	0 0	0 0	0 0	0	0 0
BNORMAL GROWTH OF TEETH	Control	0	0	0	^	0	^	0	0	•	^	^	^	^	•
MORALLE OROWITH OF TEELD	Control	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm 250 ppm				0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0'	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	•	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23–7	24-7	25-7	26-7	27-7	28-7
ILOERECTION	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0
• • • • • • • • • • • • • • • • • • •	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	125 ppm	0	0	0	0	Ő	Ő	ů	0	õ	õ	ŏ	õ	ŏ	õ
	250 ppm	Ō	Õ	Õ	õ	ů	Ů.	0	0	0	0	Ő	Ő	0	ő
	500 ppm	õ	0	0	0	0	0	õ	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0			•
	250 ppm	0	0	0	0	0	0	0	0				0	0	0
	500 ppm	0 0	0	0	0	0	0	0	. 0	0 0	0 0	0 0	0 0	0	0 0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	•	•	•	•	•
NOT ITTELLMOD	125 ppm	0	0	0		-	-	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	125 ppm	3	3	3	3	3	3	3 3	3	3	3	3	3	3	3
	250 ppm	Ō	Ő	õ	õ	0	0	0	0	0	0	0	0	0	0
	500 ppm	õ	0 0	õ	0	Ő	0	0	0 0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	^
	125 ppm	0 0	. 0	0	0			-		0	0	0	0	0	0
			0			0	0	0	0	0	0	0	0	0	0
	250 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	õ
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	Õ	Õ	Õ
ROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	Õ	ů 0	Ő	ů 0	Ő	õ	0 0	0	0 0	0	0	0	0
	250 ppm	Ő	Õ	õ	Ő	0	õ	0 0	0	0	0	0	0	0	0
	500 ppm	ů	Ő	0	0 0	õ	0 0	0	0	0	0	0	0	0	0
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	1			
	125 ppm	0	ŏ	0	0		•		-	•	•	+	1	1	1
						0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0
XOPHTHALMOS	C - t - 1		0	<u>^</u>	•					_					
A OF ITTIALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	1	1	1	. 1	1	1	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	1	1	1	1	1	1.	1	1	1	1	1	1	1	1
x	125 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	250 ppm	1	2	2	3	3	3	3	4	3 4	3 4	4	3 4	3 4	3 4
	500 ppm	0	0	0	0	0	0	0	0	4 0	1	4	4	4	4
DRNEAL OPACITY	Control	0	0	0	0	0	0	^	^	•	A	~	^	<u>^</u>	^
	125 ppm	ŏ	0	0	0		0	0	0	0	0	0	0	0	0
						0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0 0	0 0	0	0 0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0
RNADVAL COAWTH OF THEFT		<u>^</u>	~	c	-		-								
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group	Name	Admini	stration W	eek-dav											
			43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
		•	f	1.1.1.1.1.1			·									
ILOERECTION		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	Ő	Õ	Õ	0 0	õ
		250 ppm	0	0	0	0	Õ	· 0 ·	ŏ	ů	õ	0 0	Ő	Ő	0	Ő
		500 ppm	0	0	0	0	0	0 0	0	Õ	Õ	õ	0 0	0 0	Ő	Ő
ROLAPSE OF ANUS		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		250 ppm	0	0	0	0	0	0	0	0	0	0	0		0	-
		230 ppm 500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
ATTED DEDT CENTRALTA				-	_											-
OILED PERI-GENITALIA		Control	0	0	0	1	0	0	0	0	1	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	-0	0	0	0	0
		250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOPHTHALMOS		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRIMATION		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	õ	Õ ·	õ	ů	0 0	0 0	õ	ŏ	ŏ	0	0	0	ŏ	0
		250 ppm	Ő	ů	ů 0	ů 0	Ő	0	0	0	0	0	0	0	0	0
		500 ppm	õ	Ŏ	0 0	0 0	0	0	0	0 0	0	0	0	0	0	0
ATARACT		C														
11/11/10/1		Control	1	1	1	1	1	1	1	1	1	2	2	2	2	2
		125 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
		250 ppm	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		500 ppm	2	2	2	2	2	2	2	3	3	3	3	3	3	3
DRNEAL OPACITY		Control	1	1	1	1	1	1	1	1	1	0	0	0	0	0
		125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GROWTH OF TEETH		Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		125 ppm	Õ	Õ	Ő	õ	0 0	õ	õ	0	0	ŏ	0	0	0	0 0
		250 ppm	0	Ő	0	0	0	õ	0	0	0	0	0	0	0	. 0
		500 ppm	Õ.	0	0	0	0	0	0	0	0	0	0	0	0 0	
		ooo hhm		v	U	U	U	U.	v	U	U	U	U	U	U	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav							·				
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
TLOPROFILM		_													
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	Ō	0	Õ	ů	ů	0
	250 ppm	0	0	0	0	0	0	Õ	õ	ő	0 0	0	0	0	0
	500 ppm	0	0	0	0	0	0	Õ	Ő	õ	0 0	1	0 0	0	0
ROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	•	0
	125 ppm	0	õ	Ő	Ő	0	Ő	0	0	0	0	0	0	0	0
	250 ppm	Õ	Ő	0	0 0	0	0	0	0	0	0	0	0 0	0	0
	500 ppm	0	Õ	ů 0	0	Õ	Ő	0 0	0	0	0	0	0	0 0	0
OILED PERI-GENITALIA	Control	1	1	0	0	0	0	1	1	1	0	•	•	•	
	125 ppm	Ô	0	0	0	0	0	1	1	1.	0	0	0	0	0
	250 ppm	ů 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	õ	0	0	0	. 0	0	0 0	0	0 0	0 0	0 1	0 0	0 0	0 0
XOPHTHALMOS	Control	0	0	0	0		•			_			·	·	,
	125 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
				0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
ACRIMATION	Control 1	0									Ŭ	v	v	v	v
ACKIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	125 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	250 ppm	4	4	4	4	4	4	4	4	4	4	4	4	* 4	4
•	500 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	Õ	ů 0	Õ	õ	0	0	0	0	0	0
	250 ppm	0	0	Õ	Ő	0	0 0	0	0	0	0	0	0		
	500 ppm	0	0	0	õ	0	0	0	0	0	0	0	0	0 0	0
SNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	·	0	0	•	•	•
	125 ppm	õ	Õ	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	õ	0	0	0				0	0	0	0	0	0	0
	500 ppm	õ	0	0	0	0	0	0	0	0	0	0	0	0	0
	ooo hhii	v	U	U	U	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim$

SEX : FEMALE

linical sign	Group Name		stration W												
		71-7	72-7	73–7	74-7	75-7	76-7	77–7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
ILOERECTION	Control	0	0	0	0	0	0	٥	0	0	1	1	1		1
ILOLALOTION	125 ppm	0	0	0	0	0	0	0	0 0		1	1	1	1	1
	250 ppm		0	0	0					0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	, U	U	0	0	0	2	1	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	. 0	0	0	0	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	0	0	0	0	0	0	1	1	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0 0
	250 ppm	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 Ö
	000 ppm	v	U	U	U	U	U	U	U	U	0	U	U	U	U
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	125 ppm	0	0	0	0	0	0	0	0 0	Ō	Ő	Õ	õ	ō	Ō
	250 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	Ő
	500 ppm	0	0	0	0	0	0	0	Ō	1	õ	Ō	ō	Ō	0
XOPHTHALMOS	Control	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1
A CI III III III III III III III III III	125 ppm	0	0	0	1 0	0	1 0	1 0	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0		0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0
		·	•	· ·	Ŭ	Ū	Ũ	Ŭ	v	Ŭ	v	v	Ū	v	v
ACRIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	0
······································	125 ppm	3	2	3	3	2	2	2	2	2	2 3	2 3	2	2 3	2
	250 ppm	3 4	3 4	3 4	3 4										3
	230 ppm 500 ppm	4	4 3	4 3	4 3	4	4	4	4.	4 3	4 3	4	4	4	4
	and noc	3	3	э	3	3	3	3	3	3	3	3	3	3	3
ORNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
BNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	Ŏ	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0 0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

500 ppm

SEX : FEMALE

SEX : FEMALE															PAGE : 5
Clinical sign	Group Name		istration												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	1	1	2	1	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	Õ	0 0	Ő	0	õ	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	Õ	Õ	. 0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Õ	0	0 0	0	õ	0	0	0	0	1	1	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0		0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
DDOLADOR OF ANIO							-								
PROLAPSE OF ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	2	0	1	1	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	õ	0	0	Ō	0 0
	500 ppm	0	0	0	0	0	0	0	0	0	Õ	Õ	Õ	Õ	Õ
EXOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	0	Ô	Ō	0	0	Ō	0 0	0	0	0	0	0	0	0
	250 ppm	õ	0	0	0	0	0	ŏ	0	0	0	0	0		0
	500 ppm	ŏ	0	0	0	0	0	0	0	0	0	0	1	0 1	0
LACRIMATION	0 / 1	•	0		<u>,</u>								_		_
LAURIMATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	1
	125 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	250 ppm	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	500 ppm	3	3	3	3	3	3	3	3	3	3	3	4	4	4
CORNEAL OPACITY	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	Ō	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	-	. 0	0			
	500 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0 0	0
ADMODUAL COONTRACT TERMI		•			-	-		_	_	_		_			_
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	500	0	0	0	^	^	^	^	^	^	^	•	•	•	•

PAGE : 55

ι.

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~_____

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-dav					
		99-7	100-7	101-7	102-7	103-7	104-7		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	·					····•	<u>, , , , , , , , , , , , , , , , , , , </u>	
PILOERECTION	Control	0	0	0	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0	0	0		
	500 ppm	0	0	0	0	0	0		
FROG BELLY	Control	0	1	1	0	0	0		
	125 ppm	0	Ō	0	0	0	0		
	250 ppm	õ	Õ	Ő	Ő	Ő	Ő		
	500 ppm	õ	Õ	0	0	ŏ	Ő		
	ooo ppm	Ŭ	v	Ū	Ū	v	v		
PROLAPSE OF ANUS	Control	0	0	0	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0	0	0		
	500 ppm	1	0	0	0	0	0		
SOILED PERI-GENITALIA	Control	0	1	2	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0	0	0		
	500 ppm	1	0	0	0	Õ	Õ		
EXOPHTHALMOS	Control	1	1	1	1	1	1		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0				
	250 ppm 500 ppm	1	0	0	1	0 1	0 1		
	FF	-	-	-	-	•	-		
LACRIMATION	Control	0	0	0	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0	0	0		
	500 ppm	0	0	0	0	0	0		
CATARACT	Control	1	2	2	3	3	3		
	125 ppm	3	3	3	3	3	3		
	250 ppm	4	4	4	4	4	4		
	500 ppm	4	4	4	4	4 4	4 4		
CORNEAL OPACITY	Control	1	1	1	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm 500 ppm	0 0	0 0	0 0	0 0	0	0		
	mqq vvc	U	U	U	U	0	0		
ABNORMAL GROWTH OF TEETH	Control	0	0	0	0	0	0		
	125 ppm	0	0	0	0	0	0		
	250 ppm	0	0	0	0	0	0		
	500 ppm	• 0	0	0	0	Ō	0		

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 \sim

SEX : FEMALE

.

Clinical sign	Group Name	Admini	stration We	eek-day											
		1-7	2-7	3–7	4-7	5–7	6–7	7-7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
III.000E010IV	125 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0
	250 ppm	0	0	0	0									0	0
	500 ppm	0	0	0	0	0 0									
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	Ō	0	0	0	0	Õ	Ő	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. MANDIBULAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
I. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
I. PERI EAR	Control	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim$

SEX : FEMALE

linical sign	Group Name	Admini	stration W	'eek-dav		~									
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ALOCCLUSION	Control 1		•	0		0	<u>^</u>	<u>^</u>	<u>^</u>						
ALOCELUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control		0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0.	0	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	125 ppm	0	0	0	0	0	0	0	. 0	Ō	Ō	0	Ō	Ő	Ő
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm		0	0	0	0	0	0	Ő	0	0	õ	0	0	0
MANDIBULAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm		Ō.	ů 0	Õ	ŏ	õ	0	ů	õ	0	0	ŏ	0 0	ů 0
	250 ppm		ů .	ů 0	ů	Ő	Ő	Ő	0	Ő	0	0	Ő	0	0
	500 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	• 0	0	•	0
	125 ppm		ŏ	0	0	0	0	0	0	0		0		0	0
	250 ppm		0	0	0	0	0		-		0		0	0	•
	500 ppm		0	0	0	0	0	0 0	0	0	0	0	0	0	0
	200 ppm	v	0	U	U	U	U	U	U	0	U	0	0	0	0
PERI EAR	Control		0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm		0	0 0	0 0	0 0	0 0 -	0 0	0	0 0	0 0	0	0 0	0 0	0 0
				-		Ū		Ŭ	v	v	v	v	v	v	v
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm		0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
*	250 ppm		0	0	0	0	0	0	0	0	Ō	Ō	Ő	Õ	õ
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ů 0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	õ	0 0	Õ	Ő	ů	0.	0 0	õ	Õ	0 0	Ő	0
	250 ppm	Õ	ŏ	ů 0	0	0	0	0 0	0	0	0	0	0	0 0	0
	500 ppm	õ	ŏ	0 0	0	0	0	0	0	0	0	0	0	0	0

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 29-7 30-7 31-7 32-7 33-7 34-7 35-7 36-7 37-7 38-7 39-7 40-7 41-7 42-7 MALOCCLUSION Control 125 ppm 250 ppm 500 ppm EXTERNAL MASS Control 125 ppm 250 ppm 500 ppm INTERNAL MASS Control 125 ppm 250 ppm 500 ppm M. MANDIBULAR Control 125 ppm 250 ppm 500 ppm M. EAR Control 125 ppm 250 ppm 500 ppm M. PERI EAR Control 125 ppm 250 ppm 500 ppm M. NECK Control 125 ppm 250 ppm 500 ppm M. BREAST Control 125 ppm 250 ppm 500 ppm ___l M. ABDOMEN Control 125 ppm 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
	-	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
LOCCLUSION	Control	0	0	0.	0	0	0	٥	0	0	0	0	A ¹	•	0
VECCEDICIA	125 ppm	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0				0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
	500 ppm	U	U	0	U	U	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	1	2	2	2	2	2	2	2	2	2
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	õ	Ő
	250 ppm	0	0	0	0	0	0	0	0	Ō	Õ	. 0	Ő	õ	Ő
	500 ppm	0	0	0	0	0	0	0	Ō	0	Õ	0	0	Õ	0
MANDIBULAR	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0
	125 ppm	Õ	0	ů	ů 0	0	õ	ŏ	ŏ	0	0	0	0 0	0	Ő
	250 ppm	Õ	0	ů 0	0 0	0	Ő	Ő	0 0	0 0	0	0	0	0	ŏ
	500 ppm	Ő	Õ	ů	0	Õ	ŏ	Ů Ů	õ	Ő	Ő	0	0	ŏ	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Õ	ů	0 0	0	0 0	Ő	0	ŏ	0	0	0	0	0	0
	250 ppm	Ő	Ő	0	0	0 0	0	0	ŏ	0	0	0	0 0	0	0
	500 ppm	Ő	Ő	ŏ	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0 0	õ	0	0	0	0	0	0	0	0	0	0		0
	250 ppm	Ő	Ő	0	0	0	0	0	0				-	0	0
	500 ppm	0 0	õ	0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
NECK	Control	0	0	0	0	0	0	•	0	•	•	<u>^</u>	•		
. us vit	Control 125 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0 0			0	0	0	0	0	0	0	0
	300 ppm	U	U	U	U	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
	250 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
	500 ppm	0	0	0	0	0	Ó	0	Ō	0 0	0	0 0	Ō	0.	õ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~____

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ALOCCLUSION		<u>^</u>				_									
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	1	2	2	2	2	2	2	2	2	2	2	2	2	2
	125 ppm	0	0	0	0	0	. 0	0	1	1	1	1	1	1	1
	250 ppm	2	2	2	2	3	3	3	3	3	3	3	4	4	3
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
NTERNAL MASS	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0
	250 ppm	0	0	0	0	0	0	0	0	0	Ō	Ō	0	Ő	Õ
	500 ppm	0	0	0	0	0	0	0	Õ	0	Õ	õ	0	õ	0 0
I. MANDIBULAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	Ō	0 0	ů ·	õ	õ	0	ů	õ	ů 0	0
	250 ppm	0	0	Õ	Ő	Ő	ů	Ő	Ő	Ő	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	ŏ	õ	0 0	0	0 0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	Ő	Ő	õ	õ	Õ	0	0	0	0	0	0
	250 ppm	Ō	Õ	· Õ	Ő	ů l	0	0 0	0	0	0	0	0	0	0
	500 ppm	0	Õ	Ō	õ	0 0	õ	0	0	õ	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	٥	0
	125 ppm	Õ	õ	0	Ő	0	ŏ	0	0	0	0	0	0 0	0	0
	250 ppm	ő	ů 0	Ő	· 0	0	0	0	0					0	0
	500 ppm	ŏ	0	0 0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0
. NECK	Control	0	0	0	0	0	•	<u>,</u>	•	•	•				
	125 ppm	0	0	0			0	0	0	0	0	0	0.	0	0
	250 ppm	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0			0	0	0	0	0	0	0	0	0	0
	500 ppm	v	U	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	1	1	1	2	2	2	2	2	2	2	2	2	2
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
	250 ppm	0	0	0	0	0	0	0	0	Ō	Ő	Õ	1	1	Õ
	500 ppm	0	0	0	0	0 0	Õ	õ	õ	õ	0	Ő	0	0	0 0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 \sim

 \sim

SEX : FEMALE

_

linical sign	Group Name		stration W												
and the state of the		71-7	72-7	73-7	74-7	75-7	76-7	77-7	787	79-7	80-7	81-7	82-7	83-7	84-7
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Õ	Õ	0	Õ	ů 0	0 0	Ő	õ	õ	õ	0 0	0	0 0
	250 ppm	Ő	Ő	ŏ	ů 0	ů 0	ů 0	ů 0	0 0	ů 0	Ŏ	Ő	Ő	ů	ů
	500 ppm	0	õ	õ	õ	õ	ŏ	õ	1	õ	0 0	ő	õ	õ	Õ
TERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	. 1	1	1	1	1	1	1	1	2	2	2	2	3	3
	250 ppm	3	3	3	3	3	3	3	3	3	4	4	4	3	2
	500 ppm	1	1	2	2	• 4	4	5	5	4	3	3	3	3	3
TERNAL MASS	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	2
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MANDIBULAR	Control	0	0	0	0	0	0	0	0	0	0	0	ິ 0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	.0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0	0 0
DEDT FAD									-					-	
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
~	250 ppm 500 ppm	0 0	· 0 0	0 1	0 1	0 2	0 2	0 2	0 2	0 1	0 0	0	0 0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	250 ppm	1	1	1	1	1	1				1	-	1		
	500 ppm	0	0	0	0	0	0	1 0	1 0	1 0	0	1 0	0	0	0 0
	900 ppm	v	v	v	U	U	U	U	U	U	U	U	U	U	U
ABDOMEN	Control	1	1	1	1	1	1	1	. 1	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	500 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	· · · · ·	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	937	94-7	95-7	96-7	97-7	98-7
LOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KTERNAL MASS	Control	1	1	2	2	2	4	4	5	6	6	6	6	6	6
	125 ppm	3	3	4	5	5	6	6	7	7	7	7	7	7	7
	250 ppm	4	4	3	5	5	5	5	4	4	5	6	6	6	5
	500 ppm	3	3	4	5	5	5	5	5	5	5	5	4	4	4
NTERNAL MASS	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	1	1	1	1	0	0	0
	250 ppm	0	1	1	1	0	0	0	0	Ō	Ō	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MANDIBULAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	. 0	0	0	0	1	1	1	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	o	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	Ō	Ō	0	0	0	0
	250 ppm	Ō	Ő	õ	1	1	1	1	1	1	1	1	ĩ	1	1
	500 ppm	Õ	Ŏ	Ő	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	1	1	1	2	3	3	3	3	3	3	3	3
	125 ppm	- 1	1	1	1	1	1	1	1	1	1	1	1	1	ĩ
	250 ppm	0	Ô	Ō	0 0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	õ	Ő	0	ů	ő	ů	0	0	õ	õ	0 0	0	0 0
ABDOMEN	Control	1	1	1	1	1	1	· 0	1	1	1	1	1	1	1
	125 ppm	1	1	2	3	3	3	3	4	4	4	4	4	. 4	4
	250 ppm	2	2	1	2	2	2	2	2	2	3	4	4	4	4
	500 ppm	1	1	1	1	1	1	1	1	1	1	4	1	4	4
	ooo ppm	T	1	T	T	T	T	T	1	T	T	T	T	T	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

.

.

Clinical sign	Group Name	Admini	stration	Vook-dav		·					 		
initial sign	or oup maine	99-7	100-7	101-7	102-7	103-7	104-7				 	 	

MALOCCLUSION	Control	0	0	0	0	٥	0						
LICCLOSION	125 ppm		0	0	0	, 0 0	0						
		0					0						
	250 ppm	0	. 0	0	0	0	0						
	500 ppm	0	0	0	0	0	0						
EXTERNAL MASS	Control	6	6	6	8	8	8						
	125 ppm	8	8	8	8	8	8						
	250 ppm	7	7	6	6	6	6						
	500 ppm	3	3	3	2	2	3						
INTERNAL MASS	Control	0	0	0	0	0	0						
	125 ppm	0	0	0	0	0	0		•				
	250 ppm	0	0	0	0	0	0						
	500 ppm	0	0	0	0	0	0						
M. MANDIBULAR	Control	0	0	0	0	0	0						
	125 ppm	0	0	0	0	0	0						
	250 ppm	0	0	0	0	0	0						
	500 ppm	0	0	0	0	0	0						
4. EAR	Control	1	1	1	1	1	1						
	125 ppm	0	0	Ō	0	0	0						
	250 ppm	0	0	0	0	Ō	0						
	500 ppm	0	0	0	0	0	0						
M. PERI EAR	Control	0	0	[,] 0	0	0	0						
	125 ppm	õ	õ	0 0	ů 0	0 0	Ő						
	250 ppm	Ő	Ő	0 0	Ő	0 0	0						
	500 ppm	0 0	Ő	0	0	0	ŏ						
A. NECK	Control	0	0	0	0	0	0						
	125 ppm	0	0	0	0	0							
	250 ppm	1	1	0	0	0	0						
	500 ppm	0	1 0	0	0	0	0 0						
A. BREAST			0	0	-	-							
a. dreað i	Control	3	3	3	5	5	5						
	125 ppm	1	1	1	1	1	1						
	250 ppm	1	1	1	1	1	1						
	500 ppm	0	0	0	0	0	0	,					
I. ABDOMEN	Control	1	1	1	1	1	1						
	125 ppm	5	5	5	5	5	4						
	250 ppm	5	5	5	5	5	5						
	500 ppm	1	1	1	0	0	0						

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

`~~~

SEX : FEMALE

Clinical sign	Group Name		stration W												
	 	1-7	2-7	3-7	4-7	5-7	6–7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
			_				•								
I. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*	250 ppm	• 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Q	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	,0	0
	250 ppm	0	0	Ō	Ō	Õ	Ő	0	Õ	Õ	0	Õ	ů	,ũ	õ
	500 ppm	0	0	0	0	0	0	0	0	Ō	Õ	0	0	õ	ů 0
AUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0,	Ō	0	Ō	0	0 0	Õ	ŏ	õ	Õ	Õ	õ	ů
	250 ppm	Ō	0	0	0	õ	Ő	Ő	Õ	Ő	Ő	Õ	Ů,	Ő	Ő
	500 ppm	0	ů 0	0	0	Õ	0 0	0	õ	Ő	ů 0	0	ŏ	ů 0	ů ,
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Õ	Ő	Ő	Ő	Ŭ ·	Ő	Õ	Ő	õ	0 0	0 0	0	Ő	0
	250 ppm	Õ	Ő	. <u>0</u>	ů 0	Ő	ů	ů 0	0	Ő	0	0	0	Ő	0
	500 ppm	Õ	0	0	0	0	õ	0	0	0	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	^	^	^
	125 ppm	0	0	0	0			0	0		•	0	0	0	0
	250 ppm	0	0	0		0	0		0	0	0	0	0	0	0
	250 ppm 500 ppm	0	0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	· 0 0	0
	ooo hhiii	v	v	U	U	v	v	U	U	U	U	U	v	U	U
ICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0		0	0	0	٥	0
. ANTENIOR. DORSOM	· 125 ppm	0	0	0	0 0	0	0		0	0	0		0	0	0
	250 ppm		0				0	0	0	0		0	0	0	0
	250 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ő	Õ	0 0	ů	ů 0	ů 0	0 0	Ő	0	0 0	Ő	0	0 0	Ő
	250 ppm	ů	Ő	0	Ő	0 0	0 0	0	0 0	0	0	0	0	0	1
	500 ppm	ů 0	õ	0	õ	0	Ő	0 0	õ	0	0	0	0	0	0
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
124112 2 2 S	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
											-			0	
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	Ō	Ő	0	Ō	0	· Õ
	250 ppm	0	0	0	0	0	Ō	Ő	Ő	õ	Ő	Õ	Ő	Õ	. Õ
	500 ppm	ů 0	0 0	0	Õ	0	. Ŭ	õ	0 0	õ	Ő	0	Ő	0	0
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	٥	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
														0	
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	õ	Ő	0	0	Ő	Ő	Õ
	250 ppm	0	0	0	0	0	Ō	Õ	õ	õ	Õ	Ő	Ő	Ő	Õ
	500 ppm	0	0	0	õ	ů 0	õ	õ	õ	Ő	Õ	Ő	ů 0	0 0	Ő

500 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign Group Name Administration Week-day 29-7 30-7 32-7 33-7 31-7 36-7 37-7 38-7 39-7 40-7 34-7 35-7 41-7 42-7 M. ANTERIOR. DORSUM Control 125 ppm 250 ppm 500 ppm M. POSTERIOR DORSUM Control 125 ppm 250 ppm 500 ppm M. GENITALIA Control 125 ppm 250 ppm 500 ppm ANEMIA Control 125 ppm 250 ppm 500 ppm JAUNDICE Control 125 ppm 250 ppm 500 ppm ULCER Control 125 ppm 250 ppm 500 ppm EROSION Control 125 ppm 250 ppm 500 ppm CRUSTA Control 125 ppm 250 ppm 500 ppm CICATRIX Control 125 ppm 250 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day					×						
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ANTERIOR. DORSUM	Control	0		0	0	0		0	0	0	0	0	0	0	0
ANTERIOR. DORSOM		0	0 0	0	0	. 0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0 0		0	0	0	0	0	0	0	0	0
	500 ppm	0	U	U	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
GENITALIA	Control	1	1	1	1	1	1	1	1	1	1	1	1	. 1	. 1
Van 11 HIHHH	125 ppm	0	0	0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1	1 0	1	1 0
	250 ppm	1	.1	1	1	1	1	0 1	0						1
	250 ppm 500 ppm	0	.1 0	1	0	0	0	1 0	1	1 0	1 0	1	1 0	1 0	1
	000 hhm	v	v	U	v	v	v	U	U	U	U	U	U	U	U
JEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	õ	ŏ	Ő	Ő	ŏ	ŏ	ů 0	õ	Õ	0	õ	õ	ů
	250 ppm	Ő	Õ	Õ	ů	Ő	ŏ	ŏ	ů	õ	ů 0	ů 0	Ő	ů	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	õ	0	0	ů 0
CER	C t 1	0	0	0	0	0	^	•		•	•	^	•		•
JOER -	Control 125 ppm	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
								-	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0	0 0	0 0	0	0 0	0 0	0	0	· 0 0	0	0	0 0	· 0 0
			-	-	-	-	-	Ť	v	v	č	ŭ	v	×	v
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ō	Õ	Õ	Ő	õ	õ	ŏ	ů i	ů	ů	0	ů	ů 0	ů
	250 ppm	Õ	Õ	Õ	Ő	ő	õ	ŏ	Ő	õ	Ő	Ő	0 0	Ő	Ő
	500 ppm	ů	Õ	õ	õ	õ	Õ	0	0 0	õ	Ő	õ	ŏ	Ő	0
CATRIX	(0	^	^	^	~	^	•	^	^	•	~	~	~	~
UNINIA	Control 125 ppm	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 hhm	U .	U	U	U	U	0	U	U	U	U	U	U	U,	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57–7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
I. ANTERIOR. DORSUM	Control	0	٥	0	0	0	0	•	0	<u>^</u>	•	0	0	0	0
ANTERIOR. DORSON		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	1	1	1	1	0	0	0 ·	0	0	0	0	0	0	0
· · · · · · · · · · · · · · · · · · ·	125 ppm	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	1	1	1	1	2	2	2	2	2	2	2	2	2	2
	500 ppm	0	0	Ō	0	0	0	0	0	0	0	1	1	1	1
ANEMIA	Control	0	0	0	0	٥	0	0	0	0	0	0		0	0
AIVLAITA			0			. 0			0	0	0	0	0	0	0
	125 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm 500 ppm	0 0	0 0	0 0	0 0	0 0	0	0 0	-0	0	0	0	0	0	0
	900 ppm	U	U	U	U	0	U	U	0	0	U	1	0	1	0
JAUNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0 、	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	Ō	0	0	Õ	Ő	Õ	õ	Õ	Ő
	250 ppm	0	0	0	0	0	0	Ō	Ō	0	Ő	0	õ	0	Ő
	500 ppm	0	0	0	0	0	0	0	0	0	õ	Ō	0	Õ	õ
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	. 0	0	0 1	0 1	0	0	0	0	0
CDUCTA	0	•	•	~	~	~	-	-	-	-	-	-	_	_	_
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	• 0	0	0	0	0	0	0	0	0	0	0	0	0
CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	· 0	0	0	0	0	0	0	0	0	Ó	0
	500 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 70

5

linical sign	Group Name	Admini	stration W	eek-dav											
		71-7	72-7	73-7	74-7	757	76-7	77-7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERIOR. DORDOM	125 ppm	0	0	0	0	0	0	0	0			0 0	. 0	0	0
	250 ppm				0					0	0			0	
		0	0	0		0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	ŏ	0	0	0	0	0	0	0	0	0
	250 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	0 1
	500 ppm	1	2	1	2	2	2	2	2	2	2	2	2	2	2
			_	_					· •						
VEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	1	0	0	0	0	1	1	1	1	1	2	1
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNDICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	125 ppm	0	0	0	0	0	0	Ō	0	0	0 0	0	Õ	õ	ō
	250 ppm	0	0	Ō	0	0 0	0	õ	Õ	Ő	Ő	Ő	ů	Õ	ŏ
	500 ppm	0	0	0	0	0	0	0	Ō	0	Õ	Õ	0	Ő	Ő
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	Ő	1	1	1	1	1	1	1	1			1		0
	500 ppm	0	0	0	0	0	0	0	1	1	1 1	1 1	2	1 2	2
NOCTON	a	•	•						_	_	_				
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	1	0	0	0	0	0	0	0	. 0	0	0	1	1	1
	125 ppm	0	0	0	0	0	0	0	0	Ō	Ō	0	Ō	Ō	Ō
	250 ppm	0	0	0	Ō	0	0	õ	0	õ	õ	Ő	Ő	ů	Ő
	500 ppm	0	0	0	0	0	0	Õ	ů	0 0	0	0	Ő	0	0
CATRIX	Control	0	1	1	1	1	1	0	0	1	1	1	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0							
	500 ppm	0	0	0	0	0	0	0	0 0	0 0	0	0	0 0	0 0	0
	oov ppm	v	U	U	Ų	U	U	U	U	U	U	U	U	U	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

.

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MULLAION. DONDOM		0	0	0	0				-		0	0	-	-	0
	125 ppm					0	1	1	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	125 ppm	0	0	Ō	0	0	Ō	Ō	ō	ō	ō	Ō	ō	0	0
	250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	500 ppm	2	2	3	4	4	4	4	4	4	4	4	3	3	3
NEMIA			^	<u>^</u>			•								
NEMITA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	1	. 1	2	1	1	2	4	2
	250 ppm	0	0	1	1	0	0	1	1	1	1	1	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
UNDICE	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	õ	õ	Õ	Õ	0	0 0	õ	1	1	1	1	2	2	2
	250 ppm	0 0	õ	0	0	0	0	Ő	0	0		0			
	500 ppm	2	2	2	2	2	0 2	0 2	2	0 2	0 2	0 2	0 2	0 2	0 2
DOCTON		<u>,</u>	<u>^</u>				•			-					
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	125 ppm	0	0	0	Ō	0	0	ō	0	0	Ō	ō	Ō	Ō	0
	250 ppm	0	Õ	1	1	1	1	1	1	1	Õ	õ	ů	Ő	Ő
	500 ppm	ů	Ō	0	0	0	0	0	0	0	1	Ő	0	0	Ŏ
CATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0		-					-	-			
					0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-dav				
		99-7	100-7	101-7	102-7	103-7	104-7	
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	
In HITERION DONDON	125 ppm	1	1	1	1	1	1	
	250 ppm							
		0	0	0	0	0	0	
X	500 ppm	0	0	0	0	0	0	
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	
	125 ppm	1	1	1	1	1	1	
	250 ppm	0	0	0	· 0	0	0	
	500 ppm	0	0	0	0	0	0	
M. GENITALIA	Control	1	1	1	1	1	1	
m. OLATINELA		0	0	0				
	125 ppm				0	0	1	
	250 ppm	0	0	0	0	0	0	
	500 ppm	2	2	2	2	2	3	
ANEMIA	Control	0	0	0	0	0	1	
4	125 ppm	1	1	1	2	2	1	
	250 ppm	2	2	2	2	1	1	
	500 ppm	0	0	0	0	0	õ	
JAUNDICE	Control	0	0	0	0	0	0	
JHONDIEL		0		0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
ULCER	Control	1	2	2	2	2	2	
	125 ppm	3	3	3	4	4	3	
	250 ppm	1	2	2	2	2	2	
	500 ppm	2	2	2	2	$\frac{1}{2}$	2	
EROSION	Control	0	0	0	0	0	0	
INODION	125 ppm					0		
	125 ppm	0	0	0	0	0	0	
	250 ppm	. 0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	
CRUSTA	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	Õ	Ő	Ő	ů 0	ů	
	500 ppm	ŏ	0	0	0	0	0	
	ooo ppm	v	v	v	v	v	v	
CICATRIX	Control	0	0	0	0	0	0	
	125 ppm	0	0	0	0	0	0	
	250 ppm	0	0	0	0	0	0	
	500 ppm	0	0	0	0	0	0	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day						•					
		1–7	2-7	3–7	4-7	5-7	6-7	7–7	8-7	9–7	10-7	11-7	12-7	13-7	14-7
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0
	250 ppm	0	0	0	0	0	0	0	0	· 0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	· 0	Ō	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	Ō	Ō	0 0	Õ	Õ	Õ	Õ	Õ
	250 ppm	0	0	Ō	0	0	Õ	Õ	Õ	ů 0	0	Ō	Ō	0	Õ
	500 ppm	0	0	Ő	Õ	0 0	Õ	0 0	õ	õ	ŏ	õ	õ	Õ	ů

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 74

linical sign	Group Name	Admini	stration W	/eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	.0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0 `	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 75

Clinical sign	Group Name	Admini	istration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
. CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0 0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	õ	0
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	õ
	250 ppm	0	0	0	0	0	0	Ō	0	Ő	0	Õ	õ	Õ	0 0
	500 ppm	0	0	0	0	0	0	0	0	Õ	õ	0 0	Õ	Ŭ,	Õ
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	125 ppm	0	0	0	0	0	0 0	Ő	0	0 0	Õ	Ő	õ	Ő	ů
	250 ppm	0	0	0 0	0	Ő	õ	Ő	ů 0	0	õ	Ő	õ	Ő	ŏ
	500 ppm	0 0	0	0	õ	Õ	0 0	õ	0 0	õ	õ	0 0	õ	õ	ů

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 76

linical sign	Group Name	Admin	istration W	/eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MONITINE	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	1	0	1	0	0
	200 hhm	U	U	U	U	U	U	, U	U	U	1	U	1	U	0
CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	Ò	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	Ó	Ō	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
WN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0 0	Ö	Ő	Ő	Õ	õ	0 0	0	Õ	õ	õ
	250 ppm	0	0	Ō	0	0	õ	Ő	õ	ů 0	õ	Õ	ů	õ	ů 0
	500 ppm	0	0	0	0 0	0	ů 0	Õ	Õ	ů 0	õ	Õ	õ	õ	õ

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 77

linical sign	Group Name	Admini	istration W	eek-day										· ·	
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
			-		n of Statestation						4		-		
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	· 0	0	0	1	0	0	0	0	0	0	0	0
CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
	500 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	250 ppm	0	0	0	0	0	0	Ō	Ő	Ő	Õ	Õ	ů	Ő	Õ
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	0	õ	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
	125 ppm	0	0	0	Ō	0	õ	ŏ	õ	0 0	0 0	õ	õ	Ő	Ő
	250 ppm	0	0	Ō	0	Ő	Ő	ŏ	õ	õ	Ő	Õ	Õ	Ő	ů
	500 ppm	0	0	0 0	0	0	0	Õ	õ	ů	õ	Ő	ů i	õ	õ

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

Surger.

SEX : FEMALE

PAGE : 78

Clinical sign	Group Name	Admini	stration W	/eek-day											
		71-7	72-7	73–7	747	75-7	76-7	77–7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
IEMORRHAGE	0	0	0	0	•	0	<u>^</u>						•		
HEMORKHAGE	Control	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	1	0	0	0	0	0	0	0	0	1	0	0
A. CICATRIX	Control	0	0	0	0	0	0	1	1	0	0	0	0	0	0
	125 ppm	0	0	Ó	0	0	0	0	0	0 0	0	0	0	Ō	Ő
	250 ppm	0	0	Õ	õ	ů 0	Õ	Ő	Ő	õ	Õ	Ő	Õ	ŏ	Ő
	500 ppm	0	0	0	0	Õ	0	0	õ	õ	Ő	0	ů 0	õ	õ
	-					-			-	•	·	•	•	Ť	•
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	3
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	500 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	Ó	0	0	0	0	0	ů 0	Õ	Õ	0	õ	Õ	ŏ	ů
	250 ppm	Ó	0	0	0	Ō	0 0	Ő	Õ	O	0	Ő	Õ	õ	õ
	500 ppm	0	0	0	0	0	0	0	Ő	Õ	0	Ő	Ő	ů	Ő
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	250 ppm	0	0	0	0	0	0	0	0	0			0		0
	250 ppm 500 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
	ooo hhiit	v	v	v	U	v	U	U	U	U	U	U	U	v	U
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

<u>ب 12 ا</u>

SEX : FEMALE

PAGE : 79

Clinical sign	Group Name	Admin	istration W	/eek-day				-							
·		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	125 ppm	0	0	0	1	1	1	1	0	0	1	1	0	0	0
	250 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
. CICATRIX	Control	0	0	0	0	0	0	0	0	0	0	0	0	.0	. 0
	125 ppm	Ő	0	0	0	0	0	0	0	Ó	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	ů í		Õ	Õ	Õ	ů 0	Ő	ő
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
RREGULAR BREATHING	Control	1	0	0	0	0	0	0	0	0	0	0	0	2	0
	125 ppm	Ō	0	0	0	Õ	Ő	õ	Ô	Õ	ĩ	1	Ő	ō	õ
	250 ppm	0	0	0	0	0	0	Ő	Õ	Õ	0	0	ů 0	ů	Ő
	500 ppm	0	0	0	0	0	ů 0	0	0	0	0	0	0	Ő	Ő
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	125 ppm	0	0	0	0	0	0	0	Ő	0	0	0	Ő	Õ	Ő
	250 ppm	0	0	0	0	0	0	0	0 0	0	0	Õ	0	Õ	õ
	500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	Ő
RADYPNEA	Control	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
	125 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250 ppm	0	0	0	0	0	0	Ō	0 0	Õ	Õ	Õ	Ő	ů	õ
	500 ppm	0	0	0	0	0	0	0	õ	Ő	0	0	0 0	0 0	Ő
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	125 ppm	0	. 0	Ō	0 0	Õ	õ	· Õ	1	Õ	õ	õ	Ő	0 0	ů
	250 ppm	0	Ō	Ō	0	0	Õ	õ	Ō	õ	Õ	Ő	Ő	ů 0	ů
	500 ppm	0	. 0	õ	ů 0	Õ	Ő	õ	0	õ	õ	õ	0	0	ŏ

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 80

Clinical sign	Group Name	Admin	istration	Week-day _							
		99-7	100-7	101-7	102-7	103-7	104-7				
			-								
HEMORRHAGE	Control	0	0	0	0	0	0				
	125 ppm	1	0	0	0	0	0		'		
	250 ppm	1	0	0	0	0	0				
	500 ppm	0	0	0	0	0	0				
A. CICATRIX	Control	0	0	0	0	0	0				
	125 ppm	0	0	0	0	0	0				
	250 ppm	0	0	0	0	0	0				
	500 ppm	0	0	0	0	0	0				
IRREGULAR BREATHING	Control	0	0	0	0	0	0				
	125 ppm	0	0	0	0	0	0				
	250 ppm	0	1 .	-	0	0	0				
	500 ppm	0	0	0.	0	0	0				
RESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0				
	125 ppm	0	0	0	0	0	0				
	250 ppm	0	0	0	0	0	0				
	500 ppm	0	0	0	0	0	0				
BRADYPNEA	Control	0	0	0	0	0	0				
	125 ppm	0 -	0	0	0	0	0				
	250 ppm	0	0	0	0	0	0				
	500 ppm	0	0	0	0	0	0				
BROWN URINE	Control	0	0	0	0	0	0				
	125 ppm	0	0	0	0	0	0				
	250 ppm	0	Ō	õ	Õ	Õ	Õ				
	500 ppm	0	0	0	Õ	õ	Õ				

(HAN190)

TABLE D1

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS : MALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104

SEX : MALE

		Control		125 pj	pm		250 p	pm		500 p	pm	
Veek-Day on Study	Av. Wt.	No.of Surviv. <50>	Av. Wt.	% of cont. <50>	No.of Surviv.	Av. Wt.	% of cont. <50>	No.of Surviv.	Av. Wt.	% of cont. <50>	No.of Surviv.	_
0-0	116 (5	0) 50/50	116 (50)	100	50/50	116 (50)	100	50/50	116 (50)	100	50/50	
1-7	144 (5	0) 50/50	142 (50)	99	50/50	137 (50)	95	50/50	132 (50)	92	50/50	
2-7	177 (5	0) 50/50	175 (50)	99	50/50	167 (50)	94	50/50	159 (50)	90	50/50	
3-7	203 (5	0) 50/50	202 (50)	100	50/50	192 (50)	95	50/50	179 (50)	88	50/50	
4-7	225 (5	0) 50/50	224 (50)	100	50/50	212 (50)	94	50/50	198 (50)	88	50/50	
5-7	241 (5	0) 50/50	242 (50)	100	50/50	229 (50)	95	50/50	213 (50)	88	50/50	
6-7	256 (5	0) 50/50	257 (50)	100	50/50	244 (50)	95	50/50	225 (50)	88	50/50	
7-7	272 (5	0) 50/50	272 (50)	100	50/50	259 (50)	95	50/50	238 (50)	88	50/50	
8-7	284 (5		285 (50)	100	50/50	272 (50)	96	50/50	250 (50)	88	50/50	
9-7	294 (5	0) 50/50	295 (50)	100	50/50	284 (50)	97	50/50	260 (50)	88	50/50	
10-7	304 (5	0) 50/50	305 (50)	100	50/50	292 (50)	96	50/50	267 (50)	88	50/50	
11-7	312 (5	0) 50/50	313 (50)	100	50/50	301 (50)	96	50/50	272 (50)	87	50/50	
12-7	318 (5	0) 50/50	319 (50)	100	50/50	306 (50)	96	50/50	277 (50)	87	50/50	
13-7	325 (5	0) 50/50	328 (50)	101	50/50	313 (50)	96	50/50	283 (50)	87	50/50	
14-7	331 (5	0) 50/50	334 (50)	101	50/50	318 (50)	96	50/50	288 (50)	87	50/50	
18-7	343 (5	0) 50/50	350 (50)	102	50/50	333 (50)	97	50/50	303 (50)	88	50/50	
22-7	362 (5	0) 50/50	369 (50)	102	50/50	352 (50)	97	50/50	317 (50)	88	50/50	
26-7	377 (5	0) 50/50	383 (50)	102	50/50	366 (49)	97	49/50	332 (50)	88	50/50	
30-7	385 (5	0) 50/50	390 (50)	101	50/50	374 (49)	97	49/50	338 (50)	88	50/50	
34-7	393 (5	0) 50/50	400 (50)	102	50/50	385 (49)	98	49/50	347 (50)	88	50/50	
38-7	400 (5	0) 50/50	409 (50)	102	50/50	393 (49)	98	49/50	355 (50)	89	50/50	
42-7	410 (5		419 (50)	102	50/50	401 (49)	98	49/50	361 (50)	88	50/50	
46-7	416 (5		423 (50)	102	50/50	407 (49)	98	49/50	366 (50)	88	50/50	
50-7	421 (5		427 (50)	101	50/50	410 (49)	97	49/50	370 (50)	88	50/50	
54-7	426 (5		431 (50)	101	50/50	414 (49)	97	49/50	371 (50)	87	50/50	
58-7	427 (5		434 (50)	102	50/50	418 (49)	98	49/50	375 (50)	88	50/50	
62-7	431 (5		437 (50)	101	50/50	422 (49)	98	49/50	381 (50)	88	50/50	
66-7	434 (5		440 (50)	101	50/50	421 (49)	97	49/50	378 (50)	87	50/50	
70-7	433 (5		443 (49)	102	49/50	422 (49)	97	49/50	378 (49)	87	49/50	
74-7	436 (5		444 (47)	102	47/50	425 (49)	97	49/50	378 (49)	87	49/50	
78-7	443 (4		443 (46)	102	46/50	425 (49)	96	49/50	378 (49)	85	49/50	
82-7	442 (4		442 (44)	100	40/50	422 (49)	90 95	49/50	373 (48)	85	48/50	
86-7	440 (4		441 (43)	100	43/50	419 (49)	95 95	49/50	373 (45)	85	45/50	
90-7	437 (4		439 (42)	100	43/50	418 (48)	96	49/50	373 (43)	85	43/50 44/50	
94-7	432 (4		430 (40)	100	42/50	413 (43) 414 (46)	90 96	46/50	372 (44) 364 (43)	84	44/50 43/50	
98-7	428 (4		429 (38)	100	38/50	415 (44)	90 97	40/50	364 (43) 363 (41)	85	43/50 41/50	
102-7	414 (4		423 (37)	100	37/50	410 (43)	99	43/50	355(41)	86	41/50	
104-7		9) 39/50	417 (35)	99	35/50	410 (43) 405 (41)	99 96	$\frac{43}{50}$ 41/50	355 (40)	83	40/50 37/50	

٠

TABLE D2

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS : FEMALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

		Control		125 p	pm		250 p	m		500 p	pm		,	
Week-Day on Study	Av. Wt.	No.of Surviv. <50>	Av. Wt.	% of cont. <50>	No.of Surviv.	Av. Wt.	% of cont. <50>	No.of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	-		
0-0 .	96 (50		96 (50)	100	50/50	96 (50)	100	50/50	96 (50)	100	50/50		 	
1-7	110 (50		108 (50)	98	50/50	107 (50)	97	50/50	104 (50)	95	50/50			
2-7	123 (50		122 (50)	99	50/50	120 (50)	98	50/50	116 (50)	94	50/50			
3-7	134 (50		133 (50)	99	50/50	130 (50)	97	50/50	125 (50)	93	50/50			
4-7	143 (50) 50/50	142 (50)	99	50/50	139 (50)	97	50/50	132 (50)	92	50/50			
5-7	152 (50) 50/50	149 (50)	98	50/50	148 (50)	97	50/50	140 (50)	92	50/50			
6-7	156 (50) 50/50	154 (50)	99	50/50	153 (50)	98	50/50	145 (50)	93	50/50			
7-7	162 (50) 50/50	160 (50)	99	50/50	160 (50)	99	50/50	150 (50)	93	50/50			•
8-7	165 (50		166 (50)	101	50/50	164 (50)	99	50/50	155 (50)	94	50/50			
9-7	169 (50) 50/50	169 (50)	100	50/50	168 (50)	99	50/50	160 (50)	95	50/50			
10-7	173 (50		174 (50)	101	50/50	173 (50)	100	50/50	163 (50)	94	50/50			
11-7	177 (50) 50/50	179 (50)	101	50/50	177 (50)	100	50/50	167 (50)	94	50/50			
12-7	178 (50		180 (50)	101	50/50	180 (50)	101	50/50	168 (50)	94	50/50			
13-7	180 (50		183 (50)	102	50/50	182 (50)	101	50/50	172 (50)	96	50/50			
14-7	183 (50		185 (50)	101	50/50	183 (50)	100	50/50	172 (50)	94	50/50			
18-7	188 (50		191 (50)	102	50/50	191 (50)	102	50/50	179 (50)	95	50/50			
22-7	195 (50		197 (50)	101	50/50	198 (50)	102	50/50	186 (50)	95	50/50			
26-7	201 (50) 50/50	202 (50)	100	50/50	202 (50)	100	50/50	190 (50)	95	50/50			
30-7	204 (50) 50/50	206 (50)	101	50/50	208 (50)	102	50/50	195 (50)	96	50/50			
34-7	209 (50		210 (50)	100	50/50	214 (50)	102	50/50	200 (50)	96	50/50			
38-7	215 (50		216 (50)	100	50/50	218 (50)	101	50/50	206 (50)	96	50/50			
42-7	221 (50		223 (50)	101	50/50	226 (50)	102	50/50	214 (50)	97	50/50			
46-7	225 (50		224 (50)	100	50/50	228 (50)	101	50/50	215 (50)	96	50/50			
50-7	228 (50		230 (50)	101	50/50	233 (50)	102	50/50	219 (50)	96	50/50			
54-7	235 (50		233 (50)	99	50/50	236 (50)	100	50/50	220 (50)	94	50/50			
58-7	238 (50		237 (49)	100	49/50	240 (50)	100	50/50	225 (50)	95	50/50			
62-7	242 (50		242 (49)	100	49/50	242 (50)	101	50/50	228 (50)	94	50/50			
66-7	249 (50		250 (49)	100	49/50	250 (50)	100	50/50	236 (49)	95	30/50 49/50			
70-7	255 (50		255 (49)	100	49/50	253 (50)	100 99	50/50	230 (49) 240 (47)	93 94	49/50			
74-7	261 (49		260 (48)	100	48/50	259 (50)	99	50/50	245 (47)	94 94	46/50			
78-7	266 (49		265 (48)	100	48/50	261 (50)	98	50/50	245 (46) 247 (46)	94 93	46/50			
82-7	269 (49		270 (48)	100	48/50	265 (50)	99	50/50	253 (40)	93 94	40/50 44/50			
86-7	273 (46		273 (48)	100	48/50	267 (30)	99 98	47/50	255 (44) 255 (44)	94 93	44/50 44/50			
90-7	279 (45		275 (48)	99	48/50	270 (47)	98 97	47/50 46/50	255 (44) 257 (44)	93 92	44/50 44/50			
94-7	277 (43		275 (48)	99 99	48/50 47/50	270 (46) 271 (45)	97 98	46/50 45/50	257 (44) 258 (44)					
98-7	283 (39		277 (46)	99 98	47/50 46/50	271 (45) 274 (43)	98 97			93	44/50			
102-7	284 (38		279 (44)	98 98	40/50 44/50			43/50	256 (42)	90	42/50			
102 7	283 (38		279 (44) 279 (43)	90	44/50 43/50	276 (42) 273 (41)	97 96	42/50 41/50	256 (38) 254 (37)	90 90	38/50 37/50			

>:No. of effective animals, ():No. of measured animals Av. Wt. : g

TABLE D3

BODY WEIGHT CHANGES : MALE

ORT TYPE : A1 104 : MALE														I	PAGE :
up Name	Admini 0-0	istration	week-day 1-7		2-7		3-7		4-7		5-7		6-7		
Control	116±	6	144±	8	177±	9	203±	9	225±	10	241±	11	256±	11	-
125 ppm	116±	6	$142\pm$	8	175±	10	202±	10	224±	10	242±	12	257±	13	
250 ppm	116±	6	$137\pm$	8**	167±	10**	192±	11**	$212\pm$	12**	229±	13**	244±	13**	
500 ppm	116±	6	132±	8**	159±	8**	179±	9**	198±	10**	213±	10**	225±	11**	

`~___

.

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1C UNIT : g REPORT TYPE : A1 104 SEX : MALE	rlj[F344/DuCrj]	•	BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			PAGE :	2
Group Name	Administration 7-7	week-day 8-7	9–7	10-7	11-7	12-7	13-7	
Control	272± 12	284± 12	294± 13	304± 14	312± 15	318± 16	325± 17	
125 ppm	272± 14	$285\pm$ 14	295 ± 14	305 ± 15	313 ± 15	319 ± 15	328 ± 16	

292± 16**

267± 14**

Test of Dunnett

301± 17**

272± 14**

306± 17**

277± 15**

284± 16**

260± 14**

Significant difference ; $*: P \leq 0.05$ ****** : P ≦ 0.01

259± 14**

238± 12**

272± 15**

250± 13**

(HAN260)

250 ppm

500 ppm

BAIS 4

313± 17**

283± 15**

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

Significant difference ; $*: P \leq 0.05$

** : P ≦ 0.01

Group Name Administration week-day_ 14-7 18-7 22-7 26-7 30-7 34-7 38-7 Control $331\pm$ 17 343± 18 $362\pm$ 18 377± 18 385± 20 393 ± 20 400± 22 125 ppm 334± 16 350± 17 369 ± 19 383 ± 21 390± 21 400± 22 409± 24 250 ppm 318± · 18** 333± 18** 352± 19* 366± 18* 374± 18* 385± 20 393 ± 19 500 ppm 288± 15** 303± 16** 317± 18** 332± 19** $338\pm$ 20** 347± 21** $355\pm$ 22**

(HAN260)

Test of Dunnett

BAIS 4

ALL ANIMALS

BODY WEIGHT CHANGES (SUMMARY)

42	-7	46-7		50-7		54-7							
								58-7		62-7		66-7	
Control 410:		416± 2	23	421±	23	426±	24	427±	24	431±	24 _.	434±	26
125 ppm 419	± 26	423± 2	27	$427\pm$	28	431±	28	434±	30	437±	30	440±	30
250 ppm 401:	± 20	407± 1	19	410±	20	414±	22	418±	21	$422\pm$	23	421±	22*
500 ppm 361	± 23 **	366± 2	24**	$370\pm$	24**	371±	23**	375±	23**	381±	24**	378±	23**

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE: 5

p Name	Administration	week-day					
	70–7	74-7	78-7	82-7	86-7	90-7	94–7
Control	433± 37	436± 39	443± 25	442± 26	440± 27	437± 27	432± 31
125 ppm	443± 29	444± 30	443± 30	442± 32	441± 31	439± 33	430± 35
250 ppm	422± 23 **	425± 24 *	425± 24**	422± 28 **	419± 31**	418± 29 * *	414± 28 *
500 ppm	378± 23**	378± 24 **	378±. 22 **	374± 26 **	373± 29 **	372± 24 **	364± 29 **
Significant difference	; *:P≤0.05 *	* : P ≤ 0.01	. <u></u>	Test of Dunnett			

.

(SUMMARY)

BODY WEIGHT CHANGES

ALL ANIMALS

(HAN260)

Name	Adminis	stration	week-day						 	
	98-7		102-7		104-7			,		
					· · · · · · ·		 	 	2	
Control	$428\pm$	32	414±	44	420±	32				
105										
125 ppm	429±	32	423±	30	417±	30				
250 ppm	415±	26	410±	27	$405\pm$	26				
500 ppm	$363\pm$	25**	$355\pm$	29**	$350\pm$	29**				

(HAN260)

TABLE D4

BODY WEIGHT CHANGES : FEMALE

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr: UNIT : g REPORT TYPE : A1 104	lCr1j[F344/DuCrj]	• •	BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)				
SEX : FEMALE							PAGE :	7
Group Name	Administration	week-day						
	0-0	1-7	2-7	3-7	4-7	5-7	6-7	
Control	96± 5	110± 6	123± 6	$134\pm$ 6	143± 7	152 ± 8	156± 7	

Significant difference ; * : P \leq 0.05 ** : P ≦ 0.01

5

96± 5

96± 5

 $96\pm$

108± 6

6**

5**

 $107\pm$

 $104\pm$

Test of Dunnett

133± 6

7**

5**

 $130\pm$

 $125\pm$

(HAN260)

125 ppm

250 ppm

500 ppm

BAIS 4

122± 6

7*

5**

 $120\pm$

 $116\pm$

142± 7

7*

6**

 $139\pm$

 $132\pm$

149± 7

148± 8

5**

 $140\pm$

154± 7

 $153\pm$

 $145\pm$

8

7**

SEX : FEMALE Group Name	Admini	istration	week-day											PAGE :
	7–7		8-7		9-7		10-7		11-7		12-7		13–7	
							· · · ·		a					
Control	162±	8	165±	9	169±	9	$173\pm$	10	177±	9	178±	9	180±	9
125 ppm	160±	8	$166\pm$	9	169±	9	174±	9	179±	9	180±	10	183±	10
250 ppm	160±	9	$164\pm$	9	$168\pm$	9	173±	9	177±	10	180±	10	182±	10
500 ppm	150±	6**	155±	7**	160±	7**	$163\pm$	7**	$167\pm$	8**	168±	8**	172±	8**

Significant difference ; * : P \leq 0.05 ** : P ≦ 0.01 Test of Dunnett

(HAN260)

STUDY NO. : 0560

BAIS 4

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

.

Group Name Administration week-day_ 14-7 18-7 22-7 26-7 30-7 34-7 38-7 Control 183± 10 188± 10 195 ± 11 201± 12 204± 12 209± 13 215± 14 125 ppm 185± 10 191± 10 197± 12 $202\pm$ 11 206± 12 210± 13 216± 13 250 ppm 183± 11 191 ± 11 $198 \pm$ 12202± 13 208± 12 214± 13 218± 14 500 ppm $172\pm$ 8** $179 \pm$ 8** $186\pm$ 9****** 190± 10** 195土 10** 200± 10** 206± 10** Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett

(HAN260)

PAGE: 9

BAIS 4

ALL ANIMALS

BODY WEIGHT CHANGES (SUMMARY)

66-7
249± 22
250± 19
250± 24
236± 14 * *

(HAN260)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] : g UNIT REPORT TYPE : A1 104 SEX : FEMALE

Group Name Administration week-day_ 70-7 74-7 78-7 82-7 86-7 90-7 94-7 Control 255 ± 23 261± 22 266± 26 269± 32 273± 32 279± 36 277± 23 125 ppm $255\pm$ 21 260 ± 21 265 ± 21 270± 22 273± 23 275± 23 275± 25 250 ppm $253\pm$ 25 259 ± 26 261± 27 265 ± 24 267 ± 27 270± 26 271± 29 500 ppm 240± 14** 245± 14** 247± 17** 253± 16** 255± 18** 257± 19** 258± 23** Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01

Test of Dunnett

(HAN260)

BAIS 4

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1C UNIT : g REPORT TYPE : A1 104 SEX : FEMALE	r1j[F344/DuCrj]				BODY WEIGHT ALL ANIMALS	CHANGES	(SUMMARY)			I	PAGE : 12
Group Name	Admini 98-7	stration v	week-day 102-7		104-7						
Control	283±	23	284±	22	283±	23		 			
125 ppm	277±	27	279±	25	279±	24					
250 ppm	274±	27	276±	28	273±	28					
500 ppm	256±	24**	$256\pm$	22**	254±	22**					

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

Test of Dunnett

BAIS 4

(HAN260)

TABLE E1

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS : MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

		Control		125 p	pm		250 pj	pm		500 p	pm	
eek-Day n Study	Av. FC.	No.of Surviv. <50>	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	
1-7	13.7 (5		13.0 (50)	95	50/50	12.3 (50)	90	50/50	11.2 (50)	82	50/50	
2-7	15.5 (5		15.7 (50)	101	50/50	14.7 (50)	95	50/50	13.9 (50)	90	50/50	
3-7	16.5 (5		16.7 (50)	101	50/50	16.0 (50)	97	50/50	15.6 (50)	95	50/50	
4-7	16.3 (5		17.2 (50)	106	50/50	16.7 (50)	102	50/50	16.7 (50)	102	50/50	
5-7	16.3 (5		17.2 (50)	106	50/50	17.2 (50)	106	50/50	17.3 (50)	106	50/50	
6-7	16.0 (5) 50/50	17.0 (50)	106	50/50	17.2 (50)	108	50/50	17.4 (50)	109	50/50	
7-7	16.5 (5	0) 50/50	17.6 (50)	107	50/50	17.7 (50)	107	50/50	17.9 (50)	108	50/50	
8-7	16.4 (5	0) 50/50	17.0 (50)	104	50/50	17.1 (50)	104	50/50	17.4 (50)	106	50/50	
9-7	16.6 (5	0) 50/50	17.3 (50)	104	50/50	17.5 (50)	105	50/50	18.2 (50)	110	50/50	
10-7	16.2 (5	0) 50/50	16.9 (50)	104	50/50	17.0 (50)	105	50/50	18.3 (50)	113	50/50	
11-7	16.4 (4	5) 50/50	17.4 (50)	106	50/50	17.4 (50)	106	50/50	18.4 (50)	112	50/50	
12-7	16.3 (5	0) 50/50	17.2 (50)	106	50/50	17.1 (50)	105	50/50	18.4 (50)	113	50/50	
13-7	16.2 (5	0) 50/50	17.3 (50)	107	50/50	17.1 (50)	106	50/50	18.5 (50)	114	50/50	
14-7	16.2 (5) 50/50	17.0 (50)	105	50/50	17.0 (50)	105	50/50	18.5 (50)	114	50/50	
18-7	16.2 (5	0) 50/50	17.4 (50)	107	50/50	17.2 (50)	106	50/50	19.3 (50)	119	50/50	
22-7	16.2 (5) 50/50	17.2 (50)	106	50/50	17.0 (50)	105	50/50	18.9 (50)	117	50/50	
26-7	16.2 (5) 50/50	16.6 (50)	102	50/50	16.6 (49)	102	49/50	17.9 (50)	110	50/50	
30-7	16.2 (5		17.2 (50)	106	50/50	17.2 (49)	106	49/50	19.0 (50)	117	50/50	
34-7	16.1 (5	0) 50/50	16.8 (50)	104	50/50	16.9 (49)	105	49/50	18.6 (50)	116	50/50	
38-7	16.1 (5	0) 50/50	17.1 (50)	106	50/50	17.2 (49)	107	49/50	18.9 (50)	117	50/50	
42-7	16.5 (5) 50/50	17.0 (50)	103	50/50	16.9 (49)	102	49/50	18.5 (50)	112	50/50	
46-7	16.1 (5		16.8 (50)	104	50/50	16.7 (49)	104	49/50	18.2 (50)	113	50/50	
50-7	16.5 (5		17.1 (50)	104	50/50	17.2 (49)	104	49/50	18.6 (50)	113	50/50	
54-7	16.5 (5		16.9 (50)	102	50/50	17.1 (49)	104	49/50	18.4 (50)	112	50/50	
58-7	17.0 (5		17.6 (50)	104	50/50	17.7 (49)	104	49/50	19.1 (50)	112	50/50	
62-7	16.6 (5		16.9 (50)	102	50/50	16.9 (49)	102	49/50	17.7 (50)	107	50/50	
66-7	16.7 (5		17.6 (50)	105	50/50	17.2 (49)	103	49/50	18.2 (50)	109	50/50	
70-7	16.8 (5		17.6 (49)	105	49/50	17.1 (49)	102	49/50	18.1 (49)	103	49/50	
74-7	16.5 (5		17.2 (47)	104	47/50	17.1 (49)	102	49/50	17.9 (49)	108	49/50	
78-7	16.4 (4		16.7 (46)	102	46/50	16.9 (49)	101	49/50	17.3 (48)	105	48/50	
82-7	16.4 (4		16.8 (44)	102	44/50	16.7 (49)	103	49/50	17.3 (48)	105	48/50	
86-7	16.3 (4		16.8 (43)	102	43/50	16.6 (49)	102	49/50	16.8 (45)	103	46/50	
90-7	17.0 (4		17.1 (42)	103	43/50	17.0 (48)	102	49/50 48/50	10.8 (45) 17.1 (44)			
94-7	16.8 (4		16.8 (40)	101	42/50	16.6 (46)	99	46/50	16.9 (44)	101	44/50	
98-7	17.0 (4		17.0 (38)	100	40/50 38/50	16.6 (46) 16.7 (44)	99 98			101	43/50 41/50	
.02-7	15.6 (4		16.7 (37)	100	38/50			44/50	17.2 (41)	101	41/50	
L02-7	16.6 (3		16.3 (35)	98	37/50	16.9 (43) 16.5 (41)	108 99	43/50	17.4 (40)	112	40/50	
	10.0 (0	., 00,00	10.0 (00)	50	00/00	10.9 (41)	99	41/50	17.1 (37)	103	37/50	

TABLE E2

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS : FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

5

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

		Control		125 p	pm		250 p	pm		500 p	pm			
	Av. FC.	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of	-		
ek-Day Study		Surviv. <50>		cont. <50>	Surviv.		cont. <50>	Surviv.		cont. <50>	Surviv.			
1-7	10.3 (50) 50/50	10.1 (50)	98	50/50	9.6 (50)	93	50/50	9.0 (50)	87	50/50			
2-7	10.9 (50) 50/50	11.1 (50)	102	50/50	10.7 (50)	98	50/50	10.6 (50)	97	50/50			
3-7	11.1 (50) 50/50	11.4 (50)	103	50/50	11.3 (50)	102	50/50	11.0 (50)	99	50/50			
4-7	10.9 (50) 50/50	11.3 (50)	104	50/50	11.5 (50)	106	50/50	11.2 (50)	103	50/50			
5-7	11.1 (50) 50/50	11.4 (50)	103	50/50	12.1 (50)	109	50/50	11.8 (50)	106	50/50			
6-7	10.5 (50) 50/50	11.0 (50)	105	50/50	11.4 (50)	109	50/50	11.7 (50)	111	50/50			
7-7	10.7 (50) 50/50	11.2 (50)	105	50/50	11.8 (50)	110	50/50	11.9 (50)	111	50/50			
8-7	10.4 (50		10.7 (50)	103	50/50	10.9 (50)	105	50/50	11.3 (50)	109	50/50			
9-7	10.5 (50		11.2 (50)	107	50/50	11.8 (50)	112	50/50	12.1 (50)	115	50/50			
10-7	10.3 (50		11.0 (50)	107	50/50	11.5 (50)	112	50/50	12.2 (50)	118	50/50			
11-7	10.6 (50		11.5 (50)	108	50/50	12.1 (50)	114	50/50	12.6 (50)	119	50/50			
12-7	10.1 (50) 50/50	11.2 (50)	111	50/50	11.8 (50)	117	50/50	12.4 (50)	123	50/50			
3-7	10.5 (50		11.3 (50)	108	50/50	11.7 (50)	111	50/50	12.9 (50)	123	50/50			
4-7	10.6 (50		11.2 (50)	106	50/50	11.3 (50)	107	50/50	12.4 (50)	117	50/50			
3–7	10.6 (50		11.3 (50)	107	50/50	11.8 (50)	111	50/50	13.6 (50)	128	50/50			
2-7	10.4 (50		10.9 (50)	105	50/50	11.7 (50)	113	50/50	13.2 (50)	123	50/50			
6-7	10.6 (50		10.5 (50)	99	50/50	10.5 (50)	99	50/50	11.6 (50)	109	50/50			
80-7	10.3 (50		11.1 (50)	108	50/50	11.6 (50)	113	50/50	13.4 (50)	130	50/50			
4-7	10.6 (50		11.0 (50)	104	50/50	12.0 (50)	113	50/50	12.8 (50)	121	50/50			
3-7	11.0 (50		11.3 (50)	103	50/50	12.1 (50)	110	50/50	13.6 (50)	124	50/50			
2-7	10.8 (50		11.2 (50)	104	50/50	12.2 (50)	113	50/50	13.6 (50)	126	50/50			
6-7	11.3 (50		11.1 (50)	98	50/50	11.9 (50)	105	50/50	12.8 (50)	113	50/50			
0-7	11.0 (50		11.6 (50)	105	50/50	12.4 (50)	113	50/50	13.8 (50)	125	50/50			
54-7	11.4 (50		11.5 (50)	101	50/50	12. 1 (50)	106	50/50	13.4 (50)	123	50/50			
58-7	11.6 (50		11.9 (49)	101	49/50	12.5 (50)	108	50/50	14.0 (50)	121	50/50			
52-7	11.1 (50		11.6 (49)	105	49/50	11.9 (50)	103	50/50	12.8 (50)	115	50/50			
6-7	11.4 (50		12.1 (49)	106	49/50	12.5 (50)	110	50/50	13.6 (49)	119	49/50			
70-7	11.8 (50		11.9 (49)	100	49/50	12.3 (50)	104	50/50	13.4 (47)	119	49/50			
74-7	11.7 (49		12.0 (48)	103	48/50	12. 3 (50)	104	50/50	13.4 (47) 13.1 (46)	114	46/50			
/87	11.5 (49		11.8 (48)	103	48/50	11.7 (50)	100	50/50	12.5 (46)	109	46/50			
32-7 ·	11.5 (49		11.9 (48)	103	48/50	12.4 (50)	102	50/50	12.5 (46)	116	46/50			
36-7	11.3 (46		11.9 (48)	105	48/50	12.4 (30) 11.9 (47)	105	50/50 47/50	13.3 (44)	113	44/50 44/50			
0-7	12.6 (44		12.2 (48)	97	48/50	11.9 (47) 12.8 (46)	103	46/50	12.8 (44)	113	44/50 44/50			
94-7	12.0 (43		12.2 (40)	101	43/50	12.8 (40) 12.7 (45)	102	46/50	13.5 (44) 13.1 (44)		44/50 44/50			
8-7	12. 7 (39		12.2 (47) 12.2 (46)	96	47/50	12.7 (43) 12.3 (43)	97	45/50 43/50	13.1 (44) 12.7 (42)	108 100	44/50 42/50			
)2-7	12.4 (38		12.5 (44)	101	40/50 44/50	12.5 (43) 12.6 (42)	102	43/50 42/50	12. (42)	100	42/50 38/50			
4-7	12.4 (38		12.0 (44) 12.1 (43)	98	44/50	12.0 (42) 12.2 (41)	98	$\frac{42}{50}$ 41/50	13.0 (38)	105	38/50 37/50			

< >:No. of effective animals, ():No. of measured animals

TABLE E3

FOOD CONSUMPTION CHANGES : MALE

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 1 Group Name Administration week-day(effective)_ 1-7(6) 2-7(7) 3-7(7) 4-7(7) 5-7(7) 6-7(7) 7-7(7) Control 13.7 ± 0.8 15.5± 0.9 16.5 ± 1.1 16.3 ± 1.1 16.3± 0.9 16.0 ± 0.9 16.5± 0.8 125 ppm 15.7± 1.2 13.0± 0.9** 16.7± 1.0 17.2± 1.2** 17.2± 1.3** 17.0± 1.3** 17.6± 1.3** 250 ppm 12.3± 1.0** 14.7± 1.3** 16.0 ± 1.5 16.7± 1.5 17.2± 1.6** 17.2± 1.5** 17.7± 1.4** 500 ppm 11.2± 0.8** 13.9± 1.2** 15.6± 1.3** 16.7± 1.3 17.3± 1.4** 17.4± 1.3** 17.9± 1.3** Significant difference ; * : P \leq 0.05 ****** : P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 2 Group Name Administration week-day(effective)_ 8-7(7) 9-7(7) 10-7(7) 11-7(7) 12-7(7) 13-7(7) 14-7(7) Control 16.4± 0.9 16.6± 0.9 16.2 ± 1.1 16.4± 1.1 16.3± 1.1 16.2 ± 1.0 16.2± 1.0 125 ppm 17.0± 1.2** 17.3± 1.1** 16.9± 1.1* 17.4± 1.2** 17.2± 1.2** 17.3± 1.1** 17.0± 1.1** 250 ppm 17.1± 1.4** 17.5± 1.5** 17.0± 1.3** 17.4± 1.5** 17.1± 1.5** 17.1± 1.4** 17.0土 1.4** 500 ppm 17.4土 1.4** 18.2± 1.4** 18.3± 1.5** 18.4± 1.5** 18.4± 1.5** 18.5± 1.4** 18.5± 1.5**

Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01

Test of Dunnett

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

(HAN260)

o Name	Administration	week-day(effective)					
	18-7 (7)	22–7 (7)	26-7(7)	30-7 (7)	34-7 (7)	38-7 (7)	42-7 (7)
Control	16.2± 1.1	16.2± 0.9	16.2± 0.9	16.2± 1.0	16.1± 0.9	16.1± 0.9	16.5± 0.8
125 ppm	17.4± 1.4**	17.2± 1.4**	16.6± 1.3	17.2± 1.2₩	16.8± 1.1**	17.1± 1.0**	17.0± 1.1**
250 ppm	17.2± 1.5**	17.0± 1.3**	16.6± 0.9	17.2± 0.9 * *	16.9± 0.9**	17.2± 1.1**	16.9± 0.9*
500 ppm	19.3± 1.9**	18.9± 1.9 **	17.9± 1.7**	19.0± 1.8 * *	18.6± 1.9**	18.9± 2.0 * *	18.5± 2.0**

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

(HAN260)

STUDY NO. : 0560

UNIT : g

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE

.

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 4

up Name	Administration	week-day(effective)					
	46-7 (7)	50-7(7)	54-7 (7)	58–7 (7)	62-7(7)	66-7(7)	70–7 (7)
Control	16.1± 0.7	16.5± 0.8	16.5± 0.9	17.0± 0.9	16.6 \pm 1.0	16.7± 0.9	16.8± 1.2
125 ppm	16.8± 1.2**	17.1± 1.2**	16.9± 1.2	17.6± 1.3**	16.9± 1.1	17.6± 1.1**	17.6± 1.1**
250 ppm	16.7± 1.0*	17.2± 0.9 **	17.1± 1.1**	17.7± 1.0₩	16.9± 1.2	17.2± 1.2	17.1± 1.0
500 ppm	18.2± 1.8**	18.6± 1.8**	18.4± 1.7**	19.1± 2.1**	17.7± 1.6**	18.2± 2.1**	18.1± 2.0**

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

ıp Name		week-day(effective)					
	74-7(7)	78-7 (7)	82-7 (7)	86-7(7)	90-7 (7)	94–7 (7)	98–7 (7)
Control	16.5 \pm 1.1	16.4± 1.0	16.4± 1.2	16.3± 2.1	17.0± 1.4	16.8± 2.0	17.0± 1.6
125 ppm	17.2± 1.1**	16.7± 1.2	16.8± 1.3	16.8± 1.1	17.1± 1.6	16.8± 2.0	17.0± 1.4
250 ppm	17.1± 1.2	16.9± 1.6	16.7± 1.3	16.6± 1.8	17.0± 1.7	16.6± 1.9	16.7± 1.3
500 ppm	17.9± 2.0**	17.3± 1.8	17.3± 2.7*	16.8± 3.0	17.1± 2.1	16.9 ± 2.6	17.2± 2.2

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

(HAN260)

STUDY NO. : 0560

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

STUDY NO. : 0560 ANIMAL : RAT F344/Du UNIT : g REPORT TYPE : A1 104 SEX : MALE	ICrlCrlj[F344/DuCrj]	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	PAGE : 6
Group Name	Administration week-day 102-7(7) 10	(effective) 4-7(7)	
Control	15.6± 3.2 16.6	± 1.6	

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ T

 16.3 ± 1.5

16.5± 1.3

17.1± 2.4

16.7± 2.8

16.9± 1.5

17.4± 2.3*

Test of Dunnett

(HAN260)

125 ppm

250 ppm

500 ppm

TABLE E4

FOOD CONSUMPTION CHANGES : FEMALE

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Group Name Administration week-day(effective)_ 1-7(6) 2-7(7) 3-7(7) 4-7(7) 5-7(7) 6-7(7) 7-7(7) Control 10.3 ± 0.8 10.9± 0.8 11.1± 0.8 10.9± 0.7 11.1± 0.9 10.5 ± 0.7 10.7 ± 0.8 125 ppm 10.1± 0.7 11.1± 0.9 11.4± 0.8 11.3± 0.9 11.4± 0.8 11.0± 0.9* 11.2± 0.8* 250 ppm 9.6± 0.8** 10.7± 0.8 11.3± 0.9 11.5± 1.0** 12.1± 1.0** 11.4± 0.9** 11.8± 1.0** 500 ppm 9.0± 0.5** 10.6± 0.6 11.0± 0.7 11.2±.0.7 11.8± 0.7** 11.7± 0.9** 11.9± 1.0** Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett

(HAN260)

BAIS 4

PAGE: 7

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Significant difference ; $*: P \leq 0.05$

Group Name Administration week-day(effective)_ 8-7(7) 9-7(7) 10-7(7) 11-7(7) 12-7(7) 13-7(7) 14-7(7) Contro1 10.4± 0.9 10.5 ± 1.0 10.3 ± 0.8 10.6± 0.7 10.1± 0.7 10.5± 0.7 10.6 ± 0.8 125 ppm 10.7± 1.0 11.0± 0.8** 11.2± 1.1** 11.5± 0.9** 11.2± 1.0** 11.3± 1.2** 11.2± 1.0** 250 ppm 10.9± 0.8* 11.8± 1.1** 11.5± 0.9** 12.1± 1.0** 11.8± 1.0** 11.7± 1.0** 11.3± 0.9** 500 ppm 11.3± 0.9** 12.1± 0.8** 12.2± 0.9** 12.6± 0.9** 12.4 1.0** 12.9± 1.0** 12.4± 1.0**

Test of Dunnett

(HAN260)

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

A. C.

 $** : P \leq 0.01$

oup Name	Administration	week-day(effective)						
	18-7 (7)	22-7(7)	26-7 (7)	30-7(7)	34-7 (7)	38–7 (7)	42-7 (7)	
Control	10.6± 0.9	10.4± 0.9	10.6± 0.8	10.3± 1.0	10.6± 0.8	11.0± 1.0	10.8± 0.9	
125 ppm	11.3± 1.1**	10.9± 1.0	10.5± 0.8	11.1± 1.1**	11.0± 1.1	11.3± 1.0	11.2± 1.0	
250 ppm	11.8± 1.1**	11.7± 1.0 **	10.5± 0.7	11.6± 0.7**	12.0± 1.0**	12.1± 1.2**	12.2± 1.2**	
500 ppm	13.6± 1.2**	13.2± 1.2**	11.6± 1.0**	13.4± 1.4**	12.8± 1.1**	13.6± 1.3**	13.6± 1.5**	

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

(HAN260)

STUDY NO. : 0560

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Group Name Administration week-day(effective)_ 50-7(7) 46-7(7) 54-7(7) 58-7(7) 62-7(7) 66-7(7) 70-7(7) Control 11.3 ± 0.9 11.0± 1.1 11.4 ± 1.1 11.6± 1.0 11.1± 1.0 11.4± 1.0 11.8± 0.8 125 ppm 11.1± 0.9 11.6± 1.1* 11.5± 1.0 11.9± 1.0 11.6± 1.0 12.1± 1.1** 11.9± 1.0 250 ppm 11.9 ± 1.3 12.4± 0.9** 12.1± 1.2** 12.5± 1.1** 11.9± 1.0** 12.5± 1.1** 12.3 ± 1.1 500 ppm 12.8± 1.3** 13.8± 1.3** 13.4± 1.2** 14.0± 1.8** 12.8± 0.9** 13.6± 1.3** 13.4± 1.1** Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett

(HAN260)

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Group Name Administration week-day(effective) 74-7(7) 78-7(7) 82-7(7) 86-7(7) 90-7(7) 94-7(7) 98-7(7) Control 11.7 ± 1.1 11.5 ± 1.2 11.5 ± 1.2 11.3 ± 1.3 12.6 ± 1.0 12.1 ± 1.4 12.7 ± 1.3 125 ppm 12.0± 1.0 11.8± 0.9 11.9 ± 1.1 11.9± 1.2* 12.2 ± 1.3 12.2 ± 1.2 12.2± 1.8 250 ppm 12.4± 1.0** 11.7± 1.0 12.4± 1.0** 12.8± 1.1 11.9± 1.1* 12.7 ± 1.2 12.3 ± 1.1 500 ppm 13.1± 1.1** 12.5± 1.7** 13.3± 1.0** 12.8 1.1** 13.5± 1.0** 13.1± 1.3** 12.7± 1.9 Significant difference ; * : P \leq 0.05 ****** : P ≦ 0.01 Test of Dunnett

(HAN260)

BAIS 4

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\mathbb{V}_{n-1} = \mathbb{V}$

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name Administration week-day(effective)____ 102-7(7) 104-7(7) Control 12.4± 1.0 12.4± 1.3 125 ppm 12.5 ± 1.2 12.1± 1.3 250 ppm 12.6 ± 1.2 12.2 ± 1.2 500 ppm 13.0 ± 0.9 13.0 ± 1.0 Significant difference ; * : P \leq 0.05 ** : P ≦ 0.01 Test of Dunnett

(HAN260)

BAIS 4

TABLE F1

HEMATOLOGY : MALE

MEASURE. TIME : : SEX : MALE		TYPE : A1											
Group Name	NO. of Animals	RED BLO 1 O ⁶ /ル	DOD CELL	HEMOGLO g ⁄dl	DBIN	HEMATOC %	RIT	MCV f L		MCH pg		MCHC g∕dl	
Control	38	8.13±	1.50	14.3±	2.8	39.5±	6.6	48.8±	2.8	17.5±	1.2	35.9±	1.7
125 ppm	34	9.10±	1.22*	15.8±	2.0*	43.3±	5. 1*	47.7±	1. 7*	17.4±	0.6	36.5±	0.8
250 ppm	41	8.96±	1.50*	15.5±	2.3	42.3±	5. 7	47.7±	3.9**	17.4±	1.0	36.5±	1.2
500 ppm	37	9.26±	1.60**	15.5±	2.8	42.8±	6.7	46.4±	2.2**	16.8±	0.8**	36.1±	1.6

HEMATOLOGY (SUMMARY)

ALL ANIMALS (105W)

Significant difference ; $* : P \leq 0.05$ $** : P \leq 0.01$

Test of Dunnett

(HCL070)

STUDY NO. : 0560

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

BAIS 4

PAGE: 1

PLATELET 1 0³/µl

 $811\pm$

 $813\pm$

 $834\pm$

 $906\pm$

.

248

119

225

202**

STUDY NO. : 0560 HEMATOLOGY (SUMMARY) ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 ALL ANIMALS (105W)	
SEX : MALE REPORT TYPE : A1	PAGE : 2
Group Name NO. of RETICULOCYTE Animals %	
Control 38 4.3± 3.8	
125 ppm 34 2.9± 2.5∗	
250 ppm 41 3.9± 6.2**	
500 ppm 37 3.4± 3.6**	
Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett	

STUDY NO. : 05 ANIMAL : RA MEASURE. TIME	AT F344/DuCr1C	r1j[F344/DuCrj]		HEMATOLOGY (SU ALL ANIMALS (1					
SEX : MALE	REPOR	Т ТҮРЕ : А1							PAGE : 3
Group Name	NO. of Animals	₩ВС 1 О ³ ∕µl	Differential N-BAND	WBC (%) N-SEG	EOSINO	BASO	MONO	LYMPHO	OTHER
Contro	1 28	11 86 + 22 20	0+ 1	47 + 12	24 1	0.+	۵	40-L 11	C- 10

Control 38 11.86 ± 22.20 0± 47± 13 $2\pm$ 1 0± 0 $5\pm$ 2 40± 116± 18 1 125 ppm 34 6.68± 1.80 $0\pm$ $46\pm$ $2\pm$ $0\pm$ $6\pm$ $45\pm$ 1 10 1 0 10 $1\pm$ 1 250 ppm 41 $46\pm$ $2\pm$ 0± 7.72 ± 3.85 $0\pm$ 1 9 $6\pm$ $43\pm$ $3\pm$ 1 0 2 10 500 ppm 37 $1\pm$ 9.08± 5.44* $0\pm$ 1 $47\pm$ 10 1 0± 6± 2 $44\pm$ $1\pm$ 0 9 Significant difference ; * : P \leq 0.05 Test of Dunnett ** : P ≦ 0.01

(HCL070)

BAIS 4

1

13

3

TABLE F2

HEMATOLOGY : FEMALE

STUDY NO.	0560	
ANIMAL	RAT F344/DuCr1Cr1j[F344/DuCrj]	
MEASURE. T	IME : 1	
SEX : FEMA	E REPORT TYPE : A1	

up Name	NO. of Animals	RED BLOOD CELL 1 0⁵∕µℓ	HEMOGLOBIN g /dl	HEMATOCRIT %	MCV f L	MCH рg	MCHC g∕dl	PLATELET 1 0³⁄µl
Control	38	7.73± 1.28	14.5± 2.3	39.0± 5.7	50.7 \pm 3.1	18.8± 0.7	37.1± 1.4	683± 226
125 ppm	43	8.02± 1.08	14.9± 2.0	40.3± 4.2	50.6± 3.3	18.6± 1.1	36.8± 1.8	680± 222
250 ppm	41	7.92 ± 1.21	14.9± 2.3	40.1± 5.0	51.3± 5.5	18.9± 1.7	36.8± 2.0	660± 181
500 ppm	37	8.37± 0.40**	15.8± 0.7**	42.4± 1.3**	50.7± 1.4	18.8± 0.3	37.2± 0.8	724± 84 **

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

(HCL070)

BAIS 4

PAGE: 4

STUDY NO. : 056	0
ANIMAL : RAT	F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME :	1
SEX : FEMALE	REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

roup Name	NO. of Animals	WBC 1 O³/µl	Di N-BAND	fferentia	1 WBC (9 N-SEG	6)	EOSINO		BASO		MONO		LYMPHO		OTHER	
Control	38	5.17± 3.73	5 1±	1	44±	14	2±	1	0±	· 0	5±	2	47±	14	2±	7
125 ppm	43	4.55± 5.32	1±	1	38±	14	2±	1	0±	0	5±	2	51±	14	4 ±	14
250 ppm	41	7.90± 18.80	1±	1	34±	11**	2±	2	0土	0	5±	2	51±	14	7±	22
500 ppm	37	4.40± 1.66	·0±	1	39±	8	2±	1	0±	0	6±	1**	52±	8	1±	1
Significant	difference ;	* : P ≦ 0.05	i ** : P ≦	0. 01			Test	of Dunn	ett							
HCL070)																BAIS

TABLE G1

BIOCHEMISTRY : MALE

oup Name	NO. of Animals	TOTAL I g∕dl	PROTEIN	ALBUMIN g ⁄dl	[A/G RAT	`10	T−BILI mg∕dℓ		GLUCOSE mg∕dℓ		T−CHOLE mg∕dl	STEROL	TRIGLYC mg∕dl	ERIDE
Control	38	6.7±	0.3	3.0±	0.3	0.8±	0. 1	0.17±	0.06	$156\pm$	24	207±	80	184±	131
125 ppm	34	6.9±	0.3	3.0±	0.2	0.8±	0. 1	0.16±	0.04	158±	19	249±	70*	213±	99
250 ppm	41	6.8±	0.2	3.0±	0.2	0.8±	0.1	0.20 \pm	0.24	$155\pm$	23	259±	65**	245±	130
500 ppm	37	6.7±	0.4	2.8±	0.3**	0.7±	0. 1**	0.18±	0.08	155±	14	260±	79**	274±	126**

p Name	NO. of Animals	PHOSPHC mg∕dl	DLIPID	AST IU/.	2	ALT IU⁄\$	1	LDH IU/	l	ALP IU/J	2	G-GTP IU∕£		CK IU∕.	2
Control	38	302±	114	98±	116	$39\pm$	19	228±	241	$226\pm$	148	7±	4	139±	176
125 ppm	34	$351\pm$	96	69±	18	31±	6	173±	56	166±	58*	9±	5	99±	26
250 ppm	41	$358\pm$	88*	86±	89	35±	18	187±	127	200±	69	13±	8**	95±	21
500 ppm	37	$364\pm$	111*	82±	42	41±	24	$162\pm$	50	237±	101	17±	10**	96±	25

~

(HCL074)

STUDY NO. : 05	60
ANIMAL : RA	T F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME	: 1
SEX : MALE	REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE : 3

Group Name	NO. of Animals	UREA N mg∕dl		CREATIN mg∕dℓ	IINE	SODIUM mEq⁄£		POTASSI mEq⁄,		CHLORIDE mEq⁄ £		CALCIUM mg∕dl	[INORGAN mg∕dℓ	IC PHOSPHORU
Control	38	21.3±	11.5	0.7±	0.4	143±	2	3.6±	0. 4	105±	2	10.8±	0.6	4.4±	1. 4
125 ppm	34	20.6±	4.6	0.6±	0. 1	$142\pm$	1**	3.7±	0.3	107±	1**	10.8±	0.4	4.0±	0. 7
250 ppm	41	20.8±	4. 9	0.6±	0.1	$142\pm$	2**	3.7±	0.3	110±	2**	10.7±	0.4	4.1±	0.6
500 ppm	37	23.0±	6.2**	0.6±	0.1	142±	1**	3.8±	0.3*	112±	3**	10.9±	0.8	4.4±	0.6

(HCL074)

BIOCHEMISTRY : FEMALE

TABLE G2

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

PAGE: 4

up Name	NO. of Animals	TOTAL F g∕dl	ROTEIN	ALBUMIN g ⁄dl	I	A/G RAT	IO	T−BILI mg∕dℓ		GLUCOSE mg∕dl		T−CHOLE mg∕dℓ	STEROL	TRIGLYCI mg∕dl	ERIDE
Control	38	7.0±	0.4	3.6±	0.3	1.1±	0.2	0.14±	0.07	143±	18	140±	26	87±	59
125 ppm	43	7.1±	0.3	3.7±	0.3	1.1±	0. 1	0.13±	0.04	145±	17	149±	35	98±	64
250 ppm	41	7.1±	0.3	3.7±	0.3	1.1±	0. 1	0.15±	0.14	148±	19	160±	47	128±	91*
500 ppm	37	6.9±	0.3	3.4±	0.2**	1.0±	0.1**	0.12±	0.01	149±	13	192±	70**	$134\pm$	89*

BIOCHEMISTRY (SUMMARY)

ALL ANIMALS (105W)

oup Name	NO. of Animals	PHOSPHO mg⁄dl		AST IU/.	e	ALT IU/S	2	LDH IU/J	2		2	G-GTP IU∕£		CK IU∕£	2
Control	38	256±	48	121±	78	48±	20	212±	81	$132\pm$	58	3±	2	91±	25
125 ppm	43	$271\pm$	64	116±	84	48±	21	206±	72	119±	59	3±	2	85±	25
250 ppm	41	$286\pm$	73	$141\pm$	146	$56\pm$	46	211±	112	131±	75	4±	5	91±	70
500 ppm	37	$324\pm$	110**	90±	38	$43\pm$	18	164±	47*	113±	42	3±	2*	75±	22**

BIOCHEMISTRY (SUMMARY)

ALL ANIMALS (105W)

ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

(HCL074)

STUDY NO. : 0560

BAIS 4

SEX : FEMALE	KEPUKI	TYPE : A1													PAGE : 6
Group Name	NO. of Animals	UREA NI mg⁄dl	ITROGEN	CREATIN mg∕dl		SODIUM mEq∕ £		POTASSI mEq/		CHLORIDE mEq∕£		CALCIUN mg∕dℓ	ſ	INORGAN mg⁄dl	NIC PHOSPHORUS
Control	38	17.1±	1.8	0.5±	0.0	$142\pm$	1	3.4±	0.4	104±	2	10.5±	0.3	3.7±	0. 7
125 ppm	43	17.2±	2.1	0.5±	0.1	142±	1	3.3±	0.4	107±	2**	10.6±	0.4	3.5±	0.7
250 ppm	41	17.5±	2.0	0.5±	0.0	142±	1	3.4±	0.4	109±	2**	10.6±	0.3	3.8±	0.9
500 ppm	37	18.0±	2.4	0.5±	0.0	140±	1**	3.4±	0.3	111土	4 **	10.5±	0.4	3.9±	0.6

(HCL074)

TABLE H1

URINALYSIS : MALE

STUDY NO. : 056	0
ANIMAL : RAT	F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME :	
SEX : MALE	REPORT TYPE : A1

URINALYSIS

PAGE : 1

up Name	NO. of	pH_							Prot	ein					Glu	cose	•			Ket	one b	vho				Bi1	iruh	in	
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5 CHI	- =	t +	- 2+	3+ 4+	. (ΉΙ				3+ 4-	+ CHI		± +	-	3+ 4	+ CH	I				CHI
Control	42	0	0	6	7	19	8	2	0	0 0	03	31 8	:		42	0	0 0	0 ()	41	1 0	0	0	0		42	0	0 0	
125 ppm	35	0	0	4	10	14	7	0	0	0 (02	27 6			35	0	0 0	0 0)	35	0 0	0	0	0		35	0	0 0	
250 ppm	42	0	1	6	12	18	5	0	0	0 (01	25 16	i		42	0	0 0	0 0)	40	1 1	0	0	0		42	0	0 0	
500 ppm	40	0	1	8	13	14	3	1	0	0 (0 0	11 29	k I	*	40	0	0 0	0 ()	39	1 0	0	0	0		40	0	0 0	

5

(HCL101)

.

-	NO. of Animals	Occult blood - \pm + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
		x		 	
Control	42	42 0 0 0 0	42 0 0 0 0		
125 ppm	35	35 0 0 0 0	35 0 0 0 0		
250 ppm	42	40 0 1 0 1	42 0 0 0 0		
500 ppm	40	39 0 0 0 1	40 0 0 0 0		

TABLE H2

URINALYSIS : FEMALE

STUDY NO. : 056	0
ANIMAL : RAT	F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME :	1
SEX : FEMALE	REPORT TYPE : A1

URINALYSIS

PAGE : 3

Froup Name	NO. of	pH_								Protein	Glucose	Ketone body	Bilirubin
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI	$-\pm$ + 2+ 3+ 4+ CHI	$-\pm$ + 2+ 3+ 4+ CHI	$-\pm +2+3+4+$ CHI	- + 2+ 3+ CHI
Control	38	0	0	1	3	9	21	4		0 2 7 6 16 7	38 0 0 0 0 0	27 11 0 0 0 0	38 0 0 0
125 ppm	44	0	2	5	7	13	15	2		0 4 6 10 18 6	44 0 0 0 0 0	29 15 0 0 0 0	44 0 0 0
250 ppm	41	0	0	6	11	12	9	3	**	0 2 5 6 21 7	41 0 0 0 0 0	30 11 0 0 0 0	41 0 0 0
500 ppm	37	0	0	5	7	11	13	1		0 0 0 0 18 19 **	37 0 0 0 0 0	21 16 0 0 0 0	37 0 0 0

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

÷

Test of CHI SQUARE

(HCL101)

STUDY NO. : 0560	1
ANIMAL : RAT	F344/DuCr1Cr1j[F344/DuCrj]
MEASURE. TIME :	1
SEX : FEMALE	REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood $- \pm + 2+ 3+$ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI ·		
			· · · · · · · · · · · · · · · · · · ·		
Control	38	38 0 0.0 0	38 0 0 0 0		
125 ppm	44	41 2 0 1 0	44 0 0 0 0		
250 ppm	41	40 0 0 0 1	41 0 0 0 0		
500 ppm	37	36 0 0 1 0	37 0 0 0 0		
Significant	difference	; *:P≦0.05 **	$: P \leq 0.01$	Test of CHI SQUARE	
(HCL101)		······································			BAIS 4

PAGE: 4

URINALYSIS

TABLE I 1

GROSS FINDINGS : MALE

ALL ANIMALS

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

Group Name

Control

125 ppm

250 ppm

~

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

Organ	Findings	NO. of Animals 50 (%)	50 (%)	50 (%)	50 (%)
skin/app	nodule	1 (2)	4 (8)	0 (0)	0 (0)
subcutis	edema	0 (0)	1 (2)	0 (0)	0 (0)
	mass	9 (18)	5 (10)	12 (24)	11 (22)
lung	white zone	2 (4)	3 (6)	2 (4)	1 (2)
	red zone	1 (2)	1 (2)	0 (0)	0 (0)
	edema	0 (0)	1 (2)	0 (0)	0 (0)
	nodule	1 (2)	1 (2)	3 (6)	5 (10)
lymph node	enlarged	0 (0)	1 (2)	0 (0)	0 (0)
spleen	enlarged	4 (8)	4 (8)	2 (4)	1 (2)
	black zone	0 (0)	0 (0)	0 (0)	1 (2)
	nodule	1 (2)	0 (0)	0 (0)	1 (2)
heart	white zone	1 (2)	0 (0)	1 (2)	2 (4)
salivary gl	nodule	1 (2)	0 (0)	0 (0)	0 (0)
forestomach	nodule	0 (0)	3 (6)	0 (0)	1 (2)
	ulcer	2 (4)	1 (2)	0 (0)	2 (4)
gl stomach	red zone	0 (0)	0 (0)	0 (0)	1 (2)
	erosion	1 (2)	0 (0)	0 (0)	0 (0)
	thick	0 (0)	0 (0)	0 (0)	1 (2)
small intes	thick	0 (0)	1 (2)	0 (0)	0 (0)
liver	enlarged	1 (2)	0 (0)	0 (0)	1 (2)
	pale	0 (0)	1 (2)	0 (0)	0 (0)
	white zone	1. (2)	2 (4)	0 (0)	1 (2)

PAGE: 1

500 ppm

STUDY NO.: 0560ANIMAL: RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE: A1SEX: MALE

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0-105W)

PAGE : 2

Organ	Findings	Group Name NO. of Animals	Control 50 (%)	125 ppm 50 (%)	250 ppm 50 (%)	500 ppm 50 (%)
liver	red zone		0 (0)	1 (2)	0 (0)	0 (0)
	nodule		0 (0)	1 (2)	3 (6)	5 (10)
	rough		1 (2)	0 (0)	2 (4)	0 (0)
	herniation		6 (12)	9 (18)	6 (12)	3 (6)
pancreas	nodule		1 (2)	1 (2)	1 (2)	0 (0)
kidney	white zone		0 (0)	2 (4)	0 (0)	0 (0)
	nodule		0 (0)	2 (4)	0 (0)	1 (2)
	cyst		0 (0)	0 (0)	0 (0)	1 (2)
	granular		10 (20)	12 (24)	15 (30)	9 (18)
urin bladd	urine:marked retention		0 (0)	1 (2)	0 (0)	1 (2)
	urine:red		1 (2)	1 (2)	0 (0)	0 (0)
pituitary	enlarged		5 (10)	4 (8)	2 (4)	4 (8)
	red zone		2 (4)	3 (6)	3 (6)	1 (2)
	nodule		6 (12)	2 (4)	4 (8)	1 (2)
thyroid	enlarged		7 (14)	4 (8)	5 (10)	2 (4)
	nodule		0 (0)	2 (4)	3 (6)	1 (2)
adrenal	enlarged		0 (0)	3 (6)	3 (6)	0 (0)
testis	atrophic		1 (2)	0 (0)	1 (2)	0 (0)
	nodule		36 (72)	40 (80)	41 (82)	40 (80)
prostate	yellow zone		0 (0)	0 (0)	0 (0)	1 (2)
prep/cli gl	nodule		0 (0)	1 (2)	0 (0)	0 (0)
brain	red zone		0 (0)	0 (0)	2 (4)	1 (2)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

: 3

Organ	Findings	Group Name NO. of Animals	Control 50 (%)	125 ppm 50 (%)	250 ppm 50 (%)	500 ppm 50 (%)
						· ·
periph nerv	brown zone		0 (0)	0 (0)	1 (2)	0 (0)
	nodule		1 (2)	0 (0)	0 (0)	0 (0)
әуе	white		4 (8)	2 (4)	3 (6)	5 (10)
Harder gl	enlarged		0 (0)	0 (0)	0 (0)	1 (2)
Zymbal gl	nodule		0 (0)	1 (2)	-1- (2)	2 (4)
muscle	nodule		0 (0)	1 (2)	0 (0)	0 (0)
oone	nodule		0 (0)	2 (4)	0 (0)	0 (0)
peritoneum	nodule		0 (0)	1 (2)	1 (2)	2 (4)
retroperit	mass		0 (0)	0 (0)	1 (2)	1 (2)
abdominal c	hemorrhage		0 (0)	1 (2)	0 (0)	1 (2)
	ascites		0 (0)	0 (0)	1 (2)	0 (0)
thoracic ca	hemorrhage		0 (0)	0 (0)	0 / (0)	1 (2)
	mass		0 (0)	0 (0)	0 (0)	1 (2)
	pleural fluid		1 (2)	2 (4)	1 (2)	0 (0)
other	ear:nodule		1 (2)	0 (0)	0 (0)	1 (2)
	upper jaw:nodule		0 (0)	0 (0)	0 (0)	1 (2)
whole body	anemic		0 (0)	1 (2)	0 (0)	0 (0)

TABLE I 2

GROSS FINDINGS : MALE DEAD AND MORIBUND ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105\)

PAGE : 1

Organ	Findings	Group Name NO. of Animals	Control 11 (%)	125 ppm 15 (%)	250 ppm 9 (%)	500 ppm 13 (%)
skin/app	nodule		0 (0)	2 (13)	0 (0)	0 (0) .
subcutis	edema		0 (0)	1 (7)	0 (0)	0 (0)
	mass		1 (9)	1 (7)	2 (22)	2 (15)
lung	white zone		0 (0)	1 (7)	1 (11)	0 (0)
	red zone		1 (9)	1 (7)	0 (0)	0 (0)
	edema		0 (0)	1 (7)	0 (0)	0 (0)
	nodule		0 (0)	1 (7)	1 (11)	0 (0)
lymph node	enlarged		0 (0)	1 (7)	0 (0)	0 (0)
spleen	enlarged		2 (18)	3 (20)	1 (11)	1 (8)
	black zone		0 (0)	0 (0)	0 (0)	1 (8)
	nodule		1 (9)	0 (0)	0 (0)	1 (8)
heart	white zone		1 (9)	0 (0)	0 (0)	1 (8)
forestomach	nodule		0 (0)	1 (7)	0 (0)	0 (0)
	ulcer		2 (18)	1 (7)	0 (0)	2 (15)
gl stomach	erosion		1 (9)	0 (0)	0 (0)	0 (0)
	thick		0 (0)	0 (0)	0 (0)	1 (8)
small intes	thick		0 (0)	1 (7)	0 (0)	0 (0)
liver	enlarged		1 (9)	0 (0)	0 (0)	1 (8)
	pale		0 (0)	1 (7)	0 (0)	0 (0)
	white zone		0 (0)	1 (7)	0 (0)	0 (0)
	red zone		0 (0)	1 (7)	0 (0)	0 (0)
	nodule		0 (0)	0 (0)	0 (0)	2 (15)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

1

-

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105\)

PAGE : 2

Organ	Findings	Group Name NO. of Animals	Control 11 (%)	125 ppm 15 (%)	250 ppm 9 (%)	500 ppm 13 (%)
liver	herniation		1 (9)	3 (20)	1 (11)	1 (8)
pancreas	nodule		0 (0)	1 (7)	0 (0)	0 (0)
kidney	nodule		0 (0)	2 (13)	0 (0)	0 (0)
	granular		5 (45)	2 (13)	1 (11)	2 (15)
urin bladd	urine:marked retention		0 (0)	1 (7)	0 (0)	1 (8)
	urine:red		0 (0)	1 (7)	0 (0)	0 (0)
pituitary	enlarged		5 (45)	3 (20)	2 (22)	2 (15)
	red zone		0 (0)	2 (13)	0 (0)	1 (8)
	nodule		0 (0)	2 (13)	0 (0)	1 (8)
thyroid	enlarged		4 (36)	1 (7)	2 (22)	1 (8)
adrenal	enlarged		0 (0)	0 (0)	1 (11)	0 (0)
testis	atrophic		0 (0)	0 (0)	1 (11)	0 (0)
	nodule		4 (36)	8 (53)	5 (56)	7 (54)
prostate	yellow zone		0 (· 0)	0 (0)	0 (0)	1 (8)
prəp/cli gl	nodule		0 (0)	1 (7)	0 (0)	0 (0)
brain	red zone		0 (0)	0 (0)	2 (22)	1 (8)
periph nerv	brown zone		0 (0)	0 (0)	1 (11)	0 (0)
	nodule		1 (9)	0 (0)	0 (0)	0 (0)
eye	white		1 (9)	0 (0)	1 (11)	1 (8)
Harder gl	enlarged		0 (0)	0 (0)	0 (0)	1 (8)
Zymbal gl	nodule		0 (0)	1 (7)	1 (11)	2 (15)
muscle	nodule		0 (0)	1 (7)	0 (0)	0 (0)

STUDY NO.:0560ANIMAL:RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE:A1SEX:MALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE		2
PAGE	•	- 3

Organ	Findings	Group Name Control NO. of Animals 11 (%)	125 ppm 15 (%)	250 ppm 9 (%)	500 ppm 13 (%)
bone	nodule	0 (0)	0 (10)	0 (0)	
peritoneum	nodule	0 (0)	2 (13) 1 (7)	0 (0) 0 (0)	0 (0) 1 (8)
retroperit	mass	0 (0)	0 (0)	1 (11)	
abdominal c	hemorrhage	0 (0)	1 (7)		0 (0)
thoracic ca	hemorrhage	0 (0)	0 (0)	0 (0) 0 (0)	1 (8) 1 (8)
thoracic ca	pleural fluid	1 (9)	2 (13)	0 (0)	0 (0)
whole body					
whole body	anemic	0 (0)	1 (7)	0 (0)	0 (0)
				х. Х	

(HPT080)

TABLE I 3

GROSS FINDINGS : MALE SACRIFICED ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

÷

 \smile

 $\sim \sim$

PAGE : 1

kin/ago noble 1 1 2 0 <td< th=""><th>Organ</th><th>Findings</th><th>Group Name NO. of Animals</th><th>39</th><th>Control (%)</th><th>35</th><th>125 ppm (%)</th><th>41</th><th>250 ррш (%)</th><th>37</th><th>500 ppm (%)</th></td<>	Organ	Findings	Group Name NO. of Animals	39	Control (%)	35	125 ppm (%)	41	250 ррш (%)	37	500 ppm (%)
Jung hito zone 1 <t< td=""><td>skin/app</td><th>nodule</th><td></td><td>1</td><td>(3)</td><td>2</td><td>(6)</td><td>0</td><td>(0)</td><td>0</td><td>(0)</td></t<>	skin/app	nodule		1	(3)	2	(6)	0	(0)	0	(0)
inde 1 1 0	subcutis	mass		8	(21)	4	(11)	10	(24)	9	(24)
splem anlarged 2 6 1 6 1 6 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 6 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>lung</td><th>white zone</th><td></td><td>2</td><td>(5)</td><td>2</td><td>(6)</td><td>1</td><td>(2)</td><td>1</td><td>(3)</td></t<>	lung	white zone		2	(5)	2	(6)	1	(2)	1	(3)
heart wite zone 0 (0) 0 (0) 1 (2) 1 (3) salivary gi nodule 1 (3) 0 (0)		nodule		1	(3)	0	(0)	2	(5)	5	(14)
salivary al nodule 1	spleen	enlarged		2	(5)	1	(3)	1	(2)	0	(0)
forestomach nodle 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0	heart	white zone		0	(0)	0	(0)	1	(2)	1	(3)
gl stomech red zone 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0	salivary gl	nodule		1	(3)	0	(0)	0	(0)	0	(0)
liver iver	forestomach	nodule		0	(0)	2	(6)	0	(0)	1	(3)
nodule 0 (0) 1 (3) 3 (7) 3 (8) rough 1 (3) 0 (0) 1 (3) 0 (0) 2 (5) 0 (0) pancreas nodule 1 (3) 6 (17) 5 (12) 2 (5) 0 (0) kidney nodule 0 (0) 0 (0) 0 (0) 1 (2) 0 (0) 0 (0) kidney nodule 0 (0)	gl stomach	red zone		0	(0)	0	(0)	0	(0)	1	(3)
nodule 0 0 0 1 (3) 3 (7) 3 (8) rough 1 (3) 0 (0) 2 (5) 0 (0) horniation 5 13 6 17 5 12 2 5 pancreas nodule 1 (3) 0 (0) 1 2 0 (0) kidney white zone 0 (0) 0 (0) 0 (0) 1 (3) odule 0 (0) 0 (0) 0 (0) 0 (0) 1 (3) runin bladd urine:red 1 (3) 0 (0) 0	liver	white zone		1	(3)	1	(3)	0	(0)	1	(3)
herniation 5 (13) 6 (17) 5 (12) 2 (5) pancreas nolule 1 (3) 0 (0) 1 (2) 0 (0) kidney hit zone 0 (0) 0 (0) 0 (0) 0 (0) nolule 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) roule 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3) roule 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3) roule 10 (0) 10 (2) 14 (34) 1 (3) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 0 (0) 0 (0) 0 (0) roule 1 (3) 1 (3) 0 (0) 0 (0) roule 1 (3) 1 (3) 1 (3) 0 (0)<	·	nodule		0	(0)	1	(3)	3	(7)	3	(8)
pancreas nodule 1 (3) 0 (0) 1 (2) 0 (0) kidney white zone 0 (0) 2 (6) 0 (0) 0 (0) nodule 0 (0) 0 (0) 0 (0) 1 (3) cyst 0 (0) 0 (0) 0 (0) 1 (3) granular 5 (13) 10 (29) 14 (34) 7 (19) urin bladd urine:red 0 (0) 1 (3) 0 (0) 2 (5) red zone 2 (5) 1 (3) 3 (7) 0 (0)		rough		1	(3)	0	(0)	2	(5)	0	(0)
kidney white zone 0		herniation		5	(13)	6	(17)	5	(12)	2	(5)
nodule 0 (0) 0 (0) 0 (0) 1 (3) cyst 0 (0) 0 (0) 0 (0) 1 (3) granular 1 (3) 10 (29) 14 (34) 1 (19) urin bladd 1 (3) 0 (0) 0 (0) 0 (10) 1 (10) pituitary enlarged 0 (0) 1 (3) 0 (0) 0 (0) 0 (10) 1 (10) 1 (10) 1	pancreas	nodule		1	(3)	0	(0)	1	(2)	0	(0)
cyst 0 (0) 0 (0) 0 (0) 1 (3) granular 5 (13) 10 (29) 14 (34) 7 (19) urin bladd urine:red 1 (3) 0 (0) 0 (0) 0 (0) pituitary enlarged 0 (0) 1 (3) 0 (0) 2 (5) red zone 2 (5) 1 (3) 3 (7) 0 (0)	kidney	white zone		0	(0)	2	(6)	0	(0)	0	(0)
granular 5 (13) 10 (29) 14 (34) 7 (19) urin bladd urine:red 1 (3) 0 (0) 0 (0) 0 (0) pituitary enlarged 0 (0) 1 (3) 0 (0) 2 (5) red zone 2 (5) 1 (3) 3 (7) 0 (0)		nodule		0	(0)	0	(0)	0	(0)	1	(3)
urin bladd urine:red 1 (3) 0 (0) 0 (0) 0 (0) pituitary enlarged 0 (0) 1 (3) 0 (0) 2 (5) red zone 2 (5) 1 (3) 3 (7) 0 (0)		cyst		0	(0)	0	(0)	0	(0)	1	(3)
pituitary enlarged 0 (0) 1 (3) 0 (0) 2 (5) red zone 2 (5) 1 (3) 3 (7) 0 (0)		granular		5	(13)	10	(29)	14	(34)	7	(19)
red zone 2 (5) 1 (3) 3 (7) 0 (0)	urin bladd	urine:red		1	(3)	0	(0)	0	(0)	0	(0)
	pituitary	enlarged		0	(0)	1	(3)	0	(0)	2	(5)
nodule 6 (15) 0 (0) 4 (10) 0 (0)				2	(5)	1	(3)	3	(7)	0	(0)
		nodule		6	(15)	0	(0)	4	(10)	0	(0)

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

rgan	Findings	Group Name NO. of Animals	39 (%	Control 6)	35	125 ppm (%)	41	250 ppm (%)	37	500 ppm (%)
hyroid	enlarged		3 (8)	3	(9)	3	(7)	1	(3)
	nodule		0 (0)	2	(6)	3	(7)	1	(3)
renal	enlarged		0 (0)	. 3	(9)	2	(5)	0	(0)
stis	atrophic		1 (3)	0	(0)	0	(0)	0	(0)
	nodule		32 (82)	32	(91)	36	(88)	33	(89)
•	white		3 (8)	2	(6)	2	(5)	4	(11)
ritoneum	nodule		0 (0)	0	(0)	1	(2)	1	(3)
roperit	mass		0 (0)	0	(0)	0	(0)	1	(3)
lominal c	ascites		0 (0)	0	(0)	1	(2)	0	(0)
oracic ca	mass		0 (0)	0	(0)	0	(0)	1	(3)
	pleural fluid		0 (0)	0	(0)	1	(2)	0	(0)
ier	ear:nodule,		1 (3)	0	(0)	0	(0)	1	(3)
	upper jaw:nodule		0 (0)	0	(0)	0	(0)	1	(3)

(HPT080)

BAIS 4

PAGE : 2

TABLE I 4

GROSS FINDINGS : FEMALE

ALL ANIMALS

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : FEMALE

Group Name 125 ppm Control 250 ppm 500 ppm Findings___ Organ____ NO. of Animals 50 (%) 50 (%) 50 (%) 50 (%) skin/app nodule 0 (0) 0 (0) 1 (2) 0 (0) erosion 0 (0) 0 (0) 0 (0) 1 (2) subcutis jaundice 0 (0) 1 (2) 0 (0) 1 (2) 10 (20) mass 11 (22) 12 (24) 6 (12) lung white zone 0 (0) 1 (2) 1 (2) 1 (2) red zone 0 (0) 0 (0) 0 (0) 1 (2) nodule 0 (0) 0 (0) 1 (2) 1 (2) lymph node enlarged 1 (2) 0 (0) 1 (2) 0 (0) spleen enlarged 3 (6) 3 (6) 5 (10) 2 (4) atrophic 0 (0) 1 (2) 0 (0) 0 (0) nodule 1 (2) 0 (0) 0 (0) 0 (0) ulcer 0 (0) 0 (0) 0 (0) 1 (2) heart white zone 0 (0) 0 (0) 1 (2) 0 (0) tongue nodule 0 (0) 0 (0) 0 (0) 1 (2) esophagus invagination 0 (0) 0 (0) 1 (2) 0 (0) forestomach nodule 0 (0) 0 (0) 0 (0) 1 (2) thick 1 (2) 1 (2) 0 (0) 1 (2) gl stomach black zone 0 (0) 0 (0) 1 (2) 0 (0)

1 (2)

0 (0)

0 (0)

2 (4)

0 (0)

0 (0)

0 (0)

0 (0)

0 (0)

0 (0)

0 (0)

1 (2)

0 (0)

1 (2)

1 (2)

1 (2)

ulcer

large intes

liver

erosion

nodule

white zone

PAGE: 4

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 5

Organ	Findings	Group Name Control NO. of Animals 50 (%)	125 ppm 50 (%)	250 ppm 50 (%)	500 ppm 50 (%)
liver	red zone	0 (0)	0 (0)	1 (2)	0 (0)
	brown zone	1 (2)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	2 (4)	0 (0)	2 (4)
	rough	0 (0)	2 (4)	2 (4)	0 (0)
	nodular	0 (0)	0 (0)	1 (2)	0 (0)
	herniation	15 (30)	8 (16)	9 (18)	8 (16)
pancreas	nodule	0 (* 0)	0 (0)	1 (2)	0 (0)
kidney	granular	0 (0)	0 (0)	0 (0)	4 (8)
	hydronephrosis	0 (0)	1 (2)	0 (0)	0 (0)
ırin bladd	red zone	0 (0)	0 (0)	0 (0)	1 (2)
	urine:marked retention	0 (0)	0 (0)	0 (0)	1 (2)
oituitary	enlarged	5 (10)	4 (8)	2 (4)	3 (6)
	red zone	10 (20)	6 (12)	7 (14)	3 (6)
	black zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodule	3 (6)	8 (16)	8 (16)	3 (6)
thyroid	enlarged	4 (8)	0 (0)	0 (0)	1 (2)
	nodule	1 (2)	0 (0)	0 (0)	1 (2)
adrenal	enlarged	1 (2)	0 (0)	0 (0)	1 (2)
ovary	enlarged	1 (2)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	0 (0)	0 (0)	1 (2)
	cyst	1 (2)	1 (2)	3 (6)	1 (2)
iterus	nodule	9 (18)	3 (6)	4 (8)	4 (8)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 6

Organ	Findings	Group Name NO. of Animals 50	0 (%	Control %) E	50	125 ppm (%)	50	250 ppm (%)	50	500 ppm (%)
uterus	invagination	0	0 (0)	0	(0)	1	(2)	0	(0)
	fluid:black		1 ((0)		(0)		(0)
prep/cli gl	nodule	0	0 (0)	Ö	(0)	1	(2)	0	(0)
brain	red zone	2	2 (4)	0	(0)	0	(0)	0	(0)
еуе	turbid	0	0 (0)	0	(0)	0	(0)	1	(2)
	white	4	4 (8)	3	(6)	4	(8)	4	(8)
Zymbal gl	nodule	0	0 (0)	0	(0)	1	(2)	2	(4)
muscle	nodule	0	0 (0)	0	(0)	2	(4)	0	(0)
bone	nodule	1	1 (2)	0	(0)	0	(0)	0	(0)
retroperit	mass	0	0 (0)	0	(0)	0	(0)	1	(2)
abdominal c	hemorrhage	1	1 (2)	0	(0)	2	(4)	0	(0)
	mass	1	1 (2)	0	(0)	0	(0)	0	(0)
	ascites	0	0 (0)	0	(0)	0	(0)	. 2	(4)
thoracic ca	pleural fluid	0	0 (0)	1	(2)	1	(2)	0	(0)
other	ear:nodule	1	1 (2)	0	(0)	0	(0)	0	(0)

TABLE I 5

GROSS FINDINGS : FEMALE DEAD AND MORIBUND ANIMALS

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name NO. of Animals	Control 12 (%)	125 ppm 7 (%)	250 ppm 9 (%)	500 ppm 13 (%)
skin/app	erosion		0 (0)	0 (0)	0 (0)	1 (8)
subcutis	jaundice		0 (0)	1 (14)	0 (0)	1 (8)
	mass		1 (8)	1 (14)	3 (33)	3 (23)
lung	red zone		0 (0)	0 (0)	0 (0)	1 (8)
lymph node	enlarged		1 (8)	0 (0)	1 (11)	0 (0)
spleen	enlarged		3 (25)	1 (14)	3 (33)	2 (15)
	atrophic		0 (0)	1 (14)	0 (0)	0 (0)
	nodule		1 (8)	0 (0)	0 (0)	0 (0)
	ulcer		0 (0)	0 (0)	1 (11)	0 (0)
sophagus	invagination		0 (0)	0 (0)	1 (11)	0 (0)
forestomach	thick		1 (8)	0 (0)	0 (0)	1 (8)
l stomach	black zone		0 (0)	0 (0)	1 (11)	0 (0)
	ulcer		1 (8)	0 (0)	0 (0)	0 (0)
	erosion		0 (0)	0 (0)	0 (0)	1 (8)
arge intes	nodule		0 (0)	0 (0)	0 (0)	1 (8)
iver	white zone		0 (0)	0 (0)	0 (0)	1 (8)
	rough		0 (0)	2 (29)	1 (11)	0 (0)
	herniation		3 (25)	0 (0)	2 (22)	2 (15)
idney	granular		0 (0)	0 (0)	0 (0)	1 (8)
	hydronephrosis		0 (0)	1 (14)	0 (0)	0 (0)
rin bladd	red zone		0 (0)	0 (0)	0 (0)	1 (8)
	urine:marked retention		0 (0)	0 (0)	0 (0)	1 (8)

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name NO. of Animals	Control 12 (%)	125 ppm 7 (%)	250 ppm 9 (%)	500 ppm 13 (%)
pituitary	enlarged		4 (33)	1 (14)	2 (22)	2 (15)
	red zone		1 (8)	1 (14)	0 (0)	0 (0)
	black zone		0 (0)	0 (0)	1 (11)	0 (0)
	nodule		0 (0)	1 (14)	1 (11)	0 (0)
thyroid	enlarged		1 (8)	0 (0)	0 (0)	0 (0)
	nodule		1 (8)	0 (0)	0 (0)	0 (0)
adrenal	enlarged		0 (0)	0 (0)	0 (0)	1 (8)
ovary	nodule		0 (0)	0 (0)	0 (0)	1 (8)
uterus	nodule		3 (25)	1 (14)	1 (11)	3 (23)
	invagination		0 (0)	0 (0)	1 (11)	0 (0)
	fluid:black		1 (8)	0 (0)	0 (_0)	0 (0)
prep/cli gl	nodule		0 (0)	0 (0)	1 (11)	0 (0)
brain	red zone		1 (8)	0 (0)	0 (0)	0 (0)
eye	turbid		0 (0)	0 (0)	0 (0)	1 (8)
	white		1 (8)	0 (0)	0 (0)	0 (0)
Zymbal gl	nodule		0 (0)	0 (0)	1 (11)	2 (15)
bone	nodule		1 (8)	0 (0)	0 (0)	0 (0)
retroperit	mass		0 (0)	0 (0)	0 (0)	1 (8)
abdominal c	hemorrhage		1 (8)	0 (0)	2 (22)	0 (0)
	mass		1 (8)	0 (0)	0 (0)	0 (0)
	ascites		0 (0)	0 (0)	0 (0)	2 (15)
thoracic ca	pleural fluid		0 (0)	1 (14)	1 (11)	0 (0)

TABLE I 6

GROSS FINDINGS : FEMALE

SACRIFICED ANIMALS

GROSS FINDINGS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

STUDY NO. : 0560

ANIMAL

· ·

SEX : FEMALE

: RAT F344/DuCrlCrlj[F344/DuCrj]

)rgan	Findings	 	Group Name NO. of Animals	38	Control (%)	43	125 ppm (%)	41	250 ppm (%)	37	500 ppm (%)
skin/app	nodule			0	(0)	1	(2)	0	(0)	0	(0)
ubcutis	mass			9	(24)	10	(23)	9	(22)	3	(8)
ung	white zone			0	(0)	1	(2)	- 1	(2)	1	(3)
	nodule			0	(0)	0	(0)	1	(2)	1	(3)
pleen	enlarged			0	(0)	2	(5)	2	(5)	0	(0)
eart	white zone			0	(0)	0	(0)	1	(2)	0	(0)
ongue	nodule			0	(0)	0	(0)	0	(0)	1	(3)
orestomach	nodule			0	(0)	0	(0)	0	(0)	1	(3)
	thick			0	(0)	1	(2)	0	(0)	0	(0)
iver	white zone			2	(5)	0	(0)	1	(2)	0	(0)
	red zone			0	(0)	0	(0)	1	(2)	0	(0)
	brown zone			1	(3)	0	(0)	0	(0)	0	(0)
	nodule			0	(0)	2	(5)	0	(0)	2	(5)
	rough			0	(0)	0	(0)	1	(2)	0	(0)
	nodular			0	(0)	0	(0)	1	(2)	0	(0)
	herniation			12	(32)	8	(19)	7	(17)	6	(16)
ancreas	nodule			0	(0)	~ 0	(0)	1	(2)	0	(0)
idney	granular			0	(0)	0	(0)	0	(0)	3	(8)
tuitary	enlarged			1	(3)	3	(7)	0	(0)	1	(3)
	red zone			9	(24)	5	(12)	7	(17)	3	(8)
	nodule	×.		3	(8)	7	(16)	7	(17)	3	(8)
yroid	enlarged			2	(8)	٥	(0)	n	(0)	1	(3)

PAGE : 3

.

GROSS FINDINGS (SUMMARY)

SACRIFICED ANIMALS (105W)

PAGE: 4

.

thyroid nodule 0 (0) 0	250 ppm %) 37	500 ppm (%)
adrenal enlarged 1 (3) 0	0) 1	(3)
ovary enlarged 1 (3) 0 0 0 cyst 1 (3) 1 2 3 0 uterus nodule 6 (16) 2 5 3 0 brain red zone 1 (3) 0 0 0 0		(0)
uterus nodule 6 (16) 2 (5) 3 (brain red zone 1 (3) 0 (0) 0 (0) 0	(0)
brain red zone 1 (3) 0 (0) 0 (7) 1	(3)
	7) 1	(3)
eve white 3 (8) 3 (7) 4 (1	0) 0	(0)
	10) 4	(11)
muscle nodule 0 (0) 0 (0) 2 (5) 0	(0)
other ear:nodule 1 (3) 0 (0) 0 (0) 0	(0)

(HPT080)

TABLE J1

ORGAN WEIGHT, ABSOLUTE : MALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name NO. of Body Weight ADRENALS TESTES HEART LUNGS KIDNEYS Animals 39 Control 394± 34 0.071± 0.013 3.177± 1.347 1.217± 0.125 1.390 ± 0.227 2.761± 0.447 125 ppm 35 0.106± 0.174 $390\pm$ 29 3.681± 1.275 1.207± 0.092 1.405± 0.359 2.880± 0.337 250 ppm 41 $380\pm$ 26 0.098 ± 0.151 $3.297\pm$ 1.276 1.191± 0.088 1.381± 0.141 2.843 ± 0.236 37 500 ppm 326± 28** 0.067± 0.018 4.008± 1.605* 1.165± 0.141* 1.321± 0.095 2.752 ± 0.264 Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett (HCL040)

BAIS 4

SEX : MALE UNIT: g ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

(HCL040)

Group Name NO. of SPLEEN LIVER BRAIN Animals Control 39 1.337 ± 1.360 11.551 ± 1.295 2.032± 0.044 125 ppm 35 0.993± 0.400* 12.328 ± 1.684 2.043± 0.044 250 ppm 41 1.240± 1.647* 12.787± 1.806** 2.027 ± 0.043 37 500 ppm 0.916± 0.178** 12.564± 2.184* 1.978± 0.047** Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett

BAIS 4

TABLE J2

ORGAN WEIGHT, ABSOLUTE : FEMALE

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

An Control 125 ppm 250 ppm	NO. of Animals	Body V	Weight	ADRENALS		OVARIES		HEAR	Т	LUNG	S .	KIDNEYS		
Control	38	264±	22	0.090±	0. 135	0.240±	0. 725	0.859±	0.061	0.928±	0.065	1.720±	0.131	
125 ppm	43	260±	24	0.068 \pm	0.008	0.115±	0. 027	0.857±	0.073	0.938±	0. 157	1.713±	0.127	
250 ppm	41	$255\pm$	27	0.068±	0. 013	0.139±	0. 126	0.882±	0.086	0.990±	0.248	1.709±	0. 128	
500 ppm	37	237±	22**	$0.065\pm$	0.005	0.118±	0. 020	0.875±	0.060	0.947±	0. 049	1.758±	0.104	,
Significant	difference ;	*:P≦ 0.(05 **	: P ≤ 0.01	<u> </u>		Test	t of Dunnett						
CL040)				·····										 BA

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	38	0.624 ± 0.289	6.690 ± 1.131	1.862± 0.040	
125 ppm	43	0.617± 0.401	6.759± 1.061	1.836± 0.036 **	
250 ppm	41	0.974± 1.775	6.904± 1.462	1.829± 0.044 * *	
500 ppm	37	0.526 ± 0.088	7.039± 0.689 ∗	1.787± 0.029**	
Significant	difference ;	* : P ≤ 0.05 **	: P ≤ 0.01	Test of Dunnett	· · · · ·
(HCL040)			2		BAIS 4

TABLE K1

ORGAN WEIGHT, RELATIVE : MALE

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE : 1

oup Name	NO. of Animals	Body Weight (g)	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	39	394± 34	0.018± 0.004	0.805± 0.334	0.311± 0.042	0.357± 0.081	0.709± 0.159
125 ppm	35	390± 29	0.027± 0.047	0.941± 0.309	0.310± 0.027	0.361± 0.091	0.740± 0.088*
250 ppm	41	380± 26	0.026± 0.043	0.868 ± 0.327	0.314± 0.027	0.364± 0.042**	0.749± 0.061**
500 ppm	37	326± 28**	0.021± 0.005**	1.237± 0.496**	0.360± 0.051**	0.408± 0.038**	0.848± 0.093**

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN		
Control	39	0.349± 0.410	2.954± 0.467	0.519± 0.044		
125 ppm	35	0.254± 0.095 ∗	3.161± 0.371	0.527± 0.041		
250 ppm	41	0.330 ± 0.456	3.368± 0.459**	0.535± 0.035		
500 ppm	37	0.283± 0.064	3.850± 0.517**	0.611± 0.048**		
Significant	difference ;	*:P≦0.05 **:	P ≤ 0.01	Test of Dunnett		
(HCL042)					·	BAIS

TABLE K2

ORGAN WEIGHT, RELATIVE : FEMALE

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE : 3

	NO. of Animals		Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS	
Control	38	264±	22	0.034± 0.049	0.094± 0.293	0.326± 0.028	0.353± 0.035	0.653± 0.053	
125 ppm	43	260±	24	0.026± 0.003	0.045± 0.012	0.330± 0.030	0.363± 0.069	0.661± 0.046	
250 ppm	41	$255\pm$	27	0.027± 0.006	0.056± 0.054	0.349± 0.052*	0.392± 0.113**	0.675± 0.064	
500 ppm	37	237±	22**	0.028± 0.004	0.050± 0.009	0.373± 0.044**	0.403± 0.039**	0.749± 0.091 * *	

.

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

roup Name	NO. of Animals	SPLEEN	LIVER	BRAIN		
Control	38	0.238± 0.116	2.532± 0.366	0.709± 0.056		
125 ppm	43	0.240± 0.163	2.599± 0.375	0.711± 0.064		
250 ppm	41	0.392± 0.724	2.719± 0.586*	0.724± 0.073		
500 ppm	37	0.224± 0.041	2.995± 0.378**	0.762± 0.078**		
Significant	difference ;	*:P≦0.05 **:	$P \leq 0.01$	Test of Dunnett	 	
ICL042)			M		 	BAIS

TABLE L1

HISTOPATHOLOGICAL FINDINGS :

NON-NEOPLASTIC LESIONS : MALE

ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~~

0rgan	No	oup Name . of Animals on Study ade <u>1</u> (%)	Control 50 <u>2 3 4</u> (%) (%) (%)	125 ppm 50 , <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Integumentar	ry system/appandage)	•				
skin/app	scab	0 (0)	<50> 1 0 0 (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
subcutis	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	epidermal cyst	0 (0)	0 0 0 (0) (0) (0)	2 0 0 0 (4)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
{Respiratory	system)	• •				
nasal cavit	hyperplasia:gland	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	eosinophilic change:olfactory epithelium		14 0 0 (28) (0) (0)	33 10 0 0 (66)(20)(0)(0)	16 25 4 0 ★★ (32) (50) (8) (0)	10 34 6 0 ** (20) (68) (12) (0)
	eosinophilic change:respiratory epitheli		0 0 0 (0) (0) (0)	28 0 0 0 (56)(0)(0)(0)	31 0 0 0 (62)(0)(0)(0)	44 0 0 0 ** (88) (0) (0) (0)
Grade (a) b (c)	1 : Slight2 : Moderate3 :a : Number of animals examined at the siteb : Number of animals with lesionc : b / a * 100difference ;* : P ≤ 0.05 ** : P ≤ 0.05		3			

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		up Name of Animals on Study	Control cudy 50		o1	125 ppm 50			pm	250 ppm 50					500 ppm 50				
rgan	Gra	de <u>1</u> (%)	2 (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	2 (%)	3 (%)	<u>4</u> (%)	 (9	6)	2 (%)	3 (%)	<u>4</u> (%)	<u> 1</u> (%)	2 (%)		3 (%)	<u>4</u> (%)
espiratory	system)																		
asal cavit	inflammation:foreign body	8 (16)	<50 7 (14) (0	0 (0)	13 (26)	<5 6 (12)	0	0 (0)) 3) (<50 8 16) (0	0 (0)	16 (32)	10 (20)		0	0 (0)
	inflammation:respiratory epithelium	0 (0)	1 (2)(0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	((0 0) (0 (0)	0 ()	0 (0)	0 (0)		0 0) (0 (0)
	inflammation:olfactory epithelium	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2	l 2) (0 0) (0 (0)	0 (0)	1 (2)	0 (0)		0 0) (0 (0)
	respiratory metaplasia:olfactory epitheli		0 (0) (0 0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	(4	; i) (0 0) (0 0)	0 (0)	8 (16)	0 (0)		0 0) (0 (0)
	respiratory metaplasia:gland	10 (20)	0 (0) (0 0)	0 (0)	12 (24)	0 (0)	0 (0)	0 (0)	8 (16	} 5) (1 2) (0 0)	0 (0)	15 (30)	0 (0)		0 0) (0 (0)
	squamous cell metaplasia:respiratory epit	helium 3 (6)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(())) (0 0) (0 0)	0 (0)	0 (0)	0 (0)		0 0) (0 (0)
	atrophy:olfactory epithelium	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	0 (0)	3 (6)	0 (0)	1 (2	2) (1 2) (0 0)	0 (0)	2 (4)	2 (4)) (1 2) (0 (0)
ng	congestion	0	<50 1 (2)(0	0	0 (0)	<5 0	0	0	0		<50 0	0	0 (0)	0	(0 (0)		0	0

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \smile

·----

	I	Group Name No. of Animals on Study Grade	1	50 2	ontro 3	4	1		50	3	4		1	50 2	250 p 0 3	4		1	2	50 :	00 рр З	4
rgan	Findings		(%) ((%)	(%)	(%)	(%)	<u>2</u> (%)	(%)	(%)	(%)	(%)	(%)	(%)		(%)	(%))	(%)	(%)
Respiratory	system)																					
ing	edema		0 0) (<50> 0 0) (0 0) (0 0)	0 (0		<50 1 2) (0	0 (0)		D D) (<50 0 0)	0	0 (0)	(0	0		0	0
	inflammation		0 0) (0 0) (0 0) (0 0)	0 (0) (1 2) (0 0)	0 (0))) (1 2)	0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0 (0)
	inflammatory infiltration		0 0) (1 2) (0 0) (0 0)	0 (0) (0 0) (0 0)	0 (0)	(1 2) (0 0)	0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0
	accumulation of foamy cells		0 0) (0 0) (0 0) (0 0)	1 (2		0 0) (0 0)	0 (0)))) (0 0) (0 (0)	0 (0)	(0 0) (0 (0)		0 0) (0
	bronchiolar-alveolar cell hyperplasia		0 0) (0 0) (0 0) (0 0)	4) (2 4) (0 0)	0* (0)	(4 8) (0 0)	0 (0)	0 (0)	(2 4) (1 (2)		0 0) (0
	inflammation:foreign body		0 0) (0 0) (0 0) (0 0)	0 (0		0 0) (0 0)	0 (0)	(1 2) (0 0) (0 [°] (0)	0 (0)	(1 2) (0 (0)		0 0) (0
Hematopoieti	c system)																					
one marrow	hemorrhage		0 0) (0 0) (0 0)	1 (2		<50 0 0) (0	0 (0))))- (<50 0 0) (0	0 (0)	(0 0) (0		0 0) (0
a> b ca)	1: Slight 2: Moderate 3 a: Number of animals examined at the sin b: Number of animals with lesion	Marked 4 : Sev e	/ere																			

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		up Name	C4 50	ontrol		5	125 ppm			250 ppm		-	500 pr	р т
gan	No. Gra	of Animals on Study de <u>1</u> (%)	2	<u>3 4</u> (%) (%)	<u> </u>	2 (%)	<u>34</u> (%) (%)	<u> </u>	50 <u>2</u> (%)	<u>3 4</u> (%) (%)	<u> </u>	2 (%)	50 <u>3</u> (%)	<u>4</u> (%)
ematopoietio	c system)													
ne marrow	increased hematopoiesis	5 (10)	<50> 0 (0) (0 0 0) (0)	3 (6)	<50 2 (4)	0> 0 0 (0) (0)	7 (14)	<50> 0 (0) (0 0 0)(0)	5 (10)	0	50> 0 (0) (0 (0)
	granulopoiesis:increased	1 (2)	0 (0) (0 0 0) (0)	0	0 (0)	0 0 (0)(0)	0 (0)	0 (0) (0 0 0) (0)	0 (0)	0 (0)	0 (0) (0 (0)
	xanthogranuloma	0 (0)	0 (0) (0 0 0) (0)	0 (0)	0	1 0 (2)(0)	0 (0)	0 (0) (0 0 0) (0)	0 (0)	0 (0)	0 (0)(0 (0)
mph node	lymphadenitis	0 (0)	<50> 1 (2) (0 0 0) (0)	0 (0)	<50 0 (0)	0> 000 (0)(0)	0(0)	<50) 0 (0) (, 0 0 0) (0).	0 . (0)	0	50> 0 (0) (0 (0)
leen	congestion	2 (4)	<50> 3 (6) (0 0 0) (0)	0 (0)	<50 2 (4)	0) 0 0 (0)(0)	0 (0)	<50) 1 (2) (0 0 0) (0)	1 (2)	0	50> 0 (0) (0 (0)
	hemorrhage	0 (0)	1 (2) (0 0 0) (0)	0 (0)	0 (0)	0 0	0 (0)	0 (0) (0 0 0) (0)	0 (0)	0 (0)	0 (0) (0 (0)
	deposit of hemosiderin	4 (8)	0 (0) (0 0 0) (0)	3 (6)	3 (6)	0 0 (0)(0)	3 (6)	0 (0) (1 0 2) (0)	4 (8)	3 (6)	0 (0) (0 (0)
a> b	 1: Slight 2: Moderate 3: M a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 	arked 4 : Severe												

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

Organ	No	oup Name of Animals on Study ade <u>1</u> (%)	Cont 50 <u>2 3</u> (%) (%)	4	(%)	125 ppn 50 <u>2 3</u> (%) (%)	4	1 2 (%) (%)	250 ppm 50 <u>3</u> (%) (<u>4</u>	<u>1</u> (%) (9	500 ppm 50 <u>2 3</u> %) (%)	<u>4</u> (%)
Hematopoieti	c system)												
pleen	fibrosis:focal	1 (2)	<50> 0 0 (0) (0)	0 (0)	2 (4) (<50> 0 0 0) (0) (0 0) (1 0	50> 0 (0) (0 0) (<50> 0 0 0) (0) (0 0)
	increased extramedullary hematopoiesis	7 (14)	30 (6)(0)	0 (0)	4 (8) (2 2 4) (4) (0 0) (1 4 2) (8)	0 (0) (0 0) (2 4) (3 1 6) (2) (0 0)
Circulatory	system)	J											
eart	myocardial fibrosis	29 (58)	<50> 1 0 (2) (0)	0 (0)	23 (46) (<50> 1 0 2) (0) (0 2 0) (4	0 1	50> 0 (0) (0 : 0) (~		<50> 2 0 4) (0) (0 0)
)igestive sy	stem}												
al cavity	squamous cell hyperplasia	0 (0)	<50> 0 0 (0) (0)	0 (0)	0 (0) (<50> 0 0 0) (0) (<; 0 0 0) (0)	50> 0 (0) (1	0 0) (<50> 0 0 0) (0) (0 0)
sophagus	inflammation	0 (0)	<50> 1 0 (2) (0)	0(0)	0 (0) (<50> 0 0 0) (0) (0 0	50> 0 (0) (<50> 0 0 0) (0) (0 0)
rade a > b c)	1: Slight 2: Moderate 3: a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100	Marked 4 : Severe	9								•	<u></u>	

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

gan	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	50 2	Contro <u>3</u> (%)	4 (%)	<u> </u>	5 (%)	125 ppm 0 <u>3 4</u> (%) (%)	<u> </u>		50 2	50 pp <u>3</u> (%)	om <u>4</u> (%)	<u> 1</u> (%	6)	5(2 (%)	500 0 <u>3</u> (%)		<u>4</u> (%)
igestive sys	stem)						<u> </u>												
omach	ulcer:forestomach	2 (4)	<50> 0 (0) (2	1 2)	2 (4)		0> 0 0 (0) (0)	0 (0)		<50> 0 0) (0 0) (0 (0)	1 (2		<50 1 2)	0> 4 (8)		1 2)
	hyperplasia:forestomach	2 (4)	1 (2)(0 0) (0 0)	3 (6)	1 (2)	0 0 (0)(0)	0 (0)	(0 0) (1 2) (0 (0)	3 (6	\$ 5) (2 4)	0 (0)		0 0)
	erosion:glandular stomach	3 (6)	0 (0) (0 0) (0 0)	4 (8)	0 (0)	0 0 (0)(0)	2 (4)	(1 2) (0 0) (0 (0)	7 (14	7 1) (0 0)	0 (0)	(0 0)
	ulcer:glandular stomach	0 (0)	3 (6) (0 0) (0 0)	1 (2)	0 (0)	1 0 (2)(0)	2 (4)	(0 0) (0 0) (0 (0)	3 (6	} 5) (1 2)	0 (0)	(0 0)
	hyperplasia:glandular stomach	3 (6)	0 (0) (0 0) (0 0)	5 (10)	0 (0)	0 0 (0) (0)	2 (4)	(0 0) (0 0) (0 (0)	4 (8	! 3) (0 0)	0 (0)		0 0)
	mineralization:glandular stomach	0 (0)	1 (2)(1 2) (0 0)	0 (0)	0 (0)	0 0 (0)(0)	0	(0 0) (0 0) (0 (0)	0 (0))) (0 0)	0 (0)	(0 0)
	dilated glands	1 (2)	0 (0) (0 0) (0 0)	0 (0)	0 (0)	0 0 (0)(0)	0 (0)	(0 0) (0 0) (0 (0)	0 (0))) (0 0)	0 (0)	(0 0)
ll intes	erosion	0	<50> 0 (0) (0	0	4 (8)	<5 0	0> 0 0 (0) (0)	0	. 1	<50> 0 0) (0	0	0		<5(0 0)	0		0

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

•

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

.

(HPT150)

STUDY NO. ANIMAL REPORT TYPE SEX	: 0560 : RAT F344/DuCr1Cr1j[F344/DuCrj] : A1 : MALE	HISTOPATHOLOGICAL F ALL ANIMALS (0-105W		NEOPLASTIC LESIONS (SUMMARY)		PAGE : 7
Organ	Findings	Group Name Cont No. of Animals on Study 50 Grade <u>1 2 3</u> (%) (%) (%)	4	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive :	system)		· .			
liver	herniation	<50> 6 0 0 (12) (0) (0)	0 (0) (<50> 9 0 0 0 (18) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)
	hemorrhage	0 0 0 (0) (0) (0)	0 (0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	necrosis:central	0 0 0 (0) (0) (0)	0 (0) (1 2 0 0 (2) (4) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 2 0 0 (0) (4) (0) (0)
	necrosis:focal	0 0 0 (0) (0) (0)	0 (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	fatty change	0 2 1 (0) (4) (2)	0 (0) (1 1 1 0 (2)(2)(2)(2)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	fatty change:central	0 0 0 (0) (0) (0)	0 (0) (0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)
	fatty change peripheral	0 1 0 (0) (2) (0)	0 (0) (0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	degeneration:central	0 0 0 (0) (0) (0)	0 (0) (1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)

1 : Slight 2 : Moderate Grade 3 : Marked 4 : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

Same

JEA	• MALE					PAGE : 8
Organ	Findings	Group Name No. of Animals on Study Grade(%)	Control 50 2 3 4 (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive s	system)					
livər	granulation	3 (6) (<50> 0 0 0 0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	clear cell focus	7 (14) (1 0 0 2) (0) (0)	11 3 0 0 (22) (6) (0) (0)	8 0 0 0 (16) (0) (0) (0)	6 0 0 0 (12) (0) (0) (0)
	acidophilic cell focus	1 (2) (1 0 0 2) (0) (0)	3 0 0 0 (6)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0))	1 0 0 0 (2) (0) (0) (0)
	basophilic cell focus	5 (10) (0 0 0 0)(0)(0)	3 1 0 0 (6)(2)(0)(0)	5 3 0 0 (10) (6) (0) (0)	5 2 0 0 (10) (4) (0) (0)
	spongiosis hepatis	3 (6)(1 0 0 2) (0) (0)	4 0 0 0 (8)(0)(0)(0)	4 0 0 0 (8)(0)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)(0)
	bile duct hyperplasia	7 (14) (42 0 0 84) (0) (0)	9 40 0 0 (18) (80) (0) (0)	2 47 0 0 (4) (94) (0) (0)	5 45 0 0 (10) (90) (0) (0)
pancreas	atrophy	9 (18) (<50> 8 1 0 16) (2) (0)	<50> 5 4 0 0 (10) (8) (0) (0)	<50> 9 2 2 0 (18) (4) (4) (0)	<50> 5 5 0 0 (10) (10) (0) (0)
	islet cell hyperplasia	1 (2) (2 0 0 4) (0) (0)	2 1 2 0 (4)(2)(4)(0)	1 1 0 0 (2) (2) (0) (0)	1 0 0 0 (2)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

				· · · · · · · · · · · · · · · · · · ·	· · · ·
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
{Urinary sys	stem)				
kidney	ectopic tissue	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	cyst	0 0 0 0 (0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)
	scar	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
	chronic nephropathy	11 22 11 5 (22) (44) (22) (10)	16 14 17 0 * (32) (28) (34) (0)	8 18 22 0 * (16) (36) (44) (0)	8 25 16 1 (16)(50)(32)(2)
	hydronephrosis	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	tubular necrosis	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	papillary necrosis	0 0 0 0 (0) (0) (0) (0)	0 0 1 0 (0) (0) (2) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
	mineralization:papilla	1 0 0 0 (2)(0)(0)(0)		0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 $\sim e^{i t}$

Sec.

		Group Name No. of Animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
rgan	Findings	Grade <u>1</u> (%)	$\frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)} \frac{4}{(\%)}$
Urinary syst	tem)					
idney	mineralization:pelvis	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)
	urothelial hyperplasia:pelvis	1 (2)	2 0 0 (4)(0)(0)	2 0 0 0 (4)(0)(0)(0)	2 1 1 0 (4) (2) (2) (0)	2 2 0 0 (4)(4)(0)(0)
	atypical tubule hyperplasia	0 (0)	1 0 0 (2)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
rin bladd	dilatation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0
	inflammation	0 (0)	0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0
Endocrine sy	vstem)					
ituitary	cyst	0	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0
rade a> b c)	1 : Slight 2 : Moderate a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100	3 : Marked 4 : Severe site				

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Cc 50	ontrol		5	125 pp 0	m		50	250 pg)	m		[500 p 50	pm
rgan	Findings	Grade <u>1</u> (%)	2 (%)	<u>3 4</u> (%) (%)	<u>1</u> (%)	2 (%)	3 (%)	<u>4</u> (%)	<u> </u>	2 (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	2 (%)	<u>3</u> (%)	<u>4</u> (%)
Endocrine sy	stem)															
ituitary			<50>			(5)	0>			<50)>			</td <td>50></td> <td></td>	50>	
	hyperplasia	2 (4)		0 0 0) (0)	3 (6)	10	0 (0) (0 0)	2 (4) (6 12) (0 (0)	0 (0)	0 (0)	1	0 (0)	0 ** (0)
	Rathke pouch	0 (0)	0 (0) (0 0 0) (0)	2 (4)	1 (2)	0 (0) (0 0)	1 (2) (0 0) (0 (0)	0 (0)	3 (6)	0 (0)	0 (0)	0 (0)
hyroid	follicular hyperplasia	0 (0)	<50> 0 (0) (0 0 0) (0)	0 (0)	<5 0 (0)	0> 0 (0) (0 0)	1 (2)(<50 0 0) (0 0)	2 (4)	0	50> 0 (0)	0 (0)
	C-cell hyperplasia	14 (28)	4 (8) (1 0 2) (0)	13 (26)	3 (6)	2 (4)(0 0)	13 (26) (6 12) (0 (0)	0 (0)	14 (28)	2 (4)	0 (0)	0 (0)
drenal	osseous metaplasia	0 (0)	<50> 1 (2) (0 0 0) (0)	0 (0)	<5 0 (0)	0> (0) (0 0)	0· (0) (<50 0 0) ()> 0 (0)	0 (0)	0 (0)	0	50> 0 (0)	0 (0)
	hyperplasia:medulla	1 (2)	5 (10) (0 0 0) (0)	1 (2)	3 (6)	0 (0) (0 0)	1 (2)(2 4) (0	0 0)	0 (0)	1 (2)	0 (0)	0 (0)
	focal fatty change:cortex	0 (0)	0 (0)(0 0 0) (0)	0 (0)	1 (2)	0 (0) (0 0)	1 (2)(0 0) (0	0 (0)	0 (0)	0 (0)	0	0 (0)

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	(50	òntro	1			125 50	ppm			5	250 g	pm			Ę	500 50	ppm	
gan	Findings	Grade <u>1</u> (%)	2 (%)	3 (%)	<u>4</u> (%)	<u> </u>	2 (%)	3 (%)	<u>4</u> (%)	(1 %)	2 (%)	3 (%)	<u>4</u> (%)		<u> </u>	<u>2</u> (%)	3 (%)		<u>4</u> (%)
eproductiv	e system)																			
estis	mineralization	1 (2)	<50) 0 (0) (0	0 0)	0 (0)	0	50> 0 (0)	0 (0)		0 0) (<5 0 0)	0	0(0)	(1 2)	<5 0 (0)	50> 0 (0)		0 0)
	arteritis	0 (0)	1 (2) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)	0 (0)		0 [.] 0)
	interstitial cell hyperplasia	15 (30)	1 (2)(0 0) (0 0)	9 (18)	1 (2)	0 (0)	0 (0)		7 4) (0 0)	0 (0)	0 (0)	(8 16)	0 (0)	0 (0)		0 0)
ostate	inflammation	2 (4)	<50) 0 (0) (0	0	0 (0)	1		0 (0)		0 0) (<5 1 2)	0	0 (0)	(0 0)	<5 1 (2)			0 0)
	hyperplasia	12 (24)	1 (2)(0 0) (0 0)	7 (14)	5 (10)	0 (0)	0 (0)	(1	6 2) (2 4)	0 (0)	0 (0)	(6 12)	1 (2)	0 (0)		0 0)
lervous sys [.]	tem}																			
ain	necrosis:focal	1 (2)	<50) 0 (0) (0	0 0)	0 (0)	0		0 (0)		0 0) (<50 0 0)	0	0 (0)	(0 0)	<5 0 (0)	50> 0 (0)		0 0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

LA .	MALE		·			PAGE :
		Group Name No. of Animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
rgan	Findings	Grade <u>1</u> (%	2 3 4	$\frac{1 2 3 4}{(\%) (\%) (\%) (\%) (\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)} (\%)$
ervous syste	em}					
ain	mineralization	0 (0	<50> 0 0 0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
	dilatation:cerebral ventricle	0 (0	1 0 0) (2) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
ecial sense	e organs/appendage)					
3	cataract	3	<50> 2 0 0) (4) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)	<50> 3 1 0 0 (6) (2) (0) (0)	<50> 4 1 0 0 (8) (2) (0) (0)
	retinal atrophy	2 (4	3 2 0) (6) (4) (0)	0 0 1 1 (0) (0) (2) (2)	0 1 1 0 (0) (2) (2) (0)	0 1 2 2 (0) (2) (4) (4)
	keratitis) (2) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)(0)
	iritis	0 (0	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)	0 1 0 0 (0) (2) (0) (0)
	degeneration:cornea	3 (6	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 1 0 (4) (0) (2) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ррм 50
gan	Findings	Grade <u>1</u> (%)	<u>2 3 4</u> (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)
mecial sense	e organs/appendage)					
9	squamous cell metaplasia:cornea	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
rdər gl	lymphocytic infiltration	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
solacr d	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 2 0 0 (0) (4) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
ody cavities	3)					
ritoneum	abscess	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
a. <u>></u> b	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100	3 : Marked 4 : Severe e site				

(HPT150)

TABLE L2

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS : MALE DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

	p Name	Control			125 ppm 15				250 ppm 9				500 ppm				
NO. Grad	of Animals on Study le <u>1</u> (%)	11 2 (%)	3 (%)	<u>4</u> (%)	<u> </u>	2	3 (%)	<u>4</u> (%)	<u> </u>	2 (%)	9 3 (%)	<u>4</u> (%)	<u> 1</u> (%)	2 (%)	13 <u>3</u>) (%)		<u>4</u> (%)
system}																	
eosinophilic change:olfactory epithelium	8 (73)	<11 1 (9) (0	0 (0)	10 (67) (<15> 1 7) (0 0)	3 (33)	< 1 (11)	9> 0 (0)	0 (0)	8 (62)	5	<13> 0) (0)) (0 0)
eosinophilic change:respiratory epithelium		0 (0) (0 0)	0 (0)	5 (33) (0 0) (0 0) (0 0)	3 (33)	0 (0)	0 (0)	0 (0)	11 (85)	0 (0)	0) (0)) (0 * 0)
inflammation:foreign body	0 (0)	1 (9)(0 0)	0 (0)	2 (13) (2 13) (0 0) (0 0)	2 (22)	0 (0)	0 (0)	0 (0)	1 (8)	2 (15)	0) (0)) (0 0)
inflammation:respiratory epithelium	0(0)	1 (9)(0 0)	0 (0)	0 (0) (0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0) (0)) (0 0)
respiratory metaplasia:olfactory epitheliu	m 1 (9)	0 (0) (0 0)	0 (0)	1 (7)(0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0) .	, 2 (15)	0 (0)	0) (0)) (0 0)
respiratory metaplasia:gland	3 (27)	0 (0) (0 0)	0 (0)	4 (27) (0 0) (0 0) (0 0)	1 (11)	0 (0)	0 (0)	0 (0)	5 (38)	0 (0)	0 (0)) (0 0)
squamous cell metaplasia:respiratory epith		0 (0) (0 0)	0 (0)	0 (0) (0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0) (0)) (0 0)

0

0 3

(0) (0) (20) (0)

0

1

0

(11) (0) (0) (0)

0

0

1

2

(8) (15) (8) (0)

1

0

0

0

0

0

{Respiratory system} nasal cavit

Organ____

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle \, a \, \rangle \qquad \ \ a$: Number of animals examined at the site

atrophy:olfactory epithelium

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	I	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 11 <u>2 3 4</u> (%) (%) (%)	125 ppm 15 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
	Thungs	(%)			(a) (a) (a)	
Respiratory	system}					
ung	congestion	0 (0)	<11> 1 0 0 (9) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
	edema	0 (0)	0 0 0 (0) (0) (0)	0 1 0 0 (0) (7) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	inflammation	0 (0)	0 0 0 (0) (0) (0)	0 1 0 0 (0) (7) (0) (0)	0 1 0 0 (0) (11) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 (0)	1 0 0 (9)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (11)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
	bronchiolar—alveolar cell hyperplasia	0 (0)	0 0 0 (0) (0) (0)	1 0 0 0 (7)(0)(0)(0)(0)	1 0 0 0 (11)(0)(0)(0)(0)	1 1 0 0 (8)(8)(0)(0)
	inflammation:foreign body	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (11)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
Hematopoieti	c system)					
one marrow	increased hematopoiesis	2 (18)	<11> 0 0 0 (0) (0) (0)	<15> 2 2 0 0 (13) (13) (0) (0)	< 9> 4 0 0 0 (44) (0) (0) (0)	<13> 4 0 0 0 (31) (0) (0) (0)
Grade (a) b (c) Significant d	 a : Number of animals examined at the sit b : Number of animals with lesion c : b / a * 100 					

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

	• •	Group Name Control No. of Animals on Study 11			125 ppm 15				250 ppm 9			500 ppm 13			
gan	Findings	Grade (9	<u>2</u> 5) (%)	3 (%)	<u>4</u> (%)	<u> </u>	2 3 4 (%) (%) (%)	<u> </u>	23 (%) (%)	<u>4</u> (%)	(%)	2 (%)	<u>3 4</u> (%) (%)		
lematopoieti	c system)														
leen	hemorrhage	((<11> 1) (9) (0	0 0) (0 0) (<15> 0 0 0 0) (0) (0)	0 (0)	< 9> 0 0 (0) (0)	0 (0)	0 (0)		0 0 0) (0)		
	deposit of hemosiderin	4 (36	= 0 i) (0) (0 0) (2 13) (3 0 0 20) (0) (0)	2 (22)	0 1 (0)(11)	0 (0)	4 (31)	3 (23) (0 0 0) (0)		
	fibrosis:focal	1) (0) (0 0) (0 0) (0 0 0 0) (0) (0)	0 (0)	0 0 (0)(0)	0 (0)	0 (0)	0 (0) (0 0 0) (0)		
	increased extramedullary hematopoiesi	s (36	+ 1 ;) (9) (0 0) (1 7) (2 2 0 13) (13) (0)	0 (0)	30 (33)(0)	0 (0)	2 (15)		1 0 8) (0)		
irculatory	system)														
art	myocardial fibrosis	7 (64	<11> 1 (9) (9) (0	0 0) (7 47) (<15> 0 0 0 0) (0) (0)	5 (56)	< 9> 0 0 (0) (0)	0 (0)	7 (54)		0 0 0) (0)		
igestive sy	stem}														
sophagus	inflammation	((<11> 1) (9) (0	0 0) (0 0) (<15> 0 0 0 0) (0) (0)	0 (0)	< 9> 0 0 (0) (0)	0 (0)	0 (0)		0 0 0) (0)		
rade a> b	1 : Slight 2 : Moderate 3 a : Number of animals examined at the s b : Number of animals with lesion	: Marked 4 : Seve ite	re												

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 4

		Group Name No. of Animals on Study	,	11	Contro	51			1 15	l25 p	pm				250 9	0 pp	n				5 13	500 g	opm	
gan	Findings	Grade	1	2 (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	(2 %)	3 (%)	<u>4</u> (%)	-	1 (%)	2 (%)		3 %)	<u>4</u> (%)		1 (%)	2 (%)	2	3 (%)	(<u>4</u> (%)
igestive sys	tem)																							
comach	ulcer:forestomach		2 8) (<11 0 0) (2	1 (9)	2 (13)		<15) 1 7) (0	0 (0)	(0 0)	0		0 0) (0 0)		1 8)	1		4		1 8)
	hyperplasia:forestomach		2 .8) (1 9) (0 0)	0 (0)	2 (13)		1 7) (0 0)	0 (0)	(0 0)	0 (0)		1 1) (0 0)	(1	2 15)	2 (15))) (0 0)		0 0)
	erosion:glandular stomach		2 .8) (0 0) (0 0)	0 (0)	1 (7)		0 0) (0 0)	0 (0)	(0 0)	1 (11)		0 0) (0 0)	(1	2 15)	0 (0)		0 0)		0 0)
	ulcer:glandular stomach		0 0) (:	2 18) (0 0)	0 (0)	1 (7)	(0 0) (1 7)	0 (0)	(1 11)	0 (0)		0 0) (0 0)		2 15)	1 (8)		0 0)		0 0)
	hyperplasia:glandular stomach	(1 9) (0 0) (0 ()	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	((0 0) (0 0)		0 0)	0 (0)		0 0)		0 0)
	mineralization:glandular stomach		0 0) (1 9) (1 9)	0 (0)	0 (0)		0 0) (0 0)	0 (0)	(0 0)	0 (0)	((0 0) (0 0)		0 0)	0		0 0)		0 0)
	dilated glands		1 9) (0 0) (0 0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	((0 0) (0 0)		0 0)	0 (0)		0 0)		0 0)
all intes	erosion		0 0) (<11 0 0) (0	0 (0)	3 (20)		<15) 0 0) (0	0	(0 0)	0	9> (0 0) (0 0)		0 0)	0	<13>))) (> 0 0)		0 0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group NameControlNo. of Animals on Study11Grade $\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$	$\begin{array}{c} 125 \text{ ppm} \\ 15 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive s	vstem)				
liver	herniation	<11> 1 0 0 0 (9) (0) (0) (0)	<15> 3 0 0 0 (20) (0) (0) (0)	< 9> 1 0 0 0 (11) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)
	hemorrhage	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (7)(0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	necrosis:central	0 0 0 0 (0) (0) (0) (0)	1 2 0 0 (7)(13)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 2 0 0 (0) (15) (0) (0)
	necrosis:focal	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)	1 0 0 0 (11)(0)(0)(0)	1 0 0 0 (8)(0)(0)(0)
	fatty change	0 1 1 0 (0) (9) (9) (0)	1 1 1 0 (7)(7)(7)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	fatty change:peripheral	0 1 0 0 (0) (9) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	degeneration:central	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (7)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	clear cell focus	1 0 0 0 (9)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)

b (c)

c:b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

PAGE: 5

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 6

Organ	Findings	Group Name Contr No. of Animals on Study 11 Grade 1 2 3 (%) (%) (%) (%)	ol 125 ppm 15 4 1 2 3 4 (%) (%) (%) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
	r inuings	(70) (70)		(%) (%) (%)	(%) (%) (%)
{Digestive s	ystem)				
liver	acidophilic cell focus	<11> 0 0 0 (0) (0) (0)	<15> 0 1 0 0 0 (0) (7) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
	basophilic cell focus	0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8)(0)(0)(0)
	spongiosis hepatis	0 1 0 (0) (9) (0)	0 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	bile duct hyperplasia	5 5 0 (45)(45)(0)	0 7 7 0 0 (0) (47) (47) (0) (0)	1 7 0 0 (11) (78) (0) (0)	3 10 0 0 (23) (77) (0) (0)
oancreas	atrophy	<11> 2 1 0 (18) (9) (0)	<15> 0 2 1 0 0 (0) (13) (7) (0) (0)	< 9> 2 0 0 0 (22) (0) (0) (0)	<13> 0 2 0 0 (0) (15) (0) (0)
	islət cəll hyperplasia	0 0 0 (0) (0) (0)	0 1 0 1 0 (0) (7) (0) (7) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)
{Urinary sys	tem)			3	
kidney	chronic nephropathy	<11> 2 1 4 (18) (9) (36)	<pre></pre>	< 9> 4 2 1 0 (44) (22) (11) (0)	<13> 5 4 4 0 (38) (31) (31) (0)
Grade 〈 a 〉 b (c)	1 : Slight 2 : Moderate a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100	3 : Marked 4 : Severe site	· · · · · · · · · · · · · · · · · · ·		

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 7

		Group Name No. of Animals on Study	,	11	Contro	51			12 15	5 рр	n				250 g 9	pm				50 13	0 ppm	1
rgan	Findings		1	2 (%)	3 (%)	<u>4</u> (%)	<u>1</u> (%)	<u>2</u> (%	. :	<u>3</u> %)	<u>4</u> (%)	(1 %)	2 (%)	3 (%)	<u>4</u> (%)		<u>1</u> (%)	2 (%)	:	<u>3</u> %)	4 (%)
Jrinary syst	em)																					
idnəy	hydronephrosis		0 0) (<11 0 0) (> 0 0)	0 (0)	1 (7)	0	<15>) (0 0) (0 0)		0 0) ((0 0)	9> 0 (0)	0 (0)	(0 0)	.0		0 0) (0 0)
	tubular necrosis		0 0) (1 9) (0 0)	0 (0)	0 (0)	0 (0)) (0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)		0 0) (0 0)
	papillary necrosis		0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)) (1 7) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)		0 0) (0 0]
	mineralization:papilla		1 9) (0 0) (0 0)	0 (0)	0 (0)	0 (0) (0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	• (0 0)	0 (0)		0 0) (0 0]
	mineralization:pelvis	(1 9) (0 0) (0 0)	0 (0)	1 (7)	0 (0)) (0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(1 8)	0 (0)		0 0) (0 0)
	urothelial hyperplasia:pelvis	(1 9) (0 0) (0 0)	0 (0)	1 (7)	0 (0)) (0 0) (0 0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)		0 0) (0 0)
	atypical tubule hyperplasia		0 0) (1 9) (0 0)	0 (0)	0 (0)	0 (0)) (0 0) (0 0)		0 0) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)		0 0) (·	0 · 0)
rin bladd	dilatation		0 0) (<11 0 0) (> 0 0)	0 (0)	0 (0)	0		0 0) (0 0)		0 0) (< · 0 0)	9> 0 (0)	0 (0)	(1 8)	0		0 0) (0 0)

<a> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

125 ppm 250 ppm 15 ۵[–]

Organ	Findings	Group Name No. of Animals on Study Grade(%	Control 11 <u>2 3 4</u>) (%) (%) (%)	$\begin{array}{c} 125 \text{ ppm} \\ 15 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
{Urinary sys	tem}					
urin bladd	inflammation	(0	<11> 0 0 0) (0) (0) (0)	<15> 1 0 0 0 (7) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
{Endocrine s	ystem)					
pituitary	hyperplasia	(C	<11> 3 0 0) (27) (0) (0)	<15> 0 2 0 0 (0) (13) (0) (0)	<pre> < 9> 0 1 0 0 (0) (11) (0) (0)</pre>	<13> 0 1 0 0 (0) (8) (0) (0)
thyroid	follicular hyperplasia	(C	<11> 0 0 0) (0) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 2 0 0 0 (15) (0) (0) (0)
	C-cell hyperplasia	3 (27	0 0 0) (0) (0) (0)	2 1 1 0 (13) (7) (7) (0)	2 0 0 0 (22) (0) (0) (0)	1 0 0 0 (8)(0)(0)(0)(0)
adrenal	hyperplasia:medulla	C (C	<11> 1 0 0) (9) (0) (0)	<15> 0 1 0 0 (0) (7) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
{Reproductive	e system)					
testis	mineralization	0 (0	<11> 0 0 0) (0) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)
Grade < a > b (c)	1 : Slight 2 : Moderate a : Number of animals examined a b : Number of animals with lesio c : b / a * 100	3 : Marked 4 : Seve at the site n	re			

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

PAGE: 8

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name Control No. of Animals on Study 11 Grade 1 2 3 4 (%) (%) (%) (%)	125 ppm 15 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
{Reproductiv	e system)				
testis	arteritis	<11> 0 1 0 0 (0) (9) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
	interstitial cell hyperplasia	6 1 0 0 (55)(9)(0)(0)	6 1 0 0 (40)(7)(0)(0)	4 0 0 0 (44)(0)(0)(0)	5 0 0 0 (38) (0) (0) (0)
prostate	inflammation	<11> 1 0 0 0 (9) (0) (0) (0)	<15> 0 1 0 0 (0) (7) (0) (0)	<pre> < 9> 0 0 0 0 (0) (0) (0) (0) </pre>	<13> 0 1 0 0 (0) (8) (0) (0)
	hyperplasia	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (7)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8)(0)(0)(0)
{Nervous sys	tem)				
brain	necrosis:focal	<11> 1 0 0 0 (9) (0) (0) (0)	<15> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
	mineralization	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (8) (0) (0)

(c) c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

{Special sense organs/appendage}

degeneration:cornea

squamous cell metaplasia:cornea

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

0

0

0

0

0 0 0

(0)(0)(0)(0)

<11>

0 0 0

(0)(0)(0)(0)

0 0

	Group Name No. of Animals on Study		11	ntrol					5	5 pp						9	0 pi						13			
Findings	Grade (1 2 (%) (%		3 %)	<u>4</u> (%)	G	1%)	2 (%)	(9		<u>4</u> (%)		1 (%)		2 (%)		3 %)	<u>4</u> (%)	•	Ī	1 (%)	2 (%		3 (%)		<u>4</u> (%)
em)																										
dilatation:cerebral ventricle	` (0 1 0) (9	<11> L (9) ((0 0) (0 0)	(0 0) (<1 0 0)	5> ((())) (0 0)	(0 0)	۲ ((0 0)	9> ((0 0)	0 (0)		(0 0) (0	<13) , ,) (> 0 0)	(0 0)
e organs/appendage)																										
cataract	(1 (9) ((<11>) ()) ((0 0) (0 0)	(0 0) (<1 0 0)	5> ((())) (0 0)	(1 11)	(< 0 0)	9> (0 0)	0 (0)		(1 8) (0 (0	<13)))) (> 0 0)	(0 0)
retinal atrophy	(0 1 0) (9	L ()) ((0 0) (0 0)	(0 0) (0 0)	(())) (0 0)	(0 0)	(0 0)	((0 0)	0		(0 0) (1	;) (0 0)	(0 0)
kəratitis	(1 (9) (() ()) ((0 0) (0 0)	(0 0) (0 0)	(())) (0 0)	(0 0)	(0 0)	()	0 0)	0 (0)		(1 8) (0	; i) (0 0)	(0 0)

0 0

1

0

0

0

(7) (0) (0) (0)

<15>

0 0

0

0

0

0

0

0

0

0

0

(0) (0) (0) (0)

< 9>

(0)(11)(0)(0)

1

0 0

0

0 0

0

0

0

0

0 1 0

0 0

0 0 0

(0)(0)(8)(0)

0

(0) (0) (0) (0)

<13>

(0)(0)(0)(0)

Organ___

brain

eye

{Nervous system}

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

inflammation

(c) c:b/a*100

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

nasolacr d

PAGE : 10

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name No. of Anima	ls on Study	Cont 11	rol		12 15	5 ррш		25 9	0 ppm		500 13	ppm
)rgan	Findings	Grade	<u>1</u> (%)	<u>2</u> 3 (%) (%)	<u>4</u> (%)	<u> </u>	2 (%) (5	<u>3 4</u> %) (%)	<u> </u>	2 (%) (<u>3 4</u> %) (%)	<u> </u>	<u>2</u> 3 (%) (%)	<u>4</u> (%)
Body cavitie	s)													
eritoneum				<11>			<15>			< 9>			<13>	
	abscess		0 (0)	0 0	0 (0)	0 (0)		00 0)(0)	0 (0) (0 0 0) (0)	1 (8) (0 0 0) (0)	0 (0)
rade a > b	1 : Slight 2 : Moderate a : Number of animals examined b : Number of animals with les c : b / a * 100	at the site	4 : Sever	e										

(HPT150)

TABLE L3

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS : MALE SACRIFICED ANIMALS

Findings_

Organ____

Group Name

Grade

No. of Animals on Study

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

39

2

(%)

1

(%)

125 ppm Control 250 ppm 500 ppm 35 41 37 3 4 2 3 4 2 3 2 4 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

{Integumentar	y system/appandage}				
skin/app	scab	<39> 0 1 0 0 (0) (3) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
subcutis	inflammation	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)
	epidermal cyst	0 0 0 0 (0)(0)(0)(0)(0)	2 0 0 0 (6)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
{Respiratory	system}				
nasal cavit	hyperplasia:gland	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)
	eosinophilic change:olfactory epithelium	26 13 0 0 (67)(33)(0)(0)	23 9 0 0 (66)(26)(0)(0)	13 24 4 0 ** (32) (59) (10) (0)	2 29 6 0 ** (5)(78)(16)(0)
	eosinophilic change:respiratory epithelium	23 0 0 0 (59) (0) (0) (0)	23 0 0 0 (66)(0)(0)(0)	28 0 0 0 (68) (0) (0) (0)	33 0 0 0 ** (89) (0) (0) (0)
<a>b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 ifference: $\pm i R \leq 0.05$ $\pm i : R \leq 0.01$ T	4 : Severe			

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE: 1

4

3

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 2

		oup Name of Animals on Study	39	Contro	$\mathbf{p1}$			35	125 p	pm					50 pp	m			37	500 p	pm
rgan		ade <u>1</u> (%)	2 (%)	, 3 (%)	<u>4</u> (%)	-	1 %)	2 (%)) 3 (%)	<u>4</u> (%)		<u> </u>	2 (%	41	3 (%)	<u>4</u> (%)	 (9	5)	2 (%)	<u>3</u> (%)	<u>4</u> (%)
Respiratory	system)																				
asal cavit	inflammation:foreign body	8 (21)	<39 6 (15) (0	0 (0)		1 1) (<38 4 11)	5> 0 (0)	0 (0)	·	7 (17)	8		0 0) (0 0)	15 (41		<37 8 22) (0	0 (0)
	inflammation:olfactory epithelium	0 (0)	0 (0) (0 (0)	0 (0)	、 (0 0) (0 0)	0 (0)	0 (0)		1 (2)	0 (0) (0 0) (0 0)	ן (_3		0 0) (0 (0)	0 (0)
	respiratory metaplasia:olfactory epithel:		0 (0) (0 (0)	0 (0)		0 0) (0 0) (0 (0)	0 (0)		2 (5)	0 (0) (0 0) (0 0)	6 (16		0 0) (0 (0)	0 (0)
	respiratory metaplasia gland	7 (18)	0 (0) (0 (0)	0 (0)	(2	8 3) (0 0)	0 (0)	0 (0)		7 (17)	1 (2) (0 0) (0 0)	10 (27		0 0) (0 (0)	0 (0)
	squamous cell metaplasia:respiratory epin	helium 1 (3)	0 (0) (0 (0)	0 (0)	(0 0) (0 0) (0 (0)	0 (0)		0 (0)	0 (0) (0 0) (0 0)	((0 0) - (0 (0)	0 (0)
	atrophy:olfactory epithelium	0 (0)	0 (0) (0 (0)	0 (0)		0 0) (0	0 (0)	0 (0)		0 (0)	1 (2) (0 0) (0 0)	1 (3		0 0) (0 (0)	0 (0)
ung	accumulation of foamy cells	0 (0)	<39 0 (0) (0	0 (0)		1 3) (<35 0 0) (0	0 (0)	·	0 (0)	0		0 0) (0 0)	0 (0		<37 0 0) (0	0 (0)
	bronchiolar-alveolar cell hyperplasia	0 (0)	0 (0) (0 (0)	0 (0)		3 9) (2 6) (0 (0)	0 (0)		3 (7)			0 0) (0 0)	1 (3		0 0) (0 (0)	0 (0)
Grade (a > b (c) Significant d	<pre>a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100</pre>	larked 4 : Severa				 								×							

Findings_

Group Name

Grade

No. of Animals on Study

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Control

3

(%) (%)

4

39

2

(%)

<u>1</u> (%)

	195				950 -		
38	125 pj 5	pm			250 p 41	pm	
	, ,	4	1	2	·· ·	4	1
4	3	4		6	Э	4	_1
(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)

{Respiratory system}

Organ____

lung	inflammation:foreign body	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)
{Hematopoieti	c system)				
bone marrow	hemorrhage	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 1 0 0 0 (3) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	(37) 0 0 0 0 0 (0) (0) (0) (0)
	increased hematopoiesis	3 0 0 0 (8)(0)(0)(0)	1 0 0 0 (3)(0)(0)(0)	3 0 0 0 (7)(0)(0)(0)	1 0 0 0 (3)(0)(0)(0)
	granulopoiesis:increased	1 0 0 0 (3)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	xanthogranuloma	0 0 0 0 (0) (0) (0) (0)	0 0 1 0 (0) (0) (3) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
lymph node	lymphadenitis	<39> 0 1 0 0 (0) (3) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100	4 : Severe			

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

BAIS4

PAGE : 3

4

500 ppm

3

(%) (%)

37

2

(%)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 4

		roup Name lo. of Animals on Study	(39	Control			3	_125 p	pm) ppm			c	500	ppm
rgan		irade(%)	2	3	<u>4</u> (%)	<u> 1</u> (%)	3 2 (%)	5 3 (%)	<u>4</u> (%)	<u> </u>	2 (%)	41 3 (9			<u>1</u> (%)	3 2 (%)	37 <u>3</u> (%)	4 (%)
lematopoietic	; system)																	
pleen	congestion	2 (5)	<39) 3 (8) (0	0 0)	0 (0)	<3 2 (6)	0	0 (0)	0 (0)	1	(41) () 0)) (0)	(1 3) (0	37> 0 (0)	0 (0)
	deposit of hemosiderin	0 (0)	0 (0) (0 0) (0 0)	1 (3)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	(() 0)) (0)	(0 0) (0 0)	0 (0)	0 (0)
	fibrosis:focal	0 (0)	0 (0) (0 0) (0 0)	2 (6)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	(() 0)))(0)	(0 0) (0 0)	0 (0)	0 (0)
	increased extramedullary hematopoiesis	3 (8)	2 (5)(0 0) (0 0)	3 (9)	0 (0)	0(0)	0 (0)	1 (2)	1 (2)	(() 0))(0)	(0 0) (2 5)	0 (0)	0 (0)
Circulatory s	system)																	
eart	myocardial fibrosis	22 (56)	<39) 0 (0) (0	0 0)	16 (46)	<3 1 (3)	0	0 (0)	15 (37)	1) 0))(0)		13 35) (1	87> 0 (0)	0
)igestive sys	tem)									×								
ral cavity	squamous cell hyperplasia	0 (0)	<39) 0 (0) (0	0 0)	0 (0)	<3 0 (0)	0	0 (0)	0 (0)	0	41> (() 0)) (0)	(1 3) (0	87> 0 (0)	0 (0)
a≻ b c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 fference; *: P ≤ 0.05 **: P ≤												·					

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study		Con 39				3							1	0 pp					37		
rgan	Findings	Grade <u>1</u> (%)	2 (%)	<u>3</u> (%)	<u>4</u> (%)	(9)	(%)	<u>3</u> (%)			<u>(%</u>)	2 (%)	(3 %) 	<u>4</u> (%)		(%)	(9	<u>z</u> %)	3 (%)	
Digestive sy	stem}																						
tomach	hyperplasia:forestomach	0 (0)	<: 0 (0)	39> 0 (0)	0 0)	1		0	5> 0 (0)	0) (0)		0 (0		0	1) (0 0) (0 0)	(1 3)		<37 0 0) (> 0 (0)	(
	erosion:glandular stomach	1 (3)	0 (0)	0 (0)	0 0)	3 (9) (0 0)	0 (0)	0) (0)		2 (5) (0 0)	((0 0) (0 0)	(5 14)	()	0 0) (0 (0)	(
	ulcer:glandular stomach	0 (0)	1 (3)	0 (0)	0 0)	(() (0 0)	0 (0)	0) (0)		1 (2) (0 0)		0 0) (0 0)	(1 3)	(() D) (0 (0)	(
	hyperplasia:glandular stomach	2 (5)	0 (0)	0 (0)	0 0)	5 (14) (0 0)	0 (0)	0) (0)		2 (5) (0 0)	((0 0) (0 0)	(4 11)	()) 0) (0 (0)	(
all intes	erosion	0 (0)	0	39> 0 (0)	0 0)	1 (3		<3 0 0)	0	0) (0)	1	0 (0) (0		0 0) (0 0)	(0 0)		<37 0 0) (> 0 (0)	(
ver	herniation	5 (13)	0	39> 0 (0)	0 0)	6 (17) (<3 0 0)	0	0 (0)		5 (12		0		D D) (0 0)	(.	2 5)		<37 0 0) (> 0 (0)	(
	fatty change	0 (0)	1 (3)	0 (0)	0 0)	(() (0 0)	0 (0)	0 (0)		0) (0 0)		D D) (0 0)	(0 0)		0 0) (0 (0)	(

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 6

						(%)	(%)	(%)		(%)	(%)	(%)	(%)	(%)	(%)	(9
tty change:central	. (0 0		0 (0)	0 (0)	<35 0 (0)· (0	0 (0)	0 (0)	<4 0 (0)	0	0 (0)	1 (3)	0	37> 0 (0)	((
anulation	. (0 (0)	0 (0)	0 (0) (0 (0) (0 (0)	2 (5)	0 (0)	0 (0) (0 (0)	0 (0)	0 (0)	0 (0)	((
ear cell focus	(11 (31)	3 (9)(0 (0) (0 (0)	7 (17)	0 (0)	0 (0) (0 (0)	6 (16)	0 (0)	0 (0)	((
idophilic cell focus	(0	2 (6)	0 (0) (0 (0) (0 (0)	1 (2)	0 (0)	0 (0) (0 (0)	1 (3)	0 (0)	0 (0)	((
sophilic cell focus	(0 (0)	3 (9)	1 (3)(0 (⁻ 0) (0 (0)	5 (12)	3 (7)	0 (0) (0 (0)	4 (11)	2 (5)	0 (0)	((
ongiosis hepatis	(0 (0)	4 (11)	0 (0) (0 (0) (0 (0)	4 (10)	0 (0)	0	0 (0)	1 (3)	0 (0)	0 (0)	((
le duct hyperplasia		2 37 5) (95)		0 (0)	2 (6)	33 (94) (0 (0) (0 (0)	1 (2)	40 (98)	0 (0) (0 (0)	2 (5)	35 (95)	0 (0)	((
rophy	(7 7	1	0 (0)	3 (9)	3	0	0 (0)	7 (17)	2	2	0 (0)	5 (14)	3	0	((
	anulation ear cell focus idophilic cell focus sophilic cell focus ongiosis hepatis le duct hyperplasia	(anulation (ear cell focus (idophilic cell focus (sophilic cell focus (ongiosis hepatis (le duct hyperplasia (rophy (anulation $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ear cell focus $\begin{pmatrix} 6 \\ 1 \\ (15) \\ (3) \end{pmatrix}$ idophilic cell focus $\begin{pmatrix} 1 \\ 15 \\ (3) \\ (3) \end{pmatrix}$ sophilic cell focus $5 \\ (13) \\ (0) \end{pmatrix}$ ongiosis hepatis $\begin{pmatrix} 3 \\ 0 \\ (8) \\ (0) \end{pmatrix}$ le duct hyperplasia $\begin{pmatrix} 2 \\ 37 \\ (5) \\ (95) \end{pmatrix}$ rophy $\begin{pmatrix} 7 \\ (18) \\ (18) \end{pmatrix}$	anulation 3 0 0 ear cell focus 6 1 0 idophilic cell focus 1 1 0 idophilic cell focus 5 0 0 sophilic cell focus 5 0 0 ongiosis hepatis 3 0 0 le duct hyperplasia 2 37 0 rophy 7 7 1 (18) (18) (3) (3)	anulation $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ anulation $\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ear cell focus $\begin{pmatrix} 6 & 1 & 0 & 0 \\ (15) \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ idophilic cell focus $\begin{pmatrix} 1 & 1 & 0 & 0 \\ (3) \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$ sophilic cell focus $5 & 0 & 0 & 0 \\ (13) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$ ongiosis hepatis $3 & 0 & 0 & 0 \\ (8) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$ le duct hyperplasia $2 & 37 & 0 & 0 \\ (5) & (95) \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$ rophy $7 & 7 & 1 & 0 \\ (18) & (18) & (3) & (0) \end{pmatrix}$	anulation $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ear cell focus $\begin{pmatrix} 6 & 1 & 0 & 0 & 11 \\ (15) & (3) & (0) & (0) & (0) & (31) \end{pmatrix}$ idophilic cell focus $\begin{pmatrix} 1 & 1 & 0 & 0 & 2 \\ (3) & (3) & (0) & (0) & (6) & (6) \end{pmatrix}$ sophilic cell focus $\begin{pmatrix} 5 & 0 & 0 & 0 & 3 \\ (13) & (0) & (0) & (0) & (9) \end{pmatrix}$ ongiosis hepatis $\begin{pmatrix} 3 & 0 & 0 & 0 & 4 \\ (8) & (0) & (0) & (0) & (11) \end{pmatrix}$ le duct hyperplasia $\begin{pmatrix} 2 & 37 & 0 & 0 & 2 \\ (5) & (95) & (0) & (0) & (6) \end{pmatrix}$ rophy $\begin{pmatrix} 39 \\ 7 & 7 & 1 & 0 & 3 \\ (18) & (18) & (3) & (0) & (9) \end{pmatrix}$	anulation $\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	anulation $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	anulation $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	anulation $\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 88 & 0 & 0 & 0 & 0 \\ 150 & 0 & 0 & 0 & 0 \\ 155 & 0 & 0 & 0 & 0 \\ 135 & 0 & 0$	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

250 mm

Organ	Findings	Group Name No. of Animals on Stud Grade	ıdy <u>1</u> (%)	39 <u>2</u> (%)	Contr) <u>3</u> (%)	rol <u>4</u> (%)	<u> </u>	2 (%)	125 35 <u>3</u> (%)	0.000000000000000000000000000000000000	<u> </u>	4 2 (%)	250 p 1 3 (%)	opm <u>4</u> (%)	(1(%)	3 2 (%)	500 7 <u>3</u> (%)	4	<u>4</u> %)
{Digestive sys	stem}																			
pancreas	islet cell hyperplasia	(1 (3) (<39 2 (5) (0	0 (0)	1 (3)	< 1 (3)	35> 1 (3)	0 (0)	1 (2)		1> 0 (0)	0 (0)		0 0) (<3 0 0)	7> 0 (0)		0 0)
{Urinary syste	em)																			
kidney	ectopic tissue	. (0 (0) (<39 0 (0) (0	0 (0)	0 (0)	1	35> 0 (0)	0 (0)	0 (0)	0	1> 0 (0)	0 (0)		0 0) (0	7> 0 (0))))
	cyst	(0 (0) (0 (0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)		1 3) (0 0)	0 (0)	() ((
	scar	(0 (0) (0 (0) (0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	()))
	chronic nephropathy	(9 (23) (21 (54) (7 (18)	2 (5)	9 (26)	12 (34)	14 (40)	0 (0)	4 (10)	16 (39)	21 (51)	0 ** (0)			21 57)	12 (32)	1	
	mineralization:pelvis	· (0 (0) (0	0 (0)	0 (0)	2 (6)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)		1 3) (0 0)	0 (0)	(
	urothelial hyperplasia:pelvis	(0 (0) (2 (5) (0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	2 (5)	1 (2)	1 (2)	0 (0)		2 5) (2 5)	0 (0)	(

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

PAGE: 7

SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 8

Organ	Findings	Group Name Control No. of Animals on Study 39 Grade 1 2 3 4 (%) (%) (%) (%) (%)	125 ppm 35 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 41 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 37 <u>1 2 3 4</u> (%) (%) (%) (%)
{Endocrine sy	rstem)				
pituitary	cyst	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 1 0 0 0 (3) (0) (0) (0)	<41> 1 0 0 0 (2) (0) (0) (0)	<37> 0 1 0 0 (0) (3) (0) (0)
	hyperplasia	2 6 0 0 (5)(15)(0)(0)	3 8 0 0 (9)(23)(0)(0)	2 5 0 0 (5)(12)(0)(0)	0 0 0 0 * (0) (0) (0) (0)
	Rathke pouch .	0 0 0 0 (0) (0) (0) (0)	2 1 0 0 (6)(3)(0)(0)	1 0 0 0 (2)(0)(0)(0)	3 0 0 0 (8)(0)(0)(0)
thyroid	follicular hyperplasia	<39> 0 0 0 0 (0) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 1 0 0 0 (2) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	C-cell hyperplasia	11 4 1 0 (28) (10) (3) (0)	11 2 1 0 (31) (6) (3) (0)	11 6 0 0 (27) (15) (0) (0)	13 2 0 0 (35)(5)(0)(0)
adrenal	osseous metaplasia	<39> 0 1 0 0 (0) (3) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia:medulla	1 4 0 0 (3)(10)(0)(0)	1 2 0 0 (3)(6)(0)(0)	1 2 0 0 (2)(5)(0)(0)	0 1 0 0 (0) (3) (0) (0)

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

focal fatty change:cortex

Organ_____ Findings__

{Endocrine system}

{Reproductive system}

adrenal

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Froup Name Ho. of Animals on S	tudy	- 39	Contro	5 1			38	125 p 5	pm			41	250	ppm					37	500	ppm	I
Frade	_1	2	3	4	_1		2	3	4	_1		2	3		4		_1		2	3		4
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	()	6)	(%)	((%)		(%)	(¥)	(%)		(%)
		<39	0				<3	55				<41	\$						<37	``		
	0	0	0	0	C		1	0	0	1)	0		0		0		0	Ó O		0
	(0)			(0)) (3)			(2)		,)) (0)	, (0)) (0)	(0)
		<39)>				<35	5>				<41	>						<37	>		
	1	0	0	0	C		0	0	0	0)	0		0		0		0	0		0

.

testis	mineralization	<39> 1 0 0 0 (3) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<11> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	interstitial cell hyperplasia	9 0 0 0 (23)(0)(0)(0)	3 0 0 0 (9)(0)(0)(0)	3 0 0 0 (7)(0)(0)(0)	3 0 0 0 (8)(0)(0)(0)
prostate	inflammation	<39> 1 0 0 0 (3) (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 1 0 0 (0) (2) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia	12 1 0 0 (31) (3) (0) (0)	6 5 0 0 (17)(14)(0)(0)	6 2 0 0 (15) (5) (0) (0)	5 1 0 0 (14) (3) (0) (0)

{Special sense organs/appendage}

eye	<39>	<35>	<41>	<37>
cataract	2 2 0 0	1 1 0 0	2 1 0 0	3 1 0 0
	(5)(5)(0)(0)	(3)(3)(0)(0)	(5)(2)(0)(0)	(8)(3)(0)(0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

PAGE: 9

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Organ	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 39 2 3 4 (%) (%) (%)	125 ppm 35 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 41 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 37 <u>1 2 3 4</u> (%) (%) (%) (%)
{Special sens	se organs/appendage}					
еуе	retinal atrophy	2 (5)	<39> 2 2 0 (5) (5) (0)	<35> 0 0 1 1 (0) (0) (3) (3)	<41> 0 1 1 0 (0) (2) (2) (0)	<37> 0 0 2 2 (0) (0) (5) (5)
	keratitis	0 (0)	1 0 0 (3) (0) (0)	· 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	iritis	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (3) (0) (0)
	degeneration:cornea	3 (8)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (5)(0)(0)(0)
Harder gl	lymphocytic infiltration	0 (0)	<39> 0 0 0 (0) (0) (0)	<35> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)
nasolacr d	inflammation	0 (0)	<39> 0 0 0 (0) (0) (0)	<35> 1 0 0 0 (3) (0) (0) (0)	<41> 0 1 0 0 (0) (2) (0) (0)	<37> 0 1 0 0 (0) (3) (0) (0)

2 : Moderate Grade 1 : Slight 3 : Marked 4 : Severe

a : Number of animals examined at the site <a>>

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

TABLE L4

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS : FEMALE ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

rgan	Ν	Group Name No. of Animals on Study Grade <u>1</u> (%)	Contro 50 <u>2 3</u> (%) (%)	1 (%)	<u> </u>	125 50 <u>2 3</u> (%) (%	i ppm <u> 4</u> 5) (%)	<u> </u>	2 50 2 (%)	250 pp <u>3</u> (%)	0m 4 (%)	<u> 1</u> (%)	2	50 3	<u>4</u> (%)
Integumentary	/ system/appandage)														
ubcutis	abscess	0 (0)	<50> 0 0 (0) (0) (0 0)	1 (2) (<50> 0 0 0) (0) (0)	0 (0) (<50> 0 0)_(, 0 0) (0 (0)	1 (2)	< 0 (0)		0 0)
Respiratory s	system)														
asal cavit	goblet cell hyperplasia	0 (0)	<50> 0 0 (0) (0) (0 0)	0 (0) (<50> 0 0 0) (0	0) (0)	0 (0) (<50> 1 2) (, 0 0) (0 (0)	0 (0)			0 0)
	eosinophilic change:olfactory epitheliu		28 20 (56)(40)(0 0)	1 (2)(, 0 () (0)	0 (22 44) (0 (0)		21 (42)		0 0)
	eosinophilic change:respiratory epithel		7 0 (14) (0) (0 0)	41 (82) (70 14)(0		38 (76) (11 22) (0 0) (0 (0)	37 (74)	11 (22)	0 (0)	0 0)
	inflammation:foreign body	2 (4)	0 0 (0) (0) (0 0)	1 (2)(0 0 0) (0) 0)) (0)	0 (0) (0 0) (0 0) (0 (0)	2 (4)	0 (0)	0 (0)	0 0)
	inflammation:respiratory epithelium	1 (2)	0 0 (0) (0 0)	1 (2)(1 0 2) (0) 0)) (0)	0 (0) (1 2) (0 0) (0 (0)	1 (2)	0 (0)	0 (0)	0 0)
	respiratory metaplasia:olfactory epithe		0 0 (0) (0) (0 0)	3 (6)(0 0 0) (0	0) (0)	5 (10) (0 0) (0 0) (0 (0) .	3 (6)	0	0 (0)	0 0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

PAGE: 15

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

rgan	Findings	Group Name No. of Animals on Study Grade(%)	Control 50 2 3 4 (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
Respiratory	system}					
asal cavit	respiratory metaplasia:gland	14 (28)	<50> 0 0 0 (0) (0) (0)	<50> 15 2 0 0 (30) (4) (0) (0)	<50> 16 0 0 0 (32) (0) (0) (0)	<50> 16 1 0 0 (32) (2) (0) (0)
	atrophy:olfactory epithelium	0 (0)	0 0 0 (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
arynx	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
ung	edema	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	accumulation of foamy cells	1 (2)	0 0 0 (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 1 0 0 (2)(2)(0)(0)
	bronchiolar-alveolar cell hyperplasia	1 (2)	0 0 0 (0) (0) (0)	2 0 0 0 (4)(0)(0)(0)	3 0 0 0 (6)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c: b / a * 100

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

rgan		Group Name No. of Animals on Study Grade <u>1</u> (%)	Con 50 <u>2 3</u> (%) (%)	trol 4) (%)	<u> 1 (%)</u>	125 r 50 <u>2 3</u> (%) (%)	ppm <u>4</u> (%)	<u> </u>	250 50 <u>2 3</u> (%) (%) ppm <u>3 4</u> 6) (%)	<u> </u>	50 2	500 ppm <u>3</u> (%)	<u>4</u> (%)
espiratory	system)													
ng	inflammation:foreign body	0 (0)	<50> 0 0 0) (0)		0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 1 0 (2)(0) 0)) (0)	0 (0)	<50> 0 (0) (0	0 0)
amatopoieti	c system}													
ne marrow	granulation	0 (0)	<50> 0 0 0) (0)		3 (6) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 0 0 (0) (0		0 (0)	<50> 0 (0) (0	0 0)
	increased hematopoiesis	6 (12)	1 0 2) (0)		4 (8)(1 0 2) (0)	0 (0)	4 (8)(20 (4)(0) (0)	6 (12)	1 (2)(0 0)
een	atrophy	0 (0)	<50> 0 0 0) (0)		0 (0) (<50> 0 1 0) (2)	0 (0)	0 (0)(<50> 0 0 (0) (0		0 (0)	(0) (0	0 0)
	congestion	0 (0)	0 0 0) (0)	0	0	0 0 0) (0)	0 (0)	1 (2)(0 0 (0) (0) 0))(0)	0 (0)	1 (2)(0 0)
	deposit of hemosiderin	28 (56)	6 0 12) (0)		30 (60) (7 0 14) (0)	0 (0)	25 (50) (12 0 (24) (0) 0))(0)	33 (66)	9 (18) (0 0)
a > > ' :)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤													

BAIS4

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

)rgan	Ν	roup Name lo. of Animals on Study rade <u>1</u> (%)	Contro 50 <u>2 3</u> (%) (%)	$\frac{1}{\frac{4}{(\%)}}$ $\frac{1}{(\%)}$	125 ppm 50 <u>2 3 4</u> (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
	rindings	(%)	(76) (76)	(%) (%)	(%) (%) (%)	(%) (%) (%) (%)	
[Hematopoiet	ic system)						
pleen	fibrosis:focal	0 (0)	<50> 0 0 (0) (0) (0 2 0) (4)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	increased extramedullary hematopoiesis	8 (16)	3 1 (6)(2)(0 2 0) (4)	4 0 0 (8)(0)(0)	3 4 1 0 (6)(8)(2)(0)	4 4 2 0 (8)(8)(4)(0)
Circulatory	system)						
eart	necrosis:focal	0 (0)	<50> 0 0 (0) (0) (0 0 0) (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	myocardial fibrosis	6 (12)	0 0 (0)(0)(0 11 0) (22)	0 0 0 (0) (0) (0)	5 0 0 0 (10)(0)(0)(0)(0)	8 0 0 0 (16)(0)(0)(0)
Digestive s	ystem)						
sophagus	inflammation	0 (0)	<50> 0 0 (0) (0) (0 0 0) (0)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
rade a> b c)	1: Slight 2: Moderate 3: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a*100	Marked 4 : Severe e	, ,			· · · · · · · · · · · · · · · · · · ·	

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

	· · · · · · · · · · · · · · · · · · ·	·····				·
rgan	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 50 <u>2 3 4</u> (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
)igestive sys	item)					
tomach	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	ulcer:forestomach	1 (2)	0 0 1 (0) (0) (2)	0 2 0 0 (0) (4) (0) (0)	0 1 1 0 (0) (2) (2) (0)	3 1 0 0 (6)(2)(0)(0)
	hyperplasia:forestomach	2 (4)	0 0 0 (0) (0) (0)	1 1 1 0 (2) (2) (2) (0)	0 1 0 0 (0) (2) (0) (0)	3 0 0 0 (6)(0)(0)(0)
	erosion:glandular stomach	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	ulcer:glandular stomach	2 (4)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 2 0 0 (2) (4) (0) (0)	2 0 0 0 (4)(0)(0)(0)
	hyperplasia:glandular stomach	1 (2)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
mall intes	erosion	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
ver	herniation	15 (30)	<50> 0 0 0 (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 9 0 0 0 (18) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) .c:b/a*100

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

BAIS4

PAGE: 19

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study			250 ppm 50	500 ppm 50		
gan	Findings	Grade <u>1</u> (%)	2 3 4) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	1 2 3 4 (%) (%) (%) (%)		
gestive	system)							
ver	peliosis-like lesion	1	<50> 0 0 0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)		
	necrosis:central	1 (2)	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 2 0 0 (0) (4) (0) (0)	4 0 0 0 (8) (0) (0) (0)		
	necrosis:focal	3 (6)	2 0 0) (4) (0) (0)	2 0 0 0 (4)(0)(0)(0)	3 0 0 0 (6)(0)(0)(0)	2 1 0 0 (4) (2) (0) (0)		
	fatty change	0 (0)	2 0 0) (4) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)		
	fatty change:central		0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)		
	lymphocytic infiltration	0 (0)	2 0 0) (4) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)		
	granulation	7 (14)	3 0 0) (6) (0) (0)	5 1 0 0 (10) (2) (0) (0)	5 0 0 0 (10) (0) (0) (0)	10 0 0 0 (20) (0) (0) (0)		
	inflammatory cell nest	1 (2)	0 0 0	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)		

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

PAGE : 20

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	No. of Animals on Study 50		250 ppm 50	500 ppm 50		
gan	Findings	Grade <u>1</u> (%)	<u>2 3 4</u>) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)		
igestive s	system)							
ver	fibrosis	0 (0)	<50> 0 0 0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)		
	clear cell focus .	1 (2)	1 0 0 (2)(0)(0)	1 0 0 0 (2)(0)(0)(0)	3 0 0 0 (6)(0)(0)(0)	0 1 0 0 (0) (2) (0) (0)		
	basophilic cell focus	17 (34)	5 0 0 (10) (0) (0)	21 4 0 0 (42)(8)(0)(0)	22 0 0 0 (44) (0) (0) (0)	9 1 0 0 (18) (2) (0) (0)		
	bile duct hyperplasia	7 (14)	2 0 0 (4)(0)(0)	6 1 0 0 (12) (2) (0) (0)	3 1 0 0 (6)(2)(0)(0)	1 1 0 0 (2)(2)(0)(0)		
icreas	atrophy	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 4 1 0 0 (8) (2) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)		
	islet cell hyperplasia	0 (0)	0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 (0)(0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)		
Jrinary sys	stem}							
dney	chronic nephropathy	39 (78)	<50> 7 0 0 (14) (0) (0)	<50> 39 7 0 0 (78) (14) (0) (0)	<50> 38 6 1 0 (76) (12) (2) (0)	<50> 36 10 3 0 (72) (20) (6) (0)		

<a> a : Number of animals examined at the site

b b : Number of animals with lesion

c:b / a * 100 (c)

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE: 21

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name	Control	125 ppm	250 ppm	500 ppm
)rgan	Findings	No. of Animals on Study Grade <u>1</u> (%)	50 2 3 4	50 <u>1 2 3 4</u> (%) (%) (%) (%)	50 <u>1 2 3 4</u> (%) (%) (%) (%)	50 <u>1 2 3 4</u> (%) (%) (%) (%)
Urinary syst	em)					
(idney	hydronephrosis	0 (0)	<50> 0 0 0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	tubular necrosis	0 (0)	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
	mineralization papilla	2 (4)	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4)(0)(0)(0)
	mineralization:pelvis	0 (0)	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	3 0 0 0 (6)(0)(0)(0)	4 0 0 0 (8) (0) (0) (0)
	desquamation:pelvis	1 (2)	0 0 0) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	2 1 0 0 (4)(2)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	urothelial hyperplasia:pelvis	0 (0)	1 0 0) (2) (0) (0)	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	atypical tubule hyperplasia	0 (0)	0 0 0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
rin bladd	dilatation	0 (0)	<50> 0 0 0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

)rgan	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 50 2 3 4 (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
Urinary syst	em}					
ırin bladd	transitional cell hyperplasia	0 (0)	<50> 1 0 0 (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Endocrine sy	rstem)					
ituitary	angiectasis	1 (2)	<50> 0 0 0 (0) (0) (0)	<50> 0 2 0 0 (0) (4) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
	cyst	4 (8)	4 0 0 (8)(0)(0)	4 0 0 0 (8)(0)(0)(0)	6 1 0 0 (12) (2) (0) (0)	3 0 0 0 (6)(0)(0)(0)
	hyperplasia	7 (14)	7 0 0 (14) (0) (0)	11 6 0 0 (22) (12) (0) (0)	5 6 0 0 (10) (12) (0) (0)	7 6 0 0 (14) (12) (0) (0)
	Rathke pouch	2 (4)	0 0 0 (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	2 0 0 0 (4)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)(0)
yroid	follicular hyperplasia	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)

b b : Number of animals with lesion

(c) c:b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study Grade <u>1</u>	50 2	ontrol <u>34</u>	125 ppm 50 <u>1 2 3 4</u>	250 ppm 50 <u>1 2 3 4</u>	500 ppm 50 <u>1 2 3 4</u>
)rgan	Findings	(%)	(%)	(%) (%)	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%)
Endocrine sy	stem)						
hyroid	C-cell hyperplasia	13 (26)	<50> 3 (6) (0 0 0) (0)	<50> 13 3 1 0 (26) (6) (2) (0)	<50> 8 5 0 0 (16) (10) (0) (0)	<50> 11 4 0 0 (22) (8) (0) (0)
drenal .	peliosis-like lesion	0 (0)	<50> 1 (2) (0 0 0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia:cortical cell	0 (0)	0 (0) (0 0 0) (0)	0 1 0 0 (0) (2) (0) (0)	1 1 0 0 (2)(2)(0)(0)	0 0 0 0 (0) (0) (0) (0)
	hyperplasia:medulla	0 (0)	0 (0) (0 0 0) (0)	0 0 0 0 (0) (0) (0) (0)	1 1 0 0 (2)(2)(0)(0)	1 0 0 0 (2)(0)(0)(0)
	focal fatty change:cortex	8 (16)	4 (8)(0 0 0) (0)	5 4 0 0 (10) (8) (0) (0)	5 2 0 0 (10) (4) (0) (0)	10 3 0 0 (20)(6)(0)(0)
{Reproductive	system)						
ovary	cyst	1 (2)	<50> 0 (0) (0 0 0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

.

		Group Name No. of Animals on Study Grade 1	Control 50 2 3 4	125 ppm 50 1 2 3 4	250 ppm 50 1 2 3 4	500 ppm 50 1 2 3 4
rgan	Findings	(%)	<u>2 3 4</u> (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)
Reproductive	system)					
terus	cystic endometrial hyperplasia	5 (10)	<50> 2 0 0 (4) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 1 2 0 0 (2) (4) (0) (0)	<50> 6 1 0 0 (12) (2) (0) (0)
Nervous syste	m }					
rain	hemorrhage	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Special sense	organs/appendage)					
7e	cataract	2 (4)	<50> 1 0 0 (2) (0) (0)	<50> 0 3 0 0 (0) (6) (0) (0)	<50> 0 4 0 0 (0) (8) (0) (0)	<50> 1 3 0 0 (2) (6) (0) (0)
	retinal atrophy	1 (2)	0 2 0 (0) (4) (0)	0 0 1 2 (0) (0) (2) (4)	0 0 3 1 (0) (0) (6) (2)	0 0 3 1 (0) (0) (6) (2)
	keratitis	0(0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

rgan	Findings	Group Name No. of Animals on Study Grade(%	Control 50 <u>2 3 4</u> 6) (%) (%) (%)	125 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 50 <u>1 2 3 4</u> (%) (%) (%) (%)
pecial sens	e organs/appendage)					
70	degeneration:cornea	1	<50> L 0 0 0 2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
rder gl	degeneration	4	<50> £ 0 0 0 3) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)
	lymphocytic infiltration	(() 0 0 0)) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (4)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
solacr d	inflammation	1 (2	<50> 1 5 0 0 2) (10) (0) (0)	<50> 0 5 0 0 (0) (10) (0) (0)	<50> 0 5 1 0 (0) (10) (2) (0)	<50> 0 6 0 0 (0) (12) (0) (0)
usculoskele	tal system}					
scle	fibrosis	(((<50>) 0 0 0)) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
ne	osteosclerosis	3 (6	<50> 3 0 0 0 3) (0) (0) (0)	<50> 2 2 0 0 (4) (4) (0) (0)	<50> 3 2 2 0 (6) (4) (4) (0)	<50> 1 2 0 0 (2) (4) (0) (0)

arked Severe a : Number of animals examined at the site <a>>

b b : Number of animals with lesion

c:b / a * 100 (c)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
Organ	Findings	Grade <u>1</u> (%)	<u>2 3 4</u> (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)
{Body cavitie	28)					
peritoneum	inflammation	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 1 0 (0) (0) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
Grade 〈 a 〉 b (c) Significant d	1 : Slight 2 : Moderate a : Number of animals examined at th b : Number of animals with lesion c : b / a * 100 lifference ; * : P ≤ 0.05 **:	3 : Marked 4 : Severe e site P \leq 0.01 Test of Chi Square			·	

(HPT150)

TABLE L5

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS : FEMALE DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

.

PAGE : 12

Organ	Group No. of Grade	f Animals on Study 12 <u>1 2 3 4</u> (%) (%) (%) (%)	125 ppm 7 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
{Respiratory	system)				
nasal cavit	eosinophilic change:olfactory epithelium	<12> 1 9 1 0 (8) (75) (8) (0)	<pre></pre>	< 9> 0 8 1 0 (0) (89) (11) (0)	<13> 1 9 3 0 (8) (69) (23) (0)
	eosinophilic change:respiratory epithelium	7 0 0 0 (58) (0) (0) (0)	5 0 0 0 (71) (0) (0) (0)	9 0 0 0 (100) (0) (0) (0)	9 2 0 0 (69)(15)(0)(0)
	respiratory metaplasia:gland	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (14) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	4 0 0 0 (31)(0)(0)(0)
lung	edema	<12> 0 0 0 0 . (0) (0) (0) (0)	< 7> 0 0 0 0 (0) (0) (0) (0)	< 9> 1 0 0 0 (11) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	1 0 0 0 (8)(0)(0)(0)
	accumulation of foamy cells	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (8) (0) (0)
	bronchiolar-alveolar cell hyperplasia	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
{Hematopoietic	c system)				
bone marrow	increased hematopoiesis	<12> 2 1 0 0 (17) (8) (0) (0)	<pre></pre>	< 9> 3 1 0 0 (33) (11) (0) (0)	<13> 5 1 0 0 (38) (8) (0) (0)
<a>b	1 : Slight2 : Moderate3 : Marka : Number of animals examined at the siteb : Number of animals with lesionc : b / a * 100ifference ; * : P ≤ 0.05 ** : P ≤ 0.01	red 4 : Severe Test of Chi Square			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE: 13

Organ	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	12 2 3	ntrol <u>3 4</u> %) (%)	<u> </u>	125 ppm 7 2 <u>34</u> %) (%) (%	$\frac{1}{(\%)}$	9 2	50 ppm <u>3 4</u> (%) (%)	13) ppm <u>3 4</u> 6) (%)
								(///	(M) (M)		
{Hematopoieti	c system)										
spleen	atrophy	0 (0)	<12> 0 ((0) (0		0 0	< 7> D 1 0 D) (14) (0		< 9> 0 (_0) (0 0 0) (0)	<13> 0 0 ((0) (0) ((
	congestion	0 (0)	0 ((0) ((0 0 0)(0)	0 ((0) (0	D 0 0 D)(0)(0) (0)	0 (0) (0 0 0) (0)	0 1 1 (0) (8) (8	1 0 3) (0)
	deposit of hemosiderin	2 (17)	5 ((42) ((0 0 0)(0)) 0 0))(0)(0		2 (22) (0 0 0) (0)	4 3 1 (31)(23)(8	
	increased extramedullary hematopoiesi	s 1 (8)	1 1 (8) (8	L 0 3) (0)	0 2 (0) (29	2 0 0 3) (0) (0) (0)	1 (11) (1	1 0 11) (0)	1 3 2 (8)(23)(15	
{Circulatory	system}										
heart	necrosis:focal	0 (0)	<12> 0 ((0) ((< 7>) 0 0)) (0) (0	0) (0)	< 9> 0 (0) (0 0 0) (0)	<13> 1 0 ((8) (0) ((
	myocardial fibrosis	4	0 ((0) (0) 0 0))(0)(0	1) (11)	0 (0) (0 0 0) (0)	300 (23)(0)(0	
{Digestive sy	rstem}										
esophagus	inflammation	0 (0)	<12> 0 ((0) (0		0 (< 7>) 0 0)) (0) (0		< 9> 0 (0) (0 0 0) (0)	<13> 0 0 0 (0) (0) (0	

.

(HPT150)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX	FEMALE				PAGE : 14
Organ	Findings	Group Name Control No. of Animals on Study 12 Grade 1 2 3 4 (%) (%) (%) (%) (%)	125 ppm 7 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
{Digestive sy	ystem)				
stomach	ulcer:forestomach	<12> 1 0 0 1 (8) (0) (0) (8)	<pre></pre>	< 9> 0 1 1 0 (0) (11) (11) (0)	<13> 3 1 0 0 (23) (8) (0) (0)
	hyperplasia:forestomach	2 0 0 0 (17) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (11) (0) (0)	3 0 0 0 (23)(0)(0)(0)
	erosion:glandular stomach	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)
	ulcer:glandular stomach	2 0 0 0 (17)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 2 0 0 (11) (22) (0) (0)	2 0 0 0 (15) (0) (0) (0)
small intes	erosion	<12> 0 0 0 0 (0) (0) (0) (0)	< 7> 0 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)
liver	herniation	<12> 3 0 0 0 (25) (0) (0) (0)	< 7> 0 0 0 0 (0) (0) (0) (0)	< 9> 2 0 0 0 (22) (0) (0) (0)	<13> 2 0 0 0 (15) (0) (0) (0)
	necrosis:central	1 0 0 0 (8) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 2 0 0 (0) (22) (0) (0)	4 0 0 0 (31) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 15

		Group Name Control No. of Animals on Study 12	125 ppm 7	250 ppm 9	500 ppm 13				
gan	Findings	Grade <u>1 2 3 4</u> (%) (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)	$\frac{1}{(\%)} \begin{array}{c} 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \\ \hline (\%) & (\%) & (\%) \\ \end{array}$				
igestive	system)								
ver	necrosis:focal	<12> 2 0 0 0 (17) (0) (0) (0)		< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)				
	fatty change	0 2 0 0 (0) (17) (0) (0)		0 0 0 0 (0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)				
	fatty change:central	0 0 0 0 (0) (0) (0) (0)	0 0 0 0) (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)(0)	0 1 0 0 (0) (8) (0) (0)				
	granulation	0 0 0 0 (0) (0) (0) (0)		1 0 0 0 (11) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)				
	inflammatory cell nest	1 0 0 0 (8) (0) (0) (0)	0 0 0 0) (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)				
	fibrosis	0 0 0 0 (0) (0) (0) (0)		0 0 0 0 (0)(0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)				
	clear cell focus	0 0 0 0 (0) (0) (0) (0)		0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (8) (0) (0)				
	basophilic cell focus	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 0 0 0 (11) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)				
rade a > b c)	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b/a * 100	3 : Marked 4 : Severe e site							

(HPT150)

Findings_

bile duct hyperplasia

Group Name

Grade

No. of Animals on Study

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Control 125 ppm 250 ppm 500 ppm 12 7 9 13 2 3 2 3 4 3 2 3 1 4 4 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <12> < 7> < 9> <13> 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 (17) (0) (0) (0) (14) (0) (0) (0) (11) (0) (0) (0) (0)(0)(0)(0)

pancreas	<12>	< 7>	< 9>	<13>
atrophy	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	(8)(0)(0)(0)	(0) (0) (0) (0)	(0) (0) (0) (0)	(0) (0) (0) (0)

{Urinary system}

{Digestive system}

Organ_

liver

kidney		<12>	< 7>	< 9>	<13>
	chronic nephropathy	5 3 0 0 (42)(25)(0)(0)	2 1 0 0 (29) (14) (0) (0)	5 0 0 0 (56)(0)(0)(0)	12 0 0 0 * (92) (0) (0) (0)
	hydronephrosis	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (14) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	tubular necrosis	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (22) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
urin bladd	dilatation	<12> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE: 16

4

(%)

0

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 17

		Group Name No. of Animals on Stud	dar	12	Contro	51				125 j 7	ppm			250 9	ppm			500 13	ppm
rgan	Findings	Grade	<u>1</u> (%)	2 (%)	3 (%)	4 (%)		<u>1</u> (%)	2 (%)	(%)	<u>4</u> (%)	<u> </u>	2 (%)	3	<u>4</u> (%)	<u> 1</u> (%)	<u>2</u> (%)	3) (9
Urinary syste	em)																		
rin bladd	transitional cell hyperplasia	· · · · · · · · · · · · · · · · · · ·	0 0) (<12 1 8) (0	0 (0)	. (0	< 0 (0)	7> 0 (0)	0 (0)	0 (0)	0	9> 0 (0)	0 (0)	0 (0)	0	<13> 0 (0)	
Endocrine sys	stem)																		
ituitary	cyst	(0 0) (<12 0 0) (0	0 (0)	(1 14)	< 0 (0)	7> 0 (0)	0 (0)	1 (11)	(0 (0)	9> 0 (0)	0 (0)	1 (8)	0	<13> 0) (0)	
	hyperplasia	(2 17) (0 0) (0 0) (0 (0)	(2 29)	0 (0)	0 (0)	0 (0)	1 (11)	1 (11)	0 (0)	0 (0)	2 (15)	1 (8)	0) (0)	() ((
hyroid	C-cell hyperplasia	(2 17) (<12 1 8) (. 0	0 (0)	(0 0)	1	7> 0 (0)	0 (0)	1 (11)	1	9> 0 (0)	0 (0)	2 (15)	0	<13> 0) (0)	() ((
drenal	peliosis-like lesion	(0 0) (<12 0 0) (0	0 (0)	(0 0)	0	7> 0 (0)	0 (0)	0 (0)	(1 (11)	9> 0 (0)	0 (0)	0 (0)	0	<13> 0) (0)	() ((
	focal fatty change:cortex	(2 17) (0 0) (0 0) (0 (0)	. (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (8)	0) (0)	() ((

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

•

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

rgan	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	12 2	ntrol <u>3 4</u> %) (%)		125 ppm 7 2 <u>3 4</u> %) (%) (%)	250 ppm 9 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 13 <u>1 2 3 4</u> (%) (%) (%) (%)
Reproductive	system)							
erus	cystic endometrial hyperplasia	2 (17)		0 0 0) (0)	0 (0) (< 7> 0 0 0 0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 3 0 0 0 (23) (0) (0) (0)
ervous syst	em)							
ain	hemorrhage	0 (0)		0 0 0) (0)		< 7> 0 0 0 0) (0) (0)	< 9> 1 0 0 0 (11) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
pecial sens	e organs/appendage}							
9	keratitis	0	<12> 0 (0) (0 0 0) (0)	0 (0) (< 7> 0 0 0 0) (0) (0)	< 9> 0 1 0 0 (0) (11) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)
	degeneration:cornea	1 (8)	0 (0) (00 0)(0)	0 (0) (0 0 0 0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
rder gl	degeneration	2 (17)	<12> 0 (0) (0 0 0) (0)	1 (14) (< 7> 0 0 0 0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name No. of Animals on Study	Control 12	125 ppm 7	250 ppm 9	500 ppm 13
Organ	Findings	Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)
{Special sens	e organs/appendage)					
nasolacr d	inflammation	1 (8)	<12> 1 0 0 (8) (0) (0)	< 7> 0 2 0 0 (0) (29) (0) (0)	< 9> 0 0 1 0 (0) (0) (11) (0)	<13> 0 2 0 0 (0) (15) (0) (0)
{Musculoskele	tal system)					
bone	osteosclerosis	0 (0)	<12> 0 0 0 (0) (0) (0)	< 7> 0 0 0 0 (0) (0) (0) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)
{Body cavities	s}					
peritoneum	inflammation	0 (0)	<12> 0 0 0 (0) (0) (0)	< 7> 0 0 1 0 (0) (0) (14) (0)	< 9> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)
Grade < a > b (c)	1 : Slight 2 : Moderate a : Number of animals examined at t b : Number of animals with lesion c : b / a * 100	3: Marked 4: Sever he site	e	•		

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

PAGE: 19

BAIS4

TABLE L6

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS : FEMALE SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

	1	Group Name No. of Animals on Study	Control 38	125 ppm 43	250 ppm 41	500 ppm 37
Organ	Findings	Grade <u>1</u> (%)	<u>2 3 4</u> (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%
(Integumentar	y system/appandage}					
subcutis	abscess	, (0)	<38> 0 0 0 (0) (0) (0)	<43> 1 0 0 0 (2) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0
Respiratory	system)					
asal cavit	goblet cell hyperplasia	0 (0)	<38> 0 0 0 (0) (0) (0)	<43> 0 0 0 0 (0) (0) (0) (0)	<pre> <41> 0 1 0 0 (0) (2) (0) (0)</pre>	<37> 0 3 0 0 (0) (8) (0) (0
	eosinophilic change:olfactory epitheliu		19 19 0 (50)(50)(0)	0 26 17 0 (0) (60) (40) (0)	0 20 21 0 (0) (49) (51) (0)	0 12 25 0 (0) (32) (68) (0
	eosinophilic change:respiratory epithel		7 0 0 (18) (0) (0)	36 7 0 0 (84) (16) (0) (0)	29 11 0 0 (71) (27) (0) (0)	28 9 0 0 (76)(24)(0)(0)
	inflammation:foreign body	2 (5)	0 0 0 (0) (0) (0)	1 0 0 0 (2)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (5)(0)(0)(0)
	inflammation:respiratory epithelium	1	0 0 0 (0) (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 0 0 0 (3) (0) (0) (0)
	respiratory metaplasia:olfactory epithe		0 0 0 (0)(0)(0)	3 0 0 0 (7)(0)(0)(0)	5 0 0 0 (12) (0) (0) (0)	3 0 0 0 (8)(0)(0)(0)

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name		Contr	ol				125	ppm				250 p	pm				500	ppm
0		No. of Animals on Study Grade <u>1</u>	38 	3	4	-	1	43 2	3	4		<u>1</u> (%)	4 2	3	4	_1	L	3' 2	3	4
Organ	Findings	(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)		(%)	(%)	(%)	(%)	(9	6)	(%)	(%)	(%)
{Respiratory	system}																			
nasal cavit	respiratory metaplasia:gland	14 (37)	<38 0 (0) (0	0 (0)	. 1 (3	14 33) (<43 2 5) (0 (0)	(15 37)	<4 0 (0)	1> 0 (0)	0 (0)	12 (32	2) (<37 1 3)	7> 0 (0)	0 (0)
	atrophy olfactory epithelium	0 (0)	0 (0) (0 (0)	0 (0)	(2 5) (0 0) (0 0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)))) (0 0)	0 (0)	0 (0)
larynx	inflammation	0 (0)	<38 0 (0) (0	0 (0)	(0 0) (<43 0 0) (0 (0)	(0 0)	<4 0 (0)	0	0 (0) /	0 (0))) (<31 1 3)	0	0 (0)
lung	accumulation of foamy cells	1 (3)	<38 0 (0) (0	0 (0)	(2 5) (<43 0 0) (0 (0)	(0 0)	<4 0 (0)	1> 0 (0)	0 (0)	1 (3	L 3) (<37 0 0)	0	0 (0)
	bronchiolar-alveolar cell hyperplasia	1 (3)	0 (0) (0 ()	0 (0)	(2 5) (0 0) (0 0)	0 (0)	(2 5)	0 (0)	0 (0)	0 (0)	0 (0))) (0 0)	0 (0)	0 (0)
	inflammation:foreign body	0 (0)	0 (0)(0 (0)	0 (0)	(0 0) (0 0) (0 0)	0 (0)	(0 0)	1 (2)	0 (0)	0 (0)	0 (0))) (0 0)	0 (0)	0 (0)
{Hematopoietic	c system)																			
bone marrow	granulation	0	<38 0	0	0		3	<43 0	0	0		0	<4 0	0	0	C)	<37 0	7> 0	0

(0) (0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

- < a > a : Number of animals examined at the site
- b b : Number of animals with lesion
- (c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Organ {Hematopoietic s bone marrow spleen	G	rade <u>1 2</u> (%) (%)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 41 \\ \underline{1 2 3 4} \\ (\%) (\%) (\%) (\%) (\%) \end{array}$	37 <u>1 2 3 4</u> (%) (%) (%) (%) <37>
bone marrow		4 0	0 0	<43>		<37>
	increased hematopoiesis	4 0	0 0	<43>		<37>
spleen			(0)(0)	3 1 0 0 (7)(2)(0)(0)	1 1 0 0 (2)(2)(0)(0)	1 0 0 0 (3)(0)(0)(0)
	congestion	0 0	38> 0 0 (0) (0)	<43> 0 0 0 0 (0) (0) (0) (0)	<41> 1 0 0 0 (2) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	deposit of hemosiderin	26 1 (68) (3)	0 0 (0) (0)	27 7 0 0 (63) (16) (0) (0)	23 10 0 0 * (56)(24)(0)(0)	29 6 0 0 ** (78) (16) (0) (0)
.	fibrosis:focal	0 0 (0) (0)	0 0 (0) (0)	2 0 0 0 (5)(0)(0)(0)	0 0 0 0 (0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)
	increased extramedullary hematopoiesis	7 2 (18) (5)	0 0 (0)(0)	2 2 0 0 (5)(5)(0)(0)	3 3 0 0 (7)(7)(0)(0)	3 1 0 0 (8)(3)(0)(0)
{Circulatory sys	stem)					
heart	myocardial fibrosis	2 0	38> 0 0 (0) (0)	<43> 8 0 0 0 (19) (0) (0) (0)	<41> 4 0 0 0 (10) (0) (0) (0)	<37> 5 0 0 0 (14) (0) (0) (0)
<a>>a b b (c) c	: Slight 2: Moderate 3: : Number of animals examined at the site : Number of animals with lesion : b / a * 100 ference ; $*: P \leq 0.05$ ** : $P \leq 0.05$					

•

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study Grade		38	Contr 3			4	125 3 3				41	250 p 1 3				37		
Organ	Findings		1 (%)	(%)	(%)	<u>4</u> (%)	(%)	(%)	(%)	<u>4</u> (%)	(%)		2 (%)		<u>4</u> (%)	(%)		(%)	3 (%)	4 (%)
{Digestive	system)																			
stomach	inflammation	(0 0) (<38 0 0) (0	0 (0)	0 (0)	1	13> 0 (0)	0	0 (0)) (<41 0 0) (1> 0 (0)	0 (0)	0 (0)		<37 0 0) (0	0 (0)
	ulcer:forestomach	(0 0) (0 0) (0 0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)) (0 0) /	0 (0)	0 (0)	0 (0)	(0 0) (0 (0)	0 (0)
	hyperplasia:forestomach	(0 0) (0 0) (0 0)	0 (0)	1 (2)	1 (2)	1 (2)	0 (0)	0 (0)) (0 0) /	0 (0)	0 (0)	0 (0)		0 0) (0 (0)	0
	erosion:glandular stomach	(0 0) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0	1 (2)	i (0 0) (0 (0)	0 (0)	0 (0)		0 0) /	0 (0)	0 (0)
	hyperplasia:glandular stomach	(1 3) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	• (0 0) (0 (0)	0 (0)	0 (0)	(0 0) /	0 (0)	0 (0)
liver	herniation		12 32) (<382 0 0) (0	0 (0)	8 (19)	0	3> 0 (0)	0 (0)	7 (17)	(<41 0 0) (L> 0 (0)	0 (0)	6 (16)		<37 0 0) (0	0 (0)
	peliosis-like lesion		1 3) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	(0 0) (0 (0)	0 (0)	0 (0)	(0 0) (0 (0)	0 (0)
	necrosis:focal		1 3) (2 5) (0 0)	0 (0)	2 (5)	0	0 (0)	0	3 (7)	+ (0 0) (0 (0)	0 (0)	2 (5)	(0 0) 1	0 (0)	0 (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 ${\mbox{\sc s}}$ a ${\mbox{\sc s}}$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

Organ	Findings	No. of Animals on Study 38 Grade <u>1 2</u>	ontrol <u>3 4</u> <u>1</u> (%) (%) <u>(%)</u>	$\begin{array}{c} 125 \text{ ppm} \\ 43 \\ \hline (\%) \ (\%) \ (\%) \ (\%) \ \hline $	250 ppm 41 2 3 4 (%) (%) (%)	500 ppm 37 <u>1 2 3 4</u> (%) (%) (%) (%)
Digestive s	system)			· · ·		
iver	lymphocytic infiltration	<38> 0 2 (0) (5) (0 0 0 0)(0)(0)(<43> 1 0 0 0 2) (0) (0) (0)	<41> 0 0 0 (0) (0) (0)	<pre><37> 0 0 0 0 (0) (0) (0) (0)</pre>
	granulation	7 3 (18) (8) (0 0 4 0) (0) (9) (1 0 0 4 2) (0) (0) (10)	0 0 0 (0) (0) (0)	10 0 0 0 (27) (0) (0) (0)
	clear cell focus	1 1 (3) (3) (0 0 1 0) (0) (2) (0 0 0 3 0) (0) (0) (7)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	basophilic cell focus	15 4 (39) (11) (0 0 19 0) (0) (44) (4 0 0 21 9) (0) (0) (51)	0 0 0 (0) (0) (0)	9 1 0 0 (24) (3) (0) (0)
	bile duct hyperplasia	5 2 (13) (5) (0 0 5 0) (0) (12) (1 0 0 2 2) (0) (0) (5)	1 0 0 (2)(0)(0)	1 1 0 0 (3) (3) (0) (0)
ancreas	atrophy		0 0 1 0) (0) (2) (<43> 0 0 0 4 0) (0) (0) (10)	<41> 1 0 0 (2) (0) (0)	<37> 3 0 0 0 (8) (0) (0) (0)
	islet cell hyperplasia	0 0 (0) (0) (0 0 0 0) (0) (0) (1 0 0 0 2) (0) (0) (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
Urinary sys	stem)					
idney	chronic nephropathy	<38> 34 4 (89) (11) (0 0 37 0)(0)(86)(<43> 6 0 0 33 14) (0) (0) (80)	<41> 6 1 0 (15) (2) (0)	<37> 24 10 3 0 * (65) (27) (8) (0)
rade a > b c)	1: Slight 2: Moderate 3 a: Number of animals examined at the s b: Number of animals with lesion c: b/a * 100	3: Marked 4: Severe site				

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study	Control 38	125 ppm 43	250 ppm 41	500 ppm 37
Organ	Findings	Grade <u>1</u>	<u>2 3 4</u> (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{41}{(\%)} \frac{41}{(\%)}$	<u>1 2 3</u> (%) (%) (%) (%)
Urinary sys	tem}					
idney	mineralization:papilla	2 (5)	<38> 0 0 0 (0) (0) (0)	<43> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 2 0 0 ((5) (0) (0) (1)
	mineralization:pelvis	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	3 0 0 0 (7)(0)(0)(0)	4 0 0 0 (11) (0) (0) (0
	desquamation:pelvis	1 (3)	0 0 0 (0)(0)(0)	-2 0 0 0 (5)(0)(0)(0)	2 1 0 0 (5)(2)(0)(0)	1 0 0 0 (3)(0)(0)(0)
	urothelial hyperplasia:pelvis	0 (0)	1 0 0 (3)(0)(0)	1 0 0 0 (2)(0)(0)(0)(0)	1 0 0 0 (2)(0)(0)(0)(0)	1 0 0 0 (3)(0)(0)(0)
	atypical tubule hyperplasia	0 (0)	0 0 0 (0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0
(Endocrine s	ystem)					
oituitary	angiectasis	1 (3)	<38> 0 0 0 (0) (0) (0)	<43> 0 2 0 0 (0) (5) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 0 1 0 0 (0) (3) (0) (0
	cyst	4	4 0 0 (11) (0) (0)	3 0 0 0 (7) (0) (0) (0)	5 1 0 0 (12) (2) (0) (0)	2 0 0 0 (5)(0)(0)(0)

(c) c:b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

: 16

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

rgan	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 38 <u>2 3 4</u> (%) (%) (%)	125 ppm 43 <u>1 2 3 4</u> (%) (%) (%) (%)	250 ppm 41 <u>1 2 3 4</u> (%) (%) (%) (%)	500 ppm 37 <u>1 2 3 4</u> (%) (%) (%) (%)
Endocrine s	ystem)					
ituitary	hyperplasia	5 (13)	<38> 7 0 0 (18) (0) (0)	<43> 9 6 0 0 (21) (14) (0) (0)	<41> 4 5 0 0 (10) (12) (0) (0)	<37> 5 5 0 0 (14) (14) (0) (0)
	Rathke pouch	2 (5)	0 0 0 (0)(0)(0)	1 0 0 0 (2)(0)(0)(0)(0)	2 0 0 0 (5)(0)(0)(0)	1 0 0 0 (3)(0)(0)(0)
yroid	follicular hyperplasia	0 (0)	<38> 0 0 0 (0) (0) (0)	<43> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)
	C-cell hyperplasia	11 (29)	2 0 0 (5)(0)(0)	13 2 1 0 (30) (5) (2) (0)	7 4 0 0 (17) (10) (0) (0)	9 4 0 0 (24) (11) (0) (0)
renal	peliosis-like lesion	0 (0)	<38> 1 0 0 (3) (0) (0)	<43> 0 0 0 0 (0) (0) (0) (0)	<41> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia:cortical cell	0 (0)	0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 1 0 0 (2)(2)(0)(0)	0 0 0 0 (0) (0) (0) (0)
	hyperplasia:medulla	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 1 0 0 (2)(2)(0)(0)	1 0 0 0 (3)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 18

		Group Name No. of Animals on Stu Grade	ıdy 1	3	Cont 88 3	rol 4	1		43 2	125 pp 3	9m 4	1		41 2	250 p 3	pm 4	1	1	3	500 j 7 3	ppm 4
)rgan	Findings		(%)	(%)	(%)		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(9	6)	(%)	(%)	(%
{Endocrine syst	em)																				
adrenal	focal fatty change:cortex	. (6 (16)	4	88> 0 (0)	0 (0)	5 (12) (<432 4 9) (> 0 0) (0 (0)	5 (12) (<41 2 5) (> 0 0)	0 (0)	1((27		<3' 2 5)	7> 0 (0)	0
Reproductive s	ystem)										•										
ovary	cyst	(1 (3)	0	18> 0 (0)	0 (0)	1 (2) (<43) 0 0) () 0 0) (0 (0)	3 (7) (<41 0 0) (0 (0)		0 0) (<3' 1 3)	7> 0 (0)	0 (0
terus	cystic endometrial hyperplasia	(3 (8)	2	(0)	0 (0)	4 (9)) (<43) 0 0) (0 0) (0 (0)	1 (2) (<41 2 5) (> 0 0)	0 (0)		3 8) (<3' 1 3)	7> 0 (0)	0 (0
Special sense	organs/appendage}																				
уе	cataract	(2 (5)	1	18> 0 (0)	0 (0)	0 (0)) (<43) 3 7) (0 0) (0 (0)	0 (0)) (<41 4 10) (> 0 0)	0 (0)	1 (3	1 3) (<3' 3 8)	7> 0 (0)	0 (0
	retinal atrophy	(1 (3)	0 (0)	2 (5)	0 (0)	0 (0)) (0 0) (1 2) (2 (5)	0 (0)) (0 0) (3 7)	1 (2)	((())) (0 0)	3 (8)	1 (3

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study	38				43				4	250 g 1			37		-
an	Findings	Grade <u>1</u> (%)	(%)	3 (%)	<u>4</u> (%)	(%)	(%)	3 (%)	<u>4</u> (%)	<u> </u>	(%)	<u>3</u> (%)	<u>4</u> (%)	<u> </u>	<u>2</u> (%)	3 (%)	
		· .															
ecial sens	e organs/appendage}																
	degeneration:cornea	0 (0)	<38 0 (0) (0 0)	0 (0) (<43 0 0) (0	0 (0)	0 (0)	0 (0)	11> 0 (0)	0 (0)	1 (3)	<372 0 (0) (> 0 0)	
er gl	degeneration	2 (5)	<38 0 (0) (0	0 0)	2 (5)(<43 0 0) (> 0 0)0	0 (0)	0 (0)	0	1) 0 (0)	0 (0)	2 (5)	<372 0 (0) (0	(
	lymphocytic infiltration	0 (0)	0 (0) (0 0) (0 0)	0 (0) (0 0) (0 0)	0 (0)	2 (5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 0)	(
lacr d	inflammation	0 (0)	_ <38 _4 (11) (0	0 0)	0 (0) (<43 3 7) (> 0 0)(0 (0)	0 (0)	<4 5 (12)	1> 0 (0)	0 (0)	0 (0)	<372 4 (11) (0	(
uloskele	tal system)																
le	fibrosis	0 (0)	<38 0 (0) (> 0 0) (0 0)	0 (0) (<43 0 0) (0	0 (0)	2 (5)	<4 0 (0)	1) 0 (0)	0 (0)	0 (0)	<37) 0 (0) (> 0 0)	
	osteosclerosis	3 (8)	<38 0 (0) (0	0 0)	2 (5)(<43 2 5) (0	0 (0)	3 (7)	<4 2 (5)	1> 2 (5)	0 (0)	0 (0)	<37) 2 (5) (0	(

b : Number of animals with lesion b

(c) c:b/a*100

Significant difference ; *: P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

TABLE M1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED : MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

fime-related Weeks	Items	Group Name	Control	125 ppm	250 ррт	500 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	0	1	0	
	NO. OF ANIMALS WITH TUMORS		0	0	1	0	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	0	1	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS	•	0	0	0	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	0	1	0	
	NO. OF TOTAL TUMORS		0	0	1	0	
53 - 78	NO. OF EXAMINED ANIMALS		1	4	0	2	
	NO. OF ANIMALS WITH TUMORS		1	4	0	1	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	3	Ō	1	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		1	1	0	0	
	NO. OF BENIGN TUMORS		1	3	0	1	
	NO. OF MALIGNANT TUMORS		1	2	0	0	
	NO. OF TOTAL TUMORS		2	5	0	1	
79 - 104	NO. OF EXAMINED ANIMALS		10	11	8	11	
	NO. OF ANIMALS WITH TUMORS		10	11	8	10	
	NO. OF ANIMALS WITH SINGLE TUMORS		2	2	2	1	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		8	9	6	9	
	NO. OF BENIGN TUMORS		14	22	11	16	
	NO. OF MALIGNANT TUMORS		7	7	6	7	
-	NO. OF TOTAL TUMORS		21	29	17	23	
105 - 105	NO. OF EXAMINED ANIMALS		39	35	41	37	
	NO. OF ANIMALS WITH TUMORS		39	35	41	37	
	NO. OF ANIMALS WITH SINGLE TUMORS		13	11	12	15	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		26	24	29	22	
	NO. OF BENIGN TUMORS		65	65	78	67	
	NO. OF MALIGNANT TUMORS		11	10	11	4	
	NO. OF TOTAL TUMORS		76	75	89	71	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

PAGE : 2

-related Weeks	Items	Group Name	Control	125 ppm	250 ppm	500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		50	50	50	48	
	NO. OF ANIMALS WITH SINGLE TUMORS		15	16	15	17	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		35	34	35	31	
	NO. OF BENIGN TUMORS		80	90	89	84	
	NO. OF MALIGNANT TUMORS		19	19	18	11	
	NO. OF TOTAL TUMORS		99	109	107	95	

(HPT070)

.

BAIS4

TABLE M2

NUMBER OF ANIMALS WITH TUMORS

AND NUMBER OF TUMORS-TIME RELATED : FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

"~~)

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

Time-related Weeks	Items	Group Name	Control	125 ppm	250 ppm	500 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	0	0	0	
	NO. OF ANIMALS WITH TUMORS		0	<u>^</u>	<u>^</u>	•	
	NO. OF ANIMALS WITH FUMORS		0	0	0	0	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	0	0	Ō	
·	NO. OF TOTAL TUMORS		0	0	0	0	
53 - 78	NO. OF EXAMINED ANIMALS		1	2	0	4	
	NO. OF ANIMALS WITH TUMORS		1	1	0	4	
	NO. OF ANIMALS WITH SINGLE TUMORS		1	1	0	3	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	1	
	NO. OF BENIGN TUMORS		0	1	0	0	
	NO. OF MALIGNANT TUMORS		1	0	0	5	
	NO. OF TOTAL TUMORS		1	1	0	5	
79 - 104	NO. OF EXAMINED ANIMALS		11	5	9	9	
	NO. OF ANIMALS WITH TUMORS		10	4	9	8	
	NO. OF ANIMALS WITH SINGLE TUMORS		7	2	5	6	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		3	2	4	2	
	NO. OF BENIGN TUMORS		8	3	7	4	
	NO. OF MALIGNANT TUMORS		5	3	6	6	
	NO. OF TOTAL TUMORS		13	6	13	10	
105 - 105	NO. OF EXAMINED ANIMALS		38	43	41	37	
	NO. OF ANIMALS WITH TUMORS		24	27	25	16	
	NO. OF ANIMALS WITH SINGLE TUMORS		13	21	25 17	10	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		11	6	8	5	
	NO. OF BENIGN TUMORS		30	33	31	18	
	NO. OF MALIGNANT TUMORS		7	3	5	4	
	NO. OF TOTAL TUMORS		37	36	36	22	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO.: 0560ANIMAL: RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE: A1SEX: FEMALE

SEX :	FEMALE			·			PAGE : 4
Time-related Weeks	Items	Group Name	Control	125 ppm	250 ppm	500 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		35	32	34	28	
	NO. OF ANIMALS WITH SINGLE TUMORS		21	24	22	20	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		14	8	12	8	
	NO. OF BENIGN TUMORS		38	37	38	22	
	NO. OF MALIGNANT TUMORS		13	6	11	15	
	NO. OF TOTAL TUMORS		51	43	49	37	

(HPT070)

BAIS4

TABLE N1

HISTOPATHOLOGICAL FINDINGS :

NEOPLASTIC LESIONS : MALE

gan	Findings No. of a	ame animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
ntegumentary :	system/appandage)					
in/app	squamous cell papilloma	0	<50> (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
	trichoepithelioma	1	(2%)	0 (0%)	1 (2%)	1 (2%)
	keratoacanthoma	0	(0%)	2 (4%)	0 (0%)	1 (2%)
	sebaceous adenoma	0	(0%)	2 (4%)	0 (0%)	0 (0%)
	squamous cell carcinoma	0	(0%)	0 (0%)	1 (2%)	1 (2%)
ocutis	fibroma	3	<50> (6%)	<50> 1 (2%)	<50> 5 (10%)	<50> 5 (10%)
	hemangioma	1	(2%)	0 (0%)	1 (2%)	1 (2%)
	histiocytic sarcoma	0	(0%)	1 (2%)	0 (0%)	0 (0%)
spiratory sys	stem)					
sal cavit	adenoma	0	<50> (0%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
	chondroma	1	(2%)	0 (0%)	0 (0%)	0 (0%)
	osteosarcoma	1	(2%)	0 (0%)	0 (0%)	0 (0%)
ıg	bronchiolar-alveolar adenoma	2	<50> (4%)	<50> 1 (2%)	<50> 3 (6%)	<50> 6 (12%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

(HPT085)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

المحمور الم

PAGE : 2

rgan	Findings	Group Name No. of animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
Respiratory	system)					
ung	bronchiolar-alveolar carcinoma	1	<50> (2%)	<50> 0 (0%)	<50> 2 (4%)	<50> 1 (2%)
lematopoieti	c system)					
oleen .	mononuclear cell leukemia	7	<50> (14%)	<50> 4 (8%)	<50> 2 (4%)	<50> 1 (2%)
	hemangiosarcoma	0	(0%)	0 (0%)	0 (0%)	1 (2%)
igestive sy	stem)					
comach	squamous cell papilloma	0	<50> (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)
	squamous cell carcinoma	0	(0%)	2 (4%)	0 (0%)	1 (2%)
rge intes	adenoma	0	<50> (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
ver	hepatocellular adenoma	0	<50> (0%)	<50> 1 (2%)	<50> 3 (6%)	<50> 3 (6%)
	hemangiosarcoma	0	(0%)	0 (0%)	0 (0%)	1 (2%)
	hepatocellular carcinoma	0	(0%)	0 (0%)	1 (2%)	0 (0%)
ncreas	islet cell adenoma	1	<50> (2%)	<50> 7 (14%)	<50> 2 (4%)	<50> 1 (2%)
	acinar cell adenoma	0	(0%)	0 (0%)	1 (2%)	0 (0%)

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b / a * 100

(HPT085)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX :	: MALE									PAGE :
Organ	Findings	Group Name No. of animals on Study		Control 50		125 ppm 50		250 ppm 50		500 ppm 50
{Digestive sy	vstem)									
pancreas	islet cell adenocarcinoma			<50> (2%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
{Urinary syst	tem}									
kidney	transitional cell papilloma			<50> (0%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)
	nephroblastoma		0	(0%)	1	(2%)	0	(0%)	0	(0%)
urin bladd	transitional cell papilloma			<50> (2%)	0	<50> (0%)	0	<50> (0%)	2	<50> (4%)
{Endocrine sy	/stem}									
pituitary	adenoma	1		<50> (24%)	9	<50> (18%)	9	<50> (18%)	5	<50> (10%)
thyroid	C-cell adenoma			<50> (14%)	11	<50> (22%)	9	<50> (18%)	6	<50> (12%)
	follicular adenoma		0	(0%)	2	(4%)	2	(4%)	2	(4%)
	C-cell carcinoma		6	(12%)	1	(2%)	3	(6%)	1	(2%)
	follicular adenocarcinoma		0	(0%)	1	(2%)	0	(0%)	0	(0%)
adrenal	pheochromocytoma			<50> (8%)	4	<50> (8%)	1	<50> (2%)	2	<50> (4%)
	pheochromocytoma:malignant		0	(0%)	1	(2%)	3	(6%)	0	(0%)

<a>> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c:b / a * 100

(HPT085)

EX :	MALE	·								PAGE :
rgan	Findings	Group Name No. of animals on Study		Control 50		125 ppm 50		250 ppm 50		500 ррт 50
Reproductive	system)									
estis	interstitial cell tumor		42	<50> (84%)	44	<50> (88%)	46	<50> (92%)	43	<50> (86%)
rostate	adenoma		0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
mmary gl	fibroadenoma		1	<50> (2%)	2	<50> (4%)	1	<50> (2%)	0	<50> (0%)
	adenocarcinoma		1	(2%)	0	(0%)	0	(0%)	0	(0%)
ep/cli gl	adenoma	· ·	1	<50> (2%)	2	<50> (4%)	2	<50> (4%)	3	<50> (6%)
ervous syste	em}									
ain	malignant reticulosis		0	<50> (0%)	1	<50> (2%)	1	<50> (2%)	0	<50> (0%)
	glioma		0	(0%)	3	(6%)	1	(2%)	1	(2%)
pecial sense	e organs/appendage}									
rder gl	adenocarcinoma		0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
nbal gl	Zmbal gland tumor:benign		1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
	Zymbal gland tumor:malignant		0	(0%)	1	(2%)	1	(2%)	2	(4%)
ısculoskelet	cal system)									
ne	osteosarcoma		0	<50> (0%)	2	<50> (4%)	0	<50> (0%)	0	<50> (0%)

<a>> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c:b / a * 100

(HPT085)

BAIS4

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESTONS (SUMMARY)

STUDY NO. : 0560

22

X :	A1 MALE							PAGE :
gan	Findings	Group Name No. of animals on Study	Control 50	125 ppm 50		250 ppm 50		500 ррт 50
ody cavities	3)							
ritoneum	mesothelioma		<50> 2 (4%)	<50> (2%)	1	<50> (2%)		<50> (0%)
croperit	histiocytic sarcoma		<50> 0 (0%)	<50> (0%)	0	<50> (0%)		<50> (2%)
pose	lipoma		<50> 2 (4%)	<50> (0%)	0	<50> (0%)	0	<50> (0%)

الرسین ا

الإسمال

(HPT085)

BAIS4

TABLE N2

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

10

SEX : FEMALE

PAGE: 6

rgan	Findings	Group Name No. of animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ppm 50
	· · · · · · · · · · · · · · · · · · ·	· · · ·		, ,		
Integumentar	y system/appandage)					
kin/app	keratoacanthoma		<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
ubcutis	fibroma		<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
Respiratory s	system)					
ung	bronchiolar-alveolar adenoma		<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)	<50> 2 (4%)
	bronchiolar-alveolar carcinoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
lematopoietio	c system)					
mph node	histiocytic sarcoma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
leen	mononuclear cell leukemia		<50> 5 (10%)	<50> 5 (10%)	<50> 6 (12%)	<50> 1 (2%)
)igestive sys	stem)					
ongue	squamous cell papilloma		<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
tomach	squamous cell papilloma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	squamous cell carcinoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
arge intes	adenocarcinoma		<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)

<a> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c:b/a*100

STUDY NO.	:	0560
ANIMAL	:	RAT F344/DuCr1Cr1j[F344/DuCrj]
REPORT TYPE	:	A1
SEX	:	FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

5

۰. ب

SEX :	FEMALE			-								PAGE : 7
Organ		Group Name No. of animals on Study		Control 50		125 ppm 50			250 ppm 50		500 ppm 50	
{Digestive sys	stem)											
liver	hepatocellular adenoma			<50> (0%)	1	<50> (2%)	1		50> 2%)	1	<50> (2%)	
	hepatocellular carcinoma		0	(0%)	0	(0%)	0	(0%)	1	(2%)	
pancreas	islet cell adenoma			<50> (0%)	1	<50> (2%)	0		50> 0%)	0	<50> (0%)	
	islet cell adenocarcinoma		0	(0%)	0	(0%)	2	(4%)	0	(0%)	
{Urinary syst	em}										Υ."	
urin bladd	transitional cell papilloma			<50> (0%)	0	<50> (0%)	2		50> 4%)	0	<50> (0%)	
	transitional cell carcinoma		0	(0%)	0	(0%)	0	(0%)	1	(2%)	
{Endocrine sys	stem)											
pituitary	adenoma	1:		<50> (26%)	14	<50> (28%)	13		50> 26%)	7	<50> (14%)	
	adenocarcinoma		1	(2%)	0	(0%)	0	(0%)	1	(2%)	
thyroid	C-cell adenoma	(<50> (12%)	6	<50> (12%)	2		50> 4%)	3	<50> (6%)	
	C-cell carcinoma		1	(2%)	0	(0%)	0	(0%)	1	(2%)	
adrenal	pheochromocytoma	1		<50> (0%)	0	<50> (0%)	1		50> 2%)	0	<50> (0%)	

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c:b/a * 100

(HPT085)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

.

PAGE : 8

Organ	Findings	Group Name No. of animals on Study	Control 50	125 ppm 50	250 ppm 50	500 ррт 50
Indocrine sys	stem)					
drenal	pheochromocytoma:malignant		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
Reproductive	system}					
vary	granulosa-theca cell tumor		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
terus	endometrial stromal polyp		<50> 5 (10%)	<50> 3 (6%)	<50> 5 (10%)	<50> 3 (6%)
	adenocarcinoma		0 (0%)	0 (0%)	1 (2%)	0 (0%)
	endometrial stromal sarcoma		3 (6%)	1 (2%)	1 (2%)	3 (6%)
mmary gl	adenoma		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	fibroadenoma		8 (16%)	5 (10%)	5 (10%)	1 (2%)
	adenocarcinoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)
cep/cli gl	adenoma		<50> 2 (4%)	<50> 4 (8%)	<50> 6 (12%)	<50> 3 (6%)
Nervous syste	em)					
eriph nerv	histiocytic sarcoma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
Special sense	e organs/appendage}					
ymbal gl	Zmbal gland tumor:benign		<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)

<a>> a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b / a * 100

REPORT TYPE :	: RAT F344/DuCr1Cr1j[F344/DuCrj] : A1 : FEMALE	ALL ANIMALS (0-105W)								P/	AGE: 9
Organ	Findings	Group Name No. of animals on Study		Control 50		125 ppm 50		250 ppm 50		500 ppm 50	
{Special sens	se organs/appendage)										
Zymbal gl	Zymbal gland tumor:malignant		0	<50> (0%)	0	<50> (0%)	. 1	<50> (2%)	1	<50> (2%)	
{Musculoskele	etal system)										
bone	osteoma		1	<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	
vertebra	chordoma:malignant		0	<50> (0%)	0	<50> (0%)	0	<50> (0%)	1	<50> (2%)	
<a>b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm	c : b / a * 100									
(HPT085)	· · · · · · · · · · · · · · · · · · ·										BAIS4

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0560-

BA1S4

TABLE O1

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS : MALE

STUDY No. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] SEX : MALE

_

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

Group Name	Control	125 ppm	250 ppm	500 ppm	
	SITE : subcutis				
	TUMOR : fibroma				
fumor rate					
Overall rates(a) Adjusted rates(b)	3/50(6.0) 7.69	1/50(2.0) 2.86	5/50(10.0)	5/50(10.0)	
Terminal rates(c)	3/39(7.7)	2.80 1/35(2.9)	9.76 4/41(9.8)	13.51 5/37(13.5)	
Statistical analysis	0,00(1.1)	1/35(2.9)	4/41(5.0)	5/37(13.5)	
Peto test					
Standard method(d)	P = 0.3942				
Prevalence method(d)	P = 0.1098				
Combined analysis(d)	P = 0.1088				
Cochran-Armitage test(e)	P = 0.2232				
Fisher Exact test(e)		P = 0.3087	P = 0.3575	P = 0.3575	
	SITE : lung				
. .	TUMOR : bronchiolar-alveola	r adenoma			
Tumor rate Overall rates(a)	2/50(4.0)	1 (50 (
Adjusted rates(b)	5. 13	1/50 (2. 0) 2. 86	3/50(6.0) 6.98	6/50(12.0) 15.00	
Terminal rates(c)	2/39(5.1)	1/35(2.9)	2/41(4.9)	5/37(13.5)	
Statistical analysis	2,00 (0.1)	1700(2.5)	2/11(1.5)	5/5/(15.5)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.0252*				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0441*				
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.1343	
	SITE : lung				
	TUMOR : bronchiolar-alveola	r adenoma, bronchiolar-alveolar carcinoma			
umor rate					
Overall rates(a)	3/50(6.0)	1/50 (2.0)	5/50(10.0)	7/50(14.0)	
Adjusted rates(b)	7.69	2.86	11.63	17.50	
Terminal rates(c)	3/39(7.7)	1/35(2.9)	4/41(9.8)	6/37(16.2)	
Statistical analysis Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.0292*				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0526				

STUDY No. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] SEX : MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 2

Group Name	Control	125 ppm	250 ррт	500 ppm
	SITE : spleen			
	TUMOR : mononuclear cell leukemi	a		
umor rate				
Overall rates(a) Adjusted rates(b)	7/50(14.0)	4/50(8.0)	2/50(4.0)	1/50(2.0)
Terminal rates(c)	12.82 5/39(12.8)	5.71	2.44	0.0
itatistical analysis	5/39(12.8)	2/35(5.7)	1/41(2.4)	0/37(0.0)
Peto test				
Standard method(d)	P = 0.7385			
Prevalence method(d)	P = 0.9963			
Combined analysis(d)	P = 0.9916			
Cochran-Armitage test(e)	P = 0.0192*			
Fisher Exact test(e)	1 - 0.0152+	P = 0.2623	P = 0.0798	P = 0.0297*
		1 - 0.2020	r - 0. 0198	· · · · · · · · · · · · · · · · · · ·
	SITE : stomach			
	TUMOR : squamous cell papilloma,	company call experiment		
'umor rate	romok · squamous cerr papirioma,	squamous cell carcinoma		
Overall rates (a)	0/50(0.0)	3/50(6.0)	0/50(0.0)	2/50(4.0)
Adjusted rates(b)	0.0	6.00	0.0	2/50(4.0) 4.88
Terminal rates(c)	0/39(0.0)	2/35(5.7)	0/41(0.0)	1/37 (2.7)
tatistical analysis	0,00(0.0)	2/00(0.1)	0/41(0.0)	1/3/(2.1)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.2412			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.4908			
Fisher Exact test(e)	1	P = 0.1212	P = N. C.	P = 0.2475
	· · · · · · · · · · · · · · · · · · ·			
	SITE : liver			
	TUMOR : hepatocellular adenoma			
umor rate				
Overall rates(a)	0/50(0.0)	1/50(2.0)	3/50(6.0)	3/50(6.0)
	0.0	2.86	7. 32	7.50
Adjusted rates(b)			3/41(7.3)	2/37 (5.4)
Adjusted rates(b) Terminal rates(c)	0/39(0.0)	1/35(2.9)	0, 11(1.0)	
Adjusted rates(b) Terminal rates(c) tatistical analysis		1/35(2.9)	0, 11(1.0)	
Adjusted rates(b) Terminal rates(c) tatistical analysis Peto test	0/39(0.0)	1/35(2.9)	0,11(1.0)	
Adjusted rates(b) Terminal rates(c) tatistical analysis Peto test Standard method(d)	0/39(0.0) P =	1/35(2.9)	0,11(110)	
Adjusted rates(b) Terminal rates(c) tatistical analysis Peto test Standard method(d) Prevalence method(d)	0/39(0.0) P = P = 0.0455∗	1/35(2.9)	0,11(110)	
Adjusted rates(b) Terminal rates(c) tatistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d)	0/39(0.0) P = P = 0.0455* P =	1/35(2.9)	0,11(110)	
Adjusted rates(b) Terminal rates(c) tatistical analysis Peto test Standard method(d) Prevalence method(d)	0/39(0.0) P = P = 0.0455∗	1/35(2.9)	0,11(110)	

1

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 3

Group Name	Control	125 ppm	. 250 ppm	500 ppm	
	SITE : liver				
	TUMOR : hepatocellular adenoma, h	epatocellular carcinoma			
Tumor rate Overall rates(a)		1/50/ 0.0)			
Adjusted rates (b)	0/50(0.0) 0.0	1/50(2.0) 2.86	4/50(8.0)	3/50(6.0)	
Terminal rates(c)	0/39(0.0)	2.80 1/35(2.9)	9.76 4/41(9.8)	7.50 2/37(5.4)	
Statistical analysis	0/00/0.0/	1/33(2.9)	4/41(9.8)	2/37(5.4)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.0497*				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.0877				
Fisher Exact test(e)		P = 0.5000	P = 0.0587	P = 0.1212	
	· · · · · · · · · · · · · · · · · · ·				
	SITE : pancreas				
	TUMOR : islet cell adenoma				
lumor rate					
Overall rates(a)	1/50(2.0)	7/50(14.0)	2/50(4.0)	1/50(2.0)	
Adjusted rates(b)	2. 27	17.50	4.88	2. 50	
Terminal rates(c)	0/39(0.0)	6/35(17.1)	2/41(4.9)	0/37(0.0)	
Statistical analysis					
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.7934				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.3728	D 0.00071	B 0 5000		
Fisher Exact test(e)		P = 0.0297*	P = 0.5000	P = 0.7525	
	SITE : pancreas			• • • •	
	TUMOR : islet cell adenoma, islet	coll adopogargipoma			
fumor rate	10100 0011 duonoma, 18100				
Overall rates(a)	2/50(4.0)	7/50(14.0)	3/50(6.0)	1/50(2.0)	
Adjusted rates (b)	4. 55	17.50	7. 32	2.50	
Terminal rates(c)	1/39(2.6)	6/35(17.1)	3/41 (7.3)	0/37(0.0)	
Statistical analysis		-, ,,	·, ·· · · · · · · · · · · · · · · · · ·		
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.8528				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.2648				
		P = 0.0798			

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

Group Name	Control	125 ppm	250 ppm	500 ppm
	SITE : pituitary gland TUMOR : adenoma			
Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	12/50 (24. 0) 17. 95 7/39 (17. 9)	9/50(18.0) 15.38 4/35(11.4)	9/50(18.0) 19.57 7/41(17.1)	5/50(10.0) 7.32 2/37(5.4)
Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e)	P = 0.9168 P = 0.8786 P = 0.9607 P = 0.0730			
Fisher Exact test(e)		P = 0.3121	P = 0.3121	P = 0.0542
	SITE : thyroid TUMOR : C-cell adenoma			
Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	7/50(14.0) 17.95 7/39(17.9)	11/50 (22. 0) 27. 78 9/35 (25. 7)	9/50(18.0) 20.45 8/41(19.5)	6/50(12.0) 13.64 5/37(13.5)
Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d)	P = P = 0.7099 P =			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.5407	P = 0.2178	P = 0.3929	$\mathbf{P} = 0.5000$
	SITE : thyroid TUMOR : C-cell carcinoma			
Tumor rate Overall rates(a) Adjusted rates(b)	6/50(12.0) 5.13	1/50(2.0) 2.86	3/50 (6. 0) 4. 88	1/50(2.0) 0.0
Terminal rates(c) Statistical analysis Peto test	2/39(5.1)	1/35(2.9)	2/41(4.9)	0/37(0.0)
Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e)	P = 0.8887 $P = 0.8717$ $P = 0.9570$ $P = 0.9626$			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.0836	P = 0.0559	P = 0.2435	P = 0.0559

PAGE: 4

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE : 5

Group Name	Control	125 ppm	250 ppm	500 ppm	
	SITE : thyroid				
	TUMOR : C-cell adenoma, C-cell	l carcinoma			
fumor rate					
Overall rates(a)	13/50(26.0)	12/50(24.0)	12/50(24.0)	7/50(14.0)	
Adjusted rates(b)	23.08	30. 56	25.00	13.95	
Terminal rates(c)	9/39(23.1)	10/35(28.6)	10/41(24.4)	5/37(13.5)	
Statistical analysis Peto test					
Standard method(d)	P = 0.8887				
Prevalence method(d)	P = 0.8525				
Combined analysis(d)	P = 0.9287				
Cochran-Armitage test(e)	P = 0.1335				
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.1054	
	SITE : thyroid TUMOR : follicular adenoma,fo	ollicular adenocarcinoma			
Tumor rate	,				
Overall rates(a)	0/50(0.0)	3/50(6.0)	2/50(4.0)	2/50(4,0)	
Adjusted rates(b)	0.0	7.14	4.88	5. 41	
Terminal rates(c)	0/39(0.0)	2/35(5.7)	2/41(4.9)	2/37 (5.4)	
Statistical analysis					
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.2219				
Combined analysis(d) Cochran-Armitage test(e)	P =P = 0.4744				
Fisher Exact test(e)	P = 0.4744	P = 0.1212	D = 0.9475	$\mathbf{P} = \mathbf{A} \cdot \mathbf{B} \mathbf{A} \mathbf{Z} \mathbf{F}$	
TISHEL LACT LEST(E)		r = 0.1212	P = 0.2475	P = 0.2475	
	SITE : adrenal gland	· · · · · · · · · · · · · · · · · · ·			
	TUMOR : pheochromocytoma				
Tumor rate	photonic oncoy bonk				
Overall rates(a)	4/50(8.0)	4/50(8.0)	1/50 (2.0)	2/50(4.0)	
Adjusted rates(b)	8.70	10. 81	2.44	5.41	
Terminal rates(c)	2/39(5.1)	3/35(8.6)	1/41 (2. 4)	2/37 (5. 4)	
Statistical analysis					
Peto test	•				
Standard method(d)	P =				
	P = 0.8442				
Prevalence method(d)	P =				
Combined analysis(d)					
	P = 0.2709	P = 0.6425	P = 0.1811	P = 0.3389	

BAIS4

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 6

Group Name	Control	125 ppm	250 ррт	500 ррш	·
	SITE : adrenal gland				
n	TUMOR : pheochromocytoma:mali	gnant			
Tumor rate					
Overall rates(a)	0/50(0.0)	1/50(2.0)	3/50(6.0)	0/50(0.0)	
Adjusted rates(b) Terminal rates(c)	0.0	2.86	4. 88	0.0	
Statistical analysis	0/39(0.0)	1/35(2.9)	2/41(4.9)	0/37(0.0)	
Peto test					
Standard method(d)	P = 0.4074				
Prevalence method(d)	P = 0.5147				
Combined analysis(d)	P = 0.4826				
Cochran-Armitage test(e)	P = 1.0000				
Fisher Exact test(e)		P = 0.5000	P = 0.1212	P = N. C.	
	SITE : adrenal gland				
	TUMOR : pheochromocytoma, pheo	ochromocytoma:malignant			
Tumor rate					
Overall rates(a) Adjusted rates(b)	4/50(8.0)	5/50(10.0)	4/50 (8.0)	2/50(4.0)	
Terminal rates(c)	8.70 2/39(5.1)	13.51 4/35(11.4)	7.32	5. 41	<i>,</i>
Statistical analysis	2/39(5.1)	4/35(11.4)	3/41(7.3)	2/37 (5.4)	
Peto test					
Standard method(d)	P = 0.4074				
Prevalence method(d)	P = 0.8223	х			
Combined analysis(d)	P = 0.8008				
Cochran-Armitage test(e)	P = 0.3406				
Fisher Exact test(e)		P.= 0.5000	P = 0.6425	P = 0.3389	
· · · · · ·	SITE : testis		······································		
	TUMOR : interstitial cell tum				
Tumor rate	Tomont · Interstituat Cell full	101 101			
Overall rates(a)	42/50(84.0)	44/50 (88.0)	46/50(92.0)	43/50(86.0)	
Adjusted rates(b)	94. 87	97.37	-10/30(5 2.0) 97.73	43/ 50(80.0) 97.50	
Terminal rates(c)	37/39(94.9)	34/35(97.1)	40/41(97.6)	36/37(97.3)	
Statistical analysis					
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.2809				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.8003				
Fisher Exact test(e)		P = 0.3871	P = 0.1783	P = 0.5000	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] SEX : MALE

·			· · · · · · · · · · · · · · · · · · ·	
Group Name	Control	125 ppm	250 ppm	500 ppm
	SITE : preputial/clitoral gland			
	TUMOR : adenoma			
Tumor rate				
Overall rates(a)	1/50(2.0)	2/50(4.0)	2/50(4.0)	3/50(6.0)
Adjusted rates(b)	2. 38	2.86	4.88	5. 41
Terminal rates(c)	0/39(0.0)	1/35(2.9)	2/41 (4.9)	2/37 (5.4)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.2456			
Prevalence method(d)	P = 0.2389			
Combined analysis(d)	P = 0.1663			
Cochran-Armitage test(e)	P = 0.3291			
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.3087
	SITE : brain			
	TUMOR : glioma			
Numor rate				
Overall rates(a)	0/50(0.0)	3/50(6.0)	1/50(2.0)	1/50(2.0)
Adjusted rates(b)	0.0	8.57	0.0	0. 0
Terminal rates(c)	0/39(0.0)	3/35(8.6)	0/41(0.0)	0/37(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.1385			
Prevalence method(d)	P = 0.7956			
Combined analysis(d)	P = 0.4569			
Cochran-Armitage test(e)	P = 0.9390			
Fisher Exact test(e)		P = 0.1212	P = 0.5000	P = 0.5000
				1 0.0000

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

BAIS4

PAGE : 7 TABLE O2

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS : FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 8

Group Name	Control	125 ppm	250 ppm	500 ppm
	SITE : lung			
Tumor rate	TUMOR : bronchiolar-alveolar ad	lenoma, bronchiolar-alveolar carcinoma		
Overall rates(a)	1/50(2.0)	0/50(0.0)	1/50 (2.0)	
Adjusted rates(b)	2. 33	0.0	1/50(2.0) 2.44	3/50(6.0) 8.11
Terminal rates (c)	0/38(0.0)	0/43(0.0)	1/41(2.4)	3/37(8.1)
Statistical analysis		0, 10 (0.0)	1/11(0.1)	0/01(0.1)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.0595			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.1079			
Fisher Exact test(e)		P = 0.5000	P = 0.7525	P = 0.3087
	SITE : spleen TUMOR : mononuclear cell leuken	ia		
Tumor rate	TUMOR : INONOLICIEAL CELL LEUKER	118		
Overall rates(a)	5/50(10.0)	5/50(10.0)	6/50(12.0)	1/50 (2.0)
Adjusted rates (b)	7.89	6, 98	7.32	0.0
Terminal rates(c)	3/38(7.9)	3/43(7.0)	3/41 (7.3)	0/37(0.0)
Statistical analysis		.,,	.,	
Peto test				
Standard method(d)	P = 0.6530			
Prevalence method(d)	P = 0.9415			
Combined analysis(d)	P = 0.9206			
Cochran-Armitage test(e)	P = 0.1336			
Fisher Exact test(e)		P = 0.6297	P = 0.5000	P = 0.1022
······································				
	SITE : pituitary gland			
	TUMOR : adenoma			
fumor rate				
Overall rates(a)	13/50(26.0)	14/50(28.0)	13/50(26.0)	7/50(14.0)
Adjusted rates(b)	23.68	27.91	26. 83	16. 22
Terminal rates(c)	9/38(23.7)	12/43(27.9)	11/41 (26. 8)	6/37(16.2)
Statistical analysis				
Peto test	D			
Standard method(d)	P = 0.9002			
Prevalence method(d)	P = 0.8232			
Combined analysis(d)	P = 0.9256			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.1081	D. 0 5000	D 0 5000	
risher Exact test(e)		P = 0.5000	P = 0.5900	P = 0.1054

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

~~~~<sup>2</sup>

PAGE: 9

| Group Name                                       | Control                                  | 125 ppm             | 250 ppm                  | 500 ppm             |
|--------------------------------------------------|------------------------------------------|---------------------|--------------------------|---------------------|
|                                                  | SITE : pituitary gland                   |                     |                          |                     |
| T                                                | TUMOR : adenoma, adenocarcinoma          |                     |                          |                     |
| Tumor rate<br>Overall rates(a)                   | 14/50(28.0)                              | 14/50(28.0)         |                          |                     |
| Adjusted rates(b)                                | 26. 32                                   | 27.91               | 13/50 ( 26. 0)<br>26. 83 | 8/50(16.0)<br>16.22 |
| Terminal rates (c)                               | 10/38(26.3)                              | 12/43(27.9)         | 11/41(26.8)              | 6/37(16.2)          |
| Statistical analysis<br>Peto test                |                                          | 10, 10, 01,07       | 11/ 11 ( 2000)           | 0,01(10.2)          |
| Standard method(d)                               | P = 0.7569                               |                     |                          |                     |
| Prevalence method(d)                             | P = 0.8733                               |                     |                          |                     |
| Combined analysis(d)                             | P = 0.9123                               |                     |                          |                     |
| Cochran-Armitage test(e)                         | P = 0.1264                               |                     |                          |                     |
| Fisher Exact test(e)                             |                                          | P = 0.5880          | P = 0.5000               | P = 0. 1135         |
|                                                  | SITE : thyroid<br>TUMOR : C-cell adenoma |                     |                          |                     |
| Tumor rate                                       |                                          |                     |                          |                     |
| Overall rates(a)                                 | 6/50(12.0)                               | 6/50(12.0)          | 2/50( 4.0)               | 3/50( 6.0)          |
| Adjusted rates(b)                                | 13. 16                                   | 13. 33              | 4.88                     | 8.11                |
| Terminal rates(c)                                | 5/38(13.2)                               | 5/43(11.6)          | 2/41(4.9)                | 3/37(8.1)           |
| Statistical analysis                             |                                          |                     |                          |                     |
| Peto test                                        |                                          |                     |                          |                     |
| Standard method(d)                               | P =                                      |                     |                          |                     |
| Prevalence method(d)                             | P = 0.8950                               |                     |                          |                     |
| Combined analysis(d)                             | $\mathbf{P} =$                           |                     |                          |                     |
| Cochran-Armitage test(e)<br>Fisher Exact test(e) | P = 0.1840                               | B 0 (2008           | D 0 1040                 | D 0.0405            |
| Fisher Exact test(e)                             |                                          | P = 0.6202          | P = 0.1343               | P = 0.2435          |
| :                                                |                                          | ·····               |                          |                     |
|                                                  | SITE : thyroid                           |                     |                          |                     |
| Tumor rate                                       | TUMOR : C-cell adenoma, C-cell carc      | inoma               |                          |                     |
| Overall rates(a)                                 | 7/50(14.0)                               | 6/50(12.0)          |                          |                     |
| Adjusted rates(b)                                | 15.79                                    | 6/50(12.0)<br>13.33 | 2/50( 4.0)               | 4/50 ( 8.0)         |
| Terminal rates(c)                                | 6/38(15.8)                               | 5/43(11.6)          | 4.88<br>2/41(4.9)        | 10.81<br>4/37(10.8) |
| Statistical analysis                             | 0,00(10.0)                               | 0/10/11.0/          | 2/11( 1.7)               | 4/3/(10.0)          |
| Peto test                                        |                                          |                     |                          |                     |
| Standard method(d)                               | P =                                      |                     |                          |                     |
| Prevalence method(d)                             | P = 0.8633                               |                     |                          |                     |
| Combined analysis(d)                             | P =                                      |                     |                          |                     |
| Cochran-Armitage test(e)                         | P = 0.2372                               |                     |                          |                     |
| Fisher Exact test(e)                             |                                          | P = 0.5000          | P = 0.0798               | P = 0.2623          |

Ŧ

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 10

| Group Name               | Control                             | 125 ppm    | 250 ppm                               | 500 ppm     |   |
|--------------------------|-------------------------------------|------------|---------------------------------------|-------------|---|
|                          | SITE : uterus                       |            |                                       |             |   |
|                          | TUMOR : endometrial stromal polyp   |            |                                       |             |   |
| fumor rate               |                                     |            |                                       |             |   |
| Overall rates(a)         | 5/50(10.0)                          | 3/50( 6.0) | 5/50(10.0)                            | 3/50(6.0)   |   |
| Adjusted rates(b)        | 13. 16                              | 6.98       | 11.90                                 | 8. 11       |   |
| Terminal rates(c)        | 5/38(13.2)                          | 3/43(7.0)  | 4/41 ( 9.8)                           | 3/37( 8.1)  |   |
| tatistical analysis      |                                     |            |                                       |             |   |
| Peto test                |                                     |            |                                       |             |   |
| Standard method(d)       | P =                                 |            |                                       |             |   |
| Prevalence method(d)     | P = 0.6791                          |            |                                       |             |   |
| Combined analysis(d)     | $\mathbf{P} =$                      |            |                                       |             |   |
| Cochran-Armitage test(e) | P = 0.5970                          |            |                                       |             |   |
| Fisher Exact test(e)     |                                     | P = 0.3575 | P = 0.6297                            | P = 0.3575  |   |
|                          | SITE : uterus                       |            |                                       |             |   |
|                          | TUMOR : endometrial stromal sarcoma |            |                                       |             |   |
| 'umor rate               |                                     |            |                                       |             |   |
| Overall rates(a)         | 3/50( 6.0)                          | 1/50( 2.0) | 1/50(2.0)                             | 3/50(6.0)   |   |
| Adjusted rates(b)        | 0.0                                 | 0.0        | 2. 27                                 | 2. 13       |   |
| Terminal rates(c)        | 0/38( 0.0)                          | 0/43( 0.0) | 0/41(0.0)                             | 0/37(0.0)   |   |
| tatistical analysis      |                                     |            |                                       |             |   |
| Peto test                |                                     |            |                                       |             |   |
| Standard method(d)       | P = 0.6383                          |            |                                       |             |   |
| Prevalence method(d)     | P = 0.1356                          |            |                                       |             |   |
| Combined analysis(d)     | P = 0.3917                          |            |                                       |             |   |
| Cochran-Armitage test(e) | P = 0.8073                          |            |                                       |             |   |
| Fisher Exact test(e)     |                                     | P = 0.3087 | P = 0.3087                            | P = 0.6611  |   |
|                          | SITE : mammary gland                |            |                                       |             | - |
|                          | TUMOR : fibroadenoma                |            |                                       |             |   |
| umor rate                |                                     |            |                                       |             |   |
| Overall rates(a)         | 8/50(16.0)                          | 5/50(10.0) | 5/50(10.0)                            | 1/50(2,0)   |   |
| Adjusted rates(b)        | 18.42                               | 11.63      | 10.00                                 | 0.0         |   |
| Terminal rates(c)        | 7/38(18.4)                          | 5/43(11.6) | 3/41 ( 7.3)                           | 0/37(0.0)   |   |
| tatistical analysis      |                                     |            | · · · · · · · · · · · · · · · · · · · | 0,01( 0.0)  |   |
| Peto test                |                                     |            |                                       |             |   |
| Standard method(d)       | P = 0.3865                          |            |                                       |             |   |
| Prevalence method(d)     | P = 0.9958                          |            |                                       |             |   |
| Combined analysis(d)     | P = 0.9907                          |            |                                       |             |   |
| Cochran-Armitage test(e) | P = 0.0202*                         |            |                                       |             |   |
| Fisher Exact test(e)     |                                     | P = 0.2768 | P = 0.2768                            | P = 0.0154* |   |
|                          |                                     | 1 0.8100   | 1 0.2100                              | 1 = 0.010   |   |

.

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 11

| Group Name               | Control                                                | 125 ppm        | 250 ррт    | 500 ppm     |
|--------------------------|--------------------------------------------------------|----------------|------------|-------------|
|                          |                                                        | · ·            |            |             |
|                          | SITE : mammary gland<br>TUMOR : adenoma, fibroadenoma  |                |            |             |
| umor rate                |                                                        |                |            |             |
| Overall rates(a)         | 8/50(16.0)                                             | 5/50(10.0)     | 6/50(12.0) | 1/50(2,0)   |
| Adjusted rates (b)       | 18. 42                                                 | 11.63          | 12.00      | 0.0         |
| Terminal rates(c)        | 7/38(18.4)                                             | 5/43(11.6)     | 4/41(9.8)  | 0/37( 0.0)  |
| Statistical analysis     | 1,00(10.1)                                             | 0/45( 11:0/    | 4/41( 5.6) | 0/31( 0.0)  |
| Peto test                |                                                        |                |            |             |
| Standard method(d)       | P = 0.3865                                             |                |            |             |
| Prevalence method(d)     | P = 0.9938                                             |                |            |             |
| Combined analysis(d)     | P = 0.9877                                             |                |            |             |
| Cochran-Armitage test(e) | P = 0.0257*                                            |                |            |             |
| Fisher Exact test(e)     |                                                        | P = 0.2768     | P = 0.3871 | P = 0.0154* |
|                          | SITE : mammary gland<br>TUMOR : adenoma, fibroadenoma, | adenocarcinoma | ·          |             |
| umor rate                |                                                        |                |            |             |
| Overall rates(a)         | 8/50(16.0)                                             | 5/50(10.0)     | 6/50(12.0) | 2/50 ( 4.0) |
| Adjusted rates(b)        | 18. 42                                                 | 11.63          | 12.00      | 0.0         |
| Terminal rates(c)        | 7/38(18.4)                                             | 5/43(11.6)     | 4/41(9.8)  | 0/37( 0.0)  |
| tatistical analysis      |                                                        | -, , ,         |            | 0,01( 0.0)  |
| Peto test                |                                                        |                |            |             |
| Standard method(d)       | P = 0.1467                                             |                |            |             |
| Prevalence method(d)     | P = 0.9933                                             |                |            |             |
| Combined analysis(d)     | P = 0.9607                                             |                |            |             |
| Cochran-Armitage test(e) | P = 0.0669                                             |                |            |             |
| Fisher Exact test(e)     |                                                        | P = 0.2768     | P = 0.3871 | P = 0.0458* |
| HPT360A)                 |                                                        |                |            |             |

(HPT360A)

BAIS4

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE 12

BAIS4

| Group Name               | Control                      | 125 ppm    | 250 ppm     | 500 ррт     |
|--------------------------|------------------------------|------------|-------------|-------------|
|                          | SITE : preputial/clitoral gl | and        |             |             |
|                          | TUMOR : adenoma              |            |             |             |
| Tumor rate               |                              |            |             |             |
| Overall rates(a)         | 2/50( 4.0)                   | 4/50( 8.0) | 6/50(12.0)  | 3/50 ( 6.0) |
| Adjusted rates(b)        | 5.26                         | 9.09       | 9.76        | 5. 41       |
| Terminal rates(c)        | 2/38(5.3)                    | 3/43(7.0)  | 4/41 ( 9.8) | 2/37 ( 5.4) |
| Statistical analysis     |                              |            |             |             |
| Peto test                |                              |            |             |             |
| Standard method(d)       | P = 0.1474                   |            |             |             |
| Prevalence method(d)     | P = 0.5361                   |            |             |             |
| Combined analysis(d)     | P = 0.3365                   |            |             |             |
| Cochran-Armitage test(e) | P = 0.7508                   |            |             |             |
| Fisher Exact test(e)     |                              | P = 0.3389 | P = 0.1343  | P = 0.5000  |

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

N.C. Statistical value cannot be calculated and was not significant.

TABLE P1

### HISTOPATHOLOGICAL FINDINGS :

METASTASIS OF TUMOR :

MALE

# STUDY NO.: 0560ANIMAL: RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE: A1SEX: MALE

#### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 1

| organ        | Findings                         | Group Name<br>No. of Animals on Study | Control<br>50 |   | 125 ррм<br>50 | 250 ppm<br>50 | 500 ppm<br>50 |
|--------------|----------------------------------|---------------------------------------|---------------|---|---------------|---------------|---------------|
| Respiratory  | system)                          |                                       |               |   |               |               |               |
| arynx        | metastasis:thyroid tumor         |                                       | <50>          | · | <50><br>0     | <50><br>1     | <50><br>0     |
| achea        | metastasis:thyroid tumor         |                                       | <50><br>1     |   | <50><br>0     | <50>          | <50><br>0     |
| ing          | leukemic cell infiltration       |                                       | <50><br>4     |   | <50><br>3     | <50><br>2     | <50><br>1     |
|              | metastasis:subcutis tumor        |                                       | 0             |   | 1             | 0             | 0             |
|              | metastasis:mammary gland tumor   |                                       | 1             |   | 0             | 0             | 0             |
|              | metastasis:zymbal gland tumor    |                                       | 0             |   | 1             | 0             | 0             |
|              | metastasis:retroperitoneum tumor |                                       | 0             |   | 0             | 0             | 1             |
| Hematopoieti | c system}                        |                                       |               |   |               |               |               |
| one marrow   | leukemic cell infiltration       |                                       | <50><br>4     |   | <50><br>3     | <50><br>1     | <50><br>1     |
|              | metastasis:retroperitoneum tumor |                                       | 0             |   | 0             | 0             | 1             |
| ymph node    | leukemic cell infiltration       |                                       | <50><br>1     |   | <50><br>2     | <50><br>1     | <50><br>0     |
|              | metastasis:subcutis tumor        |                                       | 0             |   | 1             | 0             | 0             |
| Circulatory  | system)                          |                                       |               |   |               |               |               |
| eart         | metastasis:subcutis tumor        |                                       | <50><br>0     |   | <50><br>1     | <50><br>0     | <50><br>0     |

#### STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

#### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

 $\sim$ 

PAGE: 2

| <b>.</b>      |                                  | Group Name<br>No. of Animals on Study | Control<br>50                         | 125 ppm<br>50 | 250 ppm<br>50 | 500 ppm<br>50 |
|---------------|----------------------------------|---------------------------------------|---------------------------------------|---------------|---------------|---------------|
| gan           | Findings                         |                                       | · · · · · · · · · · · · · · · · · · · |               | -             |               |
| )igestive sys | stem)                            |                                       |                                       |               |               |               |
| sophagus      | metastasis:thyroid tumor         |                                       | <50><br>0                             | <50><br>0     | <50><br>1     | <50><br>0     |
| ver           | leukemic cell infiltration       |                                       | <50><br>5                             | <50><br>3     | <50><br>2     | <50><br>1     |
|               | metastasis:subcutis tumor        |                                       | 0                                     | 1             | 0             | 0             |
|               | metastasis:retroperitoneum tumor |                                       | 0                                     | 0             | 0             | 1             |
| ancreas       | leukemic cell infiltration       |                                       | <50><br>0                             | <50><br>1     | <50><br>0     | <50><br>0     |
|               | metastasis:retroperitoneum tumor |                                       | 0                                     | Ó             | 0             | 1             |
| Jrinary syste | em)                              |                                       |                                       |               |               |               |
| idney         | leukemic cell infiltration       |                                       | <50><br>1                             | <50><br>1     | <50><br>0     | <50><br>0     |
|               | metastasis:subcutis tumor        |                                       | 0                                     | 1             | 0             | 0             |
|               | metastasis:retroperitoneum tumor |                                       | 0                                     | 0             | 0             | 1             |
| Endocrine sys | tem)                             |                                       |                                       |               |               |               |
| arathyroid    | metastasis:thyroid tumor         |                                       | <50><br>0                             | <50><br>0     | <50><br>1     | <50><br>0     |
| drenal        | leukemic cell infiltration       |                                       | <50><br>1                             | <50><br>0     | <50><br>0     | <50><br>0     |
| Nervous syste | m}                               |                                       |                                       |               |               |               |
| rain          |                                  |                                       | <50>                                  | <50>          | <50>          | <50>          |
|               | leukemic cell infiltration       |                                       | 1                                     | 1             | 1             | (50)          |

. .

# STUDY NO.: 0560ANIMAL: RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE: A1SEX: MALE

#### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 3

| Organ         | Findings                                                                   | Group Name<br>No. of Animals on Study             | Control<br>50 | 125 ppm<br>50 | 250 ppm<br>50 | 500 ppm<br>50 |
|---------------|----------------------------------------------------------------------------|---------------------------------------------------|---------------|---------------|---------------|---------------|
|               | · · · · · · · · · · · · · · · · · · ·                                      | n terrente en |               | ·····         |               |               |
| Nervous syste | em}                                                                        |                                                   |               |               |               |               |
| orain         | metastasis:bone tumor                                                      |                                                   | <50><br>0     | <50><br>1     | <50><br>0     | <50><br>0     |
|               | metastasis:zymbal gland tumor                                              |                                                   | 0             | 1             | 0             | 0             |
| spinal cord   | leukemic cell infiltration                                                 |                                                   | <50><br>1     | <50><br>0     | <50><br>0     | <50><br>0     |
| Musculoskele  | tal system}                                                                |                                                   |               |               |               |               |
| uscle         | leukemic cell infiltration                                                 |                                                   | <50><br>1     | <50><br>0     | <50><br>0     | <50><br>0     |
| one           | metastasis:subcutis tumor                                                  |                                                   | <50><br>0     | <50><br>1     | <50><br>0     | <50><br>0     |
| Body cavities | s)                                                                         |                                                   |               |               |               |               |
| leura         | metastasis:retroperitoneum tumor                                           |                                                   | <50><br>0     | <50><br>0     | <50><br>0     | <50><br>1     |
| peritoneum    | metastasis:retroperitoneum tumor                                           |                                                   | <50><br>0     | <50><br>0     | <50><br>0     | <50><br>1     |
| a><br>b       | a : Number of animals examined at the<br>b : Number of animals with lesion | site                                              |               |               |               |               |

(JPT150)

BAIS4

TABLE P2

### HISTOPATHOLOGICAL FINDINGS :

METASTASIS OF TUMOR :

FEMALE

#### STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

#### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 4

| Organ                 | Findings                   | Group Name<br>No. of Animals on Study | Control<br>50 | 125 ppm<br>50                         | 250 ppm<br>50 | 500 ppm<br>50 |
|-----------------------|----------------------------|---------------------------------------|---------------|---------------------------------------|---------------|---------------|
| · · · · · · · · · · · |                            |                                       |               | · · · · · · · · · · · · · · · · · · · |               |               |
| {Respiratory          | system}                    |                                       |               |                                       |               |               |
| lung                  | leukemic cell infiltration |                                       | <50><br>3     | <50><br>3                             | <50><br>6     | <50><br>1     |
|                       | metastasis:uterus tumor    |                                       | 0             | 1                                     | 0             | 0             |
|                       | metastasis vertebra tumor  |                                       | 0             | 0                                     | 0             | 1             |
| {Hematopoiet          | ic system)                 |                                       |               |                                       |               |               |
| bone marrow           | leukemic cell infiltration |                                       | <50><br>2     | <50><br>2                             | <50><br>1     | <50><br>1     |
| lymph node            | leukemic;cell infiltration |                                       | <50><br>1     | <50><br>1                             | <50><br>2     | <50><br>0     |
| {Digestive s          | ystem)                     |                                       |               |                                       |               |               |
| liver                 | leukemic cell infiltration |                                       | <50><br>2     | <50><br>3                             | <50><br>6     | <50><br>1     |
| oancreas              | leukemic cell infiltration |                                       | <50><br>0     | <50><br>1                             | <50><br>0     | <50><br>0     |
| {Urinary sys          | tem)                       |                                       |               |                                       |               |               |
| kidne <b>y</b>        | leukemic cell infiltration |                                       | <50><br>1     | <50><br>0                             | <50><br>2     | <50><br>0     |
| urin bladd            | metastasis:uterus tumor    |                                       | <50><br>0     | <50><br>1                             | <50><br>0     | <50><br>0     |
| {Reproductiv          | ve system}                 |                                       |               |                                       |               |               |
| ovary                 | metastasis:uterus tumor    |                                       | <50><br>0     | <50><br>0                             | <50><br>0     | <50><br>1     |

b b : Number of animals with lesion

· ·

STUDY NO. : 0560 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

#### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 5

| Organ          |                                                                                | roup Name<br>p. of Animals on Study | Control<br>50 | 125 ppm<br>50 | 250 ppm<br>50 | 500 ppm<br>50 |
|----------------|--------------------------------------------------------------------------------|-------------------------------------|---------------|---------------|---------------|---------------|
| Nervous syst   | em)                                                                            |                                     |               |               |               |               |
| orain          | leukemic cell infiltration                                                     |                                     | <50><br>1     | <50><br>0     | <50><br>0     | <50><br>0     |
|                | metastasis:pituitary tumor                                                     |                                     | 1             | 0             | 0             | 1             |
|                | metastasis:zymbal gland tumor                                                  |                                     | 0             | 0             | 0             | 1             |
| spinal cord    | leukemic cell infiltration                                                     |                                     | <50><br>1     | <50><br>0     | <50><br>0     | <50><br>0     |
| {Body cavities | s)                                                                             |                                     |               |               |               |               |
| peritoneum     | metastasis:uterus tumor                                                        |                                     | <50><br>1     | <50><br>0     | <50><br>0     | <50><br>0     |
| ≺a≻<br>b       | a : Number of animals examined at the sit<br>b : Number of animals with lesion | e                                   |               |               |               |               |
| (TPT150)       | · · · · · · · · · · · · · · · · · · ·                                          |                                     |               |               |               | •             |

(JPT150)

BAIS4

### TABLE Q

## HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrlCrlj MALE RATS

| Organs                         | No. of animals | No. of animals | Incidence | Min Max. |
|--------------------------------|----------------|----------------|-----------|----------|
| Tumors                         | examined       | bearing tumor  | (%)       | (%)      |
| Lung                           | 2199           |                |           |          |
| Bronchio-alveolar adenoma 1)   |                | 84             | 3.8       | 0-12     |
| Bronchio-alveolar carcinoma 2) |                | 19             | 0.9       | 0-8      |
| 1)+2)                          |                | 103            | 4.7       | 0 - 14   |
| Liver                          | 2199           |                |           |          |
| Hepatocellular adenoma 1)      |                | 41             | 1.9       | 0-8      |
| Hepatocellular carcinoma 2)    |                | 7              | 0.3       | 0-2      |
| 1)+2)                          |                | 47             | 2.1       | 0 - 8    |
| Pncreas                        | 2199           |                |           |          |
| Islet cell adenoma             |                | 46             | 2.1       | 0 - 14   |

### TABLE QHISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONSIN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrlCrlj MALE RATS

Forty four carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.: 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0246, 0267, 0269, 0278, 0284, 0288, 0294, 0296, 0318, 0328, 0342, 0347, 0365, 0371, 0396, 0399, 0401, 0407, 0417, 0421, 0437, 0448, 0457, 0461, 0497, 0535

TABLE R

## CAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY OF 1 - BROMOBUTANE

|                                                  |                          | Male    |                 |              |               |               | Female       |              |               |  |  |
|--------------------------------------------------|--------------------------|---------|-----------------|--------------|---------------|---------------|--------------|--------------|---------------|--|--|
| Group name<br>Number of dead or moribund animals |                          | Control | l 125 ppm<br>15 | 250 ppm<br>9 | 500 ppm<br>13 | Control<br>12 | 125 ppm<br>7 | 250 ppm<br>9 | 500 ppm<br>13 |  |  |
|                                                  |                          | 11      |                 |              |               |               |              |              |               |  |  |
| Urinary systen                                   | n lesion                 | 0       | 2               | 0            | 0             | 0             | 0            | 0            | 0             |  |  |
| Chronic nephropathy                              |                          | 0       | 0               | 0            | 1             | 0             | 0            | 0            | 0             |  |  |
| Peritonitis                                      |                          | 0       | 0               | 0            | 0             | 0             | 1            | 0            | 0             |  |  |
| Tumor death :                                    | leukemia                 | 2       | 2               | 1            | 1             | 2             | 2            | 3            | 1             |  |  |
|                                                  | skin / appendage         | 0       | 1               | 1            | 0             | 0             | 0            | 0            | 0             |  |  |
|                                                  | subcutis                 | 0       | 1 .             | 1            | 1             | 0             | 0            | 0            | 0             |  |  |
|                                                  | lymph node               | 0       | 0               | 0            | 0             | 1             | 0            | 0            | 0             |  |  |
|                                                  | spleen                   | 0       | 0               | 0            | 1             | 0             | 0            | 0            | 0             |  |  |
|                                                  | kidney                   | 0       | 1               | 0            | 0             | 0             | 0            | 0            | 0             |  |  |
|                                                  | urinary bladder          | 0       | 0               | 0            | 0             | 0             | 0            | 0            | 1             |  |  |
|                                                  | pituitary gland          | 5       | 3               | 0            | <b>2</b>      | 4             | 2            | 2            | 2             |  |  |
|                                                  | thyroid                  | 4       | 0               | 1            | 1             | 0             | 0            | 0            | 0             |  |  |
|                                                  | adrenal gland            | 0       | 0               | 1            | 0             | 0             | 0            | 0            | 0             |  |  |
|                                                  | uterus                   |         | _               | _            | _             | 3             | 1            | 0            | 2             |  |  |
|                                                  | mammary gland            | 0       | 0               | 0            | 0             | 1             | 0            | 0            | 2             |  |  |
|                                                  | preputial/clitoral gland | 0       | 1               | 0            | 1             | 0             | 0            | 2            | 1             |  |  |
|                                                  | brain                    | 0       | 0               | 2            | 1             | 0             | 0            | 0            | 0             |  |  |
|                                                  | Zymbal gland             | 0       | 1               | 1            | 2             | 0             | 0            | 1            | 2             |  |  |
|                                                  | vertebra                 | _       | _               |              | _             | 0             | 0            | 0            | 1             |  |  |
|                                                  | bone                     | 0       | 2               | 0            | 0             | 0             | 0            | 0            | 0             |  |  |
| No microscopical confirmation                    |                          | 0       | . 1             | 1            | 2             | 1             | 1            | 1            | 1             |  |  |

### TABLE RCAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY<br/>OF 1-BROMOBUTANE

)

)