#### 2-アミノエタノールのラットを用いた 経口投与による13週間毒性試験(混水試験)報告書

試験番号:0602

# APPENDICES

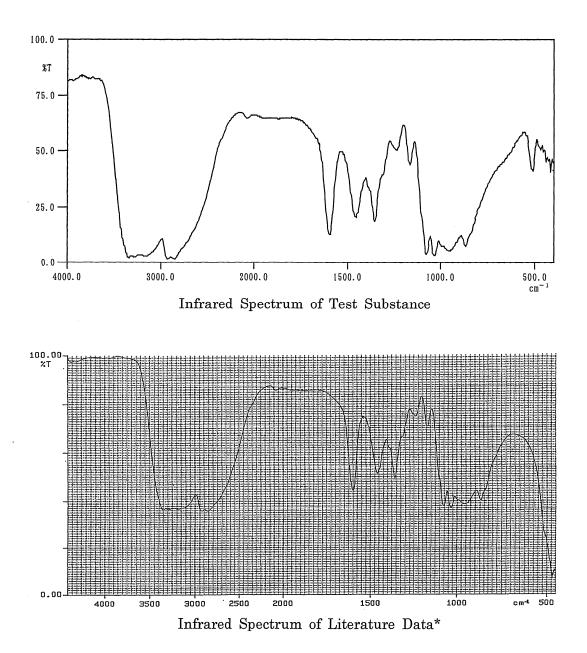
#### **APPENDICES**

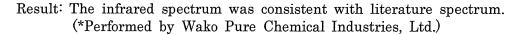
- APPENDIX A 1 IDENTITY OF 2-AMINOETHANOL IN THE 13-WEEK DRINKING WATER STUDY
- APPENDIX A 2 STABILITY OF 2-AMINOETHANOL IN THE 13-WEEK DRINKING WATER STUDY
- APPENDIX A 3 CONCENTRATION OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
- APPENDIX A 4 STABILITY OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY
- APPENDIX B 1 CLINICAL OBSERVATION: MALE
- APPENDIX B 2 CLINICAL OBSERVATION: FEMALE
- APPENDIX C 1 BODY WEIGHT CHANGES: MALE
- APPENDIX C 2 BODY WEIGHT CHANGES: FEMALE
- APPENDIX D 1 FOOD CONSUMPTION CHANGES: MALE
- APPENDIX D 2 FOOD CONSUMPTION CHANGES: FEMALE
- APPENDIX E 1 WATER CONSUMPTION CHANGES: MALE
- APPENDIX E 2 WATER CONSUMPTION CHANGES: FEMALE
- APPENDIX F 1 CHEMICAL INTAKE CHANGES: MALE
- APPENDIX F 2 CHEMICAL INTAKE CHANGES: FEMALE
- APPENDIX G 1 HEMATOLOGY: MALE
- APPENDIX G 2 HEMATOLOGY: FEMALE
- APPENDIX H 1 BIOCHEMISTRY: MALE
- APPENDIX H 2 BIOCHEMISTRY: FEMALE

#### APPENDICES (CONTINUED)

- APPENDIX I 1 URINALYSIS: MALE
- APPENDIX I 2 URINALYSIS: FEMALE
- APPENDIX J 1 GROSS FINDINGS: MALE: ALL ANIMALS
- APPENDIX J 2 GROSS FINDINGS: FEMALE: ALL ANIMALS
- APPENDIX K 1 ORGAN WEIGHT, ABSOLUTE: MALE
- APPENDIX K 2 ORGAN WEIGHT, ABSOLUTE: FEMALE
- APPENDIX L 1 ORGAN WEIGHT, RELATIVE: MALE
- APPENDIX L 2 ORGAN WEIGHT, RELATIVE: FEMALE
- APPENDIX M 1 HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
- APPENDIX M 2 HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
- APPENDIX N METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-AMINOETHANOL

## APPENDIX A 1


# IDENTITY OF 2-AMINOETHANOL IN THE 13-WEEK DRINKING WATER STUDY


Infrared Spectrometry

Instrument : Shimadzu FTIR-8200PC Infrared Spectrometer

Cell : KBr Liquid Cell

Resolution  $\therefore 2 \text{ cm}^{-1}$ 





2. Conclusion: The test substance was identified as 2-aminoethanol by mass spectrum and infrared spectrum.

### APPENDIX A 2

# STABILITY OF 2-AMINOETHANOL IN THE 13-WEEK DRINKING WATER STUDY

STABILITY OF 2-AMINOETHANOL IN THE 13-WEEK DRINKING WATER STUDY

| Test Substance        | : 2-Aminoethanol (Wako Pure Chemical Industries, Ltd.) |
|-----------------------|--------------------------------------------------------|
| Lot No.               | : SDP0398                                              |
| 1. Gas Chromatography | 7                                                      |
| Instrument            | : Hewlett Packard 5890A Gas Chromatograph              |
| Column                | : Carbowax-20M + KOH 0.8% (2 mm $\phi$ $\times$ 2 m)   |
| Column Temperatu      | re: 190 °C                                             |
| Flow Rate             | : 20 mL/min                                            |
| Detector              | : FID (Flame Ionization Detector)                      |
| Injection Volume      | :1 μL                                                  |

| Date Analyzed | Peak No. | Retention Time<br>(min) | Area<br>(%) |
|---------------|----------|-------------------------|-------------|
| 2005.08.23    | 1        | 1.128                   | 100         |
| 2005.12.22    | 1        | 1.126                   | 100         |

(

(

- Result: Gas chromatography indicated one major peak (peak No.1) analyzed on 2005.8.23 and one major peak (peak No.1) analyzed on 2005.12.22. No new trace impurity peak in the test substance analyzed on 2005.12.22 was detected.
- 2. Conclusion: The test substance was stable for the period that the test substance had been used for the study.

#### APPENDIX A 3

# CONCENTRATION OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

#### CONCENTRATION OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

| Analytical Method | : The samples were analyzed by gas chromatography.  |
|-------------------|-----------------------------------------------------|
| Instrument        | : Hewlett Packard 5890A Gas Chromatograph           |
| Column            | : Carbowax-20M + KOH 0.8% (2 mm $\phi$ $	imes$ 2 m) |
| Column Temperatur | re: 190 °C                                          |
| Flow Rate         | : 20 mL/min                                         |
| Detector          | : FID (Flame Ionization Detector)                   |
| Injection Volume  | :1 μL                                               |
|                   |                                                     |

|               | Target Concentration                  |              |            |            |              |  |  |  |  |
|---------------|---------------------------------------|--------------|------------|------------|--------------|--|--|--|--|
| Date Analyzed | 625 <sup>a</sup>                      | 1250         | 2500       | 5000       | 10000        |  |  |  |  |
| 2005.09.08    | 608 <sup>b</sup> ( 97.3) <sup>c</sup> | 1230 ( 98.4) | 2530 (101) | 5010 (100) | 9920 ( 99.2) |  |  |  |  |

<sup>a</sup> ppm

(

<sup>b</sup> ppm (Mean measured concentration.)
<sup>c</sup> % (Mean measured concentration/target concentration × 100.)

### APPENDIX A 4

## STABILITY OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

# STABILITY OF 2-AMINOETHANOL IN FORMULATED WATER IN THE 13-WEEK DRINKING WATER STUDY

| Analytical Method | : The samples were analyzed by gas chromatography.  |
|-------------------|-----------------------------------------------------|
| Instrument        | : Hewlett Packard 5890A Gas Chromatograph           |
| Column            | : Carbowax-20M + KOH 0.8% (2 mm $\phi$ $	imes$ 2 m) |
| Column Temperatu  | are: 190 °C                                         |
| Flow Rate         | : 20 mL/min                                         |
| Detector          | : FID (Flame Ionization Detector)                   |
| Injection Volume  | :1 μL                                               |
|                   |                                                     |

|               | Target C               | oncentration |
|---------------|------------------------|--------------|
| Date Analyzed | 625ª                   | 10000        |
| 2005.08.12    | 610 (100) <sup>b</sup> | 10200 (100)  |
| 2005.08.16°   | 617 (101)              | 10200 (100)  |

<sup>a</sup> ppm

(

 $^{\rm b}$  % (Percentage was based on the concentration on date of preparation.)

<sup>c</sup> Animal room samples

## APPENDIX B 1

## CLINICAL OBSERVATION : MALE

#### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : Λ1 13

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 1

| Clinical sign  | Group Name | Admini | stration W | eek-day |     |     |     |     |     |     |      |      |      |      |
|----------------|------------|--------|------------|---------|-----|-----|-----|-----|-----|-----|------|------|------|------|
|                |            | 1-7    | 2-7        | 3-7     | 4-7 | 5-7 | 6-7 | 7-7 | 8-7 | 9-7 | 10-7 | 11-7 | 12-7 | 13-7 |
|                |            |        |            |         |     |     |     |     |     |     |      |      |      |      |
| PILOERECTION   | Control    | 0      | 0          | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
|                | 625 ppm    | 0      | 0          | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
|                | 1250 ppm   | 0      | 0          | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
|                | 2500 ppm   | 0 .    | 0          | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
|                | 5000 ppm   | 0      | 0          | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
|                | 10000 ррш  | 6      | 5          | 2       | 2   | 1   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
| ION REMARKABLE | Control    | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 625 ppm    | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 1250 ppm   | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 2500 ppm   | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 5000 ppm   | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 10000 ppm  | 4      | 5          | 8       | 8   | 9   | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |

(HAN190)

## APPENDIX B 2

## CLINICAL OBSERVATION : FEMALE

#### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 13

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\frown$ 

SEX : FEMALE

PAGE : 2

| Clinical sign         | Group Name | Admini | stration We | ek-day |     |     |     |     |     |     |      |      |      |      |  |
|-----------------------|------------|--------|-------------|--------|-----|-----|-----|-----|-----|-----|------|------|------|------|--|
|                       | •          | 1-7    | 2-7         | 3-7    | 4-7 | 5-7 | 6-7 | 7–7 | 8–7 | 9–7 | 10-7 | 11-7 | 12-7 | 13-7 |  |
|                       |            |        |             |        |     |     |     |     |     |     |      |      |      |      |  |
| UNCHBACK POSITION     | Control    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | . 0  | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 1      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
| OILED                 | Control    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 3      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
| ILOERECTION           | Control    | 0      | 0           | 0      | 1   | 0   | 1   | 1   | 1   | 1   | 0    | . 0  | 0    | 0    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | . 1 | 1   | 1   | 1   | 1    | 0    | 0    | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 10     | 10          | 6      | 4   | 2   | 1   | 1   | 1   | 1   | 1    | 0    | 0    | 0    |  |
| SOILED PERI-GENITALIA | Control    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 3      | 2           | 1      | 2   | 2   | 2   | 4   | 4   | 5   | 4    | 6    | 6    | 6    |  |
| CATARACT              | Control    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 1    | 1    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
| SMALL STOOL           | Control    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 625 ppm    | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 1250 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 2500 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 5000 ppm   | 0      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |
|                       | 10000 ppm  | 2      | 0           | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |  |

(HAN190)

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : Λ1 13

PAGE : 3

| Clinical sign  | Group Name | Admini | stration W | eek-day |     |     |     |     |     |     |      |      |      |      |
|----------------|------------|--------|------------|---------|-----|-----|-----|-----|-----|-----|------|------|------|------|
|                |            | 1-7    | 2-7        | 3–7     | 4-7 | 5-7 | 6-7 | 7–7 | 8-7 | 9-7 | 10-7 | 11-7 | 12-7 | 13-7 |
|                |            |        |            |         |     |     |     |     | 2   | 0   | 10   | 10   | 0    | 0    |
| NON REMARKABLE | Control    | 10     | 10         | 10      | 9   | 10  | 9   | 9   | 9   | 9   | 10   | 10   | 9    | 9    |
|                | 625 ppm    | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 1250 ppm   | 10     | 10         | 10      | 10  | 10  | 9   | 9   | 9   | 9   | 9    | 10   | 10   | 10   |
|                | 2500 ppm   | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 5000 ppm   | 10     | 10         | 10      | 10  | 10  | 10  | 10  | 10  | 10  | 10   | 10   | 10   | 10   |
|                | 10000 ppm  | 0      | 0          | 4       | 6   | 8   | 8   | 6   | 6   | 5   | 6    | 4    | 4    | 4    |

(HAN190)

APPENDIX C 1

BODY WEIGHT CHANGES : MALE

STUDY NO. : 0602 BODY WEIGHT CHANGES (SUMMARY) ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] ALL ANIMALS UNIT : g REPORT TYPE : A1 13 SEX : MALE PAGE: 1 Group Name Administration week-day\_ 0-0 1-7 2-7 3-7 4-7 5-7 6-7 Control 126± 5 156± 7 185± 9 210± 11 229± 11 245± 12 259土 14 625 ppm  $126 \pm$ 6 153± 8 183± 12 206± 17 226± 17 241± 15 254± 16 1250 ppm 126± 6 154± 8 184± 9 208± 10 228± 9 244± 11 258± 13 2500 ppm 252± 16 126± 5 153± 8 180± 9 204± 12 223± 13 239± 14 5000 ppm 152± 8 252土 18 126± 6 180± 13 204土 15 221± 17 238± 18 10000 ppm 126± 6 138± 7\*\* 184± 13\*\* 202± 15\*\* 216± 16\*\* 227± 16\*\* 164± 11\*\* Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett (HAN260)

.

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : MALE

PAGE : 2

| roup Name                | Admini | stration w | week-day |      |      |      |           |        |      |      |      |      |          |      |
|--------------------------|--------|------------|----------|------|------|------|-----------|--------|------|------|------|------|----------|------|
|                          | 7–7    |            | 8-7      |      | 9-7  |      | 10-7      |        | 11-7 |      | 12-7 |      | 13-7     |      |
| ontrol                   | 271±   | 15         | 283±     | 17   | 293± | 20   | 302±      | 20     | 310± | 20   | 316± | 19   | 322±     | 20   |
| 25 ppm                   | 267±   | 16         | 279±     | 16   | 287± | 16   | 297±      | 15     | 305± | 15   | 310± | 14   | 314±     | 15   |
| 250 ppm                  | 271±   | 12         | 283±     | 14   | 292± | 15   | 301±      | 16     | 309± | 18   | 315± | 18   | $319\pm$ | 18   |
| 500 ppm                  | 267±   | 16         | 277±     | 17   | 287± | 17   | 298±      | 18     | 304± | 17   | 311± | 18   | 315±     | 18   |
| 000 ppm                  | 264±   | 20         | 275±     | 21   | 284± | 20   | 293土      | 20     | 299± | 20   | 305土 | 22   | $311\pm$ | 22   |
| mqq 0000                 | 239±   | 17**       | 247±     | 16** | 253± | 18** | 259±      | 19**   | 261± | 21** | 265± | 23** | 269±     | 24** |
|                          |        |            |          |      |      |      |           |        |      |      |      |      |          |      |
| Significant difference ; | *:P≦(  | 0.05 *     | *:P≦0.(  | 01   |      |      | Test of D | unnett |      |      |      |      |          |      |

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

## APPENDIX C 2

### BODY WEIGHT CHANGES : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE

.

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE : 3

| roup Name            | Admin     | istratio | n week-day    |     |      |     |            |       |      |    |               |    |      |    |
|----------------------|-----------|----------|---------------|-----|------|-----|------------|-------|------|----|---------------|----|------|----|
|                      | 0-0       |          | 1-7           |     | 2-7  |     | 3–7        |       | 4-7  |    | 5-7           |    | 6-7  |    |
| ontrol               | 99±       | 3        | 11 <b>4</b> ± | 4   | 125± | 6   | 133±       | 8     | 137± | 10 | 1 <b>4</b> 4± | 12 | 146± | 14 |
| 25 ppm               | 99±       | 3        | 113±          | 5   | 123± | 6   | 132±       | 8     | 138± | 8  | 144 <b>±</b>  | 9  | 146± | 9  |
| 250 ppm              | 99±       | 3        | 115±          | 5   | 125± | 6   | 135±       | 7     | 141± | 8  | 147±          | 9  | 150± | 10 |
| 2500 ppm             | 99±       | 3        | 113±          | 4   | 124± | 4   | 132±       | 4     | 139± | 5  | 146±          | 6  | 150± | 6  |
| 5000 ppm             | 99±       | 3        | 111±          | 5   | 122± | 5   | 130±       | 6     | 136± | 6  | 142土          | 6  | 147土 | 6  |
| mqq 0000.            | 99±       | 3        | 98±           | 7** | 111± | 6** | $122\pm$   | 7**   | 128± | 8* | 131±          | 9* | 136± | 10 |
|                      |           |          |               |     |      |     |            |       |      |    |               |    |      |    |
| Significant differen | nce; ∗:P≦ | 0.05     | ** : P ≦ 0.0  | 1   | •    |     | Test of Du | nnett |      |    |               |    |      |    |
| (HAN260)             |           |          |               |     |      |     |            |       |      |    |               |    |      |    |

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

| roup Name                | Administration | week-day      |         |                 |         |         |         |
|--------------------------|----------------|---------------|---------|-----------------|---------|---------|---------|
|                          | 7–7            | 8-7           | 9–7     | 10-7            | 11-7    | 12-7    | 13-7    |
|                          |                |               |         |                 |         |         |         |
| ontrol                   | 151± 15        | $153 \pm 15$  | 155± 15 | 159± 16         | 161± 17 | 164土 17 | 164± 18 |
| 25 ppm                   | 149± 10        | 152± 11       | 154± 10 | 158± 11         | 161± 11 | 163± 11 | 163± 12 |
| 250 ppm                  | 155± 10        | 159± 11       | 162± 12 | 165± 12         | 168± 12 | 170± 14 | 171± 14 |
| 500 ppm                  | 154± 7         | 156± 7        | 159± 7  | 163± 7          | 167± 7  | 168± 8  | 168± 8  |
| 000 ppm                  | 151± 8         | $153\pm$ 8    | 156± 9  | 160土 10         | 163± 11 | 165± 11 | 167土 11 |
| mqq 0000                 | 139± 10        | 142± 10       | 145土 10 | 147± 9          | 150± 10 | 151± 10 | 153± 10 |
|                          |                |               |         |                 |         |         |         |
| Significant difference ; | * : P ≤ 0.05   | ** : P ≤ 0.01 |         | Test of Dunnett |         |         |         |

## APPENDIX D 1

### FOOD CONSUMPTION CHANGES : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : MALE

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 1

| roup Name                |                     | week-day(effective) |             |                 |             |             |             |
|--------------------------|---------------------|---------------------|-------------|-----------------|-------------|-------------|-------------|
|                          | 1-7(7)              | 2-7(7)              | 3–7 (7)     | 4-7 (7)         | 5-7(7)      | 6-7 (7)     | 7–7 (7)     |
| ontrol                   | 13.5± 0.6           | 14.9± 0.8           | 15.6± 1.1   | 15.7± 0.9       | 15.6± 1.3   | 15.0± 1.0   | 15.1± 0.9   |
| 25 ppm                   | 13.5± 0.8           | 14.9± 1.1           | 15.6± 1.3   | 16.0± 1.4       | 15.5± 0.7   | 14.6± 1.0   | 15.0± 0.9   |
| .250 ppm                 | 13.1± 0.9           | 14.9± 0.8           | 15.3± 0.8   | 15.7± 0.5       | 14.9± 0.7   | 14.3± 0.7   | 14.8± 0.8   |
| 2500 ppm                 | $12.7\pm 0.7$       | 14.3± 0.6           | 14.9± 0.6   | 15.1± 0.6       | 14.7± 1.1   | 14.2± 1.0   | 14.8± 0.9   |
| 5000 ppm                 | 12.4土 0.8**         | 13.9± 1.0           | 14.6± 1.0   | 15.1± 1.4       | 14.0± 1.1*≠ | 13.9± 1.1   | 14.3± 1.2   |
| 10000 maga               | 10.3± 0.7**         | 13.1± 0.9**         | 13.7± 1.0** | 14.2± 1.4*      | 13.0± 0.9** | 12.6± 0.9** | 12.9土 0.6** |
|                          |                     |                     |             |                 |             |             |             |
| Significant difference ; | * : $P \leq 0.05$ * | * : P ≦ 0.01        |             | Test of Dunnett |             |             |             |

.

(HAN260)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : MALE

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 2

| Group Name              | Administration<br>8-7(7) | week-day(effective)<br>9-7(7) | 10-7 (7)    | 11-7 (7)             | 12-7(7)    | 13-7 (7)    |  |
|-------------------------|--------------------------|-------------------------------|-------------|----------------------|------------|-------------|--|
|                         |                          |                               |             |                      |            |             |  |
| Control                 | 15.0± 1.1                | 15.5± 1.2                     | 15.3± 1.1   | 15.2± 1.6            | 15.3± 1.1  | 15.0± 1.2   |  |
| 625 ppm                 | 15.0± 0.9                | 15.0± 0.7                     | 15.2± 0.7   | 14.7± 0.7            | 14.8± 0.7  | 14.8± 0.6   |  |
| 1250 ppm                | 15.0± 1.0                | 15.0± 0.8                     | 15.3± 0.8   | 14.9± 0.9            | 14.9± 0.8  | 14.8± 1.1   |  |
| 2500 ppm                | 14.6± 1.0                | 14.9± 1.3                     | 14.8± 0.8   | 14.3± 0.9            | 14.5± 0.8  | 14.6± 0.8   |  |
| 5000 ppm                | 14.0± 0.8                | 14.0± 1.0 <b>≭</b>            | 13.9± 1.1*  | 14.0± 1.1            | 14.1± 1.1* | 14.0± 1.1   |  |
| 10000 ppm               | 13.0± 0.9₩*              | 12.8± 0.9**                   | 12.8± 0.9** | 12.6± 1.0 <b>*</b> * | 12.5± 0.9₩ | 12.4± 1.1** |  |
|                         |                          |                               |             |                      |            |             |  |
| Significant difference; | * : P ≤ 0.05 *           | ⊨* : P ≦ 0.01                 |             | Test of Dunnett      |            |             |  |
| (HAN260)                |                          |                               |             |                      |            |             |  |

## APPENDIX D 2

### FOOD CONSUMPTION CHANGES : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 3

| Group Name             | Administration      | week-day(effective) |            |                                               |            |            |            |
|------------------------|---------------------|---------------------|------------|-----------------------------------------------|------------|------------|------------|
|                        | 1-7(7)              | 2-7(7)              | 3–7 (7)    | 4-7(7)                                        | 5-7(7)     | 6-7 (7)    | 7–7 (7)    |
| Control                | 10.3± 0.6           | 10.4± 0.8           | 10.4± 0.9  | 10.0± 0.9                                     | 10.1± 1.1  | 9.9± 1.2   | 9.8± 1.1   |
| 025 ppm                | 9.9± 0.6            | 10.1± 0.8           | 10.3± 0.8  | 10.2± 0.7                                     | 9.9± 0.6   | 9.4± 0.6   | 9.4± 0.9   |
| 1250 ppm               | 10.5± 0.5           | 10.4± 0.5           | 10.7± 0.6  | 10.3± 0.8                                     | 10.3± 0.6  | 9.9± 0.7   | 10.0± 0.8  |
| 2500 ppm               | $9.9\pm 0.4$        | 10.1± 0.4           | 10.0± 0.4  | 9.9± 0.4                                      | 10.0± 0.7  | 9.7± 0.8   | 9.8± 0.7   |
| 5000 ppm               | 9.3± 0.6**          | 9.8± 0.7            | 9.5± 0.6*  | 9.5± 0.5                                      | 9.6± 0.6   | 9.2土 0.4   | 9.0± 0.5   |
| 10000 mgg              | 6.9± 0.9★★          | 9.2± 0.7**          | 9.3± 0.9** | 9.0± 0.8**                                    | 8.6± 0.8** | 8.1± 0.7** | 8.3± 0.8** |
|                        |                     |                     |            |                                               |            |            |            |
| Significant difference | ; * : P $\leq$ 0.05 | ** : P ≤ 0.01       |            | Test of Dunnett                               |            | 7, <u></u> |            |
| (HAN260)               |                     |                     |            | <u>, , , , , , , , , , , , , , , , , , , </u> |            |            |            |

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE

#### FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

| Group Name          | Administration   | week-day(effective) |                       |                                       |                                       |            |    |
|---------------------|------------------|---------------------|-----------------------|---------------------------------------|---------------------------------------|------------|----|
|                     | 8-7(7)           | 9–7 (7)             | 10-7 (7)              | 11-7(7)                               | 12-7(7)                               | 13-7 (7)   |    |
|                     |                  |                     |                       | · · · · · · · · · · · · · · · · · · · |                                       | ,,,,,,,,,  |    |
| Control             | 9.6± 0.9         | 9.5± 1.1            | 9.9± 0.7              | 9.5± 1.0                              | 9.3± 0.9                              | 9.4± 0.9   |    |
|                     |                  |                     |                       |                                       |                                       |            |    |
| 625 ppm             | $9.1 \pm 0.8$    | 9.2± 0.8            | 9.4± 0.7              | 9.5± 0.6                              | 9.3± 0.7                              | 9.2± 0.9   |    |
|                     |                  |                     |                       |                                       |                                       |            |    |
| 1250 ppm            | 9.9± 0.9         | 9.4± 1.0            | 9.8± 0.8              | 9.5± 0.9                              | 9.7± 1.0                              | 9.5± 0.9   |    |
| 2500 ppm            | $9.5 \pm 0.5$    | 9.1± 0.7            | 9.7± 0.8              | 9.6± 0.7                              | 9.3± 0.8                              | 9.3± 0.8   |    |
| 2000 µµm            | 9.9. 0.9         | 9.1± 0.1            | <del>9</del> .1 ± 0.0 | 9.0 - 0.1                             | 9.9± 0.8                              | 9.5± 0.0   |    |
| 5000 ppm            | 8.9± 0.6         | 8.9± 0.7            | 9.3± 0.6              | 9.2± 0.5                              | 9.0± 0.6                              | 9.1± 0.6   |    |
|                     |                  |                     |                       |                                       |                                       |            |    |
| 10000 ppm           | 8.1± 0.8**       | 8.0± 0.6**          | 8.3± 0.8**            | 8.2± 0.9**                            | 8.0± 0.9**                            | 8.2土 0.6** |    |
|                     |                  |                     |                       |                                       |                                       |            |    |
|                     |                  |                     |                       |                                       | · · · · · · · · · · · · · · · · · · · |            |    |
| Significant differe | ence; *:P≦0.05 * | * : P ≤ 0.01        |                       | Test of Dunnett                       |                                       |            |    |
|                     |                  |                     |                       |                                       |                                       |            | BA |
| (HAN260)            |                  |                     |                       |                                       |                                       |            |    |

## APPENDIX E 1

### WATER CONSUMPTION CHANGES : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : MALE

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE 1

| Group Name          | Administration<br>1-7(3) | week-day(effective)<br>2-7(3)         | 3-7 (3)     | 4-7 (3)         | 5-7 (3)        | 6-7 (3)     | 7-7 (3)     |
|---------------------|--------------------------|---------------------------------------|-------------|-----------------|----------------|-------------|-------------|
| Control             | 17.1± 0.6                | 18.3± 1.1                             | 18.9± 0.9   | 19.7± 0.7       | 20.0 $\pm$ 4.5 | 19.1± 1.4   | 18.3± 1.1   |
| 625 ppm             | 17.2± 3.1                | 18.2± 2.2                             | 20.1± 6.9   | 18.7± 2.2*      | 18.2± 2.3      | 17.4± 1.3** | 17.8± 1.5   |
| 1250 ppm            | 16.1± 1.3                | 17.2± 1.2                             | 17.5± 1.3₩  | 17.9± 1.3**     | 16.8± 0.9**    | 16.6± 0.8** | 16.8± 0.8*  |
| 2500 ppm            | 16.6± 4.3*               | 16.3± 0.7**                           | 16.7± 1.0₩  | 16.9± 0.7**     | 16.5± 1.2**    | 16.2± 1.1** | 16.4± 1.1** |
| 5000 ppm            | 13.8± 1.0≭≭              | 14.2± 1.3**                           | 15.0± 0.9≉* | 15.2± 1.1**     | 14.7± 1.1**    | 14.3土 0.8** | 14.2土 1.2** |
| 10000 ppm           | 12.8± 1.2**              | 13.1± 1.8**                           | 12.2± 1.5** | 12.7± 1.3**     | 11.6± 0.9₩     | 11.4± 0.8₩* | 11.7± 1.2** |
|                     |                          |                                       |             |                 |                |             |             |
| Significant differe | ence; $*: P \leq 0.05$   | ** : P ≤ 0.01                         |             | Test of Dunnett |                |             |             |
| (HAN260)            |                          | · · · · · · · · · · · · · · · · · · · |             |                 |                |             |             |

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : MALE

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 2

| Group Name               |                         | week-day(effective) |            |                      |            |             |      |
|--------------------------|-------------------------|---------------------|------------|----------------------|------------|-------------|------|
|                          | 8-7 (3)                 | 9-7 (3)             | 10-7 (3)   | 11-7 (3)             | 12-7 (3)   | 13-7 (3)    |      |
|                          |                         |                     |            |                      | · · ·      |             |      |
| Control                  | 18.2± 1.1               | 18.0± 1.7           | 18.5± 1.5  | 18.1± 1.6            | 18.0± 1.5  | 17.7± 1.1   |      |
| 625 ppm                  | 17.1± 1.4               | 17.3± 1.0           | 18.4± 1.7  | 17.4± 0.7            | 17.2± 0.7  | 17.4± 1.2   |      |
| 1250 ppm                 | 17.0± 1.0               | 17.2± 1.0           | 17.4± 1.3  | 16.8± 1.1*           | 16.8± 1.1  | 16.1± 1.1** |      |
| 2500 ppm                 | 16.1± 0.8**             | 16.3± 1.1**         | 16.7± 0.7* | 16.0± 0.7 <b>*</b> * | 16.4± 1.0* | 15.9± 0.8** |      |
| 5000 ppm                 | 14.2± 1.3 <del>**</del> | 14.5土 1.1**         | 14.6± 1.0₩ | 14.0土 0.9++          | 14.3± 1.0₩ | 14.5± 0.8** |      |
| 10000 ppm                | 11.3± 0.9₩              | 11.1± 0.7**         | 11.8± 1.2₩ | 11.3± 0.8 <b>*</b> * | 11.5± 1.3₩ | 11.2± 1.1** |      |
|                          |                         |                     |            |                      |            |             |      |
| Significant difference ; | *: P ≤ 0.05 *           | k≠ : P ≦ 0.01       |            | Test of Dunnett      |            |             |      |
| (HAN260)                 |                         |                     | •          |                      |            |             | BAIS |

## APPENDIX E 2

### WATER CONSUMPTION CHANGES : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 3

| Group Name             |                     | week-day(effective) |                 |                 |                 |             |             |
|------------------------|---------------------|---------------------|-----------------|-----------------|-----------------|-------------|-------------|
|                        | 1-7 (3)             | 2-7 (3)             | 3–7 (3)         | 4-7 (3)         | 5-7 (3)         | 6-7 (3)     | 7–7 (3)     |
|                        |                     | -                   |                 |                 |                 |             |             |
| Control                | 15.6± 1.1           | $18.3 \pm 6.7$      | $21.2 \pm 11.7$ | 18.4± 5.6       | $25.2 \pm 13.6$ | 20.9土 9.0   | 21.9± 12.4  |
| 625 ppm                | 14.9± 1.2           | 17.3± 4.4           | 20.7± 8.8       | 17.3± 6.4       | 17.4± 4.4       | 17.6± 3.8   | 17.7± 9.9   |
| 1250 ppm               | 17.3± 5.6           | 23. 2± 13. 7        | 23.8± 16.4      | 19.1± 7.8       | 19.7± 10.0      | 16.7± 5.3   | 19.7± 9.9   |
| 2500 ppm               | 14.7± 6.1**         | 16.8± 11.3          | 13.5± 1.8**     | 13.4± 2.6*      | 16.5± 8.8       | 15.6± 6.8   | 17.3± 8.9   |
| 5000 ppm               | 11.9± 3.2**         | 11.1± 0.9**         | 11.3± 1.0≉*     | 10.3± 0.5**     | 11.3± 2.8₩      | 10.5± 0.7** | 10.6± 1.0** |
| 10000 ppm              | 10.0± 2.3**         | 9.8± 0.8**          | 9.6± 1.5**      | 9.0± 1.6**      | 8.9± 1.7**      | 8.8± 1.6**  | 8.2± 0.8**  |
|                        |                     |                     |                 |                 |                 |             |             |
| Significant difference | ; * : P $\leq 0.05$ | ** : P ≤ 0.01       |                 | Test of Dunnett |                 |             |             |

(HAN260)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 13 SEX : FEMALE

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

| Group Name             | Administration      | week-day(effective) |             |                 |             |            |  |
|------------------------|---------------------|---------------------|-------------|-----------------|-------------|------------|--|
|                        | 8-7 (3)             | 9–7 (3)             | 10-7 (3)    | 11-7 (3)        | 12-7 (3)    | 13-7 (3)   |  |
| ontrol                 | 17.5± 8.4           | 16.9± 4.8           | 20.7± 5.8   | 16.6± 5.1       | 17.4± 3.6   | 15.8± 3.2  |  |
| 25 ppm                 | 18.0± 7.7           | 17.6± 9.5           | 16.7± 4.3   | 15.9± 2.7       | 19.5± 7.8   | 18.3± 6.5  |  |
| 1250 ppm               | 19.8± 9.4           | 16.4± 4.6           | 20.5± 10.3  | 15.5± 2.3       | 16.6± 3.8   | 14.2± 1.1  |  |
| 2500 ppm               | $15.3 \pm 9.0$      | 12.7± 1.1*          | 17.6± 9.7*  | 14.7± 2.7       | 16.2± 5.1   | 13.9± 4.1  |  |
| 5000 ppm               | 10.1土 1.1**         | 10.4土 1.5**         | 10.8± 1.0** | 11.0土 2.0**     | 10.7± 1.1** | 9.9土 1.0** |  |
| 10000 ppm              | 8.2± 1.1 <b>*</b> * | 7.9± 1.4**          | 9.2± 2.3**  | 9.2± 2.5**      | 9.6± 5.1₩   | 8.8± 2.0** |  |
|                        |                     |                     |             |                 |             | ·          |  |
| Significant difference | ; *:P ≤ 0.05        | ** : P ≦ 0.01       |             | Test of Dunnett |             |            |  |
| (HAN260)               | ·                   |                     |             |                 |             |            |  |

## APPENDIX F 1

### CHEMICAL INTAKE CHANGES : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : mg/kg/day REPORT TYPE : A1 13 SEX : MALE

PAGE : 1

| Group Name | Adminis | tration | (weeks)      |    | · ······ |    |      |    |      |    |      |    |      | <u></u> |
|------------|---------|---------|--------------|----|----------|----|------|----|------|----|------|----|------|---------|
|            | 1       |         | 2            |    | 3        |    | 4    |    | 5    |    | 6    |    | 7    |         |
| Control    | 0±      | 0       | 0±           | 0  | 0±       | 0  | 0±   | 0  | 0土   | 0  | 0土   | 0  | 0土   | 0       |
| 625 ppm    | 70±     | 10      | 62±          | 5  | 60±      | 16 | 52±  | 4  | 47±  | 7  | 43±  | 3  | 42±  | 3       |
| 1250 ppm   | 131±    | 5       | 117±         | 5  | 105±     | 6  | 98±  | 7  | 87±  | 4  | 81±  | 3  | 78±  | 5       |
| 2500 ppm   | 272±    | 70      | 226±         | 10 | 205±     | 15 | 190± | 9  | 173± | 7  | 160± | 9  | 153± | 9       |
| 5000 ppm   | 455±    | 25      | <b>395</b> ± | 17 | 370土     | 17 | 344土 | 8  | 310土 | 10 | 286土 | 14 | 267土 | 10      |
| 10000 ppm  | 927±    | 90      | 800±         | 98 | 665±     | 67 | 631± | 47 | 537± | 38 | 505± | 33 | 492± | 40      |
|            |         |         |              |    |          |    |      |    |      |    |      |    |      |         |

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

(HAN300)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : mg/kg/day REPORT TYPE : A1 13 SEX : MALE

PAGE : 2

| Group Name | Adminis | tration | (weeks) |    |               |    |         |    |      |    |      |    | <br> |  |
|------------|---------|---------|---------|----|---------------|----|---------|----|------|----|------|----|------|--|
|            | 8       |         | 9       |    | 10            |    | 11      |    | 12   |    | 13   |    |      |  |
|            |         |         |         |    |               |    |         |    |      |    |      |    |      |  |
| Control    | 0±      | 0       | 0±      | 0  | 0±            | 0  | 0±      | 0  | 0±   | 0  | 0±   | 0  |      |  |
| 625 ppm    | 38±     | 4       | 38±     | 2  | 39±           | 4  | $36\pm$ | 2  | 35±  | 2  | 35±  | 3  |      |  |
| 1250 ppm   | 75±     | 4       | 74±     | 3  | 72±           | 3  | 68±     | 3  | 67±  | 4  | 63±  | 4  |      |  |
| 2500 ppm   | 145±    | 5       | 142土    | 8  | 141±          | 6  | 132±    | 6  | 132± | 9  | 126± | 7  |      |  |
| 5000 ppm   | 257 土   | 12      | 256 -   | 13 | 2 <b>49</b> ± | 8  | 235⊥    | 14 | 235± | 8  | 234± | 12 |      |  |
| 10000 ppm  | 457±    | 31      | 438±    | 26 | 454±          | 29 | 434±    | 14 | 432± | 26 | 416± | 26 |      |  |
|            |         |         |         |    |               |    |         |    |      |    |      |    |      |  |

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

(HAN300)

.

### APPENDIX F 2

### CHEMICAL INTAKE CHANGES : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrli[F344/DuCrj] UNIT : mg/kg/day REPORT TYPE : A1 13 SEX : FEMALE

| Group Name | Adminis | tration | (weeks)          |     | ····· |     |      |    |      |     |      |     |           |     |
|------------|---------|---------|------------------|-----|-------|-----|------|----|------|-----|------|-----|-----------|-----|
|            |         |         | 2                |     | 3     |     | 4    |    | 5    |     | 6    |     | 7         |     |
| Control    | 0土      | 0       | 0土               | 0   | 0±    | 0   | 0±   | 0  | 0±   | 0   | 0±   | 0   | 0±        | 0   |
| 25 ppm     | 83±     | 5       | 88±              | 23  | 98±   | 39  | 78±  | 25 | 75±  | 16  | 75±  | 14  | 74±       | 39  |
| 250 ppm    | 189±    | 61      | 233±             | 143 | 222±  | 158 | 169± | 66 | 168± | 86  | 139± | 48  | 160±      | 85  |
| 500 ppm    | 325±    | 138     | 339±             | 232 | 256±  | 30  | 239± | 39 | 282± | 149 | 259± | 104 | 279±      | 139 |
| 000 ppm    | 535±    | 134     | <del>4</del> 57土 | 35  | 433±  | 39  | 378± | 20 | 399± | 107 | 357± | 23  | $352\pm$  | 36  |
| 0000 maa   | 1006±   | 182     | 885±             | 77  | 788±  | 93  | 701± | 99 | 681± | 108 | 647± | 93  | $588 \pm$ | 47  |

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

(HAN300)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : mg/kg/day REPORT TYPE : A1 13 SEX : FEMALE CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 4

| Group Name | Admir | istration | (weeks) |    |       |     |       |     |       |     |      |     |
|------------|-------|-----------|---------|----|-------|-----|-------|-----|-------|-----|------|-----|
|            | 8     |           | 9       |    | 10    |     | 11    |     | 12    |     | 13   |     |
|            |       |           |         |    |       |     |       |     |       |     |      |     |
| Control    | 0±    | 0         | 0±      | 0  | 0土    | 0   | 0±    | 0   | 0土    | 0   | 0±   | 0   |
| 625 ppm    | 73±   | 28        | 71±     | 36 | 66土   | 15  | 62±   | 9   | 75±   | 28  | 70±  | 26  |
| 1250 ppm   | 157±  | 78        | 127±    | 39 | 156±  | 82  | 115±  | 20  | 123±  | 32  | 102± | 7   |
|            | 101 - | 10        | 141     | 00 | 100-2 | 02  | 110-2 | 20  | 120-2 | 02  | 100  | ı   |
| 2500 ppm   | 244±  | 139       | 199±    | 12 | 269±  | 143 | 221±  | 34  | 240±  | 70  | 206± | 58  |
| 5000 ppm   | 329±  | 35        | · 333±  | 54 | 336±  | 35  | 336±  | 59  | 324±  | 34  | 298± | 23  |
| 10000 ppm  | 578±  | 53        | 544±    | 83 | 621±  | 135 | 606±  | 142 | 626±  | 312 | 571± | 123 |
| pp         | 010-  |           | 011-    | 30 | 001-  | 200 | 000-  |     | 020-2 |     | 011- | 230 |

.

(HAN300)

## APPENDIX G 1

### HEMATOLOGY : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

### HEMATOLOGY (SUMMARY)

#### ALL ANIMALS ( 14W)

| Group Name | NO. of  | RED BLO | OOD CELL | HEMOGLO | BIN   | HEMATOC        | RIT   | MCV        |     | MCH   |     | MCHC           |      | PLATELET            | <u>.</u> |
|------------|---------|---------|----------|---------|-------|----------------|-------|------------|-----|-------|-----|----------------|------|---------------------|----------|
|            | Animals | 1 06/1  | ul       | g / dl  |       | %              |       | f <b>l</b> |     | рg    |     | g ∕dl          |      | 1 0 <sup>3</sup> /μ |          |
| Control    | 10      | 9.53±   | 0. 31    | 16.2±   | 0.4   | 46. <b>0</b> ± | 1.1   | 48.2±      | 0.6 | 17.0± | 0.2 | 35 <b>.</b> 4± | 0. 3 | 715土                | 39       |
| 25 ppm     | 10      | 9.51±   | 0. 18    | 16.2土   | 0.2   | 45.8±          | 0.8   | 48.2±      | 0.5 | 17.0± | 0.2 | 35.4±          | 0.2  | 718±                | 28       |
| 250 ppm    | 10      | 9.45±   | 0.11     | 16.2±   | 0.3   | 45.5±          | 0.7   | 48.1±      | 0.4 | 17.1± | 0.1 | 35.5±          | 0.2  | 725±                | 30       |
| 500 ppm    | 10      | 9.52±   | 0.25     | 16.3±   | 0.4   | 45.8±          | 1. 1  | 48.2±      | 0.7 | 17.1± | 0.4 | 35.5±          | 0.4  | 732±                | 31       |
| 000 ppm    | 10      | 9.31±   | 0. 20    | 15.8±   | 0.3** | 44.6±          | 0.8** | 48.0±      | 0.5 | 16.9± | 0.2 | $35.3\pm$      | 0.3  | 705土                | 30       |
| .0000 ppm  | 10      | 8.94±   | 0.15**   | 15.4±   | 0.3** | 43.4±          | 0.7** | 48.5±      | 0.4 | 17.3± | 0.2 | 35.5±          | 0.4  | 670±                | 50*      |

(HCL070)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

#### HEMATOLOGY (SUMMARY) ALL ANIMALS ( 14W)

PAGE : 2 NO. of RETICULOCYTE Group Name PROTHROMBIN TIME APTT Animals % sec sec Control 10 1.8± 0.2 13.4± 1.1 23.7± 0.9 10 1.8± 0.2 625 ppm 14.6± 2.0 25.0± 1.7 1250 ppm 10 1.7± 0.1 14.3± 1.5 24.6± 1.3 10 13.2± 1.1 2500 ppm 1.7± 0.1 23.3± 1.6 5000 ppm 10 1.7± 0.1 13.5± 1.0 23.6± 1.8 10000 ppm 10 1.8± 0.2 13.0± 0.8 22.9± 1.5 Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett (HCL070)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

### HEMATOLOGY (SUMMARY)

#### ALL ANIMALS ( 14W)

PAGE : 3

| Group Name | NO. of<br>Animals | WBC<br>1 0 <sup>3</sup> / |        | Dif<br>N-BAND | ferentia | L WBC (%<br>N-SEG | ) | EOSINO |         | BASO |   | MONO |   | LYMPHO |   | OTHER |   |
|------------|-------------------|---------------------------|--------|---------------|----------|-------------------|---|--------|---------|------|---|------|---|--------|---|-------|---|
| Control    | 10                | 7.47±                     | 1. 28  | 0±            | 1        | 20±               | 4 | 1±     | 1       | 0±   | 0 | 3土   | 1 | 76土    | 4 | 0±    | 0 |
| 625 ppm    | 10                | 6.92±                     | 1. 33  | 0±            | 1        | 21±               | 3 | 1±     | 1       | 0±   | 0 | 3±   | 2 | 74±    | 3 | 0±    | 0 |
| 1250 ррт   | 10                | 7.10±                     | 1.09   | 1±            | 1        | 19±               | 4 | 1±     | 1       | 0±   | 0 | 3±   | 2 | 76±    | 5 | 0土    | 0 |
| 2500 ppm   | 10                | 7.68±                     | 1. 38  | 0±            | 1        | 21±               | 6 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 74±    | 7 | 0±    | 0 |
| 5000 ppm   | 10                | 7.04±                     | 0.84   | 1±            | 1        | 20±               | 3 | 1±     | 1       | 0土   | 0 | 3±   | 2 | 75±    | 3 | 0±    | 0 |
| 10000 ppm  | 10                | 7.04±                     | 1.23   | 0±            | 1        | 19±               | 2 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 78±    | 3 | 0±    | 0 |
| Significar | nt difference ;   | *:P≦                      | ≤ 0.05 | ** : P ≦      | 0. 01    |                   |   | Test   | of Duni | ett  |   |      |   |        |   |       |   |

(HCL070)

### APPENDIX G 2

### HEMATOLOGY : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

#### HEMATOLOGY (SUMMARY)

#### ALL ANIMALS ( 14W)

| Group Name | NO. of<br>Animals | RED BL(<br>1 0 <sup>5</sup> ∕1 | 00D CELL<br>µl | HEMOGLO<br>g /dl | BIN   | НЕМАТОС<br>% | RIT               | MCV<br>f L |     | MCH<br>pg |     | MCHC<br>g ⁄dl |     | PLATEL<br>1 0 <sup>3</sup> / |     |
|------------|-------------------|--------------------------------|----------------|------------------|-------|--------------|-------------------|------------|-----|-----------|-----|---------------|-----|------------------------------|-----|
| ontrol     | 10                | 8.82±                          | 0. 19          | 16.1±            | 0.4   | 44. 4±       | 1.0               | 50.3±      | 0.3 | 18.3±     | 0.2 | 36.3±         | 0.5 | 777±                         | 56  |
| 25 ppm     | 10                | 8.81±                          | 0. 13          | 16.2±            | 0.3   | 44.6±        | 0.5               | 50.6±      | 0.4 | 18.4±     | 0.2 | 36.4±         | 0.4 | 778±                         | 68  |
| .250 ppm   | 10                | 8.67±                          | 0.36           | 15.9±            | 0.7   | 43.9±        | 1.6               | 50.7土      | 0.4 | 18.3±     | 0.2 | 36.1±         | 0.4 | 752±                         | 126 |
| .500 ppm   | 10                | 8.66±                          | 0.14           | 16.0±            | 0.3   | 43.8±        | 0.7               | 50.5±      | 0.6 | 18.4±     | 0.1 | 36.4±         | 0.4 | 772±                         | 62  |
| 000 ppm    | 10                | 8.56±                          | 0.22*          | 15.8±            | 0.4   | 43.4±        | 1.2               | 50.8±      | 0.5 | 18.4±     | 0.1 | 36.3±         | 0.4 | 781土                         | 48  |
| 10000 ppm  | 10                | 8.45±                          | 0.20**         | 15.5±            | 0.4** | 42.8±        | 0.8 <del>**</del> | 50.7±      | 0.4 | 18.3±     | 0.1 | 36.2±         | 0.3 | 713±                         | 41  |

(HCL070)

.

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

#### HEMATOLOGY (SUMMARY) ALL ANIMALS ( 14W)

#### Group Name NO. of RETICULOCYTE PROTHROMBIN TIME APTT % Animals sec sec Control 10 1.6± 0.2 11.9土 0.3 19.0± 1.4 625 ppm 10 $1.6 \pm$ 0.2 11.8± 0.4 18.8± 1.0 1250 ppm 10 1.6± 0.2 12.0± 0.4 18.6± 0.9 2500 ppm 10 $1.6\pm$ 0.3 11.9± 0.3 18.6± 0.8 5000 ppm 10 1.7± 0.3 12.2± 0.3 19.1± 0.8 10000 ppm 10 2.0± 0.4\* 12.2± 0.4 19.1± 0.8

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01

Test of Dunnett

(HCL070)

BAIS 4

,

PAGE : 5

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

#### HEMATOLOGY (SUMMARY)

ALL ANIMALS ( 14W)

|            | Animals         | WBC<br>1 0 <sup>3</sup> /1 |        | N-BAND   | ferential | L WBC (%<br>N-SEG | ) | EOSINO |         | BASO |   | MONO |   | LYMPHO |   | OTHER | <u></u> |
|------------|-----------------|----------------------------|--------|----------|-----------|-------------------|---|--------|---------|------|---|------|---|--------|---|-------|---------|
| Control    | 10              | 4.39±                      | 0.95   | 0±       | 0         | 17±               | 3 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 79±    | 4 | 0土    | 0       |
| 625 ppm    | 10              | 3.94±                      | 0.74   | 1±       | 1         | 19±               | 4 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 77±    | 4 | 0±    | 0       |
| 1250 ppm   | 10              | 4.53±                      | 0.98   | 0±       | 0         | 17±               | 3 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 78±    | 3 | 0土    | 0       |
| 2500 ppm   | 10              | 4.52±                      | 0.96   | 1±       | · 1       | 15±               | 3 | 1±     | 1       | 0±   | 0 | 3±   | 1 | 80±    | 4 | 0±    | 0       |
| 5000 ppm   | 10              | 4.46±                      | 1.01   | 1±       | 1         | 18土               | 4 | 1±     | 1       | 0±   | 0 | 3±   | 2 | 78±    | 5 | 0土    | 0       |
| 10000 ppm  | 10              | 5.12±                      | 1.61   | 0±       | 0         | 16±               | 4 | 1±     | 1       | 0±   | 0 | 2±   | 1 | 80±    | 4 | 0±    | 1       |
| Significan | nt difference ; | ; *:P≦                     | ≦ 0.05 | ** : P ≦ | 0.01      |                   |   | Test   | of Dunn | ett  |   |      |   |        |   |       |         |

.

PAGE : 6

# APPENDIX H 1

### BIOCHEMISTRY : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS ( 14W)

PAGE : 1 Group Name NO. of TOTAL PROTEIN ALBUMIN T-BILIRUBIN GLUCOSE T-CHOLESTEROL TRIGLYCERIDE A/G RATIO Animals g∕dl g / dl mg∕dℓ mg∕dl mg∕dℓ mg∕dℓ Control 10 61± 5 6.5± 0.1  $3.6\pm$ 0.1 1.3± 0.1 0.11± 0.01  $181 \pm$ 10  $63\pm$ 24 625 ppm 10 6.4± 0.1  $3.6\pm$ 0.1 1.2± 0.1 0.11± 0.01 186± 17  $50\pm$ 3\*\* 45± 16 1250 ppm 10 6.4± 0.1  $3.6\pm$ 0.1 1.3± 0.1 0.11± 0.01  $188 \pm$ 12  $52\pm$ 5\*\* 43± 11 2500 ppm 12 10 6.4± 0.10± 0.01  $53\pm$ 10 0.2  $3.6\pm$ 0.1 1.3± 0.1  $186 \pm$ 4\*\* 40土 5000 ppm 10 6.3± 0.1\*\* 50± 4\*\* 43± 13  $3.5\pm$ 0.1\*\* 1.3± 0.1 0.11± 0.01  $183\pm$ 10 10000 ppm 10  $6.2 \pm$ 0.1\*\* 3.5± 0.1\*\*  $1.3\pm$ 0.1 0.11± 0.01  $182 \pm$ 9  $52\pm$ 3\*\*  $39\pm$ 

Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

(HCL074)

BAIS 4

8

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1

### BIOCHEMISTRY (SUMMARY) ALL ANIMALS ( 14W)

| Group Name | NO. of<br>Animals | PHOSPHOL<br>mg/dl | .IPID |     |    | ALT<br>IU/L |    | LDH<br>IU⁄£ | 2  | ALP<br>IUگ |    | G-GTP<br>IU∕ℓ |   |      |    |
|------------|-------------------|-------------------|-------|-----|----|-------------|----|-------------|----|------------|----|---------------|---|------|----|
| Control    | 10                | $115\pm$          | 7     | 77± | 14 | 43±         | 7  | 161土        | 37 | 249±       | 12 | 1±            | 0 | 101土 | 13 |
| 25 ppm     | 10                | 99±               | 5**   | 79± | 15 | 44±         | 9  | $158\pm$    | 49 | 254±       | 24 | 1±            | 0 | 106± | 18 |
| 1250 ppm   | 10                | 100±              | 6**   | 90± | 16 | 48±         | 8  | 184±        | 66 | 248±       | 20 | 1±            | 1 | 104土 | 21 |
| 2500 ppm   | 10                | 101±              | 6**   | 96± | 30 | 50±         | 11 | 211±        | 61 | $252\pm$   | 22 | 1±            | 0 | 108± | 15 |
| 5000 ppm   | 10                | 98±               | 5**   | 82± | 17 | 44土         | 6  | 174±        | 55 | 248±       | 24 | 1±            | 0 | 102± | 20 |
| 10000 ppm  | 10                | 97±               | 5**   | 99± | 27 | 48±         | 10 | 188±        | 39 | 250土       | 20 | 1±            | 0 | 100± | 13 |

(HCL074)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

### BIOCHEMISTRY (SUMMARY)

ALL ANIMALS (14W)

| Group Name | NO. of<br>Animals | UREA NI<br>mg∕dℓ | TOROGEN | CREATIN<br>mg⁄dl | IINE | SODIUM<br>mEq⁄£ |   | POTASSI<br>mEq⁄. |     | CHLORIDE<br>mEq⁄ <b>l</b> |   | CALCIUN<br>mg/dl | [   | INORGAN<br>mg∕dl | IC PHOSPHORU |
|------------|-------------------|------------------|---------|------------------|------|-----------------|---|------------------|-----|---------------------------|---|------------------|-----|------------------|--------------|
| Control    | 10                | 17.8±            | 1. 0    | 0.5±             | 0.0  | 141±            | 1 | 3.4±             | 0.1 | 104±                      | 1 | 10.3±            | 0.2 | 5.5土             | 0.9          |
| 25 ppm     | 10                | 17.4±            | 0.9     | 0.5±             | 0.0  | 141±            | 1 | 3.4±             | 0.2 | 104±                      | 1 | 10.2±            | 0.1 | 5.7±             | 0.8          |
| .250 ppm   | 10                | 17.9±            | 1.5     | 0.5±             | 0.0  | 141土            | 1 | 3.3±             | 0.2 | 104±                      | 1 | 10.3±            | 0.2 | 5.8±             | 0. 7         |
| 2500 ppm   | 10                | 18.9±            | 1.8     | 0.5±             | 0.0  | 140±            | 1 | 3.4±             | 0.2 | 104±                      | 1 | 10.2±            | 0.2 | 5.5±             | 0.8          |
| 5000 ppm   | 10                | 19.2±            | 1.0     | 0.5±             | 0.0  | 140土            | 1 | 3.5±             | 0.2 | 103±                      | 1 | 10.2±            | 0.1 | 5.7±             | 0.7          |
| .0000 ppm  | 10                | 22.1±            | 1.1**   | 0.5±             | 0.0  | 141±            | 1 | 3.6±             | 0.3 | 104±                      | 1 | 10.1±            | 0.2 | 5.9±             | 0.4          |

(IICL074)

## APPENDIX H 2

### BIOCHEMISTRY : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS ( 14W)

| Group Name | NO. of<br>Animals | TOTAL P<br>g∕dl |       | ALBUMIN<br>g∕dl | 1     | A/G RAT | 10   | T−BILI<br>mg∕dℓ |      | GLUCOSE<br>mg∕dl |      | T−CHOLES<br>mg∕dl | TEROL | TRIGLYCE<br>mg/dl | RIDE |
|------------|-------------------|-----------------|-------|-----------------|-------|---------|------|-----------------|------|------------------|------|-------------------|-------|-------------------|------|
| Control    | 10                | 6.2±            | 0.1   | 3.6±            | 0.1   | 1.4±    | 0. 1 | 0.12±           | 0.01 | 146±             | 14   | 68±               | 6     | 12±               | 4    |
| 525 ppm    | 10                | 6.2±            | 0.2   | 3.6±            | 0.1   | 1.4±    | 0. 1 | 0.11±           | 0.01 | 149±             | 10   | 62±               | 9     | 12±               | 3    |
| 1250 ppm   | 10                | 6.1±            | 0.2   | 3.5±            | 0.1   | 1.4±    | 0.1  | 0.12±           | 0.01 | $164\pm$         | 20** | 68±               | 4     | 18±               | 9    |
| 2500 ppm   | 10                | 6.0±            | 0.2   | 3.5±            | 0.0   | 1.4±    | 0.1  | 0.12±           | 0.01 | 149±             | 8    | $59\pm$           | 5*    | 12±               | 2    |
| 5000 ppm   | 10                | 6.1±            | 0.2   | 3.5±            | 0. 1  | 1.4±    | 0.1  | 0.12±           | 0.01 | 150±             | 9    | 60±               | 7*    | 13±               | 3    |
| 10000 ррт  | 10                | 5.8±            | 0.1** | 3.4±            | 0.1** | 1.4±    | 0.1  | 0.12±           | 0.01 | $155\pm$         | 12   | 54±               | 6**   | 12±               | 4    |

•

(HCL074)

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1

### BIOCHEMISTRY (SUMMARY)

ALL ANIMALS ( 14W)

| 0. of<br>nimals | PHOSPHOL             | IPID                                                              |                                                                                               |                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|----------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | mg∕dl                |                                                                   | AST<br>IU∕£                                                                                   |                                                                                                                               | ALT<br>IU⁄l                                                                                                                                                                                  |                                                                                                                                                  | LDH<br>IU⁄£                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                 | ALP<br>IU/J                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                 | G-GTP<br>IU∕£                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                | ск<br>IU/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10              | 128±                 | 11                                                                | 69±                                                                                           | 6                                                                                                                             | 30±                                                                                                                                                                                          | 4                                                                                                                                                | 206土                                                                                                                                                                                                                                                                  | 56                                                                                                                                                                                                | 181±                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 111±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10              | 120±                 | 16                                                                | 73±                                                                                           | 9                                                                                                                             | 33±                                                                                                                                                                                          | 5                                                                                                                                                | 200±                                                                                                                                                                                                                                                                  | 37                                                                                                                                                                                                | 191±                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 112±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10              | $131\pm$             | 10                                                                | 84±                                                                                           | 19                                                                                                                            | <b>4</b> 1±                                                                                                                                                                                  | 13                                                                                                                                               | 217±                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                | 281±                                                                                                                                                                                                       | 117                                                                                                                                                                                                                                                                                                                                                                                               | 1±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 100±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10              | 114±                 | 9*                                                                | 70±                                                                                           | 5                                                                                                                             | 30±                                                                                                                                                                                          | 5                                                                                                                                                | 180±                                                                                                                                                                                                                                                                  | 38                                                                                                                                                                                                | 191±                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 102±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10              | 118±                 | 11                                                                | 71±                                                                                           | 9                                                                                                                             | 30±                                                                                                                                                                                          | 4                                                                                                                                                | 184±                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                | 189±                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 98±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10              | 107±                 | 10**                                                              | 75±                                                                                           | 7                                                                                                                             | 30±                                                                                                                                                                                          | 4                                                                                                                                                | 205±                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                | $199\pm$                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                              | 102±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 10<br>10<br>10<br>10 | 10     120±       10     131±       10     114±       10     118± | 10     120±     16       10     131±     10       10     114±     9*       10     118±     11 | 10     120±     16     73±       10     131±     10     84±       10     114±     9*     70±       10     118±     11     71± | 10       120±       16       73±       9         10       131±       10       84±       19         10       114±       9*       70±       5         10       118±       11       71±       9 | 10 $120 \pm$ 16 $73 \pm$ 9 $33 \pm$ 10 $131 \pm$ 10 $84 \pm$ 19 $41 \pm$ 10 $114 \pm$ 9* $70 \pm$ 5 $30 \pm$ 10 $118 \pm$ 11 $71 \pm$ 9 $30 \pm$ | 10       120±       16       73±       9       33±       5         10       131±       10       84±       19       41±       13         10       114±       9*       70±       5       30±       5         10       118±       11       71±       9       30±       4 | 10 $120 \pm$ 16 $73 \pm$ 9 $33 \pm$ 5 $200 \pm$ 10 $131 \pm$ 10 $84 \pm$ 19 $41 \pm$ 13 $217 \pm$ 10 $114 \pm$ 9* $70 \pm$ 5 $30 \pm$ 5 $180 \pm$ 10 $118 \pm$ 11 $71 \pm$ 9 $30 \pm$ 4 $184 \pm$ | 10 $120 \pm$ 16 $73 \pm$ 9 $33 \pm$ 5 $200 \pm$ 3710 $131 \pm$ 10 $84 \pm$ 19 $41 \pm$ 13 $217 \pm$ 5810 $114 \pm$ 9* $70 \pm$ 5 $30 \pm$ 5 $180 \pm$ 3810 $118 \pm$ 11 $71 \pm$ 9 $30 \pm$ 4 $184 \pm$ 42 | 10       120±       16       73±       9       33±       5       200±       37       191±         10       131±       10       84±       19       41±       13       217±       58       281±         10       114±       9*       70±       5       30±       5       180±       38       191±         10       118±       11       71±       9       30±       4       184±       42       189± | 10       120±       16       73±       9       33±       5       200±       37       191±       26         10       131±       10       84±       19       41±       13       217±       58       281±       117         10       114±       9*       70±       5       30±       5       180±       38       191±       16         10       118±       11       71±       9       30±       4       184±       42       189±       27 | 10 $120 \pm$ 16 $73 \pm$ 9 $33 \pm$ 5 $200 \pm$ $37$ $191 \pm$ $26$ $2 \pm$ 10 $131 \pm$ 10 $84 \pm$ 19 $41 \pm$ 13 $217 \pm$ $58$ $281 \pm$ $117$ $1 \pm$ 10 $114 \pm$ $9*$ $70 \pm$ $5$ $30 \pm$ $5$ $180 \pm$ $38$ $191 \pm$ $16$ $2 \pm$ 10 $118 \pm$ $11$ $71 \pm$ $9$ $30 \pm$ $4$ $184 \pm$ $42$ $189 \pm$ $27$ $2 \pm$ | 10       120±       16       73±       9       33±       5       200±       37       191±       26       2±       1         10       131±       10       84±       19       41±       13       217±       58       281±       117       1±       1         10       114±       9*       70±       5       30±       5       180±       38       191±       16       2±       1         10       118±       11       71±       9       30±       4       184±       42       189±       27       2±       1 | 10       120±       16       73±       9       33±       5       200±       37       191±       26       2±       1       112±         10       131±       10       84±       19       41±       13       217±       58       281±       117       1±       1       100±         10       114±       9*       70±       5       30±       5       180±       38       191±       16       2±       1       102±         10       118±       11       71±       9       30±       4       184±       42       189±       27       2±       1       98± |

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS ( 14W)

#### Group Name NO. of UREA NITOROGEN CREATININE SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg∕dl mg∕dℓ mEq∕ℓ mEq∕ℓ mEq∕ℓ mg∕dℓ mg∕dl Control 10 19.1± 2.4 0.5± 0.1 $141\pm$ 2 $3.5\pm$ 0.2 $106\pm$ 2 9.9± 0.2 4.9± 1.4 625 ppm 10 18.8± 2.5 0.5± 0.1 $141\pm$ $3.5\pm$ 0.2 $107\pm$ $10.0\pm$ 4.9± 1.2 0.2 1 1 1250 ppm 10 17.3± 2.4 0.5± 0.0 $141\pm$ 1 3.4± 0.3 106± 1 10.1± 0.2 4.3± 1.3 2500 ppm 10 18.4± 1.7 0.5± 0.0 $141\pm$ 1 3.5± 0.3 $107\pm$ 1 9.9± 0.2 5.0± 0.9 5000 ppm 10 0.5± 20.8± 2.9 0.1 140土 2 $3.5\pm$ 0.2 105± 2\*\* 9.9± 0.2 5.1± 1.1 10000 ppm 10 $23.2 \pm$ 2.8\*\* 0.5± 0.0 $140\pm$ 3.7± 0.2 105± 9.7± 0.2 5.2± 0.6 1 1 Significant difference ; $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

(HCL074)

BAIS 4

PAGE : 6

### APPENDIX I 1

### URINALYSIS : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

URINALYSIS

 $\bigcap$ 

PAGE : 1

| Group Name | NO. of  | pH |    |     |     |     |     |     |     |     | Pro | teir | 1   |      |      |     | ( | luc | ose |      |    |        | Ket | one | body | v   |        | Bi | lirı | ıbin |      |
|------------|---------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|------|-----|---|-----|-----|------|----|--------|-----|-----|------|-----|--------|----|------|------|------|
|            | Animals | 5. | 06 | . 0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | CHI |     |      |     | + 3- | + 4+ | CHI |   |     |     | - 2+ | 3+ | 4+ CHI |     |     |      |     | 4+ CHI |    |      |      | CIII |
|            |         |    |    |     |     |     |     |     |     |     |     |      |     |      |      |     |   |     |     |      |    |        |     |     |      |     |        |    |      | •    |      |
| Control    | 10      | 0  |    | 0   | 0   | 0   | 0   | 6   | 4   |     | 0   | 0    | 4   | 6 (  | 0 0  |     | 1 | .0  | 0   | 0 0  | 0  | 0      | 0   | 10  | 0 0  | 0 0 | 0      | 10 | 0    | 0 0  |      |
| 525 ppm    | 10      | 0  |    | 0   | 0   | 0   | 0   | 6   | 4   |     | 0   | 0    | 3   | 7 (  | 0    |     | 1 | .0  | 0   | 0 0  | 0  | 0      | 1   | 9   | 0 0  | 0 0 | 0      | 10 | 0    | 0 0  |      |
| 1250 ppm   | 10      | 0  |    | 0   | 0   | 0   | 0   | 7   | 3   |     | 0   | 0    | 2   | 8 (  | 0    |     | 1 | .0  | 0   | 0 0  | 0  | 0      | 0   | 10  | 0 0  | 0 0 | 0      | 10 | 0    | 0 0  |      |
| 2500 ppm   | 10      | 0  |    | 0   | 0   | 0   | 0   | 6   | 4   |     | 0   | 0    | 01  | 0 (  | ) 0  | *   | 1 | .0  | 0   | 0 0  | 0  | 0      | 0   | 10  | 0 0  | 0 0 | 0      | 10 | 0    | 0 0  |      |
| 5000 ppm   | 10      | 0  |    | 0   | 0   | 0   | 0   | 7   | 3   |     | 0   | 0    | 1   | 9 (  | 0 0  |     | 1 | .0  | 0   | 0 0  | 0  | 0      | 0   | 8   | 2 (  | 0 0 | 0      | 10 | 0    | 0 0  |      |
| 10000 ppm  | 10      | 0  |    | 0   | 0   | 0   | 1   | 1   | 8   |     | 0   | 0    | 0 1 | 0 (  | ) 0  | *   | 1 | .0  | 0   | 00   | 0  | 0      | 0   | 7   | 3 (  | 0 0 | 0      | 10 | 0    | 0 0  |      |

(IICL101)

| MEASURE. TIME<br>SEX : MALE |                   | TYPE : A1                              |                                  | PAGE : : |
|-----------------------------|-------------------|----------------------------------------|----------------------------------|----------|
| Group Name                  | NO. of<br>Animals | Occult blood<br>$- \pm + 2 + 3 + $ CHI | Urobilinogen<br>± + 2+ 3+ 4+ CHI |          |
|                             |                   |                                        |                                  |          |
| Control                     | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |
| 625 ppm                     | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |
| 1250 ppm                    | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |
| 2500 ppm                    | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |
| 5000 ppm                    | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |
| 10000 ppm                   | 10                | 10 0 0 0 0                             | 10 0 0 0 0                       |          |

Test of CHI SQUARE

(HCL101)

.

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

### APPENDIX I 2

### URINALYSIS : FEMALE

 STUDY NO.
 : 0602

 ANIMAL
 : RAT F344/DuCr1Cr1j[F344/DuCrj]

 MEASURE.
 TIME : 1

 SEX : FEMALE
 REPORT TYPE : A1

URINALYSIS

| PAGE | • | 3 |
|------|---|---|
| PAGE | • | 3 |

| Group Name | NO. of pH |     |     |     | _   | Protein Glucose |       |     |     | Ketone body |   |   |      | Bilirubin |     |    |    |   |      |      |        |     |     |     |      |      |    |    |         |     |  |
|------------|-----------|-----|-----|-----|-----|-----------------|-------|-----|-----|-------------|---|---|------|-----------|-----|----|----|---|------|------|--------|-----|-----|-----|------|------|----|----|---------|-----|--|
|            | Animals   | 5.0 | 6.0 | 6.5 | 7.0 | 7.1             | 5 8.0 | 8.5 | CHI | -           | ± | + | 2+ ; | 3+ 4+     | C   | łI | -  | ± | + 2+ | - 3+ | 4+ CHI | - : | ± + | 2+  | 3+ 4 | + CI | II | -  | + 2+ 34 | CHI |  |
|            |           |     |     |     |     |                 |       |     |     |             |   |   |      |           |     |    |    |   |      |      |        |     |     |     |      |      | ,  |    |         |     |  |
| Control    | 10        | 0   | 0   | 1   | 0   | 0               | 5     | 4   |     | 0           | 1 | 8 | 1    | 0 0       | )   |    | 10 | 0 | 0 0  | ) 0  | 0      | 3   | 7 ( | 0 0 | 0    | 0    |    | 10 | 0 0 0   | )   |  |
| 625 ppm    | 10        | 0   | 0   | 0   | 0   | 0               | 5     | 5   |     | 0           | 1 | 9 | 0    | 0 0       | )   |    | 10 | 0 | 0 0  | 0    | 0      | 3   | 7 ( | 0 0 | 0    | 0    |    | 10 | 000     | )   |  |
| 1250 ppm   | 10        | 0   | 0   | 0   | 0   | 1               | 6     | 3   |     | 0           | 4 | 5 | 1    | 0 0       | )   |    | 10 | 0 | 0 0  | 0    | 0      | 6   | 4   | 0 0 | 0    | 0    |    | 10 | 0 0 0   | 1   |  |
| 2500 ppm   | 10        | 0   | 0   | 0   | 0   | 3               | 5     | 2   |     | 0           | 1 | 7 | 2    | 0 (       | )   |    | 10 | 0 | 0 0  | 0 0  | 0      | 3   | 7   | 0 0 | 0    | 0    |    | 10 | 0 0 0   | )   |  |
| 5000 ppm   | 10        | 0   | 0   | 0   | 0   | 0               | 4     | 6   |     | C           | 0 | 4 | 6    | 0 0       | )   |    | 10 | 0 | 0 (  | 0    | 0      | 0   | 10  | 0 0 | 0    | 0    |    | 10 | 0 0 0   | )   |  |
| 10000 ppm  | 10        | 0   | 0   | 0   | 0   | 1               | 1     | 8   |     | C           | 0 | 3 | 7    | 0 0       | ) * |    | 10 | 0 | 0 (  | ) 0  | 0      | 0   | 10  | 0 0 | 0    | 0    |    | 10 | 0 0 0   | )   |  |

(HCL101)

| STUDY NO. : 08<br>ANIMAL : RA | 502<br>AT F344/DuCr1Cr | 1 j [F344/DuCr j]                   | URINALYSIS                       |                    |                                       |
|-------------------------------|------------------------|-------------------------------------|----------------------------------|--------------------|---------------------------------------|
| MEASURE. TIME<br>SEX : FEMALE |                        | TYPE : A1                           |                                  |                    | PAGE : 4                              |
| Group Name                    | NO. of<br>Animals      | Occult blood<br>- $\pm$ + 2+ 3+ CHI | Urobilinogen<br>± + 2+ 3+ 4+ CHI |                    |                                       |
| Control                       | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| 625 ppm                       | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| 1250 ppm                      | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| 2500 ppm                      | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| 5000 ppm                      | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| 10000 ppm                     | 10                     | 10 0 0 0 0                          | 10 0 0 0 0                       |                    |                                       |
| Significa                     | nt difference          | ; *:P≦0.05 *                        | * : P ≦ 0.01                     | Test of CHI SQUARE | · · · · · · · · · · · · · · · · · · · |
| (HCL101)                      |                        |                                     |                                  |                    | BAIS 4                                |

### APPENDIX J 1

### GROSS FINDINGS : MALE : ALL ANIMALS

| STUDY NO. : 0602<br>ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]<br>REPORT TYPE : A1<br>SEX : MALE | GROSS FINDINGS (SUMMARY)<br>ALL ANIMALS (O- 14W) |                   |                   |                    | PAGE :             |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|-------------------|--------------------|--------------------|
| Organ Findings                                                                                | Group Name<br>NO. of Animals                     | Control<br>10 (%) | 625 ppm<br>10 (%) | 1250 ppm<br>10 (%) | 2500 ppm<br>10 (%) |
| ver herniation                                                                                |                                                  | 0 ( 0)            | 2 (20)            | 0 ( 0)             | 0 ( 0)             |
| (HPT080)                                                                                      |                                                  |                   | ·                 |                    | BAIS               |

-

| STUDY NO.<br>ANIMAL<br>REPORT TYPE<br>SEX | : 0602<br>: RAT F344/DuCrlCrlj[F344/DuCrj]<br>: A1<br>: MALE | GROSS FINDINGS (SUMMARY)<br>ALL ANIMALS (O- 14W) |                    |                     | PAGE | : 2   |
|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--------------------|---------------------|------|-------|
| Organ                                     | Findings                                                     | Group Name<br>NO. of Animals                     | 5000 ppm<br>10 (%) | 10000 ррт<br>10 (%) |      |       |
| liver                                     | herniation                                                   |                                                  | 0 ( 0)             | 1 (10)              |      |       |
| (HPT080)                                  |                                                              |                                                  |                    |                     | B    | AIS 4 |

.

### APPENDIX J 2

### GROSS FINDINGS : FEMALE : ALL ANIMALS

# STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

| PAGE | • | 2 |
|------|---|---|
|      |   |   |

| Organ | Findings   | Group Name<br>NO. of Animals | Control<br>10 (%) | 625 ppm<br>10 (%) | 1250 ppm<br>10 (%) | 2500 ppm<br>10 (%) |
|-------|------------|------------------------------|-------------------|-------------------|--------------------|--------------------|
| liver | herniation |                              | 2 (20)            | 0 ( 0)            | 1 (10)             | 2 (20)             |
| eye   | white      |                              | 1 (10)            | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
|       |            |                              |                   |                   |                    |                    |

GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

(HPT080)

# STUDY NO.:0602ANIMAL:RAT F344/DuCr1Cr1j[F344/DuCrj]REPORT TYPE:A1SEX:FEMALE

### GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0- 14W)

PAGE : 4

| Organ        | Findings            | Group Name<br>NO. of Animals | 5000 ppm<br>10 (%) | 10000 ppm<br>10 (%) |  |
|--------------|---------------------|------------------------------|--------------------|---------------------|--|
| liver<br>eye | herniation<br>white |                              | 0 ( 0)<br>0 ( 0)   | 2 (20)<br>0 (0)     |  |

(HPT080)

### APPENDIX K 1

### ORGAN WEIGHT, ABSOLUTE : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE UNIT: g

Group Name NO. of Body Weight THYMUS ADRENALS HEART LUNGS TESTES Animals Control 10 300± 20 0.215± 0.031  $0.050 \pm 0.003$ 3.190± 0.082 0.898± 0.054 0.949± 0.064 625 ppm 10 297± 15 0.222± 0.017 0.049± 0.004 3.176± 0.096 0.882± 0.056 0.924± 0.039 1250 ppm 10 299± 17 0.237± 0.022 0.050± 0.004 3.171± 0.105 0.873± 0.045 0.938± 0.030 2500 ppm 10 295± 16 0.211± 0.023 0.047± 0.004 3.141± 0.146 0.866± 0.073 0.914± 0.037 5000 ppm 10 294± 20 0.211± 0.026 0.048± 0.003 3.060± 0.284 0.854土 0.106 0.926± 0.062 10000 ppm 10 257± 23\*\* 0.189± 0.033 0.045± 0.003\*\*  $3.053 \pm 0.121$ 0.781± 0.064\*\* 0.860± 0.055\*\* Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

(HCL040)

BAIS 4

PAGE : 1

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS ( 14W) ( )

| REPORT TYPE :<br>SEX : MALE | AT F344/DuCr1Cr1j | j[F344/DuCrj] |                | N WEIGHT:ABSOLUTE (SUMMA<br>IVAL ANIMALS ( 14W) | RY)          | PAGE : |
|-----------------------------|-------------------|---------------|----------------|-------------------------------------------------|--------------|--------|
| UNIT: g<br>Group Name       | NO. of<br>Animals | KIDNEYS       | SPLEEN         | LIVER                                           | BRAIN        |        |
| Control                     | 10                | 1.872± 0.114  | 0.558± 0.046   | 7.339± 0.576                                    | 1.914± 0.058 |        |
| 625 ppm                     | 10                | 1.854± 0.102  | 0.528± 0.035   | 7.184± 0.350                                    | 1.895± 0.051 |        |
| 1250 ppm                    | 10                | 1.872± 0.105  | 0.535± 0.033   | 7.283± 0.563                                    | 1.905± 0.026 |        |
| 2500 ppm                    | 10                | 1.863± 0.061  | 0.525± 0.026   | 7.141± 0.543                                    | 1.868± 0.059 |        |
| 5000 ppm                    | 10                | 1.930± 0.146  | 0.525± 0.047   | 6.972± 0.416                                    | 1.884± 0.042 |        |
| 10000 ppm                   | 10                | 1.807± 0.122  | 0.461± 0.046** | 6.087± 0.551₩                                   | 1.854± 0.049 |        |

.

### APPENDIX K 2

### ORGAN WEIGHT, ABSOLUTE : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE : 3 Body Weight THYMUS ADRENALS OVARIES HEART LUNGS NO. of Group Name Animals 0.557± 0.069 0.672± 0.039  $0.102 \pm 0.018$ Control 10 151± 17 0.169± 0.023 0.051± 0.004 0.537± 0.056 0.661± 0.023 10 150± 12 0.100± 0.013 625 ppm 0.161± 0.014 0.054± 0.005 1250 ppm 10  $165 \pm 13$ 0.182± 0.020 0.052± 0.005 0.100± 0.019 0.567± 0.049 0.679± 0.034 2500 ppm 10 157± 8 0.177± 0.027  $0.052 \pm 0.004$ 0.100± 0.012 0.563± 0.020 0.682± 0.037 5000 ppm 10 157土 10 0.170± 0.018 0.053± 0.004 0.102± 0.010 0.581± 0.044 0.672± 0.038 10000 ppm 146± 10 0.155± 0.022 0.049± 0.005 0.094± 0.016  $0.520 \pm 0.046$ 0.622± 0.039\* 10 Significant difference ; \* : P  $\leq$  0.05 \*\* : P ≦ 0.01 Test of Dunnett

(HCL040)

| Group Name | NO. of<br>Animals | KID        | NEYS    | SPLI       | EEN    | LIVI       | ER     | BRAI   | IN     |  |  |
|------------|-------------------|------------|---------|------------|--------|------------|--------|--------|--------|--|--|
| Control    | 10                | 1.074±     | 0.063   | 0.337±     | 0.020  | 3.563±     | 0. 331 | 1.743± | 0.047  |  |  |
| 625 ppm    | 10                | 1.081±     | 0.063   | 0.336±     | 0. 023 | 3.613±     | 0. 281 | 1.726± | 0.065  |  |  |
| 1250 ppm   | 10                | 1.119±     | 0.080   | 0.357±     | 0. 021 | 4. 193±    | 0.649* | 1.740± | 0. 053 |  |  |
| 2500 ppm   | 10                | 1.154±     | 0.061*  | 0.345±     | 0.015  | 3.728±     | 0. 193 | 1.741± | 0. 038 |  |  |
| 5000 ppm   | 10                | 1.200±     | 0.064** | $0.350\pm$ | 0.014  | $3.641\pm$ | 0.215  | 1.731± | 0. 048 |  |  |
| 10000 ppm  | 10                | $1.225\pm$ | 0.060** | 0.325±     | 0.039  | 3.384±     | 0.269  | 1.695± | 0.046  |  |  |

### APPENDIX L 1

### ORGAN WEIGHT, RELATIVE : MALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE UNIT: %

#### ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS ( 14W)

ADRENALS TESTES HEART

| Group Name | NO. of<br>Animals | Body Weight<br>(g) | THYMUS        | ADRENALS     | TESTES        | HEART        | LUNGS        |         |
|------------|-------------------|--------------------|---------------|--------------|---------------|--------------|--------------|---------|
| Control    | 10                | 300± 20            | 0.072± 0.009  | 0.017± 0.001 | 1.068± 0.076  | 0.300± 0.013 | 0.317± 0.015 |         |
| 625 ppm    | 10                | 297± 15            | 0.075± 0.004  | 0.017± 0.002 | 1.073± 0.050  | 0.297± 0.015 | 0.312± 0.009 |         |
| 1250 ppm   | 10                | 299± 17            | 0.080± 0.008  | 0.017± 0.002 | 1.063± 0.043  | 0.293± 0.012 | 0.314± 0.012 |         |
| 2500 ppm   | 10                | 295± 16            | 0.072± 0.006  | 0.016± 0.001 | 1.068± 0.059  | 0.294± 0.021 | 0.311± 0.008 |         |
| 5000 ppm   | 10                | 294 <b>± 2</b> 0   | 0.072± 0.007  | 0.016± 0.001 | 1.047± 0.115  | 0.291± 0.034 | 0.316± 0.013 |         |
| 10000 ppm  | 10                | 257± 23**          | 0.073± 0.008  | 0.018± 0.002 | 1.195± 0.107* | 0.304± 0.015 | 0.336± 0.024 |         |
| Significar | nt difference ;   | * : P ≤ 0.05 **    | $P \leq 0.01$ | Tes          | t of Dunnett  |              |              | <u></u> |

(HCL042)

BAIS 4

PAGE : 1

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE UNIT: %

#### ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS ( 14W)

PAGE : 2

| Group Name | NO. of<br>Animals                     | KIDNEYS       | SPLEEN       | LIVER        | BRAIN                                 |      |      |
|------------|---------------------------------------|---------------|--------------|--------------|---------------------------------------|------|------|
| Control    | 10                                    | 0.625± 0.021  | 0.186± 0.007 | 2.446± 0.056 | 0.640± 0.037                          |      | s    |
| 625 ppm    | 10                                    | 0.625± 0.018  | 0.178± 0.009 | 2.423± 0.053 | 0.640± 0.035                          |      |      |
| 1250 ppm   | 10                                    | 0.627± 0.016  | 0.179± 0.006 | 2.435± 0.072 | 0.639± 0.033                          |      |      |
| 2500 ppm   | 10                                    | 0.634± 0.021  | 0.179± 0.008 | 2.423± 0.084 | 0.635± 0.028                          |      |      |
| 5000 ppm   | 10                                    | 0.658± 0.032* | 0.179± 0.007 | 2.377± 0.071 | 0.644± 0.034                          |      |      |
| 10000 ppm  | 10                                    | 0.705± 0.037₩ | 0.179± 0.009 | 2.368± 0.084 | 0.726± 0.065**                        |      |      |
| Significar | nt difference ;                       | *:P≦0.05 **:  | P ≤ 0.01     | Tes          | t of Dunnett                          | <br> |      |
| (HCL042)   | · · · · · · · · · · · · · · · · · · · |               |              |              | · · · · · · · · · · · · · · · · · · · | <br> | BAIS |

### APPENDIX L 2

## ORGAN WEIGHT, RELATIVE : FEMALE

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

Group Name NO. of Body Weight THYMUS ADRENALS OVARIES HEART LUNGS Animals (g) 10 151土 17 Control 0.112± 0.011  $0.034 \pm 0.004$ 0.068± 0.012 0.367± 0.015 0.447土 0.035 625 ppm 10 150± 12  $0.108 \pm 0.008$  $0.036 \pm 0.004$  $0.067 \pm 0.010$  $0.358 \pm 0.025$  $0.442 \pm 0.029$ 1250 ppm 10 165± 13  $0.110 \pm 0.006$  $0.032 \pm 0.004$  $0.061 \pm 0.012$ 0.345± 0.024 0.414± 0.023 2500 ppm 10 157± 8  $0.113 \pm 0.013$  $0.033 \pm 0.003$ 0.064± 0.009  $0.361 \pm 0.020$ 0.436± 0.028 5000 ppm 10  $0.428 \pm 0.018$ 157土 10  $0.108 \pm 0.007$  $0.034 \pm 0.002$ 0.065± 0.006 0.370± 0.026 10000 ppm 10 146± 10  $0.427 \pm 0.013$  $0.106 \pm 0.010$  $0.034 \pm 0.003$ 0.065± 0.009 0.357± 0.033 Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

(HCL042)

BAIS 4

PAGE : 3

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE UNIT: %

PAGE: 4 Group Name NO. of SPLEEN KIDNEYS LIVER BRAIN Animals Control 10 0.224± 0.017  $2.358 \pm 0.067$  $1.163 \pm 0.116$ 625 ppm 10  $0.721 \pm 0.030$  $0.225 \pm 0.017$  $2.408 \pm 0.063$ 1.155± 0.072 1250 ppm 10  $0.681 \pm 0.031$  $0.217 \pm 0.009$  $2.539 \pm 0.251$ 1.061± 0.070\* 2500 ppm 10 0.738± 0.038  $0.221 \pm 0.008$  $2.382 \pm 0.080$ 1.114± 0.061 5000 ppm 10 0.764土 0.051\*  $0.223 \pm 0.010$ 2.316± 0.055 1.103± 0.051 10000 ppm 10 0.842± 0.039\*\*  $0.223 \pm 0.019$  $2.320 \pm 0.055$  $1.167 \pm 0.066$ Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS ( 14W)

(HCL042)

### APPENDIX M 1

### HISTOPATHOLOGICAL FINDINGS :

### NON-NEOPLASTIC LESIONS : MALE : ALL ANIMALS

| REPORT TYPE | : RAT F344/DuCr1Cr1j[F344/DuCrj]<br>: A1<br>: MALE | ALL ANIMALS (O- 14W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                                     | PAGE :                                              |
|-------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| )rgan       | Findings                                           | Group Name         Control           No. of Animals on Study         10           Grade         1         2         3         4           (%)         (%)         (%)         (%)         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 625 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 1250 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 2500 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
| Circulatory | system)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                     |                                                     |
| leart       | inflammatory cell nest                             | <10><br>1 0 0 0<br>(10) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| Digestive s | ystem}                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                     |                                                     |
| iver        | herniation                                         | <pre> &lt;10&gt;     0 0 0 0     ( 0) ( 0) ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     ( 0)     (</pre> | <10><br>2 0 0 0<br>(20) (0) (0) (0)                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
|             | necrosisifocal                                     | 1 0 0 0<br>(10) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
| Urinary sys | tem)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                     |                                                     |
| tidney      | eosinophilic body                                  | <10><br>8 2 0 0<br>(80) (20) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10><br>8 2 0 0<br>(80) (20) (0) (0)               | <10><br>8 2 0 0<br>( 80) ( 20) ( 0) ( 0)            | <10><br>7 3 0 0<br>( 70) ( 30) ( 0) ( 0)            |
|             | hyaline cast                                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0 0 0<br>(0)(0)(0)(0)                            | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

STUDY NO. : 0602

#### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14%)

PAGE : 2

| Organ                                       | Findings                                                                                                                                                                                          | Group Name         5000 ppm           No. of Animals on Study         10           Grade         1         2         3         4           (%)         (%)         (%)         (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| {Circulator                                 | y system)                                                                                                                                                                                         |                                                                                                                                                                                    |                                                       |  |
| neart                                       | inflammatory cell nest                                                                                                                                                                            | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)                                                                                                                                            | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |  |
| Digestive                                   | system)                                                                                                                                                                                           |                                                                                                                                                                                    |                                                       |  |
| liver                                       | herniation                                                                                                                                                                                        | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                             | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)               |  |
|                                             | necrosis:focal                                                                                                                                                                                    | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        |  |
| {Urinary sy                                 | rstem)                                                                                                                                                                                            |                                                                                                                                                                                    |                                                       |  |
| xidney                                      | eosinophilic body                                                                                                                                                                                 | <10><br>9 1 0 0<br>(90) (10) (0) (0)                                                                                                                                               | <10><br>7 0 0 0<br>( 70) ( 0) ( 0) ( 0)               |  |
|                                             | hyaline cast                                                                                                                                                                                      | ·                                                                                                                                                                                  | 1 0 0 0<br>(10) (0) (0) (0)                           |  |
| Grade<br>< a ><br>b<br>( c )<br>Significant | <ul> <li>1: Slight 2: Moderate</li> <li>a: Number of animals examined at the</li> <li>b: Number of animals with lesion</li> <li>c: b / a * 100</li> <li>c: difference; *: P ≤ 0.05 **:</li> </ul> |                                                                                                                                                                                    |                                                       |  |

(HPT150)

#### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj]

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

: MALE SEX

PAGE : 3

.

|               |                          | Group Name                      |               | itrol            |                 |                 | 1         | 625 |                      |                |                 |     | 12         | 50 ppm         |                 |                 |   | 25       | 500 pg          |                       |          |
|---------------|--------------------------|---------------------------------|---------------|------------------|-----------------|-----------------|-----------|-----|----------------------|----------------|-----------------|-----|------------|----------------|-----------------|-----------------|---|----------|-----------------|-----------------------|----------|
| Organ         | Findings                 | No. of Animals on Stud<br>Grade | 1<br>1<br>(%) | 10<br>2<br>(%)   | )<br>3<br>(%)   | <u>4</u><br>(%) | <u> </u>  | (   | 10<br><u>2</u><br>%) |                | <u>4</u><br>(%) | ī   | 1<br>%)    | 1(<br>2<br>(%) | )<br>3<br>(%)   | <u>4</u><br>(%) |   | <u> </u> | 2<br>(%)        | 10<br><u>3</u><br>(%) | 4<br>(%  |
| {Urinary syst | em)                      |                                 |               |                  |                 |                 |           |     |                      |                |                 |     |            |                |                 |                 |   |          |                 |                       |          |
| kidney        | degeneration:papilla     | . (                             | 0<br>0) (     | <10<br>0<br>0) ( | )><br>0<br>( 0) | 0<br>( 0)       | 0<br>( 0) | (   | <10><br>0<br>0) (    | ><br>0<br>0) ( | 0<br>( 0)       | (   | 0<br>0) (  | <10<br>0<br>0) | )><br>0<br>( 0) | 0<br>( 0)       | ( | 0<br>0)  | <:<br>0<br>( 0) | LO><br>0<br>( 0)      | 0<br>( 0 |
| {Endocrine sy | rstem}                   |                                 |               |                  |                 |                 |           |     |                      |                |                 |     |            |                |                 |                 |   |          |                 |                       |          |
| pituitary     | cyst                     | (                               | 0<br>0) (     | <1(<br>0<br>0)   | 0               | 0<br>( 0)       | 0<br>( 0) | (   | <10)<br>0<br>0) (    | ><br>0<br>0)   | 0<br>( 0)       | (1  | 1<br>.0) ( | <10<br>0<br>0) | )><br>0<br>( 0) | 0<br>( 0)       | ( | 0<br>0)  | <<br>0<br>( 0)  | 10><br>0<br>( 0)      | (<br>(   |
|               | Rathke pouch             | (                               | 0<br>0) (     | 0<br>0)          | 0<br>(0)        | 0<br>( 0)       | 0<br>( 0) | (   | 0<br>0) (            | 0<br>0)        | 0<br>( 0)       | (   | 0<br>0) (  | 0<br>0)        | 0<br>(0)        | 0<br>( 0)       | ( | 0<br>0)  | 0<br>(0)        | 0<br>( 0)             | ( (      |
| {Special sens | se organs/appendage}     |                                 |               |                  |                 |                 |           |     |                      |                |                 |     |            |                |                 |                 |   |          |                 |                       |          |
| Harder gl     | lymphocytic infiltration | (                               | 0<br>0) (     | <1(<br>0<br>0)   | 0               | 0<br>( 0)       | 0<br>( 0) | (   | <10)<br>0<br>0) (    | ><br>0<br>0)   | 0<br>( 0)       | ( 1 | 1<br>0) (  | <10<br>0<br>0) | 0)<br>(0)       | 0<br>( 0)       | ( | 1<br>10) | 0               | 10><br>0<br>( 0)      | ( (      |

(c)

c:b/a \* 100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

#### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE: 4

| Organ                                       | Findings                                                                                                                                                           | Group Name<br>No. of Animals on<br>Grade | 5000 ppm<br>n Study 10<br>(%) (%) (%) (%)   | 10000 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |      |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------|------|
| {Urinary sys                                | tem)                                                                                                                                                               |                                          |                                             |                                                      |      |
| kidney                                      | degeneration:papilla                                                                                                                                               |                                          | <10><br>9 0 0 0 ***<br>( 90) ( 0) ( 0) ( 0) | <10><br>8 0 0 0 **<br>( 80) ( 0) ( 0) ( 0)           |      |
| {Endocrine s                                | :ystem}                                                                                                                                                            |                                          |                                             |                                                      |      |
| pituitary                                   | cyst                                                                                                                                                               |                                          | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)      | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               |      |
|                                             | Rathke pouch                                                                                                                                                       | · •                                      | 1 0 0 0<br>(10)(0)(0)(0)                    | 1 0 0 0<br>(10) (0) (0) (0)                          |      |
| {Special sem                                | ise organs/appendage)                                                                                                                                              |                                          |                                             |                                                      |      |
| flarder gl                                  | lymphocytic infiltration                                                                                                                                           |                                          | <10><br>1 0 0 0<br>(10) (0) (0) (0)         | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               |      |
| Grade<br>< a ><br>b<br>( c )<br>Significant | <pre>1 : Slight 2 : Moderate<br/>a : Number of animals examined at<br/>b : Number of animals with lesion<br/>c : b / a * 100<br/>difference; * : P ≤ 0.05 **</pre> | the site                                 | 4 : Severe                                  |                                                      | <br> |

(HPT150)

### APPENDIX M 2

### HISTOPATHOLOGICAL FINDINGS :

### NON-NEOPLASTIC LESIONS : FEMALE : ALL ANIMALS

### STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1

## HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

|              | 1                                      | Group Name<br>No. of Animals on |                                                       | 625 ppm<br>10                                         | 1250 ррт<br>10                                                   | 2500 ppm<br>10                                         |
|--------------|----------------------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| rgan         | Findings                               | Grade                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}$ | <u>1</u> <u>2</u> <u>3</u> <u>4</u><br>(%) (%) (%) (%) |
| Hematopoieti | c system)                              |                                 |                                                       |                                                       |                                                                  |                                                        |
| one marrow   | granulation                            |                                 | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)               | <10><br>1 0 0 0<br>(10) (0) (0) (0)                              | <10><br>0 1 0 0<br>( 0) ( 10) ( 0) ( 0)                |
| Digestive sy | stem)                                  |                                 |                                                       |                                                       |                                                                  |                                                        |
| iver         | herniation                             |                                 | <10><br>2 0 0 0<br>(20) ( 0) ( 0) ( 0)                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)                          | <10><br>2 0 0 0<br>( 20) ( 0) ( 0) ( 0)                |
| ancreas      | atrophy                                |                                 | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |
| Urinary syst | em)                                    |                                 |                                                       |                                                       |                                                                  |                                                        |
| idney        | mineralization:cortico-medullary junct | ion                             | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)               | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |
|              | mineralization:papilla                 |                                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        | 1 0 0 0<br>(10) (0) (0) (0)                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                         |

(c) c:b/a\*100

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE : 6

| Organ                                         |                                                                                                                                                                            | up Name         5000 ppm           of Animals on Study         10           de         1         2         3         4           (%)         (%)         (%)         (%)         (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| {Hematopoieti                                 | c system)                                                                                                                                                                  |                                                                                                                                                                                      |                                                       |  |
| oone marrow                                   | granulation                                                                                                                                                                | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                               | <10><br>1 0 0 0<br>(10) (0) (0) (0)                   |  |
| {Digestive sy                                 | stem)                                                                                                                                                                      |                                                                                                                                                                                      |                                                       |  |
| liver                                         | herniation                                                                                                                                                                 | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                               | <10><br>2 0 0 0<br>( 20) ( 0) ( 0) ( 0)               |  |
| pancreas                                      | atrophy                                                                                                                                                                    | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                               | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)               |  |
| {Urinary syst                                 | sem}                                                                                                                                                                       |                                                                                                                                                                                      |                                                       |  |
| kidney                                        | mineralization:cortico-medullary junctio                                                                                                                                   | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                               | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |  |
|                                               | mineralization:papilla                                                                                                                                                     | 1 0 0 0<br>(10) (0) (0) (0)                                                                                                                                                          | 2 0 0 0<br>(20) (0) (0) (0)                           |  |
| Grade<br>< a ><br>b<br>( c )<br>Significant o | <pre>1 : Slight 2 : Moderate 3 : ] a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 difference ; * : P ≤ 0.05 ** : P ≤ 0</pre> | Marked 4 : Severe<br>.01 Test of Chi Square                                                                                                                                          |                                                       |  |

(HPT150)

|              | : 0602<br>: RAT F344/DuCr1Cr1j[F344/DuCrj] | HISTOPATHOLOGICAL FINDINGS :N<br>ALL ANIMALS (0- 14W)                                                                                                                             | ION-NEOPLASTIC LESIONS (SUMMAR)                    | )                                                   |                                                     |
|--------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|              | FEMALE                                     |                                                                                                                                                                                   |                                                    | •                                                   | PAGE : 7                                            |
| Organ        | Findings                                   | Group Name         Control           No. of Animals on Study         10           Grade         1         2         3         4           (%)         (%)         (%)         (%) | 625 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 1250 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 2500 ppm<br>10<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
| {Urinary sys | tem)                                       |                                                                                                                                                                                   |                                                    |                                                     |                                                     |
| kidney       | degeneration:papilla                       | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                            | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| {Special sen | se organs/appendage)                       |                                                                                                                                                                                   |                                                    |                                                     |                                                     |
| eye          | cataract                                   | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)                                                                                                                                           | <pre>&lt;10&gt; 0 0 0 0 ( 0) ( 0) ( 0) ( 0)</pre>  | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
|              | iritis                                     | 1 0 0 0<br>(10) (0) (0) (0)                                                                                                                                                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
| Harder gl    | lymphocytic infiltration                   | <10><br>1 0 0 0<br>(10) (0) (0) (0)                                                                                                                                               | <10><br>1 0 0 0<br>( 10) ( 0) ( 0) ( 0)            | <10><br>2 1 0 0<br>( 20) ( 10) ( 0) ( 0)            | <10><br>2 0 0 0<br>( 20) ( 0) ( 0) ( 0)             |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site</a>

b b: Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$  Test of Chi Square

(HPT150)

# STUDY NO. : 0602 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

PAGE : 8

| Organ         | Findings                 | Group Name         5000 ppm           No. of Animals on Study         10           Grade         1         2         3         4           (%)         (%)         (%)         (%)         (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |        |
|---------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------|
| {Urinary syst | tem)                     |                                                                                                                                                                                                |                                                       |        |
| kidney        | degeneration:papilla     | <10><br>5 0 0 0 *<br>(50) (0) (0) (0)                                                                                                                                                          | <10><br>10 0 0 0 **<br>(100) ( 0) ( 0) ( 0)           |        |
| {Special sens | se organs/appendage)     |                                                                                                                                                                                                |                                                       | -<br>- |
| еуе           | cataract                 | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                         | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |        |
|               | iritis                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        |        |
| Harder gl     | lymphocytic infiltration | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                         | <10><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |        |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site</a>

b b: Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$  Test of Chi Square

(HPT150)

### APPENDIX N

# METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13-WEEK DRINKING WATER STUDY OF 2-AMINOETHANOL

### METHODS, UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY IN THE 13- WEEK DRINKING WATER STUDY OF 2-AMINOETHANOL

| Item                                               | Method                                       | Unit                   | Decimal<br>place |
|----------------------------------------------------|----------------------------------------------|------------------------|------------------|
| Hematology                                         |                                              |                        |                  |
| Red blood cell (RBC)                               | Light scattering method <sup>1)</sup>        | $\times 10^{6/\mu} L$  | 2                |
| Hemoglobin(Hgb)                                    | Cyanmethemoglobin method $^{1)}$             | g/dL                   | 1                |
| Hematocrit(Hct)                                    | Calculated as RBC $\times$ MCV/10 $^{10}$    | %                      | 1                |
| Mean corpuscular volume(MCV)                       | Light scattering method $^{\mathfrak{d}}$    | fL                     | 1                |
| Mean corpuscular hemoglobin(MCH)                   | Calculated as Hgb/RBC $\times 10^{10}$       | pg                     | 1                |
| Mean corpuscular hemoglobin concentration          | Calculated as Hgb/Hct $	imes 100^{10}$       | g/dL                   | 1                |
| (MCHC)                                             |                                              |                        |                  |
| Platelet                                           | Light scattering method $^{\mathfrak{V}}$    | $\times 10^{3}/\mu$ L  | 0                |
| Reticulocyte                                       | Light scattering method $^{\mathfrak{V}}$    | %                      | 1                |
| Prothrombin time                                   | Quick one stage method $^{2)}$               | sec                    | 1                |
| Activated partial thromboplastin time(APTT)        | Ellagic acid activated method <sup>2</sup>   | sec                    | 1                |
| White blood cell(WBC)                              | Light scattering method <sup>1)</sup>        | $	imes 10^{3/} \mu  L$ | 2                |
| Differential WBC                                   | Pattern recognition method <sup>3)</sup>     | %                      | 0                |
|                                                    | (Wright staining)                            |                        |                  |
| Biochemistry                                       |                                              |                        |                  |
| Total protein(TP)                                  | Biuret method <sup>4)</sup>                  | g/dL                   | 1                |
| Albumin (Alb)                                      | BCG method 4)                                | g/dL                   | 1                |
| A/G ratio                                          | Calculated as Alb/(TP-Alb) <sup>4)</sup>     | -                      | 1                |
| T-bilirubin                                        | Alkaline azobilirubin method <sup>4)</sup>   | mg/dL                  | 2                |
| Glucose                                            | GlcK·G-6-PDH method 4)                       | mg/dL                  | 0                |
| T-cholesterol                                      | CE·COD·POD method <sup>4)</sup>              | mg/dL                  | 0                |
| Triglyceride                                       | LPL·GK·GPO·POD method 4)                     | mg/dL                  | 0                |
| Phospholipid                                       | PLD·ChOD·POD method 4)                       | mg/dL                  | 0                |
| Aspartate aminotransferase (AST)                   | JSCC method <sup>4)</sup>                    | IU/L                   | 0                |
| Alanine aminotransferase (ALT)                     | JSCC method <sup>4)</sup>                    | IU/L                   | 0                |
| Lactate dehydrogenase (LDH)                        | SFBC method 4)                               | IU/L                   | 0                |
| Alkaline phosphatase (ALP)                         | GSCC method 4)                               | IU/L                   | 0                |
| $\gamma$ -Glutamyl transpeptidase ( $\gamma$ -GTP) | JSCC method <sup>4)</sup>                    | IU/L                   | 0                |
| Creatine kinase (CK)                               | JSCC method <sup>4)</sup>                    | IU/L                   | 0                |
| Urea nitrogen                                      | Urease · GLDH method 4)                      | mg/dL                  | 1                |
| Creatinine                                         | Jaffe method <sup>4)</sup>                   | mg/dL                  | 1                |
| Sodium                                             | Ion selective electrode method <sup>4)</sup> | mEq/L                  | 0                |
| Potassium                                          | Ion selective electrode method <sup>4)</sup> | mEq/L                  | 1                |
| Chloride                                           | Ion selective electrode method <sup>4)</sup> | mEq/L                  | 0                |
| Calcium                                            | OCPC method 4)                               | mg/dL                  | 1                |
| Inorganic phosphorus                               | PNP·XOD·POD method 4)                        | mg/dL                  | 1                |

1) Automatic blood cell analyzer (ADVIA120 : Bayer Corporation)

2) Automatic coagulometer (Sysmex CA-5000 : Sysmex Corporation)

3) Automatic blood cell differential analyzer (MICROX HEG-120NA : OMRON Corporation)

4) Automatic analyzer (Hitachi 7080 : Hitachi,Ltd.)

(