2-メチル-1-プロパノールのマウスを用いた 経口投与によるがん原性試験(混水試験)報告書

試験番号:0613

TABLES

TABLES

- TABLE A 1SURVIVAL ANIMAL NUMBERS: MALE
- TABLE A 2SURVIVAL ANIMAL NUMBERS: FEMALE
- TABLE B 1 CLINICAL OBSERVATION: MALE
- TABLE B 2CLINICAL OBSERVATION: FEMALE
- TABLE C 1 BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
- TABLE C 2BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS:
FEMALE
- TABLE C 3 BODY WEIGHT CHANGES: MALE
- TABLE C 4BODY WEIGHT CHANGES: FEMALE
- TABLE D 1
 FOOD
 CONSUMPTION
 CHANGES
 AND
 SURVIVAL
 ANIMAL

 NUMBERS:
 MALE
- TABLE D 2FOODCONSUMPTIONCHANGESANDSURVIVALANIMALNUMBERS:FEMALE
- TABLE D 3 FOOD CONSUMPTION CHANGES: MALE
- TABLE D 4FOOD CONSUMPTION CHANGES: FEMALE
- TABLE E 1
 WATER
 CONSUMPTION
 CHANGES
 AND
 SURVIVAL
 ANIMAL

 NUMBERS:
 MALE
- TABLE E 2WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL
NUMBERS: FEMALE
- TABLE E 3WATER CONSUMPTION CHANGES: MALE
- TABLE E 4WATER CONSUMPTION CHANGES: FEMALE
- TABLE F 1
 CHEMICAL INTAKE CHANGES: MALE
- TABLE F 2CHEMICAL INTAKE CHANGES: FEMALE

TABLES (CONTINUED)

- TABLE G 1 HEMATOLOGY: MALE
- TABLE G 2
 HEMATOLOGY: FEMALE
- TABLE H 1 BIOCHEMISTRY: MALE
- TABLE H 2BIOCHEMISTRY: FEMALE
- TABLE I 1 URINALYSIS: MALE
- TABLE I 2URINALYSIS: FEMALE
- TABLE J 1GROSS FINDINGS: MALE: ALL ANIMALS
- TABLE J 2GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
- TABLE J 3
 GROSS FINDINGS: MALE: SACRIFICED ANIMALS
- TABLE J 4
 GROSS FINDINGS: FEMALE: ALL ANIMALS
- TABLE J 5GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
- TABLE J 6
 GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
- TABLE K 1 ORGAN WEIGHT, ABSOLUTE: MALE
- TABLE K 2ORGAN WEIGHT, ABSOLUTE: FEMALE
- TABLE L 1 ORGAN WEIGHT, RELATIVE: MALE
- TABLE L 2ORGAN WEIGHT, RELATIVE: FEMALE
- TABLE M 1HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: ALL ANIMALS
- TABLE M 2HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: DEAD AND MORIBUND ANIMALS
- TABLE M 3HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

- TABLE M 4HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: ALL ANIMALS
- TABLE M 5HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: DEAD AND MORIBUND ANIMALS
- TABLE M 6HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: SACRIFICED ANIMALS
- TABLE N 1NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: MALE
- TABLE N 2NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: FEMALE
- TABLE O 1
 HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
- TABLE O 2HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS:
FEMALE
- TABLE P 1
 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS:

 MALE
- TABLE P 2NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS:
FEMALE
- TABLE Q 1 HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
- TABLE Q 2HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:
FEMALE
- TABLE R 1CAUSE OF DEATH: MALE
- TABLE R 2 CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

Group Name	Animals	Administ	tration (Wee	eks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0
0000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0
20000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

Group Name	Animals	Administ	tration (Wee	ks)		•									
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
10000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0613

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

SEX : MALE															PAGE : :
Group Name	Animals At start	Administ 28	ration (Wee 29	ks) 30	31	32		0.4		00	07		00	40	
	AL SLALL	20	29	50	91	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0
000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
0000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0
20000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

.

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

Group Name	Animals	Administ	tration (Wee	eks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
.0000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	98.0
20000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

•

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS4

,

STUDY NO. : 0613 SURVIVAL ANIMAL NUMBERS ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50
		100.0	100. 0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	98.0	98.0
5000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0
10000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	. 98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
20000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

-

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS4

PAGE: 5

SURVIVAL ANIMAL NUMBERS

Group Name	Animals	Administ	ration (Wee	ks)						-					
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	49/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	46/50
		98.0	96.0	96.0	94.0	94.0	94.0	94.0	94. 0	94. 0	94.0	92.0	92.0	92.0	92.0
5000 ppm	50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	44/50	44/50	44/50	43/50	42/50
		94.0	94.0	94.0	94.0	94.0	94.0	94.0	92.0	92.0	88.0	88.0	88.0	86.0	84.0
0000 ppm	50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	47/50	46/50	46/50
		98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0	96.0	94.0	94.0	94.0	92.0	92.0
20000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

.

~~~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

| Group Name | Animals  | Administ | ration (Wee | ks)   |       |       |       | -     |       |       |       |       |       |       |       |
|------------|----------|----------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | At start | 84       | 85          | 86    | 87    | 88    | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    |
| Control    | 50       | 45/50    | 44/50       | 44/50 | 44/50 | 43/50 | 42/50 | 41/50 | 40/50 | 40/50 | 40/50 | 40/50 | 40/50 | 40/50 | 40/50 |
|            |          | 90. 0    | 88.0        | 88.0  | 88.0  | 86.0  | 84.0  | 82.0  | 80.0  | 80.0  | 80.0  | 80.0  | 80.0  | 80.0  | 80.0  |
| 5000 ppm   | 50       | 42/50    | 42/50       | 41/50 | 41/50 | 41/50 | 40/50 | 40/50 | 40/50 | 39/50 | 39/50 | 38/50 | 38/50 | 37/50 | 36/50 |
|            |          | 84.0     | 84.0        | 82.0  | 82.0  | 82.0  | 80.0  | 80.0  | 80.0  | 78.0  | 78.0  | 76.0  | 76.0  | 74.0  | 72.0  |
| .0000 ppm  | 50       | 46/50    | 45/50       | 45/50 | 45/50 | 44/50 | 43/50 | 43/50 | 43/50 | 43/50 | 43/50 | 41/50 | 41/50 | 38/50 | 37/50 |
|            |          | 92.0     | 90.0        | 90.0  | 90.0  | 88.0  | 86.0  | 86.0  | 86.0  | 86.0  | 86.0  | 82.0  | 82.0  | 76.0  | 74.0  |
| mqq 0000   | 50       | 48/50    | 48/50       | 48/50 | 47/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 |
|            |          | 96.0     | 96.0        | 96.0  | 94.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  |

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

| Group Name | Animals  | Administ | ration (Wee | ks)   |       |       |       | **    |                                       |  |
|------------|----------|----------|-------------|-------|-------|-------|-------|-------|---------------------------------------|--|
|            | At start | 98       | 99          | 100   | 101   | 102   | 103   | 104   |                                       |  |
|            |          |          |             |       |       |       |       |       | · · · · · · · · · · · · · · · · · · · |  |
| Control    | 50       | 38/50    | 36/50       | 35/50 | 35/50 | 35/50 | 35/50 | 35/50 |                                       |  |
|            |          | 76.0     | 72.0        | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  |                                       |  |
| 5000 ppm   | 50       | 36/50    | 36/50       | 35/50 | 35/50 | 35/50 | 33/50 | 33/50 |                                       |  |
|            |          | 72.0     | 72.0        | 70.0  | 70.0  | 70.0  | 66.0  | 66.0  |                                       |  |
| 10000 ppm  | 50       | 36/50    | 36/50       | 36/50 | 36/50 | 36/50 | 36/50 | 36/50 |                                       |  |
|            |          | 72.0     | 72.0        | 72.0  | 72.0  | 72.0  | 72.0  | 72.0  |                                       |  |
| 20000 ppm  | 50       | 45/50    | 45/50       | 45/50 | 43/50 | 41/50 | 41/50 | 41/50 |                                       |  |
|            |          | 90.0     | 90.0        | 90.0  | 86.0  | 82.0  | 82.0  | 82.0  |                                       |  |

Number of survival/ Number of effective animals Survival rate(%)

Survivar rat

(HAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

| Group Name | Animals  | Administ | ration (Wee | ks)   |        |       |       |        |       |       |       |        |        |        |        |
|------------|----------|----------|-------------|-------|--------|-------|-------|--------|-------|-------|-------|--------|--------|--------|--------|
|            | At start | 0        | 1           | 2     | 3      | 4     | 5     | 6      | 7     | 8     | 9     | 10     | 11     | 12     | 13     |
| ontrol     | 50       | 50/50    | 50/50       | 50/50 |        | 50/50 | 50/50 | 50/50  | 50/50 | 50/50 | 50/50 | 50/50  | 50/50  | 50/50  | 50/50  |
|            |          | 100.0    | 100.0       | 100.0 | 100. 0 | 100.0 | 100.0 | 100.0  | 100.0 | 100.0 | 100.0 | 100. 0 | 100. 0 | 100.0  | 100.0  |
| 500 ppm    | 50       | 50/50    | 50/50       | 50/50 | 50/50  | 50/50 | 50/50 | 50/50  | 50/50 | 50/50 | 50/50 | 50/50  | 50/50  | 50/50  | 50/50  |
|            |          | 100.0    | 100.0       | 100.0 | 100. 0 | 100.0 | 100.0 | 100.0  | 100.0 | 100.0 | 100.0 | 100. 0 | 100. 0 | 100. 0 | 100.0  |
| 000 ppm    | 50       | 50/50    | 50/50       | 50/50 | 50/50  | 50/50 | 50/50 | 50/50  | 50/50 | 50/50 | 50/50 | 50/50  | 50/50  | 50/50  | 50/50  |
|            |          | 100.0    | 100.0       | 100.0 | 100. 0 | 100.0 | 100.0 | 100. 0 | 100.0 | 100.0 | 100.0 | 100.0  | 100.0  | 100. 0 | 100. 0 |
| 0000 ppm   | 50       | 50/50    | 50/50       | 50/50 | 50/50  | 50/50 | 50/50 | 50/50  | 50/50 | 50/50 | 50/50 | 50/50  | 50/50  | 50/50  | 50/50  |
|            |          | 100.0    | 100.0       | 100.0 | 100. 0 | 100.0 | 100.0 | 100.0  | 100.0 | 100.0 | 100.0 | 100.0  | 100.0  | 100.0  | 100.0  |

~~~

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

SURVIVAL ANIMAL NUMBERS

Group Name	Animals	Administ	tration (Wee	ks)											
	At start	14	15	16	17	18	. 19	20	21	22	23	24	25	26	27
				· .											
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
2500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0
10000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

 $\overline{}$

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0
2500 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0
0000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

 \sim

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

roup Name	Animals	Administ	ration (Wee	ks)		1									
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0
500 ppm	50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	47/50
		100.0	100.0	100.0	100. 0	100.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	94. 0
000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50
		100.0	100. 0	100.0	100. 0	100.0	100.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0
0000 µpm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

•

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	98.0	98.0	98.0	98.0	98.0
2500 ppm	50	47/50	47/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	46/50	45/50	45/50	44/50	41/50
		94.0	94.0	94.0	94. 0	94.0	94.0	92.0	92.0	92.0	92.0	90.0	90.0	88.0	82.0
5000 ppm	50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	46/50	46/50	46/50	46/50	46/50	46/50	46/50
		96.0	96.0	96.0	96.0	96.0	96.0	94.0	92.0	92.0	92.0	92.0	92.0	92.0	92.0
10000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0	96.0

Number of survival/ Number of effective animals

.

Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	49/50	48/50	47/50	47/50	47/50	46/50	45/50	45/50	44/50	44/50	44/50	44/50	44/50	44/50
		98.0	96.0	94.0	94. 0	94.0	92.0	90. 0	90.0	88.0	88.0	88. 0	88.0	88.0	88.0
2500 ppm	50	41/50	41/50	41/50	41/50	40/50	40/50	40/50	40/50	39/50	39/50	37/50	37/50	36/50	36/50
		82.0	82.0	82.0	82.0	80.0	80.0	80.0	80.0	78.0	78.0	74.0	74.0	72.0	72.0
000 ppm	50	46/50	46/50	46/50	45/50	44/50	44/50	44/50	44/50	44/50	42/50	42/50	42/50	41/50	41/50
		92.0	92.0	92.0	90.0	88.0	88.0	88.0	88.0	88.0	84.0	84. 0	84.0	82.0	82.0
10000 ppm	50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	46/50	46/50	44/50	44/50	44/50	42/50	42/50
		96.0	96.0	96.0	96. 0	96.0	94.0	94.0	92.0	92.0	88.0	88.0	88.0	84.0	84.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	42/50	41/50	41/50	41/50	41/50	40/50	40/50	40/50	40/50	39/50	39/50	38/50	38/50	34/50
		84.0	82.0	82.0	82.0	82.0	80.0	80.0	80.0	80.0	78.0	78.0	76.0	76.0	68.0
500 ppm	50	34/50	34/50	34/50	34/50	34/50	34/50	34/50	34/50	34/50	33/50	33/50	31/50	31/50	30/50
		68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	68.0	66.0	66.0	62.0	62.0	60.0
000 ppm	50	41/50	41/50	40/50	40/50	40/50	40/50	38/50	38/50	37/50	36/50	36/50	36/50	35/50	34/50
		82.0	82.0	80.0	80. 0	80.0	80.0	76.0	76.0	74.0	72.0	72.0	72.0	70.0	68.0
0000 ppm	50	42/50	40/50	39/50	37/50	37/50	36/50	36/50	36/50	33/50	33/50	32/50	32/50	32/50	31/50
		84.0	80.0	78.0	74.0	74.0	72.0	72.0	72.0	66.0	66.0	64.0	64.0	64.0	62.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

.

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

SURVIVAL ANIMAL NUMBERS

Group Name Animals Administration (Weeks)_ 98 99 At start 100 101 102 103 104 Control 50 34/5034/50 34/50 32/5032/50 30/50 29/5068.0 68.0 68.0 64.0 64.0 60.0 58.0 2500 ppm 50 30/50 30/50 30/50 29/50 28/50 26/5026/50 60.0 60.0 60.0 58.0 56.0 52.0 52.0 5000 ppm 50 34/50 34/50 34/50 33/50 32/5032/50 31/50 68.0 68.0 68.0 66.0 64.0 64.0 62.0 10000 ppm 50 30/50 28/50 26/5024/5024/5023/5020/5060.0 56.0 52.0 48.0 48.0 46.0 40.0

.

Number of survival/ Number of effective animals Survival rate(%)

.

(HAN360)

BAIS4

PAGE : 16

TABLE B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim$

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

•

SEX : MALE

Clinical sign	Group Name	Admini	stration We	eek-day											
	-	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13–7	14-7
DEATH	Centrel	0	0	0	0	0	0			0	0	<u>^</u>	<u>^</u>		
JEATH	Control		0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	õ	Ő	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	ů	Ő	0 0	0	0	0	0 0	0	0	0	0	0	0	0
	10000 ppm	Ő	ů	ů	0	0	0	0 0	0	0	0	0	0	0	0
	20000 ppm	0	° Õ	Ő	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	0	0	0	0	0	0	0	0	0	0			0
	10000 ppm	0	0	0	0	0			-		. •	-	0	0	•
	20000 ppm	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 0
	Deese ppm	· ·	Ŭ	0	Ũ	Ū	Ū	v	0	v	Ū	0		0	Ū
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	õ	Ő	ů 0	Ő	Ő	0 0	0	ŏ	0	0 0	0	0
	10000 ppm	õ	Õ	ŏ	ů 0	0	0	Ő	õ	0	0	0	0	0	0
	20000 ppm	Õ	Õ	õ	0	0	0	0	0	0	0	0	0	0	0
		-	-	-	· ·	Ū.	Ŭ	·	Ũ	, in the second s	v	Ũ	Ŭ.	Ū	Ū
ILOERECTION	Control	0	0	0	0	0	~ 0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	ů 0	0	0 0	Ő	0	0	0	0	0	0	0
	10000 ppm	ů	ů	Ő	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	ů 0	0 0	Ő	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OTDED TENT VENTILETA	5000 ppm	0	0					-		-	-	•	0	0	0
		•		0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0

PAGE: 1

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
		-	,												
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	.0	0	0	0	0	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	Q	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	. 0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

PAGE : 2

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 3

Clinical sign	Group Name	Admini	stration W	eek-day											
	-	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DEATH	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	Ō	Õ	Õ	0	Õ
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	· 0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	Ō	Ō	Ő	õ	Ő
	20000 ppm	0	0	0	0	0	0	0	0	Ő	0 0	ů 0	õ	õ	Ő
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	õ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	õ	ŏ	ů	ů
	20000 ppm	0	0	0	0	0	0	0	Û,	0	0 0	ů 0	Ő	Ő	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	Ő	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	Õ	õ	Ő	Ő	ů
	20000 ppm	0	0	0	0	0	0	0	Õ	Ō	Ő	ů 0	ů	ů	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	õ	Ő
	10000 ppm	0	0	0	Ō	Ő	. 0	0 0	ů	Õ	ů 0	ů	ů 0	0 0	Ő
	20000 ppm	0	0	0	0 0	Ő	0	Ő	ů	ů	õ	ů 0	ŏ	0 0	õ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 4

-

Clinical sign	Group Name	Admini	stration W	eek-dav											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
DRIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ő	0	ů
JNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	õ	õ
	20000 ppm	0	0	0 -	0	0	0	0	0	0 0	Ő	Ő	ů 0	0	Ő
FAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	ŏ
	10000 ppm	0	0	Ō	0	Ō	0	ů 0	õ	õ	õ	õ	Ő	Ő	ŏ
	20000 ppm	0	0	0	0	õ	ů 0	0	Õ	Õ	õ	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	Ō	Ō	õ	Ő	Ő	ů	õ	ŏ	õ	0 0	Õ	0
	10000 ppm	0	ů	0	õ	õ	0 0	0 0	0	Ő	0	0 0	0	0	0
	20000 ppm	ů 0	ů 0	0	0	, Ö	Ő	0	0	0	0 0	0	0	. 0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Õ	Ő	õ	0 0	0	0	0	0	0	ő	0	0	0
	10000 ppm	ů	ů	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	ő	Ő	Ő	0	0	0	0	0	0	0	0	0	0	0
)ILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	Ô	Ő	õ	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0		-	0		-
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000 ppm	1	1	1	1	1	1	1	1	1	1	ī	1	- 1	· 1
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	2
	10000 ppm	õ	ů	ů	0	0	0	ů 0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Booomoron mortanian Mion	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	-		-		-	-	-				-	0
	20000 ppm			0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	Ō	0	0	0	0	õ	õ	Ő
	10000 ppm	0	0	0	0	0	0	Ō	Ő	ů	ů	Ő	ŏ	õ	ů
	20000 ppm	0	0	0	0	Õ	0	Õ	õ	õ	0	õ	0	õ	Ő
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	5000 ppm	0	0	0	0	Ő	Ő	ŏ	Ő	ů 0	ů 0	õ	ů	0 0	0
	10000 ppm	0	0	õ	0 0	ů	ů	ů	ů	0	0	0	Ő	0	0
	20000 ppm	0	0	0	Ő	õ	ů 0	ů 0	ő	ů	0	õ	Ő	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	ů 0	õ	ů 0	0	0	0 0	0	0	0	0	0	0	0
•	10000 ppm	0	ů	0 0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	Ő	õ	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	0	0	0	0	0	0	0	0		0			
	10000 ppm	0	0	0	0	0	0		-	0	0		. 0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	-	0	0	0	0	0
	20000 ppm	U	U	U	U	U	U	0	0	0	0	0	0	0	0

PAGE : 5

~~~

(HAN190)

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

#### SEX : MALE

| Clinical sign          | Group Name             | Admini | stration W | eek-day |      |      |        |        |      |        |        |        |      |        |        |
|------------------------|------------------------|--------|------------|---------|------|------|--------|--------|------|--------|--------|--------|------|--------|--------|
|                        |                        | 71-7   | 72-7       | 73-7    | 74-7 | 75-7 | 76-7   | 77-7   | 78-7 | 79-7   | 80-7   | 81-7   | 82-7 | 83-7   | 84-7   |
| - Amu                  |                        | 0      | 0          | 2       | 0    |      |        |        | _    | _      |        |        |      |        | _      |
| EATH                   | Control                | 2      | 2          | 3       | 3    | 3    | 3      | 3      | 3    | 3      | 4      | 4      | 4    | 4      | 5      |
|                        | 5000 ppm               | 1      | 1          | 1       | 1    | 1    | 1      | 2      | 2    | 4      | 4      | 4      | 5    | 6      | 6      |
|                        | 10000 ppm              | 1      | 1          | 2       | 2    | 2    | 2      | 2      | 2    | 3      | 3      | 3      | 4    | 4      | 4      |
|                        | 20000 ppm              | 1      | 1          | 1       | 1    | 1    | 1      | 1      | 1    | 1      | 2      | 2      | 2    | 2      | 2      |
| ORIBUND SACRIFICE      | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 2      | 2          | 2       | 2    | 2    | 2      | 2      | 2    | 2      | 2      | 2      | 2    | 2      | 2      |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| OCOMOTOR MOVEMENT DECR | Control                | 0      | 0          | 0       | 1    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| UNCHBACK POSITION      | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| TAXIC GAIT             | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | Ő      | 0<br>0 |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | õ      | 0<br>0 |
|                        | 20000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| OILED                  | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | ŏ      | õ          | 0       | ŏ    | 0    | 0<br>0 | õ      | Ő    | 0      | 0      | 0      | 0    | ŏ      | 0      |
|                        | 10000 ppm              | ŏ      | Ő          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm              | 0      | Ő          | 0       | õ    | 0    | Ő      | 0<br>0 | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| ILOERECTION            | Control                | 0      | 0          | . 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    | 0    | 1      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | -      | 0    |        | 0      |
|                        | 20000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 1<br>0 | 1<br>0 | 1<br>0 | 0    | 0<br>0 | 0<br>0 |
| ROG BELLY              | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    |      |        |        | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 10000 ppm<br>10000 ppm | 0      | 0          | . 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm<br>20000 ppm | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 20000 ppm              | U      | U          | U       | U    | Ų    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
| DILED PERI-GENITALIA   | Control                | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 5000 ppm               | 0      | 0          | 0       | 0    | 0    | 1      | 0      | 1    | 0      | 0      | 0      | 0    | 0      | 0      |
|                        | 10000 ppm              | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | · 1    | 1      | 1 .    | 0    | 0      | 0      |
|                        | 20000 ppm              | 0      | 0          | . 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0      | 0      |

BAIS 4

PAGE : 6

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 7

| linical sign          | Group Name | Admini | stration W | eek-dav |      |      |      |      |      |      |      |        |      |      |        |
|-----------------------|------------|--------|------------|---------|------|------|------|------|------|------|------|--------|------|------|--------|
|                       |            | 85-7   | 86-7       | 87-7    | 88-7 | 89-7 | 90-7 | 91-7 | 92-7 | 93-7 | 94-7 | 95-7   | 96-7 | 97-7 | 98-7   |
|                       |            |        |            |         |      |      |      |      |      |      |      |        |      |      |        |
| EATH                  | Control    | 6      | 6          | 6       | 6    | 6    | 7    | 8    | 8    | 8    | 8    | 8      | 8    | 8    | 9      |
|                       | 5000 ppm   | 6      | 7          | 7       | 7    | 8    | 8    | 8    | 8    | 8    | 9    | 9      | 10   | 11   | 11     |
|                       | 10000 ppm  | 5      | 5          | 5       | 6    | 7    | 7    | 7    | 7    | 7    | 9    | 9      | 12   | 13   | 14     |
|                       | 20000 ppm  | 2      | 2          | 3       | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5      | 5    | 5    | 5      |
| RIBUND SACRIFICE      | Control    | 0      | 0          | 0       | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2      | 2    | 2    | 3      |
|                       | 5000 ppm   | 2      | 2          | 2       | 2    | 2    | 2    | 2    | 3    | 3    | 3    | 3      | 3    | 3    | 3      |
|                       | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
| COMOTOR MOVEMENT DECR | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
| NCHBACK POSITION      | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
| AXIC GAIT             | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | : 0    |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 10000 թթա  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
| DILED                 | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 1    | 1      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0 .  | 0      | 0    | 0    | 0      |
|                       | 10000 ppm  | 0.     | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 1    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | Ō    | 0      |
| LOERECTION            | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 1    | 2    | 2      |
|                       | 5000 ppm   | 0      | 0          | 0       | 1    | 0    | 1    | 1    | 1    | 1    | 1    | 1      | 1    | . 0  | 0      |
|                       | 10000 ppm  | 0      | 0          | 0       | 1    | 0    | 0    | 0    | 0    | 1    | 1    | 1      | 2    | 1    | Ő      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | ō    | ō      | 0    | 0    | ů      |
| OG BELLY              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 1      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | Ő    | 0    | ò      |
|                       | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | Õ    | Ő    | õ    | õ      | ů    | Ő    | 0      |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | Ō    | Ő    | Ő      | Õ    | 0    | Ő      |
| ILED PERI-GENITALIA   | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | Ő    | Õ    | õ      |
|                       | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | Ō    | Õ    | õ    | õ    | Ő      | õ    | 0    | 0<br>0 |
|                       | 20000 ppm  | 0      | 0          | 0       | 0    | Ö    | Ő    | Õ    | õ    | õ    | ů    | ů<br>0 | õ    | ŏ    | ŏ      |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

#### SEX : MALE

PAGE : 8

| Clinical sign                         | Group Name | Admin | istration N | Veek-dav |       |       |       |  |
|---------------------------------------|------------|-------|-------------|----------|-------|-------|-------|--|
|                                       | ever vene  | 99-7  | 100-7       | 101-7    | 102-7 | 103-7 | 104-7 |  |
| · · · · · · · · · · · · · · · · · · · |            |       |             |          |       |       |       |  |
|                                       |            |       |             |          |       |       |       |  |
| EATH                                  | Control    | 11    | 12          | 12       | 12    | 12    | 12    |  |
|                                       | 5000 ppm   | 11    | 12          | 12       | 12    | 14    | 14    |  |
|                                       | 10000 ppm  | 14    | 14          | 14       | 14    | 14    | 14    |  |
|                                       | 20000 ppm  | 5     | 5           | 7        | 9     | 9     | 9     |  |
| ORIBUND SACRIFICE                     | Control    | 3     | 3           | 3        | 3     | 3     | 3     |  |
| Internet Enternet 105                 | 5000 ppm   | 3     | 3           | 3        | 3     | 3     | 3     |  |
|                                       |            |       | 0           | Ó        | 0     |       |       |  |
|                                       | 10000 ppm  | 0     |             |          |       | 0     | 0     |  |
|                                       | 20000 ррт  | 0     | 0           | 0 .      | 0     | 0     | 0     |  |
| OCOMOTOR MOVEMENT DECR                | Control    | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 5000 ppm   | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 20000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
| UNCHBACK POSITION                     | Control    | 0     | 0           | 1        | 1     | 1     | 1     |  |
|                                       | 5000 ppm   | 0     | Ő           | Ô        | 0     | 0     | 0     |  |
|                                       |            |       | -           |          |       |       |       |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 20000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
| TAXIC GAIT                            | Control    | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 5000 ppm   | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 20000 ppm  | 0     | 0           | 0        | 0     | 1     | 1     |  |
| OILED                                 | Control    | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 5000 ppm   | 0     | Ő           | Ő        | 0     | 0     | 0     |  |
|                                       |            |       |             |          |       |       |       |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 20000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
| ILOERECTION                           | Control    | 1     | 0           | 2        | 2     | 2     | 2     |  |
|                                       | 5000 ррт   | 0     | 0           | 0        | 1     | 1     | 1     |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 1     |  |
|                                       | 20000 ppm  | 0     | 0           | 2        | 2     | 2     | 2     |  |
| ROG BELLY                             | Control    | 1     | 0           | 0        | 0     | 0     | 0     |  |
| 100 10051                             |            | 1     |             |          | 0     | 0     | 0     |  |
|                                       | 5000 ppm   | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 20000 ррт  | 0     | 0           | 0        | 0     | 0     | 0     |  |
| DILED PERI-GENITALIA                  | Control    | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 5000 ppm   | 0     | 0           | 0        | 0     | 0     | 0     |  |
|                                       | 10000 ppm  | 0     | 0           | 0        | Õ     | Ő     | ů     |  |
|                                       | 20000 ppm  | Ů     | ů           | õ        | 1     | 1     | 1     |  |
|                                       | Boood bbm  | v     | v           | •        | r     | 1     | T     |  |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

#### SEX : MALE

| PAGE |  |
|------|--|
|      |  |

| linical sign     | Group Name | Administration Week-day |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------|------------|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                  |            | 1-7                     | 2-7 | 3-7 | 4-7 | 5–7 | 6-7 | 7-7 | 8-7 | 9-7 | 10-7 | 11-7 | 12-7 | 13-7 | 14-7 |
|                  |            |                         |     |     |     |     |     |     |     |     |      |      |      |      |      |
| EXOPHTHALMOS     | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| TERNAL MASS      | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| VTERNAL MASS     | Control    | 0                       | 0   | 0   | .0  | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 1    | 1    | 1    | 1    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| EYE              | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| . EAR            | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | · 0 | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 թթո   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 թթա  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| HEAD             | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| NECK             | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| ABDOMEN          | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | -0   | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| ANTERIOR. DORSUM | Control    | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | . 0  | 0    | 0    | 0    |
|                  | 5000 ppm   | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
|                  | 20000 ppm  | 0                       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | Õ    | Õ    | õ    | Ő    |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~

SEX : MALE

PAGE : 10

Clinical sign	Group Name	Admini	stration W	eek-day _											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	2	2	2	2	2	2	2	1
	10000 ppm	0	0	0	0	0	0	0	0	• 0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	Ō	Ő	õ	0	õ	0
1. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	20000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Õ	õ	Ő	ů 0	Ő
	10000 ppm	0	0	0	0	0	0	õ	Ő	ů 0	Ő	õ	ů	0	0 ·
	20000 ppm	Ő	Ő	0	õ	0	0	0	0	0	0	0	0	0	0
. NECK	Control	. 0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Ő	õ	0	0 0	õ	ů	0	0	0	0	õ	0	0
	10000 ppm	ů 0	ů	õ	Ő	0	0	Ő	0	0	0	0	0 0	0	0
	20000 ppm	ů	0	0	ŏ	0	ő	ŏ	õ	0 0	0	0	Ő	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	õ	Ő	0	ů 0	ů	0	0	0	0	0	0	Ő
	10000 ppm	0	Ô	Ő	ů	0	0	0 0	0	0	0	0	0	0	0
	20000 ppm	Õ	0	0 0	Õ	0	ŏ	Õ	Ő	õ	0	0	0	0	Ő
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	5000 ppm	0 0	Ő	Ő	0 0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	õ	0	0	0	0	0	0		0				
	20000 ppm	v	U	0	U	U	U	U	U	0	U	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name														
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	Ó	0	0	0	0	Õ	Õ	Õ	. 0	ů
	10000 ppm	0	0	0	0	0	0	0	Õ	0 0	Õ	Õ	õ	Ő	ŏ
	20000 ppm	Ő	Ő	Ő	õ	Ö	Ő	0 0	õ	0	0 0	õ	õ	õ	ŏ
											-	-	·	-	·
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
VTERNAL MASS	Control	0	0	0	0	٥	0		0	0	0	0	0	0	0
	5000 ppm	1	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0
		1	0											0	0
	10000 ppm			0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	1	1	1	1	1	1	1	1	0	0	0	0
M. EYÉ	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	Ő
	20000 ppm	0	0	0	0	0	0	õ	0	Ő	Ő	ů	ů	0	0
E (D			_	_											
I. EAR	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
	5000 ppm	õ	Ő	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	-	-
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	v	v	v	U	U	U	U	U	U	U	U	U	U	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0		0
THE PARTY WALLET	5000 ppm	0	0	0 -	0	0	0					0	0	0	0
	10000 ppm	-						0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	Ő	Õ	õ	õ	Õ	õ	Õ	0
	10000 ppm	õ	ů	õ	ů 0	0	0 0	ů 0	0	0	0	0	0	0	0
	20000 ppm	ő	ů	Õ	0	Ő	0	0 0	0	0	Ő	0	0	0	0

(HAN190)

PAGE : 11

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

.

Clinical sign	Group Name	Admini	stration W	'eek-dav											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55–7	56-7
	6 1	•					_		_	_	_				
(OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	1	L	1	1	1	1	1	1	1	1	1	1	1	1
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	1	1	0	ů 0	ů	0	0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	ŏ	ů	õ	Ő	ů	õ	õ	0	õ	0	Ő	ŏ	0	0
	10000 ppm	0	0	õ	Ő	ŏ	õ	Õ	ů	õ	ů	Ő	ŏ	0	0 0
	20000 ppm	0	ů 0	ů	Ő	Õ	0	Ő	Õ	Õ	0	0	Ő	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	Ő	õ	õ	Ő	õ	õ	õ	õ	ŏ	0	ŏ
	10000 ppm	ů	õ	ů	ů	ő	ů	Ő	0 0	0	0 0	õ	ŏ	0	0
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	õ	ů	ŏ	Ő	Ő	ŏ	Ő	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0	0	0		0			0	0
	20000 ppm	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0	0 0
NECK	Control	0	0	0	0	0	0	0	0	0	0	•	0	•	0
1.5Vh	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-	0	0				0	0	0	0	0	0	0	0
	10000 ppm 20000 ppm	0 0	0	0	0 0										
ABDOMEN	Control	0	0	0	^	~	•	•	•						
TDROMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

PAGE : 12

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE	:	13	

.

Clinical sign	Group Name	Administration Week-day													
	-	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	· 0	0	0	0	0	0
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	2	2	2	1	1	2
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	3
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	0 0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	ō	Ō
	10000 ppm	0	0	0	0	0	0	Ō	0	0	ů	0	0	0 0	õ
	20000 ppm	0	0	0	Ő	Ő	ò	Õ	õ	0	ő	ů	õ	õ	Ő
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	Ő	0	õ	õ	ů	ů 0	Ő
	10000 ppm	0	0	0	0	0	0 0	ő	ů	Ő	Ő	õ	0 0	0	0
	20000 ppm	0	0	0	0	Õ	Ő	Õ	Ő	Ő	ő	õ	õ	õ	õ
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	Ő	Õ	Ő	Ő	0	õ	0 0	õ	Õ	0	Ő
	10000 ppm	0	0	0	0	Õ	0	Ő	Ő	Ő	ů 0	õ	ů	0	0 0
	20000 ppm	0 0	0	õ	Õ	0	õ	ů 0	0	õ	0	Ő	0 0	v	õ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 14

Clinical sign	Group Name		stration W	eer uay											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84–7
EXOPHTHALMOS	Contro1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KTERNAL MASS	Control	1	1	1	1	1	1	1	1	1	2	2	2	2 ·	1
	5000 ppm	0	0	0	0	1	2	2	2	2	2	3	3	3	2
	10000 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	2
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NTERNAL MASS	Control	1	1	1	1	1	1	1	2	2	2	2	3	3	3
	5000 ppm	3	3	3	3	3	4	3	3	3	2	3	3	2	3
	10000 ppm	2	2	1	1	1	1	1	2	3	1	1	1	1	1
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	2	2	3
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	1	1	1	1	0	0	õ
	20000 ppm	0	0	0	0	0	0	0	ō	õ	Ō	0	0	0	ů
. EAR	Control	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	Õ	Ő	0 0	Ő	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	Ő	0	0 0	Õ	Ő
	20000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
. HEAD	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	1	1	ĩ	1	1	1	1	1	1	0
	10000 ppm	0	0	õ	Ő	ò	Ô	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	Ő	Ő	ů 0	Õ	Õ	Õ	0	0 0	0	Ő
. NECK	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	5000 ppm	Ō .	Õ	Ô	Ō	ô	Ô	0	0	0	0	0	0	0	0
	10000 ppm	ů	ů 0	õ	0 0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	ů	ů 0	Õ	õ	õ	0	0	õ	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Õ	ů	ő	0 0	Ő	0	0	0	0	0	0	1	1	1
	10000 ppm	0	Õ	õ	ů 0	ů	0	0	0	0 0	0	0	0	0	0
	20000 ppm	0	Ő	, Õ	õ	Ő	Ő	Ő	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	1	. 1	1	1	1
	5000 ppm	õ	Õ	õ	0 0	Ő	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0.	0	0	0	0	0	0	0	
	20000 ppm	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	1 0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~____

SEX : MALE

PAGE : 15

Clinical sign	Group Name	Admini	istration W	eek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
		0			0	0	0								
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	1	1	1	1	0	0	1	1	1
	20000 ррт	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Contro1	1	1	1	1	1	1	1	2	2	2	3	4	3	3
	5000 ppm	2	2	2	2	2	2	2	2	2	2	4	4	4	4
	10000 ppm	2	1	1	1	1	1	1	1	1	1	1	1	1	1
	20000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	1	1	1	2	3	6	6	7	7	10	11	11	11	9
	5000 ppm	3	3	3	3	2	2	2	2	2	2	2	2	1	1
	10000 ppm	1	3	4	3	2	2	3	3	4	5	7	6	5	5
	20000 ppm	4	3	3	2	2	2	3	3	4	3	3	3	3	3
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	1	2	1	- 1
	5000 թթա	0	0	0	0	0	0	0	0	0	0	Ō	0	0	ō
	10000 ppm	0	0	0	0	0	0	õ	0 0	ů 0	0 0	ů	ů	ů	Ő
	20000 ppm	1	1	0	0	0	0	0	0	0	Ő	õ	0	0	0
. HEAD	Control	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
	5000 ppm	0	0	0	0	Õ	0 0	ŏ	0	Ő	ů	õ	õ	0	0
	10000 ppm	0	0	0	0	0	0 0	ŏ	Ő	0	ů	õ	õ	0	0
	20000 ppm	0	0	0	0	0	0	Ő	ů	0	Õ	Ő	ő	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	õ	ů 0	ů	ů	0 0	0	Õ	0	Ő	Ő
	10000 ppm	ů	ů	0	0	0	0	ŏ	0	0	0	0	0	0	0
	20000 ppm	0	ů	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	10000 ppm	0	0	. 0	0	0	0	0	0	0	0	0	2	2	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		v	v	v	v	v	v	v	U		v		U	U	U
ANTERIOR. DORSUM	Control 5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		•		0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	.1	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 \sim .

SEX : MALE

PAGE : 16

Clinical sign	Group Name	Admin	istration	Week-dav						 		
		99-7	100-7	101-7	102-7	103-7	104-7					
EXOPHTHALMOS	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	1	1	1	1	1	1					
	20000 ppm	0	0	0	0	0	0					
EXTERNAL MASS	Control	3	3	3	4	4	4					
	5000 ppm	4	4	4	4	3	4					
	10000 ppm	1	1	2	2	2	2					
	20000 ppm	0	0	0	0	0	0					
INTERNAL MASS	Control	7	7	8	8	9	10					
	5000 ppm	1	2	2	2	3	3					
	10000 ppm	5	5	5	5	8	7					
	20000 ppm	3	4	4	5	6	6	-				
M. EYE	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
I. EAR	Control	1	1	1	1	1	1					
	5000 ррт	0	0	0	0	0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
A. HEAD	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	0 .	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
M. NECK	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
I. ABDOMEN	Control	0	0	0	0	0	0					
	5000 ppm	2	2	2	2	1	1					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
A. ANTERIOR. DORSUM	Control	1	1	1	1	1	1					
	5000 ppm	0	0	0	0	0	1					
	10000 ppm	0	0	0	0	0	. 0					
	20000 ppm	0	0	0	0	0	0					

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration We	eek-dav											
		1-7	2-7	3-7	4-7	5–7	6-7	7-7	8–7	9–7	10-7	11-7	12-7	13-7	14-7
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0		0	0	0
POSTERIOR DORSOM	Control		0 0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0		0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	ō	0	ů	ů	0
	20000 ppm	0	0	0	0	0	0	Ō	õ	0	Õ	ů	ů	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	Ō	Õ	0	õ	ů 0	Ő	Ő	õ
	10000 ppm	õ	Ŏ	Õ	ů 0	0	ů	ů	0	0	ů 0	0	Ő	0	0
	20000 ppm	0	0	Õ	0	ů 0	0	õ	0	ů 0	ů 0	ů	ŏ	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	õ	Õ	ů	Õ	0 0	õ	ů	0	0 0	Ő	Ő	Õ	õ	0
	10000 ppm	õ	õ	õ	0	0	0 0	0	0	0	0	0	0 0	0	0
	20000 ppm	0	0	Ő	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bolk	5000 ppm	0	0	0	0	0	0	0	0	0		0		0	0
	10000 ppm	0	0	0	0	0	0	0	0		0	-	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
	20000 ppm	U	U	U	U	0	U	U	Ų	U	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	õ	õ	õ	0	ů	õ	õ
	20000 ppm	0	0	0	0	Ō	0	0	õ	õ	Ő	ŏ	Ő	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Õ	õ	õ	Ő	Ő	õ	0	Õ	0	0	0	Ő	0
	10000 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	Toore bbm	•		~	~		v	v			~	v	~ ~	0	0

PAGE : 17

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin:	istration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	• 0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ů 0
	20000 ppm	0	0	0	0	0	0	Ő	ů	õ	õ	ő	õ	õ	ů
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	õ	Õ	Õ
	10000 ppm	0	0	0	0	0	0	0 0	0 0	õ	Ő	0	ů	0 0	0 0
	20000 ppm	.0	0	0	0	0	0	0	0	Ō	õ	0	0	õ	ů
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	Ő	õ	0 0	õ	Õ	ů 0	ů	õ
	10000 ppm	0	0	õ	Õ	Õ	õ	ů 0	0	0 0	0 0	ů 0	ů	0	0
	20000 ppm	0	0	0	0	0	0	0	0	ů 0	0	0	Ő	Ő	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	õ	õ	õ	õ	0 0	õ	Ő	0	õ	0	0	ŏ	ŏ	0
	10000 ppm	Ő	õ	õ	õ	0	õ	0	0	0	0	0	0	0	. 0
	20000 ppm	ů 0	ů	Õ	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
· ·	5000 ppm	ů	Ő	0	õ	Ő	0	0	0	Ő	0	0	0	0	0
	10000 ppm	ů	Õ	õ	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0 0	0	0	0	0	0	0	0	0	0	0	0		
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SATTODDID	5000 ppm	0	0	0	0	0	0	0	0	0	0		-	0	0
	10000 ppm	0	0	0	0	0		-	-			0	0	0	0
	20000 ppm 20000 ppm	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
	20000 ppm	U	U	U	U	U	U	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim$

SEX : MALE

PAGE : 19

Clinical sign	Group Name	Admini	stration W	eek-day										`	
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
M. POSTERIOR DORSUM	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
A. TOSTERIOR DORDOW	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0		0				-		0
	20000 ppm	U	U	U	0	U	U	0	0	0	0	0	0	0	0
1. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	Ő	õ	0	õ	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	õ	ů 0	ů 0	0 0	0 0	õ	ŏ	0	0	0	0	0	0	0
	10000 ppm	ů	0	ů 0	0	ů	0	Ő	0	0	0	0	0	0	0
	20000 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm		0	Ũ	Ū	0	0	U	U	0	0	0	U	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	• 0	0	0	0	0	0	0	0	0	0	0	0	Ő	0 0
	10000 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	Ō	0
	20000 ppm	0	0	0	0	0	0	Ō	õ	0	Õ	ů	Õ	ů	Ő
BROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	ů	0	ů	0	0 0	0	0 0	0	0	0 0	0	0	0	0
	10000 ppm	ů 0	0	ů 0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	ů	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	v	v	v	v	v	v	v	U	U	U	v	v	υ.	U
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE Clinical sign

PAGE : 20 Group Name Administration Week-day _ 43-7 44-7 45-7 46-7 47-7 48-7 49-7 50-7 51-7 52-7 53-7 54-7 55-7 56-7

M. POSTERIOR DORSUM	Control 5000 ppm	0 0													
	10000 ррт 20000 ррт	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	00	0 0	0 0	0 0	0 0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0.	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Θ	0
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1

(HAN190)

•

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

1-----

SEX : MALE

Clinical sign	Group Name		istration W												
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TODIERION DONDOM	5000 ppm	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	. 0	. 0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	· 0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	20000 ppm	1	1	1	1	1	1	1	1	2	2	2	2	2	2

PAGE : 21

(HAN190)

ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)

		71-7	TO T												
		1-1	72-7	73-7	74–7	75-7	76-7	77-7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
1. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	• 0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	1	1	1	1	2	2	2	2
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Õ
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	0	ů
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	Õ	ŏ
	10000 ppm	0	0	0	0	0	0	0	0	õ	0	0 0	ů	Õ	ŏ
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	ů	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0 -	Ō	Õ	Ő	õ	Ő
	10000 ppm	0	0	0	0	0	0	0	0	õ	ů 0	ů 0	ů	0	0 0
	20000 ppm	0	0	0	0	1	0	0	ů	0 0	Ő	ů	Õ	0	Ő
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Ő	Ő	õ	ů	° 0	0	0	0 0	0	0	0	0	0
	10000 ppm	0 0	ů	0 0	ů	ů	ů 0	0	0	Ő	· 0	0	0 0	0	0
	20000 ppm	ů 0	ů 0	0	õ	õ	Ő	0	0	0	0	0	o	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	Ő	0 0	0 0	0	0	1	1	1	1	1	1	1	1
	10000 ppm	0	0 0	0	ů 0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0		0	•			0
	20000 ppm	•	v	U	v	v	U	U	v	0	v	0	0	0	0 2

(HAN190)

CLINICAL OBSERVATION (SUMMARY)

SEX : MALE

ODT:	(TOUR	ODDDMITTON	(DOILING)
ALL	ANIM	ALS	

Clinical sign	Group Name	Admini	stration W	eek-day											
	·	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
		· .													
A. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	õ	õ	Õ	õ	Ő
. GENITALIA	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	· 0	0	0	0	0	Õ	Ő.
	10000 ppm	ů 0	Ő	0	ů 0	ů	ů	ů	0	Ő	ů	ů	õ	0	0
	20000 ppm	0	õ	õ	0	0 0	0 -	0.	0	0	Ő	ů	Õ	Ő	Õ
I. TAIL	Control	0	0	0	0	0	0	0	1	1	1	1	1 ·	1	1
	5000 ppm	2	2	2	2	2	2	2	2	2	2	3	3	3	3
	10000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	3
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	1 0	0	1
IDEMA	Control	0	0	0	0	^	^	^	^	^	^	^	^	^	•
1711011		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm			-		0	0	0	0	0	0	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	1	0	0	1	1	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	Ō	Ő	õ
	20000 ppm	0	0	0	0	0	0	0	. 0	0	0	0	0	0	Ő
ROSION	Control	0	0	0	0	0	2	2	2	3	3	3	4	. 4	3
	5000 ppm	0	0	0	0 0	Ő	Ō	. 0	0	Ő	õ	Ő	0	0	0
	10000 ppm	Ő	ů 0	Ő	0 0	ů	ů I	. 0	1	1	ů 1	1	1 I	0 0	0
	20000 ppm	0	õ	0	0 0	ů	0	0	0	0	0	0	0	0 0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	1	1	1	2	2	2	2	2	2	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	õ	0	0	0	0	0	0	0
	20000 ppm	0 0	Ő	0	0	0	0	0	0	0	0	1	1	1	1
ORTICOLLIS	Control	0	٥	٥	0	0	0	0	0		0	0	0	<u>^</u>	c
0111002210	Control		0	0	0	0	0	0	0	. 0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Veek-day _				 	 		 	
		99-7	100-7	101-7	102-7	103-7	104-7		 			
												· · · · · · · · · · · · · · · · · · ·
. POSTERIOR DORSUM	Control	0	0	0	1	1	1					
I. FOSTERIOR DORSOM			0	0	1							
	5000 ppm	0				. 0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
I. GENITALIA	Control	0	0	0	0	0	0					
	5000 ppm	Ő	Õ	õ	õ	0	0					
				1								
	10000 ppm	0	0	-	1	1	1					
	20000 ppm	0	0	0	0	0	0					
M. TAIL	Control	1	1	1	1	1	1					
	5000 ppm	3	3	3	3	2	2					
	10000 ppm	1	ĩ	1	1	1	1					
	20000 ppm	0	0	0	0	0	0					•
	20000 ppm	0	0	U	U	0	0					
EDEMA	Control	0	0	0	0	0	0					
	5000 ppm	1	1	1	1	1	1					
	10000 ppm	0	0	Ô	Ō	0	ō					
	20000 ppm	ů 0	Ő	Ő	õ	0	õ					
	20000 ppm	v	v	Ū	v	Ū	v					
ANEMIA	Control	0	0	0	0	· 0	0					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	1	0	1	1					
	11	-	-	-	-	-	•					
ULCER	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0	0	0			•		
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	0	0	0	0	0	0					
PROCION	0 . 1					_						
EROSION	Control	2	2	2	2	2	2					
	5000 ppm	0	0	0	0	0	0					
	10000 ppm	0	0	0	0	0	.0					
	20000 ppm	0	0	0	0	0	0					
CRUSTA	Control	1	1	1	1	1	1					
000017		1 0	-	- 1	1	1	1					
	5000 ppm	2	2	2	2	2	3					
	10000 ppm	0	0	1	1	1	1					
	20000 ppm	1	1	1	1	2	1					
TORTICOLLIS	Control	0	0	0	0	0	0					
	5000 ppm	0	0	0	0							
						0	0					
	10000 ppm	0	0	0	0	0	0					
	20000 ppm	2	2	2	2	2	2					

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day	-			_							
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	1	L	1	0	0	0	0	0	0	0	0	0	0	1
	20000 ppm	0	0	0	0	0.	0	0	0	0	1	0	0	0	Ô
UBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 թթա	49	49	50	50	50	50	50	50	50	50	49	49	49	49
	10000 ppm	49	49	49	50	50	50	50	50	50	50	50	50	50	49
	20000 ppm	50	50	49	49	50	50	50	50	50	49	50	50	50	50

.

(HAN190)

.

.

BAIS 4

.

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
	*														
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ů.
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	49	49	49	49	49	49	48	48	48	48	48	48	48	48
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	20000 ppm	50	50	50	50	50	50	50	50	50	49	49	49	49	49

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 27

Clinical sign	Group Name	Admini	istration W	/eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ррт	0	0	0	0	0	0	0	0	0	1	0	0	0	0
UBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 թթա	48	48	49	49	49	49	49	49	49	49	49	49	49	49
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	- 50	50
	20000 ppm	49	49	48	48	48	48	48	48	48	47	49	49	49	49

(HAN190)

~

-

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

OBV	1441 5	
SEX	MALE	

пьь	ANT MALO	

43-7 44-7 45-7 46-7 47-7 48-7 49-7 50-7 51-7 52-7 53-7 54-7 IRREGULAR BREATHING Control 0		Group Name	Admini	stration W	eek-day											
5000 ppm 0<			43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
5000 ppm 0<																
10000 ppm 0	LAR BREATHING	Control	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0
2000 ppm 0<		5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL Control 0		10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm 0<		20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm 0	STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20000 ppm 0		5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20000 ppm 0		10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm 0<		20000 ppm	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
10000 ppm 0	STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2000 ppm 0 1 1 1 1 1 1 0 0 0 0 0 UBNORMAL TEMP Control 0 <td< td=""><td></td><td>5000 ppm</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>		5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UBNORMAL TEMP Control 0		10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm 0<		20000 ppm	0	1	1	1	1	1	1	1	0	0	0	0	0	0
10000 ppm 0	MAL TEMP	Control	0	0	0	• 0	0	0	0	0	0	0	0	0	0	0
20000 ppm 0		5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE Control 50 50 50 50 50 50 50 50 50 50 50 50 50			0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm 49 49 49 49 49 49 49 49 49 49 49 49 49		20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm 49 49 49 49 49 49 49 49 49 49 49 49 49	MARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
		5000 ppm	49	49	49	49	49	49	49	49	49	49			49	49
		10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	49	49
20000 ppm 49 48 48 48 48 47 47 48 48 48 48 48 48			49	48								48			48	47

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 29

Clinical sign	Group Name	Admini	stration W	Veek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0.	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	1	2	1	0	. 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	. 0	0	1	0	0	0	0
JBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	48	48	47	47	47	46
	5000 րրա	49	49	49	49	49	49	49	49	49	48	47	47	46	44
	10000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	48
	20000 ppm	47	47	47	47	47	47	47	47	46	46	46	46	46	46

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day _											
		71-7	72–7	73-7	74-7	75-7	76-7	77–7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
MEDOCLAR DREATHING	5000 ppm	0	0	0	0	0	0	Ő	0	0	0	0	0	0	1
	10000 ppm	1	1	0	0	0	0	ő	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
IALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	. 0	0
MILLE STOOL	5000 ppm	0	0	0	0	0	0	0	1	0	0	0	1	0	0
	10000 ppm	0	0	0	0	0	0	0	1	0	1	0	1	0	0
	20000 ppm	ů 0	0	0	õ	0 0	0	0	0	0	0	0	0	0	1
	Booot ppm	Ū	•	v	Ŷ	0		v	v	v	Ū	v	v	v	r
LIGO-STOOL	Control	Ó	0	0	0	0	0	0	0	0	0	0	1	0	0
	5000 ppm	0	0	0	0	0	• 1	1	1	0	0	0	1	0	0
	10000 ppm	1	- 1	0	1	0	0	1	1	2	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
JBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	46	46	45	44	45	45	45	44	44	42	42	40	40	40
	5000 ppm	44	44	44	44	43	41	40	40	39	40	38	37	37	37
	10000 ppm	47	47	47	46	47	47	46	45	44	46	46	44	44	43
	20000 ppm	46	46	46	46	46	46	46	46	46	45	45	43	43	42

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

SEX : MALE															PAGE :	
Clinical sign	Group Name	Admin	istration W	leek-day _												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93–7	94-7	95-7	96-7	97-7	98-7	
IRREGULAR BREATHING	Control	1	0	0	0	0	0	0	0	0	0	0	1	1	1	
	5000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	1	0	0	1	1	0	
	20000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	1	0	0	0	0	0	0	1	1	0	0	
	10000 ppm	0	0	0	0	0	0	0	1	0	0	0	1	1	0	
	20000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
OLIGO-STOOL	Control	0	0	0	0	1	0	0	1	0	0	0	1	2	1	
	5000 ppm	0	0	0	1	2	2	2	1	1	1	1	2	1	2	
	10000 ppm	0	0	0	1	0	0	0	1	2	1	1	1	1	0	
	20000 ррт	1	2	1	0	0	0	0	1	1	0	0	0	0	0	
SUBNORMAL TEMP	Control	. 0	0	0	0	0	• 0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NON REMARKABLE	Control	41	42	42	40	37	34	33	30	30	28	27	26	26	26	
	5000 րթա	37	35	35	35	33	33	33	33	33	34	32	31	31	30	
	10000 ppm	42	41	40	40	40	39	38	37	36	34	33	29	29	29	
	20000 ppm	41	42	42	41	41	41	40	39	39	40	40	40	40	40	

(HAN190)

BAIS 4

.

PAGE : 31

.

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 32

Clinical sign	Group Name	Admin	istration '	Veek-day _						
		99-7	100-7	101-7	102-7	103-7	104-7			
IRREGULAR BREATHING	Control	1	0	0	0	0	0			
	5000 ppm	1	1	1	0 2	2	2			
	10000 ppm	0	0	0	0	0	0			
	20000 ppm	0	0	1	1	2	2			
MALL STOOL	Control	0	0	0	0	0	0			
	5000 ppm	1	1	1	3	1	1			
	10000 ppm	0	0	0	0	0	0			
	20000 ppm	0	0	0	0	1	1			
LIGO-STOOL	Control	1	0	1	1	1	0			
	5000 ppm	2	2	4	4	1	1			
	10000 ppm	0	0	0	0	0	0			
	20000 ppm	0	0	4	3	3	3			
UBNORMAL TEMP	Control	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
	10000 ppm	0	0	0	0	0	0			
	20000 ppm	0	0	1	0	0	0			
ON REMARKABLE	Control	26	25	24	23	22	21			
	5000 ррш	30	28	26	27	26	25			
	10000 ppm	29	29	27	27	24	25			
	20000 ppm	40	39	36	33	31	32			

(HAN190)

TABLE B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

-

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-dav											
origination origin		1–7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
															,
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	õ	Ő	Ő	Õ	õ
	10000 ppm	0	0	0	0	0	Ō	Ő	0	Ő	Õ	Õ	ů 0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō
	5000 ppm	0	0	0	. 0	0 0	0	Ő	0	0	ů	õ	ŏ	õ	Ő
	10000 ppm	0	0	0	0	0 0	ů 0	ů	0	0	ů	Õ	Õ	Ő	0 0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ů	ů	0	ů	0	0	0	0	0	0	· 0	0	0	0
	5000 ppm	ů 0	ů	0	ů	0	ů	0	0	0	0	0	0	0	0
	10000 ppm	0	Ő	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	•	•		0
AKALIIIC GAII		-		0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	Ō
	5000 ppm	0	0	0	0	0	0	0	0	Ő	õ	· Õ	õ	ů 0	ů 0
	10000 ppm	0	0	0	0	0	0	0	õ	Ő	ů	õ	Ő	0	ŏ
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	ů 0	0 0	ŏ	ů	õ	ů	Õ	0	0	0 0	0	0	0
	5000 ppm	ů	ů	0	0	0	Õ	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0 0	0	0 0	õ	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	· 0	0	0	0	0	0	0	0	0
	2500 ppm	Ő	ů 0	0	0	0	Ő	0	0	0	0	0	0	0	0
	5000 ppm	0	ů 0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	٥	0		٥	0	0	0
555 VI 1211N	2500 ppm	0	0	0				-	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~

# SEX : FEMALE

| Clinical sign    | Group Name | Admini   | stration W | eek-dav |      |      |        |        |        |        |        |        |        |        |        |
|------------------|------------|----------|------------|---------|------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  |            | 15-7     | 16-7       | 17-7    | 18-7 | 19-7 | 20-7   | 21-7   | 22-7   | 23-7   | 24-7   | 25-7   | 26-7   | 27-7   | 28-7   |
|                  |            | <b>^</b> |            |         |      |      |        |        |        | _      |        | _      |        |        |        |
| ЕАТН             | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 10000 ррт  | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      |
| RIBUND SACRIFICE | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0.     | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0,   | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ррт   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 10000 ppm  | 0        | 0          | 0       | 0    | 0    | 0      | 0      | · 0    | 0      | 0      | 0      | 0      | 0      | 0      |
| CHBACK POSITION  | Control    | 0        | 0          | 0       | 0    | 0    | 0      | • 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | Ō      | 0<br>0 | 0      | Ő      | Ő      | ů      |
|                  | 5000 ppm   | 0        | 0          | ů ů     | 0    | 0    | 0<br>0 | 0<br>0 | 0      | 0      | 0      | ů      | 0      | 0      | 0      |
|                  | 10000 ppm  | 0        | Õ          | õ       | Ő    | 0    | 0      | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  |            |          |            |         |      |      |        |        |        |        | -      | -      | Ŭ      | v      | Ŷ      |
| RALYTIC GAIT     | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 10000 ppm  | 0        | 0          | 0       | 0.   | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| LING             | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | . 0     | 0    | 0    | 0      | 0<br>0 | 0<br>0 | Ő      | Õ      | Õ      | ů<br>0 | ů i    | Ő      |
|                  | 5000 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0<br>0 | 0      | 0      | 0      | Õ      | ů<br>0 | ů      | ő      |
|                  | 10000 ppm  | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | ů<br>0 | 0      | 0<br>0 |
| NORMAL GAIT      | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | ů<br>0     | õ       | ů i  | 0    | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | ŏ      | 0      |
|                  | 5000 ppm   | ů        | 0          | 0<br>0  | õ    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0      |
|                  | 10000 ppm  | 0<br>0   | 0          | 0       | õ    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  |            |          |            | -       | -    | -    | ·      | •      | · ·    | Ū,     |        | Ū      | Ũ      | Ŭ      | v      |
| ILED             | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0.     | 0      |
|                  | 5000 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 10000 ppm  | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| OERECTION        | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2500 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | Ő      | 0      | 0      | 0<br>0 | Ő      | 0      | ů      | 0      |
|                  | 5000 ppm   | 0        | 0          | Ő       | õ    | Ő    | ů      | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0      | 0      |
|                  | 10000 ppm  | Ő        | ů          | 1       | 1    | 1    | 1      | 1      | 1      | 1      | 1      | 1      | . 1    | 0      | 0<br>0 |
| SS OF HAIR       | Control    | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      |        | ^      |        | 0      | 0      |
| SO OF HAIR       | 2500 ppm   | 1        |            | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  |            | 1        | 1          | 1       | 1    | 1    | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm   | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 10000 ppm  | 0        | 0          | 0       | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

PAGE : 34

(HAN190)

# CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign      | Group Name            | Admini | stration W | eek-day |        |        |        |        |        |        |          |      |        |        |      |
|--------------------|-----------------------|--------|------------|---------|--------|--------|--------|--------|--------|--------|----------|------|--------|--------|------|
|                    |                       | 29-7   | 30-7       | 31-7    | 32-7   | 33-7   | 34-7   | 35-7   | 36-7   | 37-7   | 38-7     | 39-7 | 40-7   | 41-7   | 42-7 |
|                    |                       |        |            |         |        |        |        |        |        |        |          |      |        |        |      |
| ЕАТН               | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | õ      | Ő          | 0       | Ő      | Õ      | ŏ      | ů      | ů<br>0 | 0<br>0 | 0<br>0   | 0    | Ő      | 0      | ő    |
|                    | 5000 ppm              | ŏ      | ů<br>0     | Õ       | 0<br>0 | ů<br>0 | ŏ      | ů      | 0      | 0      | 0        | 0    | 0      | 0      | ő    |
|                    | 10000 ppm             | 1      | ĩ          | 1       | 1      | 1      | 1      | ĩ      | 1      | 1      | 1        | 1    | 1      | 1      | 1    |
| ORIBUND SACRIFICE  | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | O        | 0    | 0      | 0      | 0    |
| INTERNE BROKTI TOL | 2500 ppm              | ŏ      | 0<br>0     | 0       | 0      | 0      | 0      | 0      | 0      | 0      | U<br>0   | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | -      |        | v    |
|                    |                       | 0      | 0          | 0       | 0      | 0      |        |        |        |        |          |      | 0      | 0      | 0    |
|                    | 10000 ppm             | U      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
| UNCHBACK POSITION  | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 10000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
| ARALYTIC GAIT      | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | . 0      | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 10000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
| DLLING             | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | Ó      | 0        | 0    | 0      | õ      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0<br>0 | Ő      | õ      | Ő        | Ő    | Ő      | õ      | Ő    |
|                    | 10000 ppm             | 0      | 0          | 0       | Ő      | 0      | 0      | ů<br>0 | 0      | 0      | õ        | ů    | °<br>0 | ő      | 0    |
| BNORMAL GAIT       | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | .0       | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | Ő      | Ô          | Ő       | 0      | 0      | 0<br>0 | Ő      | 0      | 0<br>0 | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 10000 ppm             | 0      | 0          | 0       | 0      | 0.     | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
| DILED              | Control               | . 0    | 0          | 0       | 0      | 0      | 0      | ^      | ^      | ^      | <u>^</u> | ~    | ^      | ^      | ~    |
| 1100               | 2500 ppm              | 0      | 0          | 0       | 0      | -      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    |                       | 0      | 0          |         |        | 0      | 0      | 0      | 0      | 0.     | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ррт<br>10000 ррт | 0      | 0          | 0<br>0  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0        | 0    | 0<br>0 | 0      | 0    |
|                    |                       |        |            |         |        | -      | -      |        |        | -      | -        | -    |        | -      | -    |
| ILOERECTION        | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 10000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
| DSS OF HAIR        | Control               | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 2500 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0    | 0      | 0      | 0    |
|                    | 5000 ppm              | 0      | 0          | 0       | 0      | Õ      | 0      | Ō      | Ő      | 0      | Ő        | · 0  | Õ      | ů<br>0 | ů    |
|                    | 10000 ppm             | 0      | Ő          | õ       | Ő      | ů      | õ      | ů      | ů<br>0 | Õ      | 0<br>0   | Õ    | 0      | 0      | ő    |

.

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

#### SEX : FEMALE

PILOERECTION

LOSS OF HAIR

Control

2500 ppm

5000 ppm

10000 ppm

Control

2500 ppm

5000 ppm

10000 ppm

| Clinical sign      | Group Name | Admini | stration | Week-dav |      |        |      |        |      |      |      |      |      |        |        |
|--------------------|------------|--------|----------|----------|------|--------|------|--------|------|------|------|------|------|--------|--------|
|                    |            | 43-7   | 44-7     | 45-7     | 46-7 | 47-7   | 48-7 | 49-7   | 50-7 | 51-7 | 52-7 | 53-7 | 54-7 | 55-7   | 56-7   |
| 155.4701           |            | 0      |          | 0        |      |        |      |        |      |      | _    | _    | _    | _      |        |
| DEATH              | Control    | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | 0      | 0        | 0        | 0    | 1      | 1    | 1      | 1    | 1    | 2    | 2    | 2    | 3      | 3      |
|                    | 5000 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 1    | 1    | 1    | 1    | 1      | 1      |
|                    | 10000 ppm  | 1      | 1        | 1        | 1    | 1      | 1    | 1      | 1    | 1    | 1    | 1    | 1    | 1      | 1      |
| MORIBUND SACRIFICE | Control    | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0        | 0        | 0    | 0      | 1    | 1      | 1    | 1    | 1    | 1    | 1    | 1      | 1      |
|                    | 10000 ppm  | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
| HUNCHBACK POSITION | Control    | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 10000 ppm  | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
| PARALYTIC GAIT     | Control    | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | 0      | 0        | 0        | Õ    | 0      | õ    | 0<br>0 | Ô    | Ő    | õ    | Õ    | 1    | Õ      | Ő      |
|                    | 5000 ppm   | 0      | 0        | 0        | 0    | 0<br>0 | Ő    | 0      | 0    | õ    | ů    | ů    | ò    | ů      | ů      |
|                    | 10000 ppm  | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
| ROLLING            | Control    | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | 0      | Õ        | Õ        | ŏ    | õ      | 1    | 1      | 1    | 1    | ĩ    | ů    | 1    | 0<br>0 | Ő      |
|                    | 5000 ppm   | 0<br>0 | 0        | 0        | ŏ    | ů      | Ô    | 0      | 0    | Ô    | 0    | 0    | 0    | ů<br>0 | 0<br>0 |
|                    | 10000 ppm  | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | Ő    | 0    | 0      | ŏ      |
| ABNORMAL GAIT      | Control    | 0      | 0        | 0        | 0    | . 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 2500 ppm   | ő      | Ő        | Ő        | 1    | 1      | 1    | 1      | 1    | 1    | 1    | 1    | 0    | 0      | 0      |
|                    | 5000 ppm   | ŏ      | Ő        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 10000 ppm  | Ŭ.     | ŏ        | õ        | õ    | 0      | ŏ    | 0      | 0    | 0    | 0    | 0    | 0    | . 0    | 0      |
|                    | viii bbu   | •      | č        | č        | v    | v      | v    | v      | v    | v    | v    | v    | v    | v      | v      |
| SOILED             | Control    | 1      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
| · •                | 2500 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0        | 0        | 0    | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |
|                    | 10000 ppm  | 0      | 0        | 0        | . 0  | 0      | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 0      | 0      |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 37

| linical sign     | Group Name           | Admini | istration W | eek-dav |      |        |      |        |        |        |      |      |        |      |      |
|------------------|----------------------|--------|-------------|---------|------|--------|------|--------|--------|--------|------|------|--------|------|------|
|                  |                      | 57-7   | 58-7        | 59-7    | 60-7 | 61-7   | 62-7 | 63-7   | 64-7   | 65-7   | 66-7 | 67–7 | 68-7   | 69-7 | 70-7 |
| · · · · ·        |                      |        | _           |         | _    |        |      |        |        |        |      |      |        |      |      |
| ATH              | Control              | 0      | 0           | `0      | 0    | 0      | 0    | 0      | 0      | 1      | 1    | 1    | . 1    | . 1  | 1    |
|                  | 2500 ppm             | 3      | 3           | 3       | 3    | 3      | 4    | 4      | 4      | 4      | 5    | 5    | 6      | . 9  | 9    |
|                  | 5000 ppm             | 1      | 1           | 1       | 1    | 1      | 2    | 3      | 3      | 3      | 3    | 3    | 3      | 3    | 3    |
|                  | 10000 ppm            | 1      | 1           | 1       | 1    | 1      | 1    | 1      | 2      | 2      | 2    | 2    | 2      | 2    | 2    |
| RIBUND SACRIFICE | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 2500 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm             | 1      | 1           | 1       | 1    | 1      | 1    | 1      | 1      | 1      | 1    | 1    | 1      | 1    | 1    |
|                  | 10000 ppm            | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| NCHBACK POSITION | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 2500 ppm             | 0      | 0           | · 0     | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | Ō      | 0    | 0    |
|                  | 5000 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | Ő      | Ő      | 0    | ů    | ů<br>0 | 0    | Ő    |
|                  | 10000 ppm            | 0      | 0           | 0       | 0    | õ      | Ő    | Û      | ů<br>0 | ů<br>0 | ů    | ő    | 0      | ů    | 0    |
| RALYTIC GAIT     | Control              | - 1    | 1           | 1       | 1    | 1      | 1    | 1      | 1      | 1      | 1    | 1    | 1      | 1    | 1    |
|                  | 2500 ppm             | 0<br>0 | õ           | Ô       | Ô    | 0<br>0 | 0    | 0<br>0 | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 10000 ppm            | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| LLING            | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| LEING            | 2500 ppm             | ů<br>0 | 0           | 0       | 0    | 0      | 0    | 0      | 0      |        |      | 0    |        |      |      |
|                  |                      | 0      | 0           | 0       |      |        |      | •      |        | 0      | 0    | •    | 0      | 0    | 0    |
|                  | 5000 ppm             | -      | 0           |         | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 10000 ppm            | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| NORMAL GAIT      | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 2500 ррт             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 10000 ррт            | 0      | 0           | 0.      | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| ILED             | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 2500 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | Ō    | õ    |
|                  | 10000 ppm            | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | õ    | ů    |
| OERECTION        | Control              | 0      | 0           | 0       | 0    | 1      | 1    | 1      | 1      | 1      | 1    | 1    | 1      | 1    | 1    |
|                  | 2500 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | ò      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm             | ů<br>0 | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| ·                | 10000 ppm            | Ő      | Ő           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
| SS OF HAIR       | Control              | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 2500 ppm             | 0      | 0           | 0       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      |      |      |
|                  | 2000 ppm<br>5000 ppm | 0      | 0           | 0       | 0    |        |      |        |        |        |      |      | -      | 0    | 0    |
|                  |                      | 0      | 0           | 0       |      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |
|                  | 10000 ppm            | U      | U           | U       | 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0      | 0    | 0    |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

· \_\_\_\_

#### SEX : FEMALE

| linical sign      | Group Name | Admini | stration W | eek-dav |        |      |        |        |      |        |        |        |      |      |      |
|-------------------|------------|--------|------------|---------|--------|------|--------|--------|------|--------|--------|--------|------|------|------|
|                   |            | 71-7   | 72-7       | 73-7    | 74–7   | 75-7 | 76-7   | 77-7   | 78-7 | 79-7   | 80-7   | 81-7   | 82-7 | 83-7 | 84-7 |
|                   |            |        |            |         |        |      |        |        |      |        |        |        |      |      |      |
| ЕАТН              | Control    | 2      | 3          | 3       | 3      | 4    | 5      | 5      | 6    | 6      | 6      | 6      | 6    | 6    | 8    |
|                   | 2500 ppm   | 9      | 9          | 9       | 10     | 10   | 10     | 10     | 11   | 11     | 13     | 13     | 14   | 14   | 16   |
|                   | 5000 ppm   | 3      | 3          | 4       | 5      | 5    | 5      | 5      | 5    | 7      | 7      | 7      | 8    | 8    | 8    |
|                   | 10000 ppm  | 2      | 2          | 2       | 2      | 3    | 3      | 4      | 4    | 6      | 6      | 6      | 8    | 8    | 8    |
| RIBUND SACRIFICE  | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 5000 ppm   | 1      | 1          | 1       | L      | 1    | 1      | 1      | 1    | 1      | 1      | 1      | 1    | 1    | 1    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
| INCHBACK POSITION | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0.   | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
| ARALYTIC GAIT     | Control    | 1      | 1          | 1       | 1      | 1    | 1      | 1      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 1    | 1      | 1 .    | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
| LLING             | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | Ō      | Ō      | 0      | Ő    | 0    | ŏ    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | Õ    | 0      | õ      | Ő    | ů      | ů ···  | 0<br>0 | ů    | 0    | õ    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | ů<br>0 | Ő    | 0    | 0    |
| NORMAL GAIT       | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | õ      | õ    | Õ      | ů      | õ      | õ    | 0    | Ő    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | Ő    | õ      | Õ      | Ő    | 0      | 0<br>0 | ů      | 0    | 0    | 0    |
| ILED              | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | · 0  | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | õ      | õ      | Ő    | Ő    | Ő    |
|                   | 5000 ppm   | 0      | 0          | õ       | õ      | 0    | ů      | ů      | ů    | 0<br>0 | ů      | Ő      | 0    | 0    | 0    |
|                   | 10000 ppm  | 0      | 0          | 0<br>0  | Ő      | õ    | õ      | ů<br>0 | Ő    | · 0    | Ő      | 0      | 0    | 0    | 0    |
| LOERECTION        | Control    | 1      | 1          | 1       | 1      | 1    | 1      | 1      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | 0      | 0          | õ       | 0      | Ô    | Ô      | ĩ      | 0    | Ő      | ů ů    | 1      | 1    | 1    | Ő    |
|                   | 5000 ppm   | 0      | ů.         | Ő       | ů<br>0 | ů    | ů<br>0 | 0      | Ő    | 0      | 0<br>0 | 0      | 0    | 0    | 0    |
|                   | 10000 ppm  | 0      | ů          | õ       | 1      | 1    | 1      | 1      | 1    | Ő      | 0      | 0      | 0    | 0    | 0    |
| SS OF HAIR        | Control    | 0      | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 2500 ppm   | ů      | ů          | õ       | Õ      | 0    | 0      | Ő      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 5000 ppm   | 0<br>0 | 0          | 0       | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0    |
|                   | 0000 ppm   | v      | v          |         | · ·    | 0    | 0      | v      | 0    | U      | U      | v      | 0    | U    | U    |

.

# CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

<u>~</u>~

# SEX : FEMALE

| Clinical sign    | Group Name | Admini | stration W | /eek-dav |      |      |      |      |      |      |      |      |      |      |      |
|------------------|------------|--------|------------|----------|------|------|------|------|------|------|------|------|------|------|------|
| -                | •<br>•     | 85-7   | 86-7       | 87-7     | 88-7 | 89-7 | 90-7 | 91-7 | 92–7 | 93-7 | 94-7 | 95-7 | 96-7 | 97–7 | 98-7 |
|                  |            |        |            |          |      |      |      |      |      |      |      |      |      |      |      |
| EATH             | Control    | 9      | 9          | 9        | 9    | 10   | 10   | 10   | 10   | 11   | 11   | 12   | 12   | 16   | 16   |
|                  | 2500 ppm   | 16     | 16         | 16       | 16   | 16   | 16   | 16   | 16   | 17   | 17   | 19   | 19   | 20   | 20   |
|                  | 5000 ppm   | 8      | 9          | 9        | 9    | 9    | 10   | 10   | 11   | 12   | 12   | 12   | 13   | 13   | 13   |
|                  | 10000 ppm  | 10     | 11         | 13       | 13   | 13   | 13   | 13   | 16   | 16   | 17   | 17   | 17   | 18   | 19   |
| RIBUND SACRIFICE | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | . 0  |
|                  | 5000 ppm   | L      | 1          | 1        | 1    | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 3    | 3    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | L    | 1    | 1    |
| NCHBACK POSITION | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| RALYTIC GAIT     | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| LLING            | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 թթա   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| NORMAL GAIT      | Control    | 0      | 0          | 0        | 0    | 0.   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | . 0  | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| ILED             | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| LOERECTION       | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 1      | 1          | 0        | 0    | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0    | 0    | 4    |
| SS OF HAIR       | Control    | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 2500 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 5000 ppm   | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                  | 10000 ppm  | 0      | 0          | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

BAIS 4

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

# SEX : FEMALE

PAGE : 40

| Clinical sign      | Group Name | Admin  | istration | Veek-dav |          |       |        |   |  |      |  |   |
|--------------------|------------|--------|-----------|----------|----------|-------|--------|---|--|------|--|---|
|                    | •          | 99-7   | 100-7     | 101-7    | 102-7    | 103-7 | 104-7  | • |  |      |  |   |
|                    |            |        |           |          |          |       |        |   |  | <br> |  |   |
| DEATH              | Control    | 16     | 16        | 18       | 18       | 19    | 20     |   |  |      |  |   |
|                    | 2500 ppm   | 20     | 20        | 21       | 22       | 24    | 24     |   |  |      |  |   |
|                    | 5000 ppm   | 13     | 13        | 14       | 15       | 15    | 16     |   |  |      |  |   |
|                    | 10000 ppm  | 21     | 23        | 25       | 15<br>25 |       | 29     |   |  |      |  |   |
|                    | 10000 ppm  | 21     | 23        | 25       | 25       | 26    | 29     |   |  |      |  |   |
| MORIBUND SACRIFICE | Control    | 0      | 0         | 0        | 0        | 1     | 1      |   |  |      |  |   |
|                    | 2500 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 5000 ppm   | 3      | 3         | 3        | 3        | 3     | 3      |   |  |      |  |   |
|                    | 10000 ppm  | 1      | 1         | 1        | 1        | 1     | 1      |   |  |      |  |   |
| HUNCHBACK POSITION | Control    | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 2500 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 5000 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  | • |
|                    | 10000 ppm  | 0      | ů         | · 0      | ů<br>0   | 0     | 0<br>0 |   |  |      |  |   |
| PARALYTIC GAIT     | Control    | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
| I MINET I LO UNI I | 2500 ppm   |        |           |          |          |       |        |   |  |      |  |   |
|                    |            | 0      | 0         | 0        | 0        | 0     | 1      |   |  |      |  |   |
|                    | 5000 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
| ROLLING            | Control    | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  | 7 |
|                    | 2500 ppm   | 0      | 0         | 0        | 0        | . 0   | 0      |   |  |      |  |   |
|                    | 5000 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
| ABNORMAL GAIT      | Control    | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 2500 ppm   | õ      | Õ         | Ő        | ů<br>0   | õ     | ő      |   |  |      |  |   |
|                    | 5000 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | TOOOO hhii | U      | U         | U        | U        | U     | U      |   |  |      |  |   |
| SOILED             | Control    | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 2500 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 5000 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
| PILOERECTION       | Control    | 2      | 2         | 1        | 1        | 0     | 0      |   |  |      |  |   |
|                    | 2500 ppm   | 0      | 2         | 2        | 0        | 1     | 1      |   |  |      |  |   |
|                    | 5000 ppm   | 0<br>0 | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 3      | 2         | 1        | 1        | , 1   | 0      |   |  |      |  |   |
| LOSS OF HAIR       | Control    | 0      | 0         | 0        | 0        | ^     | ^      |   |  |      |  |   |
| DODD OF HUTH       |            |        |           | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 2500 ppm   | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 5000 ppm   | 0 .    | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |
|                    | 10000 ppm  | 0      | 0         | 0        | 0        | 0     | 0      |   |  |      |  |   |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 41

| linical sign            | Group Name | Adminis | stration We | eek-day |     |     |     |     |     |     |      |      |        |      |      |
|-------------------------|------------|---------|-------------|---------|-----|-----|-----|-----|-----|-----|------|------|--------|------|------|
|                         | -<br>      | 1-7     | 2-7         | 3-7     | 4-7 | 5-7 | 6-7 | 7-7 | 8–7 | 9–7 | 10-7 | 11-7 | 12-7   | 13-7 | 14-7 |
|                         |            |         |             |         |     |     |     |     |     |     |      |      |        |      |      |
| FROG BELLY              | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| OILED PERI-GENITALIA    | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0.   | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| XOPHTHALMOS             | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| ATARACT                 | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ррт   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| ORNEAL OPACITY          | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ррт   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 րրտ   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 թթա  | 0       | 0           | 0       | 0.  | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| NTERIOR CHAMBER OPACITY | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
| XTERNAL MASS            | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | Ő    |
| NTERNAL MASS            | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | Ō    | 0    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0<br>0 | õ    | Ŏ    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | Õ   | 0    | 0    | 0<br>0 | Õ    | 0    |
| EYE                     | Control    | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0      | 0    | 0    |
|                         | 2500 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | Ō      | õ    | Ō    |
|                         | 5000 ppm   | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | Ō    | Õ    | 0      | Õ    | ŏ    |
|                         | 10000 ppm  | 0       | 0           | 0       | 0   | 0   | 0   | 0   | 0   | 0   | Õ    | Õ    | Õ      | õ    | õ    |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign           | Group Name             | Admini | istration W | leek-day   |        |        |        |        |        |                     |        |        |        |        |        |
|-------------------------|------------------------|--------|-------------|------------|--------|--------|--------|--------|--------|---------------------|--------|--------|--------|--------|--------|
|                         |                        | 15-7   | 16-7        | 17-7       | 18-7   | 19-7   | 20-7   | 21-7   | 22-7   | 23-7                | 24-7   | 25-7   | 26-7   | 27-7   | 28-7   |
|                         |                        |        |             |            |        |        |        |        |        | 1 8 1 - 10 10 100 M |        |        |        |        |        |
| ROG BELLY               | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 5000 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 10000 ppm              | . 0    | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
| DILED PERI-GENITALIA    | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 5000 ppm               | 0      | · 0         | 0          | 0      | Õ      | Õ      | Õ      | ů<br>0 | õ                   | ů      | ů      | ů<br>0 | Ő      | Ő      |
|                         | 10000 ppm              | 0      | 0           | 0          | õ      | õ      | 0<br>0 | 0      | Ő      | õ                   | 0      | Ő      | 1      | 0      | 0      |
| XOPHTHALMOS             | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | Õ          | Ő      | Õ      | ů<br>0 | ů<br>0 | 0      | õ                   | 0      | 0<br>0 | 0<br>0 | 0      | Ő      |
|                         | 5000 ppm               | ů      | ů<br>0      | 0          | 0      | 0      | 0.     | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 10000 ppm              | õ      | ů           | 0          | õ      | Ő      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
| ATARACT                 | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
| ATMAIOT                 | 2500 ppm               | 0      | 0           | 0          | 0<br>0 | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 5000 ppm               | 0      | 0           | 0          | 0      | 0      | •      |        |        | -                   |        | •      | -      | •      | 0      |
|                         | 10000 ppm<br>10000 ppm | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 10000 ppm              | U      | 0           | 0          | U      | U      | U      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
| ORNEAL OPACITY          | Control                | 0      | . 0         | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0<br>0 | õ      |
| •                       | 5000 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 10000 ppm              | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | Ő      | 0      | 0      |
| NTERIOR CHAMBER OPACITY | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | 0          | Õ      | 0<br>0 | Õ      | õ      | Ő      | õ                   | 0<br>0 | 0<br>0 | 0      | 0      | Ő      |
|                         | 5000 ppm               | 0      | 0           | 0          | Õ      | Ő      | õ      | 0<br>0 | 0      | õ                   | 0      | 0<br>0 | Ő      | 0      | 0<br>0 |
|                         | 10000 ppm              | 0      | 0           | 0          | Õ      | 0      | 0      | õ      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
| XTERNAL MASS            | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 2500 ppm               | õ      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | 0      | 0      |
|                         | 5000 ppm               | õ      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0      | -      | •      |
|                         | 10000 ppm              | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      |        |        | 0      | 0      |
|                         | 10000 þþш              | v      | U           | U          | v      | U      | U      | U      | U      | U                   | U      | 0      | 0      | 0      | 0      |
| NTERNAL MASS            | Control                | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 1      | 0      | 0      |
|                         | 2500 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0      | 0<br>0 | 0      | Ő      |
|                         | 5000 ppm               | 0      | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0                   | 0      | 0<br>0 | 0<br>0 | 0      | õ      |
|                         | 10000 ppm              | 0      | 0           | <u>^</u> . | ^      | ^      |        |        |        |                     | -      | -      | -      | ~      | 5      |

PAGE : 42

----

(HAN190)

M. EYE

10000 ppm

Control

2500 ppm

5000 ppm

10000 ppm

0.

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

#### SEX : FEMALE

,

| Clinical sign          | Group Name           | Admini | stration W | /eek-day |        |        |        |        |      |      |      |        |        |      |        |
|------------------------|----------------------|--------|------------|----------|--------|--------|--------|--------|------|------|------|--------|--------|------|--------|
|                        |                      | 29-7   | 30-7       | 31-7     | 32-7   | 33-7   | 34-7   | 35-7   | 36-7 | 37-7 | 38-7 | 39-7   | 40-7   | 41-7 | 42-7   |
| ROG BELLY              | Control              | 0      | 0          | 0        | 0      | . 0    | 0      | 0      | ٥    | 0    | 0    | ٥      | 0      | ٥    | 0      |
| OG BEEEI               | 2500 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0<br>0 | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2300 ppm<br>5000 ppm | 0      |            |          | -      |        | 0      |        | 0    | 0    | 0    | 0      | 0      | 1    | 1      |
|                        |                      | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 10000 ppm            | 0      | 0          | U        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
| ILED PERI-GENITALIA    | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | . 0    | 0    | 0      |
|                        | 10000 ppm            | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
| OPHTHALMOS             | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | - 0  | 0      | 0      | 0    | Ő      |
|                        | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | . 0    | 0    | 0    | 0    | 0      | 0<br>0 | 0    | Ő      |
|                        | 10000 ppm            | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | Ő      |
| TARACT                 | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | Ō      | 0          | 0        | Õ      | Ő      | Ő      | Ő      | Õ    | õ    | Ő    | õ      | 0      | Ő    | Ő      |
|                        | 5000 ppm             | Õ      | 0          | Õ        | 0      | ů<br>0 | ů      | õ      | 0    | 0    | Ő    | 0<br>0 | 0      | 0    | Ő      |
|                        | 10000 ppm            | 0      | 0          | 0        | 0      | Ő      | 0      | ů      | 0    | 0    | ő    | 0      | 0      | Ő    | õ      |
| RNEAL OPACITY          | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | õ      | ů ů        | 0<br>0   | 0<br>0 | 0      | ů<br>0 | 0      | 0    | 0    | 0    | 0      | 0      | . 0  | 0<br>0 |
|                        | 5000 ppm             | õ      | ů l        | Ő        | 0      | 0      | 0      | 0<br>0 | 0    | 0    | 0    | 0      | 0      | 0    | ő      |
|                        | 10000 ppm            | 0      | Ő          | 0        | 0      | 0      | Ő      | Ő      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
| TERIOR CHAMBER OPACITY | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | . 0  | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | Ō      | Õ          | õ        | õ      | 0<br>0 | ů<br>0 | Õ      | 0    | Ő    | 0    | õ      | Ő      | 0    | 0      |
|                        | 5000 ppm             | õ      | Õ          | 0<br>0   | 0      | 0      | 0      | 0<br>0 | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 10000 ppm            | õ      | Ő          | 0        | õ      | 0<br>0 | 0      | ů<br>0 | 0    | 0    | 0    | Ő      | 0      | 0    | 0.     |
|                        |                      | Ŷ      | v          | 0        | v      | v      | v      | v      | v    | 0    | U    | v      | v      | U    | U.     |
| FERNAL MASS            | Control              | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 2500 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |
|                        | 10000 ppm            | 0      | 0          | 0        | 0      | 0      | 0      | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      |

PAGE: 43

.

~~~~~

(HAN190)

M. EYE

INTERNAL MASS

Control

2500 ppm

5000 ppm

Control

2500 ppm

5000 ppm

10000 ppm

10000 ppm

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 \checkmark

SEX : FEMALE

ALL ANIMALS

Clinical sign	Group Name	Adminis	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
															-
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	` 0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 `	0
	5000 ррш	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0,	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ō
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	1	2	2	2	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Õ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ő	õ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name														
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
	0 1 1	0	0	0	0	0	0	0							0
ROG BELLY	Control 2500 ppm	0	0	0 0	0	0	. 0	0	0	0	0	0	0	0	0
		-	-		0	0	0	0	0	0	0	0	0	0	. 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	1	· 1	1	1	1	1	1	1	1	1	1	1	1	2
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHITHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	Ô	Ô	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	ů 0	õ	õ	Õ	° 0	õ	0	õ	0	õ	0	0	Ő
	5000 ppm	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
	10000 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	^	<u>^</u>	<u>^</u>	
	2500 ppm	0	0	. 0	0 0	0	- 0	0	0	0	0	0	0	0	0
		•	-			0	0	-	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	5000 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	õ	õ	ľ
NTERNAL MASS	Control	1	1	1	1	1	2	2	2	1	1	1	1	1	2
	2500 ppm	2	2	2	3	3	3	4	4	4	3	3	2	0	0
	5000 ppm	0	0	0	0	0	3	3	3	3	3	3	3	3	3
	10000 ppm	0	0	0	0	0	2	2	3 1	3 1	1	3 1	3 1	3 1	3 1
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0				0	0	0	0	0	0	0 .	0
		•		-	0	. 0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Administration Week-day													
~		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83–7	84–7
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	10000 ppm	0	0	0	1	1	1	0	0	0	0	1	1	2	2
OILED PERI-GENITALIA	Control	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	1	1	1	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ů 0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	1	0	0	0	0	0	0	0	0	0	ů.	0	Ō
	10000 ppm	0	0	0	0	0	0	0	0	0	0	Ō	0	0	ů
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0 0	ů 0	Õ	Õ
	10000 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	Ō	0	Ō	Ő	0	Ő	Õ	õ
	5000 ppm	ō	0	0 .	Õ	0	ů	ů	Ő	Ő	0	Ő	0 0	0	0
	10000 ppm	0	0	0	0	õ	Õ	0	0	Ő	0	ů	õ	0	0
XTERNAL MASS	Control	1	0	0	0	2	3	3	3	3	3	3	3	3	3
	2500 ppm	0	0	0	0	0	õ	ŏ	Õ	õ	õ	0 O	Ő	Ő	Ő
	5000 ppm	0	0	õ	0	ů 0	ů	ů	Ő	Ő	0 0	0	ů 0	0	0
	10000 ppm	ĩ	2	2	2	2	2	2	2	2	2	2	2	2	2
TERNAL MASS	Control	2	1	1	2	4	3	3	4	4	4	4	4	5	4
	2500 ppm	0	ĩ	1	2	7	7	7	6	6	4	4	3	3	3
	5000 ppm	3 3	3	3	2	2	2	2	3	1	1	3	2	3	3
	10000 ppm	1	1	1	1	3	3	4	4	2	2	2	3	3	3
. EYE	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	2500 ppm	Ő	õ	Ő	Õ	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	v	v	v	v	U	v	U	U

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 47

Clinical sign	Group Name Administration Week-day														
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94–7	95-7	96-7	97–7	98-7
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ррт	1	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	10000 ppm	0	0	Ő	Ŭ .	ő	0	Ő	õ	Ő	0	0	0	0	0
CATARACT	Control	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	õ
	5000 ppm	õ	Ő	ů 0	ů	0	0	ů 0	0	0 0	0	0	0	0	0
	10000 ppm	Ő	Õ	0	õ	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Ō	0	0 0	ŏ	õ	0 0	õ	0	0 0	0 0	ŏ
	5000 ppm	0	0	Õ	õ	0 0	ů	õ	ů	0	ů	ů	0	0	0
ана стана стана На стана с	10000 ppm	0	0	0	õ	0	0	1	1	1	1	- 1	1	1	1
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0 0	õ	ŏ	0	Õ -	Õ	Ő	0	ŏ
	5000 ppm	0	0 0	0	õ	0	0 0	ů	Õ	0.	0	0	0	0	0 0
	10000 ppm	Ő	0	0	õ	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	2	3	3	3	3	3	3	3	3	3	3	3	2	2
	2500 ppm	1	ĩ	1	ĩ	1	1	1	1	1	1	1	1	1	2
	5000 ppm	0	0	0	0	1	1	1	0	0	0	0	0	0	2
	10000 ppm	2	2	1	2	2	2	2	3	0 4	4	0 4	4	0 4	0 4
NTERNAL MASS	Control	4	4	4	4	3	3	2	3	2	4	3	4	2	2
	2500 ppm	3	4	5	5	5	5	5	6	5	5	5	5	2 4	2 4
	5000 ppm	. 3	2	3	3	3	3	3 2	3	2	5 2				
	10000 ppm	3	2	3 1								4	3	3	3
	10000 ppm	3	4	I	1	2	4	6	5	5	7	7	8	9	9
. EYE	Control	1	2	2	2	2	2	2	2	2	2	2	2	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 48

~____

											1105 - 4
Clinical sign	Group Name	Admin	istration	Week-day _							
		99-7	100-7	101-7	102-7	103-7	104-7	 -			,
FROG BELLY	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	• 0	0				
	5000 ppm	0	0	0	0	1	0				
	10000 ppm	0	1	0	0	0	0				
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0				
	2500 ppm	. 0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
EXOPHTHALMOS	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	1				
CATARACT	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
CORNEAL OPACITY	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	1	1	2	2	2	2				
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	1	0	0	0	0				
EXTERNAL MASS	Control	2	2	2	2	1	. 1				
	2500 ррт	2	2	2	1	1	1				
	5000 ppm	1	1	0	0	0	1				
	10000 ppm	4	4	3	3	2	4	-			
INTERNAL MASS	Control	3	3	2	2	2	3				
	2500 ppm	6	7	5	7	7	8				
	5000 ppm	3	4	4	7	8	8				
	10000 ppm	8	6	5	5	5	4				
M. EYE	Control	1	1	1	1	1	1				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	1	1	1	1	1	1				

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration We	eek-day								· · · · · · · · · · · · · · · · · · ·			
	-	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
	,														
A. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	Ō	0	Õ	Ő	0	õ	õ	õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	Ő	0 0	0 0	õ
	10000 ppm	0	0	0	0	0	Ō	0	0	0	Ő	Ő	Õ	Ő	Ő
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ů	ů	0 0	. 0	ů 0	ŏ	0 0	0	õ	0	0	Ő	0	Ő
	5000 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	10000 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
							-			Ũ		,	Ŭ	Ũ	0
. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	õ
	5000 ppm	0	0	0	0	0	0	õ	Ő	0	ů 0	õ	ŏ	0 0	0
	10000 ppm	0	0	0	0	0	0	Ő	Ő	0	Ő	ů	ů	ů	0 0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	õ	õ	0	0 0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0						-	0
	10000 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0
												-	-	0	
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	Õ	Ő	Ő	Õ	ů 0	ŏ
	5000 ppm	0	0	0	0	0	0	0	0	Õ	ů	õ	ů	0	0 0
	10000 ppm	0	0	0	Ő	õ	õ	Õ	0	0	ů 0	0	õ	0	Ő
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2500 ppm	ŏ	Ő	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0										0
	10000 ppm	0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0 0
	10000 ppm	v	Ū	0	U U	v	U	U	U	U	U	U	U	U	U
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration 🛛	leek-day _											
		15-7	16-7	17-7	18-7	19–7	20-7	21-7	22-7	23–7	24-7	25-7	26-7	27-7	28-7
. EAR	0 1	0	0	0	0	0	0	0	0	<u>^</u>					
. CAK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	.0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	Ō	0	0	õ	0	Ő
	5000 ppm	0	0	0	0	0	0	0	0	0	0	ů	ů	0 0	ů
	10000 ppm	0	0	0	0	0	0	0	0	0	0	õ	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0		0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	Ō	Õ	õ	õ	Õ	ŏ
	5000 ppm	0	0	0	Ő	Õ	õ	0	0	0 0	0	0	Ő	0	0
	10000 ppm	0	õ	Õ	õ	0	0	ő	0	0	0	0	Ő	0	0
. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	õ	ů	0 0	Ő	0	0	Ő	0	0	0	0	0	0	0
	5000 ppm	Ő	õ	Ő	0	0 0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	ŏ	0	0	Ő	õ	.0	0	0	0	0	0	0	0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0 0
		Ŷ	v		v	v	v	Ū	v	U	v	U	v	U	U
. GENITALIA	Control 2500 ppm	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
		e	-	-		0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name		stration W	eek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EAR	0	0		0			<u>^</u>	0	0	<u>_</u>					
LAR	Control 2500 ppm	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
		0		0		0	0	0	0	0	0	0	0	0	0
	5000 ррт 10000 ррт	0	0 0	0	0 0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	Ų	U	0	0	0	0	. 0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	õ	ů	õ	ů	0	0	Ő	0	0	0	0	0 0	0	0
	5000 ppm	0	ů	Ö	ů 0	0	0	ů 0	0	0	0	0	0	0	0
	10000 ppm	Ő	Õ	0	õ	0 0	0 0	0 0	0	0	0	0	0	0	0
	0	0			•										
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	õ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	Ő	0	õ	0 0	õ	0	0	0	0	0	0	0	0
	5000 ppm	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Õ	0	0	0	0 0	0	0	0	0	0	0	0	0	0
. POSTERIOR DORSUM	(0	0	0	0	<u>^</u>	0						_	-
L FUSTERIUR DURSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ō	Ő	Ő
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
	5000 ppm	0	0	0	0	0	0	0					-	0	
	10000 ppm	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0

BAIS 4

PAGE : 51

.

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
	<i>a</i>			_	_	_	·		_						
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0.	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	ů 0	õ	Ő	õ	0 0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
	5000 ppm	0	0	0	0	0	0	Ő	õ	Õ	õ	ů	ů	ů	0
	10000 ppm	0	0	• 0	0	0	0	0	0	0	ů	Ő	ů	Õ	ŏ
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Ō	0	0	õ	ŏ	õ	õ	õ	Õ	õ	õ
	5000 ppm	0	0	0	0	õ	õ	ů	ů	õ	õ	0	ŏ	0	õ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	Ő	0	Ő	Ő
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Õ	Õ	õ	ŏ	ŏ	Õ	Õ	0 0	ŏ	Ő	õ
	5000 ppm	ŏ	ŏ	0	Ő	0	ŏ	0	0	0	0	0	0	0	0
	10000 ppm	Ő	Õ	0	Ő	0	0 0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Õ	õ	Õ	õ	Ő	ŏ	õ	0	0	0 0	0	1	1
	5000 ppm	õ	õ	0	0 0	0 0	õ	0 0	0	0	0	0	0	0	0
	10000 ppm	Ő	ů 0	0	õ	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	Ő	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	ő	Ő	0	0	0	0	0	0	0	0	0	0	0	0
	10000 рры	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ů	Õ	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0		0				-
	10000 ppm	0	v	v	v	v	v	U	v	0	U	0	0	0	0

PAGE : 52

·-----

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	Veek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
I. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	õ	0	1
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	Õ	Ő	Õ	Ő	Ő	õ	Ő	- 0	õ
	5000 ppm	0	0	0	0	0	0	0 0	0	0 0	Ő	Õ	Ő	0	ů
	10000 ppm	0	0	0	0	0	0	0	0	õ	õ	0 0	Ő	0	Õ
ABDOMEN	Contro1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	Õ	Õ	õ	0 0	0 0	ů 0	0 0	0	0 0	Ő
	5000 ppm	õ	ů 0	õ	0 0	0	0	Ő	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	. 0	Ő	õ	0 0	Õ	õ	õ	õ	ő
	5000 ppm	0	Õ	õ	õ	Ő	0	0	0	0	0	0	0	0	Ő
	10000 ppm	0	õ	0	0	0	0	0	0	0	0 0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ĩ	1	1	1	1	0	0	0	0	0	. 0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	ů 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ů 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm -	0	0	0	0	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0
CENITRAL TA		0	0	0	0	0		<u>^</u>							
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

U.

PAGE : 53

.

CLINICAL.OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	8

-

		71-7	72-7	70 7											
			14-1	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
I. EAR	Create 1	0	0	0	0	0									
A. LAK	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	2500 ppm	0	Ũ	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0 -	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. FORELIMB	Control	ĺ	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	5000 ppm	0	0	0	Õ	õ	õ	ů	ů 0	ů 0	ů 0	. 0	õ	0	Ő
	10000 ppm	0	0	0	0	Ő	0	0	õ	ő	ő	0	õ	ő	0
A. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	Õ	Õ	0	Õ	Ő
	5000 ppm	0	0	0	0	Õ	0	Ő	0 0	Ő	ů 0	õ	ů 0	0	0 0
	10000 ppm	0	ů	õ	ů	0 0	0	0	0	0	0	0	0 0	0	0
AMPEDIAL DODGIN		0	0			0			_	2	_				
L ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	1	1	1	1	. 1	1	1
	2500 ppm	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Ő	ů 0	ů	0	ů
	10000 ppm	0	0	0	0	0	Õ	0	Ő	Ő	õ	Ő	Ő	ő	Ő
I. GENITALIA	Control	0	0	. 0	0	1	1	1	0	0	0	0	0	0	0
	2500 ppm	õ	Õ	0	õ	0	0	Ō	õ	0	0	õ	0 0	0	0
	5000 ppm	ů 0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0
		0	1												
	10000 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~

### SEX : FEMALE

| SEX : FEMALE        |                        |      |           |        |        |          |        |        |        |        | 2      |        |          |        | PAGE : 55 |
|---------------------|------------------------|------|-----------|--------|--------|----------|--------|--------|--------|--------|--------|--------|----------|--------|-----------|
| Clinical sign       | Group Name             |      | istration |        |        |          |        |        |        |        |        |        |          |        |           |
|                     |                        | 85-7 | 86-7      | 87-7   | 88-7   | 89-7     | 90-7   | 91-7   | 92-7   | 93-7   | 94-7   | 95-7   | 96-7     | 97-7   | 98-7      |
| 1. EAR              | Control                | 1    |           | 1      | 1      |          |        |        |        | 1      |        |        |          | 0      | 0         |
| A. EAK              | 2500 ppm               | 1    | 1<br>0    | 0      | 1<br>0 | · 1<br>0 | 1<br>0 | 1      | 1<br>0 | 1      | 1<br>0 | 1      | 1        | 0<br>0 | 0         |
|                     | 2000 ppm<br>5000 ppm   | 0    | 0         | 0      |        | 0        |        |        |        | 0      |        | 0      | 0        |        | 0         |
|                     |                        | 0    | 0         | 0      | 0<br>0 | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ррт              | U    | 0         | 0      | U      | U        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
| I. NECK             | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | . 0    | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 5000 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm              | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 1      | 2      | 2      | 2      | 2        | 2      | 2         |
| A. FORELIMB         | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        |        | 0         |
| L FORELIMD          |                        | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | -    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | . 0    | 0         |
|                     | 5000 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm              | 1    | 1         | 1      | 1      | 1        | 1      | 1      | 1      | 1      | 1      | 1      | 1        | 1      | 1         |
| M. BREAST           | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 5000 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | ů         |
|                     | 10000 ppm              | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | Ō      | Õ         |
| M. ABDOMEN          | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | ů    | ů         | ů      | ŏ      | 0<br>0   | ů<br>0 | 0      | õ      | Ő      | 0      | 0      | 0        | 0      | 0         |
|                     | 5000 ppm               | ů    | ů<br>0    | 0      | 0<br>0 | 1        | 1      | Ŭ      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm              | ů    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
| 4                   |                        |      |           |        |        |          |        |        |        |        |        |        |          |        |           |
| A. ANTERIOR. DORSUM | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 1         |
|                     | 5000 ррт               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm              | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
| 1. POSTERIOR DORSUM | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | 0    | 0         | 0      | 0      | 0        | Ő      | Õ      | õ      | õ      | õ      | õ      | 0        | 0      | ů<br>0    |
|                     | 5000 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | Õ      | ů      | õ      | ů<br>0   | 0      | Ő         |
|                     | 10000 ppm              | 0    | 0         | 0      | 0      | 0        | 0      | 0      | ů<br>0 | õ      | 0      | õ      | ő        | 0      | õ         |
| 1. HINDLIMB         | Control                | 0    | 1         | 1      | 1      |          | 1      |        |        |        |        |        | <b>.</b> |        |           |
| 0+ 11114/0/1/1837   | 2500 ppm               | 0    | 1<br>0    | 1<br>0 | 1<br>0 | 1        | 1      | 1      | 1      | 1      | 1      | 1      | 1        | 1      | 1         |
|                     | 2500 ppm<br>5000 ppm   | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm<br>10000 ppm | 0    | 0         | 0      | 0      | 0        | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0      | 0<br>0 | 0<br>0   | 0<br>0 | 0<br>0    |
|                     |                        |      |           |        |        |          |        | -      | -      | -      | -      | ·      | ÷        | ÷      | Ť         |
| M. GENITALIA        | Control                | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 2500 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 5000 ppm               | 0    | 0         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |
|                     | 10000 ppm              | 1    | 1         | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0         |

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

### SEX : FEMALE

PAGE : 56

| Clinical sign       | Group Name | Admini | stration | Week-day |       |       |       | <br> | <br> |  | <br> |
|---------------------|------------|--------|----------|----------|-------|-------|-------|------|------|--|------|
|                     |            | 99-7   | 100-7    | 101-7    | 102-7 | 103-7 | 104-7 |      |      |  |      |
|                     |            |        |          |          |       |       |       |      |      |  |      |
| M. EAR              | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
| M. NECK             | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 2      | 2        | 1        | 1     | 0     | 1     |      |      |  |      |
| M. FORELIMB         | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 1      | 1        | 1        | 1     | 1     | 0     |      |      |  |      |
| M. BREAST           | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
| •                   | 2500 ppm   | 0      | 0        | . 0      | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
| _                   | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 1     |      |      |  |      |
| M. ABDOMEN          | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 թթո   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 1     |      |      |  |      |
| M. ANTERIOR. DORSUM | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 1      | 1        | 1        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 1      | 1        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  | •    |
|                     | •          |        |          |          |       |       |       |      |      |  |      |
| M. POSTERIOR DORSUM | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 1     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | · 0   |      |      |  |      |
| A. HINDLIMB         | Control    | 1      | 1        | 1        | 1     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
| M. GENITALIA        | Control    | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |
|                     | 2500 ppm   | 0      | 0        | 0        | 0     | 0     | 1     |      |      |  |      |
|                     | 5000 ppm   | 0      | 0        | 0        | 0     | 0     | Ō     |      |      |  |      |
|                     | 10000 ppm  | 0      | 0        | 0        | 0     | 0     | 0     |      |      |  |      |

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

|  | e |  |  |  |
|--|---|--|--|--|
|  |   |  |  |  |

| Clinical sign     | Group Name | Admini | stration W | ek-dav |     |        |        |        |        |        |      |        |        |        |      |
|-------------------|------------|--------|------------|--------|-----|--------|--------|--------|--------|--------|------|--------|--------|--------|------|
|                   | -          | 1-7    | 2-7        | 3-7    | 4-7 | 5-7    | 6-7    | 7–7    | 8-7    | 9–7    | 10-7 | 11-7   | 12-7   | 13-7   | 14-7 |
|                   |            |        |            |        |     |        |        |        |        |        |      |        |        |        |      |
| . TAIL            | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
| ЕМА               | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | ο.   | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | . 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
| IEMIA             | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | Õ    | 0      | Ő      | Õ      | Ő    |
| CER               | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
| OSION             | Control    | 0      | 0          | 0.     | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0<br>0 | 0      | 0<br>0 | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | õ      | 0      | Ö      | 0    |
| USTA              | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | Ō      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | Õ      | õ      | 0<br>0 | õ    | ů      | Õ      | 0      | Ő    |
|                   | 10000 ppm  | 0      | 0          | 0      | Ő   | Õ      | 0<br>0 | 0<br>0 | õ      | Ő      | õ    | . 0    | 0      | 0      | 0    |
| ELLING            | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | Ó      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | Ō    | Ő      | Õ      | Õ      | Ő    |
|                   | 5000 ppm   | 0      | 0          | 0      | Õ   | Ő      | õ      | Õ      | õ      | 0      | ů    | ů      | Ő      | 0      | ŏ    |
|                   | 10000 ppm  | 0      | õ          | 0      | Õ   | ů<br>0 | 0      | 0      | 0 O    | 0      | õ    | 0<br>0 | Ŏ      | 0      | 0    |
| RTICOLLIS         | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
| •                 | 2500 ppm   | 0      | 0          | 0      | 0   | 0      | 0      | Õ      | 0<br>0 | 0      | ů    | 0      | ů      | Õ      | ŏ    |
|                   | 5000 ppm   | ů<br>0 | 0          | 0      | õ   | ů      | õ      | 0<br>0 | 0      | 0      | 0    | 0      | 0<br>0 | 0      | 0    |
|                   | 10000 ppm  | 0      | Õ          | 0      | Ő   | Ő      | 0      | 0      | ő      | Ő      | õ    | 0      | Ő      | Ő      | 0    |
| REGULAR BREATHING | Control    | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0<br>0 | Õ   | ů      | õ      | Õ      | ů      | Õ      | ů    | 0      | õ      | 0      | õ    |
|                   | 5000 ppm   | ů      | ů ů        | Ő      | 0   | 0      | Õ      | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0      |        |        |      |
|                   | 10000 ppm  | v      | v          | 0      | U   | U      | U      | v      | 0      | U      | U    | U      | 0      | 0      | 0    |

.

(HAN190)

.

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

### SEX : FEMALE

| Clinical sign       | Group Name          | Admin | istration W | eek-day |      |        |          |          |      |        |        |        |          |          |                                       |
|---------------------|---------------------|-------|-------------|---------|------|--------|----------|----------|------|--------|--------|--------|----------|----------|---------------------------------------|
|                     |                     | 15-7  | 16-7        | 17-7    | 18-7 | 19–7   | 20-7     | 21-7     | 22–7 | 23-7   | 24-7   | 25-7   | 26-7     | 27-7     | 28-7                                  |
| M. TAIL             | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    |        |        | 0      | <u>,</u> | 0        | 0                                     |
| M. IAIL             | Control<br>2500 ppm | 0     | 0<br>0      | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     |                     | 0     |             | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | . 0    | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | U     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
| EDEMA               | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
| ANEMIA              | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | 0     | 0           | 0       | 0    | 0      | Õ        | 0        | Ő    | 0<br>0 | 0      | Ő      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | ů     | 0           | 0       | 0    | 0      | Ö        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | ő    | Ő      | 0        | 0        | 0    | 0      | 0      | 0      | . 0      | Ő        | 0                                     |
| ULCER               | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        |          | 0                                     |
| JECER               | 2500 ppm            | 0     | 0           | 0       | 0    |        | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2000 ppm            | 0     | 0           | 0<br>Ò  | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0<br>0 | 0<br>0   | 0<br>0   | 0    | 0      | 0<br>0 | 0      | 0        | · 0<br>0 | 0                                     |
|                     | recee ppm           | Ŷ     | Ū           | Ŷ       | Ū    | v      | v        | v        | U    | 0      | U      | v      | v        | Ū        | 0                                     |
| EROSION             | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 րթա            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
| CRUSTA              | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0<br>0 | 0        | Õ        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0<br>0 | 0<br>0   | Õ        | õ                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | Õ        | õ                                     |
| SWELLING            | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | Ő     | 0           | 0       | 0    | 0      | 0        | 0<br>0   | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | ů     | 0           | õ       | · Õ  | õ      | Ő        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
| TORTICOLLIS         | Control             | 0     | 0           | 0       | ^    | 0      | <u>^</u> | <u>^</u> | ^    | ^      | ~      |        | -        |          | a a a a a a a a a a a a a a a a a a a |
| TOWTTOOPPTS         | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | -     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
| IRREGULAR BREATHING | Control             | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 2500 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 5000 ppm            | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 0      | 0      | 0      | 0        | 0        | 0                                     |
|                     | 10000 ppm           | 0     | 0           | 0       | 0    | 0      | 0        | 0        | 0    | 1      | 1      | 1      | 1        | 0        | 0                                     |

PAGE : 58

(HAN190)

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign     | Group Name | Admini | istration W | eek-dav |      |      |      |        |      |      |        |        |        |      |      |
|-------------------|------------|--------|-------------|---------|------|------|------|--------|------|------|--------|--------|--------|------|------|
|                   |            | 29-7   | 30-7        | 31-7    | 32-7 | 33–7 | 34-7 | 35-7   | 36-7 | 37-7 | 38-7   | 39-7   | 40-7   | 41-7 | 42-7 |
|                   |            |        |             |         |      |      |      |        |      |      |        |        |        |      |      |
| TAIL              | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| ЕМА               | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | . 0  | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | . 0         | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| EMIA              | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| CER               | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0           | 0       | 0    | 0    | · 0  | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| OSION             | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | . 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | · 0  | 0    |
|                   | 5000 ррт   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| USTA              | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
| ELLING            | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | ů<br>0 | õ    | õ    |
|                   | 10000 ppm  | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | ů<br>0 | ů<br>0 | ů      | õ    | Ő    |
| RTICOLLIS         | Contro1    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | 0           | 0       | 0    | 0    | 0    | õ      | 0    | Ő    | õ      | ů      | ů      | ů .  | Ő    |
|                   | 5000 ppm   | 0      | 0           | 0       | õ    | Ő    | ů    | ŏ      | ů    | Ő    | 0      | Ő      | 0      | 0    | 0    |
|                   | 10000 ppm  | 0      | 0           | 0       | õ    | ů    | 0    | 0      | 0    | Ő    | Ő      | Ő      | 0      | 0    | 0    |
| REGULAR BREATHING | Control    | 0      | 0           | 0       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 2500 ppm   | 0      | Ő           | 0       | 0    | Ū.   | õ    | ů      | 0    | 0    | 0<br>0 | õ      | ŏ      | Ő    | 0    |
|                   | 5000 ppm   | ŏ      | ů           | 0       | 0    | 0    | õ    | 0<br>0 | 0    | 0    | 0      | 0      | 0      | 0    | 0    |
|                   | 10000 ppm  | ŏ      | 0           | Ő       | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    | 0    |

### : FEMALE

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign     | Group Name | Admini | stration W | eek-day |      |      |      |      |        |      |      |        |        |        |      |
|-------------------|------------|--------|------------|---------|------|------|------|------|--------|------|------|--------|--------|--------|------|
|                   |            | 43-7   | 44-7       | 45-7    | 46-7 | 47-7 | 48-7 | 49-7 | 50-7   | 51-7 | 52-7 | 53-7   | 54-7   | 55-7   | 56-7 |
|                   |            |        |            |         |      |      |      |      |        |      |      |        |        |        |      |
| TAIL              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | · 0    | 0      | 0      | 0    |
| EMA               | Control -  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| EMIA              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| CER               | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 1      | 1      | 1    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| OSION             | Control    | 0      | 0          | 0       | 0    | 0.0  | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 թթա   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 թթա  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| RUSTA             | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| ELLING            | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | Ő    |
| **                | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | 0      | 0    |
| RTICOLLIS         | Control    | 1      | 1          | · 1     | 1    | 1    | 1    | 1    | 1      | 1    | 2    | 2      | 2      | 2      | 2    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 1    | 1    | 1      | 1    | 1    | 1      | 1      | 0      | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 1    | l    | 1      | 1    | 1    | 1      | ĩ      | 1      | ĩ    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0      | 0      | õ      | Ō    |
| REGULAR BREATHING | Control    | 1      | 1          | 1       | 1    | 1    | 1    | 1    | 1      | 1    | 1    | 1      | 1      | 1      | 1    |
|                   | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | Ō    | 0      | 0      | 0      | ō    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0<br>0 | ů.   | Ő    | 0<br>0 | ů<br>0 | ů<br>0 | Ő    |
|                   | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0      | 0    | õ    | Õ      | 0<br>0 | 0<br>0 | õ    |

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

### SEX : FEMALE

PAGE : 61

| Clinical sign     | Group Name | Admini | stration W | eek-dav |        |        |        |      |        |      |      |        |      |      |        |
|-------------------|------------|--------|------------|---------|--------|--------|--------|------|--------|------|------|--------|------|------|--------|
| -                 | -          | 57-7   | 58-7       | 59-7    | 60-7   | 61-7   | 62-7   | 63-7 | 64-7   | 65-7 | 66-7 | 67-7   | 68-7 | 69-7 | 70-7   |
| . TAIL            | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | ٥      | 0    | 0    | 0      | 0    | 0    | 0      |
| I. IALL           | 2500 ppm   | 0      | 0          | 0       | 0<br>0 | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   |            |        |            |         |        | . 0    | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| DEMA              | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | 0      | 1    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| NEMIA             | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | Ő      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| LCER              | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 2500 ppm   | 1      | 1          | 1       | 1      | 1      | 0      | Ō    | Õ      | õ    | 0    | Õ      | Ő    | Ő    | Ő      |
|                   | 5000 ppm   | 0      | Ō          | 0       | Ô      | 0      | 0      | ů    | • 0    | ŏ    | 0    | 0<br>0 | 0    | 0    | ů<br>0 |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | ů<br>0 | 0    | ů<br>0 | ů    | ů    | ů<br>0 | 0    | 0    | 0      |
| ROSION            | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 1    | 1      | 1    | 1    | 1      | 1    | 1    | 1      |
|                   | 2500 ppm   | ů      | Õ          | 0<br>0  | õ      | õ      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | ů      | Õ          | 0<br>0  | ů      | ů      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | Ő      | 0<br>0     | 0       | õ      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | v      | 0          | v       | U      | U      | U      | U    | U      | U    | U    | U      | U    | 0    | 0      |
| RUSTA             | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| WELLING           | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 2500 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | . 0  | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | . 0  | 0    | 0      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| RTICOLLIS         | Control    | 2      | 2          | 2       | 2      | 2      | 2      | 2    | 2      | 1    | 1    | 1      | 1    | 1    | 1      |
|                   | 2500 ppm   | 0      | 0          | 0       | ō      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 5000 ppm   | ĩ      | ĩ          | Î       | ĩ      | 1      | 1      | 1    | 1      | 1    | 1    | 1      | 1    | 1    | 1      |
|                   | 10000 ppm  | 0      | 0          | Ô       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
| REGULAR BREATHING | Control    | 2      | 2          | 2       | 2      | 2      | 2      | 2    | 2      | 1    | 1    | 1      | 1    | 1    | 1      |
| Sector Pharman    | 2500 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0      | 0    | 0    | -      | -    | 1    |        |
|                   | 5000 ppm   | 0      | 0          | 0       | 0      |        | 0      |      |        |      |      | 0      | 0    | 0    | 0      |
|                   | 10000 ppm  | 0      | 0          | 0       | 0      | 0<br>0 |        | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |
|                   | 10000 hbm  | U      | U          | U       | U      | U      | 0      | 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0      |

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~~

SEX : FEMALE

															THOL . 0
Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78–7	79–7	80-7	81-7	82-7	83-7	84-7
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0 .	. 0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	1	1	1	1	1	1	1	0	0	0	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 րրտ	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WELLING	Control	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	õ	0	Ő	0 0	Ő
	5000 ppm	1	1	0	0	0	0	0	0	Ō	õ	Õ	ů	0	ů 0
	10000 ppm	0	0	0	0	0	0	1	1	0	0	0	0	0	0
RREGULAR BREATHING	Control	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	2500 ppm	0	0	Ō	0	Ō	Ō	0	Ő	õ	Õ	1	1	1	0
	5000 ppm	0	0	0	Ō	Õ	0	0 0	ů	0	0	Ô	0	0	õ
	10000 ppm	0	0	0	0	Õ	ů 0	Ő	õ	ů 0	1	1	õ	0	ŏ

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~____

SEX : FEMALE

PAGE : 63

~~

Clinical sign	Group Name	Admini	istration W	eek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1												
I. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	- 1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	ō	0	Ō	ō	Ō	0	0	0	õ	Ô
	10000 ppm	0	0	0	0	Ō	0 0	Ő	0	ů	0 0	Ő	õ	0	Ő
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ů 0	0	0	0 0	0	Ő	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	-	0	0	
		0	0	0								0		-	0
	10000 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
VEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
	5000 ppm	0	0	0	0	õ	0	ŏ	0	õ	õ	õ	Õ	0 0	ů 0
	10000 ppm	0	ů	0	Ő	Ő	ů	Õ	0	0	0	0	0	· 0	0
ROSION	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	õ	0	0	Ő	Ő	ů 0	ů	0 0	0	0	Ő	0 0	0	Ő
	5000 ppm	ů	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	roooo ppm	v	U	0	0	U	U	U	U	U	U	U	U	0	0
RUSTA.	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 .	2500 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	. 0	.0	0	0	0	0	0	0	0	0	0
ELLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	õ	0	0	0	ů	0	0	0	0	0
	5000 ppm	ů	0	0	ů 0	Ő	0	0	1	1	1	1	1	1	1
	10000 ppm	õ	0	0	õ	0	0	0	0	1 0	0	0	1 0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	1	0	0	1	1	0	0
and the second s	2500 ppm	0	0	0	0	0	0					1	1		0
	2300 ppm 5000 ppm	-	•					0	1	1	1	0	0	0	0
		0	0	0	0	1	0	1	0	0	0	0	0	0	0
	10000 ppm	1	2	0	. 0	0	0	0 .	1	1	0	0	0	0	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration W	eek-day _				 		 	
		99-7	100-7	101-7	102-7	103-7	104-7				
			•					 		 	· · ·
m / 21		-		·	_	_					
TAIL	Control	0	0	0	0	0	0				
	2500 ppm	1	1	1	1	1	1				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
EMA	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	2	1	1	1	0	0				
NEMIA	Control	0	0	0	0	0	0				
	2500 ppm	0	0	Ö	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
I OPP			-								
LCER	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
ROSION	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 թթա	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
RUSTA	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
WELL THO	0 1	•	<u>^</u>								
WELLING	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	0	0	0	0	0	0				
	10000 ppm	0	0	0	0	0	0				
ORTICOLLIS	Control	0	0	0	0	0	0				
	2500 ppm	0	0	0	0	0	0				
	5000 ppm	1	L	1	1	1	1				
	10000 ppm	0	0	0	0	0	0				
RREGULAR BREATHING	Control	0	0	0	0	0	0				
	2500 ppm	0	3	2	3	2	- 3				
	5000 ppm	0		0	о 0	0					
			2				0				
	10000 ppm	2	1	0	1	2	· 1				

CLINICAL OBSERVATION (SUMMARY)

 $\sim \sim$

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

0011110110	obobit militon,	(Dought Hitt)	
ALL ANIM/	ALS		

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5–7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2500 ppm	49	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50

(HAN190)

BAIS 4

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 66

inical sign	Group Name	Admini	stration W	leek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
	· · · · · · · · · · · · · · · · · · ·			-											
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	49	50	50
	2500 ppm	49	49	49	49	49	49	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	49	49	49	49	49	49	49	49	49	49	49	49

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

SEX : FEMALE

PAGE	

~_~

Clinical sign	Group Name	Admini	stration W	/eek-day _											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Contro1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
NON REMARKABLE	Control	50	50	50	49	49	49	49	49	49	49	49	48	48	49
	2500 ppm	50	50	50	50	50	49	49	49	49	49	49	49	49	49
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	49	49	49	49	49	48	48	49	49	49	49	49	49	49

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

GE	68

Clinical sign	Group Name	Admini	stration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DEEP BREATHING	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	i
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	49	49	49	49	49	48	48	48	48	47
	2500 ppm	49	48	48	47	47	47	47	46	46	46	46	45	45	45
	5000 ppm	50	50	50	50	50	48	48	48	47	47	47	47	47	47
	10000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~

SEX : FEMALE

PAGE	69

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	1	1	0	0	0	0	0	0	0	0	0	0	1	1
	2500 ppm	0	0	0	0	1	1	0	0	0	0	0	1	0	0
	5000 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	47	47	47	47	47	46	46	46	46	46	46	46	45	44
	2500 ppm	44	44	44	43	42	42	42	42	42	42	42	41	41	41
	5000 ppm	47	47	47	47	47	43	42	42	42	42	42	42	42	42
	10000 ppm	49	49	49	49	49	47	47	47	47	47	47	47	47	46

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	Veek-day											
		71-7	72-7	73-7	74-7	75–7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
DEEP BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	1	0	0	1	0	0	0	0	0
	5000 ppm	1	1	1	0	0	0	1	3	1	1	1	1	1	1
	10000 ppm	0	. 0	1	1	1	1	0	1	1	. 1	1	0	0	0
NON REMARKABLE	Control	44	44	44	43	39	39	39	-37	37	37	36	36	35	34
	2500 ppm	41	40	40	38	33	33	33	33	33	33	32	32	32	31
	5000 ppm	42	42	42	42	42	42	40	40	40	40	38	38	37	37
	10000 ppm	46	45	44	43	40	40	40	39	39	39	39	37	37	37

(HAN190)

BAIS 4

PAGE : 70

~~~

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim$ 

### SEX : FEMALE

PAGE : 71

1......

| Clinical sign  | Group Name | Admini | stration W | eek-day |      |      |      |      |      |      |      |      |      |      |      |
|----------------|------------|--------|------------|---------|------|------|------|------|------|------|------|------|------|------|------|
|                |            | 85-7   | 86-7       | 87-7    | 88-7 | 89-7 | 90-7 | 91-7 | 92-7 | 93-7 | 94-7 | 95-7 | 96-7 | 97-7 | 98-7 |
|                |            |        |            |         |      |      |      |      |      |      |      |      |      |      |      |
| DEEP BREATHING | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | 2500 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | . 0  |
|                | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                | 10000 ppm  | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| SMALL STOOL    | Control    | 0      | 0          | 0       | 1    | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 1    | 0    | 1    |
|                | 2500 ppm   | 0      | 0          | 0       | 1    | 1    | 1    | 0    | 1    | 1    | 1    | 0    | 0    | 0    | 0    |
|                | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 1    | L    | 0    | 0    | 0    | 1    | 1    | 0    | 0    |
|                | 10000 ppm  | 0      | 1          | 0       | 0    | 0    | 2    | 2    | 0    | 0    | 0    | 1    | L    | 2    | 3    |
| OLIGO-STOOL    | Control    | 1      | 1          | 1       | 1    | 1    | 1    | 0    | 1    | 0    | 4    | 2    | 2    | 1    | 2    |
|                | 2500 ppm   | 0      | 3          | 1       | 1    | 1    | 0 -  | 0    | 0    | 2    | 2    | 1    | 1    | 1    | 1    |
|                | 5000 ppm   | 1      | 1          | 0       | 0    | 1    | 1    | 1    | 0    | 1    | 2    | 3    | 2    | 0    | 0    |
|                | 10000 ppm  | 1      | 2          | 1       | 1    | 0    | 1    | 1    | 1    | 1    | 0    | 2    | 2    | 4    | 5    |
| NON REMARKABLE | Control    | 34     | 33         | 33      | 34   | 34   | 34   | 35   | 34   | 34   | 30   | 31   | 30   | 29   | 27   |
|                | 2500 ppm   | 30     | 27         | 27      | 27   | 27   | 27   | 28   | 26   | 26   | 26   | 25   | 25   | 24   | 23   |
|                | 5000 ppm   | 37     | 37         | 37      | 36   | 35   | 34   | 35   | 33   | 32   | 31   | 28   | 29   | 30   | 30   |
|                | 10000 ppm  | 35     | 34         | 34      | 33   | 32   | 29   | 27   | 25   | 24   | 22   | 22   | 21   | 19   | 18   |

(HAN190)

### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim \sim$ 

### SEX : FEMALE

PAGE : 72

~\_\_\_\_

•

| Clinical sign  | Group Name | Admin | istration | Week-day _ |       |       |       |  |   |  |
|----------------|------------|-------|-----------|------------|-------|-------|-------|--|---|--|
| <u>.</u>       |            | 99-7  | 100-7     | 101-7      | 102-7 | 103–7 | 104-7 |  |   |  |
|                |            |       |           |            |       |       |       |  |   |  |
| DEEP BREATHING | Control    | 0     | 0         | 0          | 0     | 0     | 0     |  |   |  |
|                | 2500 ppm   | 0     | 0         | 0          | 0     | 0     | 0     |  |   |  |
|                | 5000 ppm   | 0     | 0         | 0          | 0     | 0     | 0     |  |   |  |
|                | 10000 ppm  | 1     | 1         | 0          | 0     | 0     | 0     |  |   |  |
| SMALL STOOL    | Control    | 1     | 1         | 0          | 0     | 0     | 1     |  |   |  |
|                | 2500 ppm   | 0     | 3         | 2          | 1     | 1     | 4     |  |   |  |
|                | 5000 ppm   | 0     | 1         | 0          | 0     | 2     | 1     |  | • |  |
|                | 10000 ppm  | 3     | 1         | 0          | 1     | 1     | 0     |  |   |  |
| OLIGO-STOOL    | Control    | 2     | 2         | 2          | 1     | 0     | 1     |  |   |  |
|                | 2500 ppm   | 1     | 3         | 4          | 1     | 0     | 0     |  |   |  |
|                | 5000 ppm   | 0     | 1         | - 1        | 2     | 2     | 2     |  |   |  |
|                | 10000 ppm  | 4     | 3         | 0          | 1     | 3     | 0     |  |   |  |
| NON REMARKABLE | Control    | 27    | 27        | 27         | 27    | 27    | 25    |  |   |  |
|                | 2500 ppm   | 22    | 20        | 20         | 19    | 18    | 15    |  |   |  |
|                | 5000 ppm   | 30    | 29        | 28         | 23    | 22    | 21    |  |   |  |
|                | 10000 ppm  | 17    | 17        | 17         | 16    | 15    | 12    |  |   |  |

(HAN190)

# TABLE C 1

# BODY WEIGHT CHANGES AND

# SURVIVAL ANIMAL NUMBERS: MALE

### MEAN BODY WEIGHTS AND SURVIVAL

S. 2

~~~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

	Control		5000	ppm		10000	ppm		20000	ppm		
Week-Day on Study		No.of Surviv. (50>	Av.Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No.of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	
0-0	23.9 (50)	50/50	23.9 (50)	100	50/50	23.9 (50)	100	50/50	23.9 (50)	100	50/50	
1-7	24.5 (50)		24.3 (50)	99	50/50	24.5 (50)	100	50/50	24.4 (50)	100	50/50	
2-7	25.4 (50)		25.2 (50)	99	50/50	25.4 (50)	100	50/50	25.3 (50)	100	50/50	
3-7	26.4 (50)		26.2 (50)	99	50/50	26.4 (50)	100	50/50	26.2 (50)	99	50/50	
4-7	27.0 (50)		26.8 (50)	99	50/50	27.2 (50)	101	50/50	26.9 (50)	100	50/50	
5-7	27.4 (50)		27.7 (50)	101	50/50	27.8 (50)	101	50/50	27.6 (50)	101	50/50	
6-7	28.0 (50)	50/50	28.3 (50)	101	50/50	28.4 (50)	101	50/50	28.1 (50)	100	50/50	
7-7	28.5 (50)	50/50	28.7 (50)	101	50/50	28.9 (50)	101	50/50	28.4 (50)	100	50/50	
8-7	29.0 (50)	50/50	29.3 (50)	101	50/50	29.5 (50)	102	50/50	29.1 (50)	100	50/50	
9-7	30.0 (50)		30.3 (50)	101	50/50	30.6 (50)	102	50/50	30.0 (50)	100	50/50	
10-7	30.6 (50)		31.0 (50)	101	50/50	31.2 (50)	102	50/50	30.5 (50)	100	50/50	
11-7	30.9 (50)	50/50	31.4 (50)	102	50/50	31.7 (50)	103	50/50	31.0 (50)	100	50/50	
12-7	31.9 (50)		32.4 (50)	102	50/50	32.5 (50)	102	50/50	31.8 (50)	100	50/50	
13-7	32.9 (50)	50/50	33.2 (50)	101	50/50	33.3 (50)	101	50/50	32.5 (50)	99	50/50	
14-7	32.9 (50)		33.6 (50)	102	50/50	33.8 (50)	103	50/50	33.0 (50)	100	50/50	
18-7	35.2 (50)		35.8 (50)	102	50/50	36.0 (50)	102	50/50	34.9 (50)	99	50/50	
22-7	37.2 (50)		37.9 (50)	102	50/50	37.8 (50)	102	50/50	36.6 (50)	98	50/50	
26-7	39.2 (50)		39.6 (50)	101	50/50	39.6 (50)	101	50/50	38.0 (50)	97	50/50	
30-7	41.3 (50)		41.6 (49)	101	49/50	41.5 (50)	100	50/50	39.9 (50)	97	50/50	
34 - 7	42.4 (50)		42.8 (49)	101	49/50	42.6 (50)	100	50/50	40.9 (50)	96	50/50	
38-7	43.9 (50)		44.2 (49)	101	49/50	43.9 (50)	100	50/50	42.1 (50)	96	50/50	
42-7	44.9 (50)		45.2 (49)	101	49/50	44.7 (50)	100	50/50	43.1 (50)	96	50/50	
46-7	46.3 (50)		46.3 (49)	100	49/50	45.8 (50)	99	50/50	44.2 (50)	95	50/50	
50-7	47.5 (50)	50/50	47.6 (49)	100	49/50	47.1 (50)	99	50/50	45.4 (50)	96	50/50	
54-7	48.6 (50)		48.5 (49)	100	49/50	48.1 (50)	99	50/50	46.4 (50)	95	50/50	
58-7	49.2 (50)		49.1 (49)	100	49/50	48.6 (49)	99	49/50	47.1 (49)	96	49/50	
62-7	49.6 (50)		49.1 (49)	99	49/50	48.9 (49)	99	49/50	47.5 (49)	96	49/50	
66-7	49.3 (50)		49.3 (49)	100	49/50	49.4 (49)	100	49/50	47.9 (49)	97	49/50	
70-7	49.9 (49)		50.2 (47)	101	47/50	49.8 (49)	100	49/50	48.4 (49)	97	49/50	
74-7	50.6 (47)	47/50	50.4 (47)	100	47/50	50.0 (48)	99	48/50	48.6 (49)	96	49/50	
78-7	50.2 (47)		49.4 (46)	98	46/50	49.3 (48)	98	48/50	47.9 (49)	95	49/50	
82-7	50.5 (46)	46/50	50.1 (43)	99	43/50	49.6 (46)	98	46/50	48.4 (48)	96	48/50	
86-7	51.1 (44)	44/50	49.9 (41)	98	41/50	49.8 (45)	97	45/50	48.1 (48)	94	48/50	
90-7	49.6 (41)		49.4 (40)	100	40/50	50.1 (43)	101	43/50	49.5 (45)	100	45/50	
94-7	48.0 (40)	40/50	49.1 (38)	102	38/50	49.0 (41)	102	41/50	48.9 (45)	102	45/50	
98-7	47.8 (38)		49.1 (36)	103	36/50	49.6 (36)	104	36/50	48.6 (45)	102	45/50	
102-7	46.2 (35)		47.5 (35)	103	35/50	48.2 (36)	104	36/50	47.5 (41)	103	41/50	
104-7	45.5 (35)	35/50	47.8 (33)	105	33/50	47.5 (36)	104	36/50	46.8 (41)	103	41/50	
					No.of measur							

PAGE : 1

(BI0040)

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN BODY WEIGHTS AND SURVIVAL

~

 \sim

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

	Contro1		2500	ppm		5000	ppm		10000	ppm		
Week-Day on Study	Av. Wt.	No.of Surviv. <50>	Λv.Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No.of Surviv.	Av.Wt.	% of cont. <50>	No.of Surviv.	
0-0	19.5 (50) 50/50	19.5 (50)	100	50/50	19.5 (50)	100	50/50	19.5 (50)	100	50/50	
1-7	19.8 (50		19.5 (50)	98	50/50	19.8 (50)	100	50/50	19.7 (50)	99	50/50	
2-7	20.4 (50		20.3 (50)	100	50/50	20.3 (50)	100	50/50	20.4 (50)	100	50/50	
3-7	21.0 (50		21.0 (50)	100	50/50	21.0 (50)	100	50/50	21.1 (50)	100	50/50	
4-7	21.5 (50		21.5 (50)	100	50/50	21.4 (50)	100	50/50	21.6 (50)	100	50/50	
5-7	22.1 (50		22.0 (50)	100	50/50	22.0 (50)	100	50/50	22.0 (50)	100	50/50	
6-7	22.4 (50		22.4 (50)	100	50/50	22.3 (50)	100	50/50	22.4 (50)	100	50/50	
7-7	22.8 (50		22.8 (50)	100	50/50	22.8 (50)	100	50/50	22.7 (50)	100	50/50	
8-7	23.2 (50		23.5 (50)	101	50/50	23.1 (50)	100	50/50	23.3 (50)	100	50/50	
9-7	23.6 (50		23.8 (50)	101	50/50	23.4 (50)	99	50/50	23.7 (50)	100	50/50	
10-7	24.2 (50		24.0 (50)	99	50/50	23.9 (50)	99	50/50	23.9 (50)	99	50/50	
11-7	24.0 (50		24.2 (50)	101	50/50	23.8 (50)	99	50/50	23.9 (50)	100	50/50	
12-7	24.6 (50		24.3 (50)	99	50/50	24.2 (50)	98	50/50	24.3 (50)	99	50/50	
13-7	24.8 (50		24.8 (50)	100	50/50	24.3 (50)	98	50/50	24.5 (50)	99	50/50	
14-7	25.0 (50		25.1 (50)	100	50/50	24.8 (50)	99	50/50	24.6 (50)	98	50/50	
18-7	26.0 (50		26.3 (50)	101	50/50	25.6 (50)	98	50/50	26.1 (50)	100	50/50	
22-7	27.0 (50		27.3 (50)	101	50/50	26.6 (50)	99	50/50	26.8 (50)	99	50/50	
26-7	27.6 (50		27.9 (50)	101	50/50	27.3 (50)	99	50/50	27.9 (50)	101	50/50	
30-7	29.0 (50		28.9 (50)	100	50/50	28.0 (50)	97	50/50	28.7 (49)	99	49/50	
34-7	29.5 (50		29.5 (50)	100	50/50	28.8 (50)	98	50/50	29.1 (49)	99	49/50	
38-7	30.8 (50		30.6 (50)	99	50/50	30.2 (50)	98	50/50	30.1 (49)	98	49/50	
42-7	31.1 (50		31.0 (50)	100	50/50	30.1 (50)	97	50/50	30.3 (49)	97	49/50	
46-7	32.2 (50		31.8 (50)	99	50/50	31.2 (50)	97	50/50	31.3 (49)	97	49/50	
50-7	33.2 (50		32.7 (49)	98	49/50	32.1 (49)	97	49/50	32.3 (49)	97	49/50	
54-7	33.9 (50		33.3 (48)	98	48/50	32.6 (48)	96	48/50	33.0 (49)	97	49/50	
58-7 69-7	34.3 (50		34.4 (47)	100	47/50	32.7 (48)	95	48/50	33.2 (49)	97	49/50	
62-7 66 7	34.8 (50		34.6 (46)	99	46/50	32.7 (47)	94	47/50	33.3 (49)	96	49/50	
66-7	35.5 (49		34.7 (45)	98	45/50	33.3 (46)	94	46/50	33.7 (48)	95	48/50	
70-7	35.7 (49		34.9 (41)	98	41/50	33.5 (46)	94	46/50	34.2 (48)	96	48/50	
74-7	35.9 (47		34.7 (40)	97	40/50	34.0 (44)	95	44/50	33.7 (48)	94	48/50	
78-7	35.4 (44		34.7 (39)	98	39/50	33.9 (44)	96	44/50	33.4 (46)	94	46/50	
82-7	36.2 (44		35.4 (36)	98	36/50	34.1 (41)	94	41/50	34.3 (42)	95	42/50	
86-7	36.9 (41		35.5 (34)	96	34/50	34.1 (40)	92	40/50	34.5 (39)	93	39/50	
90-7 04 7	36.8 (40		35.9 (34)	98 97	34/50	34.5 (38)	94	38/50	33.7 (36)	92	36/50	
94-7 08 7	36.3 (39		35.3 (33)	. 97	33/50	34.3 (36)	94	36/50	33.6 (32)	93	32/50	
98-7	36.2 (34		35.9 (30)	99 97	30/50	34.5 (34)	95	34/50	33.2 (30)	92	30/50	
102-7	35.8 (32		34.8 (28)	97	28/50	34.5 (32)	96 96	32/50	33.8 (24)	94	24/50	
104-7	35.6 (29) 29/50	33.4 (26)	94	26/50	34.2 (31)	96	31/50	31.4 (20)	88	20/50	

(BI0040)

BAIS 4

TABLE C 3

BODY WEIGHT CHANGES: MALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

Same 2

 $\sim -$

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 1

Group Name	Administration	week-day					
· · · · · · · · · · · · · · · · · · ·	0-0	1–7	2–7	3–7	4-7	5-7	6-7
Control	23.9± 0.9	24.5± 0.9	25.4± 1.0	26.4± 1.1	27.0± 1.2	27.4± 1.3	28.0± 1.4
5000 ppm	23.9 ± 0.9	24.3± 1.6	25.2± 1.4	26.2± 1.1	26.8± 1.2	27.7± 1.4	28.3± 1.3
10000 ppm	23.9 ± 0.9	24.5± 1.0	25.4± 1.2	26.4± 1.2	27.2± 1.2	27.8± 1.3	28.4 ± 1.5
20000 ppm	23.9± 0.9	24.4± 0.8	25.3± 0.8	26.2± 0.9	26.9± 1.1	27.6± 1.2	28.1± 1.4
			·		·		
Significant difference	; *:P≦ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

 \sim

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 2

Administration	week-day					
7-7	8-7	9-7	10-7	11-7	12-7	13-7
· · · · · · · · · · · · · · · · · · ·	`					
28.5± 1.5	29.0± 1.6	30.0± 1.9	30.6± 2.0	30.9± 2.1	31.9± 2.2	32.9± 2.3
28.7± 1.6	29.3± 1.6	30.3± 1.9	31.0± 2.0	31.4± 2.2	32.4± 2.2	33.2 ± 2.3
28.9 ± 1.5	29.5± 1.8	30.6± 2.0	31.2± 2.1	31.7± 2.2	32.5± 2.4	33.3± 2.6
						20 5 1 0 0
28.4 1.5	29.1± 1.5	30.0± 1.8	30.5± 2.3	31.0± 2.1	31.8± 2.3	32.5± 2.3
* : P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			
	7-7 28.5 \pm 1.5 28.7 \pm 1.6 28.9 \pm 1.5 28.4 \pm 1.5	$28.5 \pm$ 1.5 $29.0 \pm$ 1.6 $28.7 \pm$ 1.6 $29.3 \pm$ 1.6 $28.9 \pm$ 1.5 $29.5 \pm$ 1.8 $28.4 \pm$ 1.5 $29.1 \pm$ 1.5	$7-7$ $8-7$ $9-7$ $28.5 \pm$ 1.5 $29.0 \pm$ 1.6 $30.0 \pm$ 1.9 $28.7 \pm$ 1.6 $29.3 \pm$ 1.6 $30.3 \pm$ 1.9 $28.7 \pm$ 1.6 $29.3 \pm$ 1.6 $30.3 \pm$ 1.9 $28.9 \pm$ 1.5 $29.5 \pm$ 1.8 $30.6 \pm$ 2.0 $28.4 \pm$ 1.5 $29.1 \pm$ 1.5 $30.0 \pm$ 1.8	$7-7$ $8-7$ $9-7$ $10-7$ $28.5 \pm$ 1.5 $29.0 \pm$ 1.6 $30.0 \pm$ 1.9 $30.6 \pm$ 2.0 $28.7 \pm$ 1.6 $29.3 \pm$ 1.6 $30.3 \pm$ 1.9 $31.0 \pm$ 2.0 $28.7 \pm$ 1.6 $29.3 \pm$ 1.6 $30.3 \pm$ 1.9 $31.0 \pm$ 2.0 $28.9 \pm$ 1.5 $29.5 \pm$ 1.8 $30.6 \pm$ 2.0 $31.2 \pm$ 2.1 $28.4 \pm$ 1.5 $29.1 \pm$ 1.5 $30.0 \pm$ 1.8 $30.5 \pm$ 2.3	$7-7$ $8-7$ $9-7$ $10-7$ $11-7$ 28.5 ± 1.5 29.0 ± 1.6 30.0 ± 1.9 30.6 ± 2.0 30.9 ± 2.1 28.7 ± 1.6 29.3 ± 1.6 30.3 ± 1.9 31.0 ± 2.0 31.4 ± 2.2 28.9 ± 1.5 29.5 ± 1.8 30.6 ± 2.0 31.2 ± 2.1 31.7 ± 2.2 28.4 ± 1.5 29.1 ± 1.5 30.0 ± 1.8 30.5 ± 2.3 31.0 ± 2.1	$7-7$ $8-7$ $9-7$ $10-7$ $11-7$ $11-7$ $12-7$ 28.5 ± 1.5 29.0 ± 1.6 30.0 ± 1.9 30.6 ± 2.0 30.9 ± 2.1 31.9 ± 2.2 28.7 ± 1.6 29.3 ± 1.6 30.3 ± 1.9 31.0 ± 2.0 31.4 ± 2.2 32.4 ± 2.2 28.9 ± 1.5 29.5 ± 1.8 30.6 ± 2.0 31.2 ± 2.1 31.7 ± 2.2 32.5 ± 2.4 28.4 ± 1.5 29.1 ± 1.5 30.0 ± 1.8 30.5 ± 2.3 31.0 ± 2.1 31.8 ± 2.3

BAIS 4

.

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 3

Administration	week-day					
14-7	18-7	22-7	26-7	30-7	34-7	38-7
22.0+ 2.4				41.0.1 4.0		
32.9± 2.4	35. 2 ± 2. 9	31.2 ± 3.2	39.2± 3.9	41.3工 4.2	42.4 ± 4.5	43.9± 4.7
33.6 \pm 2.4	35.8± 2.8	37.9± 3.1	39.6± 3.5	41.6± 3.7	42.8± 3.7	44.2± 4.1
33.8± 2.7	36. 0± 3. 0	37.8± 3.3	39.6± 3.7	41.5± 4.0	42.6± 4.2	43.9± 4.3
33.0± 2.4	34.9± 2.7	36.6± 3.2	38.0± 3.5	39. 9± 3. 9	40. 9± 4. 1	42.1± 4.3
	$14-7$ 32.9 \pm 2.4 33.6 \pm 2.4 33.8 \pm 2.7	32.9 ± 2.4 35.2 ± 2.9 33.6 ± 2.4 35.8 ± 2.8 33.8 ± 2.7 36.0 ± 3.0	$14-7$ $18-7$ $22-7$ 32.9 ± 2.4 35.2 ± 2.9 37.2 ± 3.2 33.6 ± 2.4 35.8 ± 2.8 37.9 ± 3.1 33.8 ± 2.7 36.0 ± 3.0 37.8 ± 3.3 33.0 ± 2.4 34.9 ± 2.7 36.6 ± 3.2	$14-7$ $18-7$ $22-7$ $26-7$ 32.9 ± 2.4 35.2 ± 2.9 37.2 ± 3.2 39.2 ± 3.9 33.6 ± 2.4 35.8 ± 2.8 37.9 ± 3.1 39.6 ± 3.5 33.8 ± 2.7 36.0 ± 3.0 37.8 ± 3.3 39.6 ± 3.7 33.0 ± 2.4 34.9 ± 2.7 36.6 ± 3.2 38.0 ± 3.5	$14-7$ $18-7$ $22-7$ $26-7$ $30-7$ 32.9 ± 2.4 35.2 ± 2.9 37.2 ± 3.2 39.2 ± 3.9 41.3 ± 4.2 33.6 ± 2.4 35.8 ± 2.8 37.9 ± 3.1 39.6 ± 3.5 41.6 ± 3.7 33.8 ± 2.7 36.0 ± 3.0 37.8 ± 3.3 39.6 ± 3.7 41.5 ± 4.0 33.0 ± 2.4 34.9 ± 2.7 36.6 ± 3.2 38.0 ± 3.5 39.9 ± 3.9	$14-7$ $18-7$ $22-7$ $26-7$ $30-7$ $34-7$ 32.9 ± 2.4 35.2 ± 2.9 37.2 ± 3.2 39.2 ± 3.9 41.3 ± 4.2 42.4 ± 4.5 33.6 ± 2.4 35.8 ± 2.8 37.9 ± 3.1 39.6 ± 3.5 41.6 ± 3.7 42.8 ± 3.7 33.8 ± 2.7 36.0 ± 3.0 37.8 ± 3.3 39.6 ± 3.7 41.5 ± 4.0 42.6 ± 4.2 33.0 ± 2.4 34.9 ± 2.7 36.6 ± 3.2 38.0 ± 3.5 39.9 ± 3.9 40.9 ± 4.1

(HAN260)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01

Test of Dunnett

STUDY NO. : 0613 BODY WEIGHT CHANGES (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] ALL ANIMALS UNIT : g REPORT TYPE : A1 104 SEX : MALE

BAIS 4

Group Name	Administration	week-day						
	42-7	46-7	50-7	54-7	58-7	62-7	66-7	
Control	44.9± 4.7	46.3± 4.7	47.5± 4.6	48.6± 4.5	49.2± 4.4	49.6± 4.3	49.3± 4.6	
5000 ppm	45.2± 4.0	46.3± 3.8	47.6± 3.8	48.5± 3.7	49.1± 3.7	49.1± 3.9	49.3± 4.9	
10000 թթա	44.7± 4.5	45.8± 4.5	47.1± 4.6	48.1± 4.5	48.6± 3.9	48.9± 4.1	49.4± 4.2	
20000 ppm	43.1± 4.2	44.2± 4.3*	45. 4± 4. 5	46.4± 4.6*	47.1± 4.4*	47.5± 4.5	47.9 <u>+</u> 4.4	
Significant differe	ence; *:P≦ 0.05	** : P ≦ 0.01		Test of Dunnett				

(HAN260)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

_

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

 \sim

Group Name	Administration	week-day						
	70–7	74-7	78-7	82-7	86-7	90-7	94-7	
Control	49.9± 5.7	50.6± 5.2	50.2± 6.1	50.5± 5.9	51.1± 6.0	49.6± 6.6	48.0± 7.6	
5000 ppm	50.2± 4.6	50.4± 4.9	49.4± 6.2	50.1± 6.0	49.9± 5.4	49.4± 6.9	49.1± 5.9	
10000 ppm	49.8± 4.4	50.0± 4.8	49.3± 5.1	49.6± 5.1	49.8± 5.5	50.1± 6.0	49.0 \pm 5.6	
20000 ppm	48. 4± 4. 5	48.6± 5.1	47.9± 5.2	48.4± 5.6	48.1± 6.9	49 .5± 6.1	48.9± 6.4	
Significant differenc	xe; ∗:P≦0.05	** : P ≦ 0.01		Test of Dunnett				
(HAN260)								

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

`**~~**~

PAGE : 6

.

Group Name	Administration week-day				 -	
	98-7	102-7	104-7			
Control	47.8± 7.5	46.2± 7.3	45.5± 7.6			
5000 ppm	49. 1 ± 6. 0	47.5± 7.6	47.8± 7.3			
10000 թթա	49.6 ± 5.3	48.2± 5.3	47.5± 5.1			
20000 ppm	48.6 ± 6.7	47.5± 7.1	46.8± 7.7			
	· · · · · · · · · · · · · · · · · · ·				 	
Significant differ	rence; $*: P \leq 0.05$	** : P ≦ 0.01		Test of Dunnett		

(HAN260)

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 7

~~~~

| Group Name             | Administration | Administration week-day |           |                 |           |           |           |     |  |  |  |
|------------------------|----------------|-------------------------|-----------|-----------------|-----------|-----------|-----------|-----|--|--|--|
|                        | 0-0            | 1-7                     | 2-7       | 3-7             | 4-7       | 5-7       | 6-7       |     |  |  |  |
| Control                | 19.5± 0.9      | 19.8± 1.0               | 20.4± 0.9 | 21.0± 1.1       | 21.5± 1.1 | 22.1± 1.1 | 22.4± 1.0 |     |  |  |  |
| 2500 ppm               | 19.5± 0.9      | 19.5± 1.2               | 20.3± 1.0 | 21.0± 1.0       | 21.5± 1.1 | 22.0± 1.0 | 22.4± 1.1 |     |  |  |  |
| 5000 ppm               | 19.5± 0.9      | 19.8± 0.9               | 20.3± 0.8 | 21.0± 0.9       | 21.4± 0.9 | 22.0± 1.1 | 22.3± 1.2 |     |  |  |  |
| 10000 ppm              | 19.5± 0.9      | 19.7± 0.9               | 20.4± 1.0 | 21.1± 1.0       | 21.6± 1.1 | 22.0± 1.1 | 22.4± 1.1 |     |  |  |  |
|                        |                | -                       |           |                 |           |           |           |     |  |  |  |
| Significant difference | ; *:P≦0.05     | ** : P ≦ 0.01           |           | Test of Dunnett |           |           |           |     |  |  |  |
| (HAN260)               |                |                         | ·         |                 |           |           |           | DAT |  |  |  |

(HAN260)

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

| Control              | 22.8± 1.1      | 23.2± 1.2     | 23.6± 1.2 | 24.2± 1.6       | 24. 0± 1. 2 | 24.6± 1.4      | 24.8± 1.5 |
|----------------------|----------------|---------------|-----------|-----------------|-------------|----------------|-----------|
| 2500 ppm             | 22.8± 1.2      | 23.5± 1.1     | 23.8± 1.3 | 24.0± 1.4       | 24.2± 1.6   | 24.3± 1.4      | 24.8± 1.6 |
| 5000 ppm             | 22.8± 1.1      | • 23.1± 1.3   | 23.4± 1.4 | $23.9 \pm 1.5$  | 23.8± 1.5   | 24.2 $\pm$ 1.6 | 24.3± 1.7 |
| 10000 ppm            | 22.7± 1.2      | 23.3± 1.2     | 23.7± 1.3 | 23.9± 1.3       | 23.9± 1.5   | 24.3± 1.5      | 24.5± 1.6 |
|                      |                |               |           |                 |             |                |           |
| Significant differen | nce; *:P≦ 0.05 | ** : P ≦ 0.01 |           | Test of Dunnett |             |                |           |

(HAN260)

Group Name

BAIS 4

PAGE : 8

13-7

12-7

#### BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

.

STUDY NO. : 0613 ANIMAL · : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 9

~~~

| Group Name | Administration | Administration week-day | | | | | | | | |
|-----------------------|---------------------|-------------------------|---------------------------------------|-----------------|----------------|-----------|-----------|------|--|--|
| | 14-7 | 18-7 | 22-7 | 26-7 | 30-7 | 34-7 | 38-7 | | | |
| Control | 25.0± 1.4 | 26.0± 1.6 | 27.0± 1.7 | 27.6± 2.0 | 29.0± 2.5 | 29.5± 2.9 | 30.8± 2.9 | | | |
| 2500 ppm | 25.1 ± 1.5 | 26.3± 1.7 | 27.3± 2.3 | 27.9± 2.6 | 28.9± 3.0 | 29.5± 2.8 | 30.6± 3.3 | | | |
| 5000 թթա | 24.8± 1.7 | 25.6 ± 1.8 | 26.6± 1.9 | 27.3± 2.2 | 28.0± 2.8 | 28.8± 2.6 | 30.2± 3.3 | | | |
| 10000 ppm | 24. 6 ± 1. 6 | 26.1± 2.3 | 26.8± 2.1 | 27.9± 2.4 | 28.7 ± 2.6 | 29.1± 3.0 | 30.1± 3.4 | | | |
| | | | | | | | | | | |
| Significant differenc | e; *:P≦0.05 | ** : P ≦ 0.01 | | Test of Dunnett | | | | | | |
| (HAN260) | | | · · · · · · · · · · · · · · · · · · · | | ······ | | | BAIS | | |

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

~~~~

 $\sim$ 

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 10

Group Name	Administration	week-day						
	42-7	46-7	50-7	54-7	58-7	62-7	66-7	
			-					
Control	31.1± 2.9	$32.2\pm 3.3$	$33.2\pm 3.5$	33.9± 4.4	34.3± 4.6	34.8± 4.3	35.5± 4.1	
				ч.				
2500 ppm	$31.0\pm 3.3$	31.8± 3.9	32.7± 3.9	33.3± 4.5	34.4± 4.5	$34.6 \pm 4.4$	34.7± 4.3	
F000								
5000 ppm	$30.1\pm 3.5$	$31.2 \pm 4.0$	32.1± 4.3	$32.6 \pm 4.6$	$32.7 \pm 4.8$	$32.7 \pm 4.8$	33.3± 4.8	
10000 ppm	$30.3 \pm 3.6$	31.3± 3.9	$32.3 \pm 4.2$	33.0± 4.0	33.2± 4.6	33.3± 4.5	33.7± 4.4	
Significant differ	rence; $*: P \leq 0.05$	** : P ≦ 0.01		Test of Dunnett				

(HAN260)

#### BODÝ WEIGHT CHANGES (SUMMARY) ALL ANIMALS

 $\sim \sim$ 

PAGE : 11

`~~~~`

Group Name	Administration	week-day						
	70-7	74-7	78-7	82-7	86-7	90-7	94-7	
				······				
Control	35.7± 4.7	35.9± 4.9	$35.4 \pm 4.5$	36.2± 4.7	$36.9\pm 5.2$	36.8± 5.1	$36.3\pm 6.1$	
2500 ppm	$34.9\pm 4.0$	34.7± 4.0	34.7± 4.1	35.4± 4.5	35.5± 4.6	35.9± 5.0	35.3± 4.6	
<b>F</b> Fm		•***=			00.0_ 1.0	00.7- 0.0	00.0-1.0	
5000 ppm	33.5± 4.9	$34.0 \pm 4.3$	33.9± 4.3	34.1± 4.5	34.1± 4.5*	34.5± 4.7	34.3± 4.7	
10000 ppm	34.2± 4.2	33.7± 4.7	33.4± 4.4	34.3± 4.4	34.5± 4.2	33.7± 4.1*	33.6± 3.8	
Significant difference	; * : P $\leq$ 0.05	<b>**</b> : P ≤ 0.01		Test of Dunnett				
(11)(0/0)			10 - 10 - 10 - 10 - 11 - 11 - 11 - 11 -					

(HAN260)

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

Sec. -

PAGE : 12

Group Name	Administration	week-day			
	98-7	102-7	104-7		
		· · · · · · · · · · · · · · · · · · ·			
ontrol	$36.2 \pm 5.8$	35.8± 6.1	35.6± 6.3		
500 ppm	35.9± 4.8	34.8± 3.8	33.4± 4.0		
000 ppm	<b>34.</b> 5 ± <b>4.</b> 6	· 34.5± 4.9	34.2± 5.0		
0000 ppm	33.2± 4.9	33.8± 6.3	31.4± 3.8**		

Significant difference ; ★ : P ≤ 0.05 ★★ : P ≤ 0.01

Test of Dunnett

(HAN260)

### TABLE D 1

# FOOD CONSUMPTION CHANGES AND

### SURVIVAL ANIMAL NUMBERS: MALE

#### MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

 $\sim$ 

 $\sim \sim$ 

#### STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

	Control		5000	ppm		10000	ppm		20000	) ppm				
Yeek-Day on Study	Av. FC.	No.of Surviv. (50>	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	• % of cont. <50>	No. of Surviv.		·	
1-7	3.8 (50)		3.8 (49)	100	50/50	3.8 (50)	100	50/50	3.6 (50)	95	50/50			
2-7	3.8 (50		3.7 (50)	97	50/50	3.7 (50)	97	50/50	3.7 (49)	97	50/50			
3-7	3.8 (50		3.7 (50)	97	50/50	3.7 (50)	97	50/50	3.7 (50)	97	50/50	,		
4-7	3.9 (50)		3.8 (50)	97	50/50	3.8 (50)	97	50/50	3.8 (50)	97	50/50			
5-7	3.9 (50		3.9 (50)	100	50/50	3.8 (50)	97	50/50	3.7 (50)	95	50/50			
6-7	3.9 (50)		3.8 (50)	97	50/50	3.8 (50)	97	50/50	3.8 (50)	97	50/50			
7-7	4.0 (50)		3.9 (50)	98	50/50	3.9 (50)	98	50/50	3.8 (50)	95	50/50			
8-7	4.1 (50)		4.0 (50)	98	50/50	4.0 (50)	98	50/50	4.0 (50)	98	50/50			
9-7	4.2 (50)		4.2 (50)	100	50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50			
10-7	4.2 (50)		4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.0 (50)	95	50/50			
11-7	4.2 (50)		4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.0 (50)	95	50/50			
12-7	4.2 (50)		4.0 (50)	95	50/50	4.0 (50)	95	50/50	4.0 (50)	95	50/50			
13-7	4.3 (50)		4.1 (50)	95	50/50	4.1 (50)	95	50/50	4.0 (50)	93	50/50			
14-7	3.9 (50		3.9 (50)	100	50/50	3.9 (50)	100	50/50	3.9 (50)	100	50/50			
18-7	4.1 (50)		4.0 (50)	98	50/50	3.9 (50)	95	50/50	3.9 (50)	95	50/50			
22-7	4.2 (50)		4.1 (50)	98	50/50	4.0 (49)	95	50/50	4.0 (50)	95	50/50			
26-7	4.4 (50)		4.2 (50)	95	50/50	4.2 (50)	95	50/50	4.1 (50)	93	50/50			
30-7	4.3 (50)		4.2 (49)	98	49/50	4.1 (50)	95	50/50	4.2 (50)	98	50/50			
34-7	4.3 (50)		4.2 (49)	98	49/50 ·	4.2 (50)	98	50/50	4.1 (50)	95	50/50			
38-7	4.4 (50)		4.3 (49)	98	49/50	4.2 (50)	95	50/50	4.2 (50)	95	50/50			
42-7	4.5 (50)		4.4 (49)	98	49/50	4.3 (50)	96	50/50	4.3 (50)	96	50/50			
46-7	4.4 (50)		4.3 (49)	98	49/50	4.2 (50)	95	50/50	4.2 (50)	95	50/50			
50-7	4.4 (50)		4.3 (49)	98	49/50	4.2 (50)	95	50/50	4.2 (50)	95	50/50			
54-7	4.4 (50)		4.2 (49)	95	49/50	4.1 (50)	93	50/50	4.0 (50)	91	50/50			
58-7	4.4 (50)		4.2 (49)	95	49/50	4.1 (49)	93	49/50	4.2 (49)	95	49/50			
62-7	4.7 (50)		4.5 (49)	96	49/50	4.3 (49)	91	49/50	4.3 (49)	91	49/50			
66-7	4.6 (50)		4.6 (49)	100	49/50	4.5 (49)	98	49/50	4.3 (49)	93	49/50			
70-7	4.8 (49)		4.8 (47)	100	47/50	4.6 (49)	96	49/50	4.5 (49)	94	49/50			
74-7	5.0 (47)		4.8 (47)	96 06	47/50	4.7 (48)	94	48/50	4.6 (49)	92	49/50			
78-7	4.9 (47)		4.7 (46)	96	46/50	4.6 (48)	94	48/50	4.6 (49)	94	49/50			
82-7	4.9 (46)		4.9 (43)	100	43/50	4.8 (46)	98	46/50	4.6 (48)	94	48/50			
86-7	5.1 (44)		4.9 (41)	96	41/50	4.9 (45)	96	45/50	4.6 (48)	90	48/50			
90-7	4.8 (41)		4.8 (40)	100	40/50	4.8 (43)	100	43/50	4.7 (45)	98	45/50			
94-7	4.8 (40)		4.8 (38)	100	38/50	4.7 (41)	98	41/50	4.5 (45)	94	45/50			
98-7	5.2 (38)		5.0 (36)	96	36/50	4.9 (36)	94	36/50	4.6 (45)	88	45/50			
102-7	5.0 (35)		4.8 (35)	96	35/50	4.6 (36)	92	36/50	4.5 (41)	90	41/50			
104-7	4.9 (35)	35/50	4.8 (33)	98	33/50	4.6 (36)	94	36/50	4.4 (41)	90	41/50			

(B10040)

BAIS 4

•

PAGE : 1

TABLE D 2

# FOOD CONSUMPTION CHANGES AND

# SURVIVAL ANIMAL NUMBERS: FEMALE

#### MEAN FOOD CONSUMPTION(FC) AND SURVIVAL

~~

 $\sim \sim$ 

#### STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

\_

	Control		2500	ppm		5000	ppm		10000	ppm					
feek-Day on Study		No.of Surviv. 50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.				
1-7	3.4 (50)		3.3 (50)	97	50/50	3.4 (50)	100	50/50	3.4 (50)	100	50/50	· · · · · · · · · · · · · · · · · · ·		· · ·	
2-7	3.4 (50)		3.3 (50)	97	50/50	3.3 (50)	97	50/50	3.3 (50)	97	50/50				
3-7	3.5 (50)		3.4 (50)	97	50/50	3.3 (50)	94	50/50	3.4 (50)	97	50/50				
4-7	3.4 (50)		3.4 (50)	100	50/50	3.3 (50)	97	50/50	3.3 (50)	97	50/50				
5-7	3.5 (50)		3.5 (50)	100	50/50	3.5 (50)	100	50/50	3.4 (50)	97	50/50				
6-7	3.6 (50)		3.5 (50)	97	50/50	3.4 (50)	94	50/50	3.4 (50)	94	50/50				
7-7	3.7 (50)		3.7 (50)	100	50/50	3.6 (50)	97	50/50	3.5 (50)	95	50/50				
8-7	3.8 (50)		3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.8 (50)	100	50/50				
9-7	3.8 (50)		3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.8 (50)	100	50/50				
10-7	3.9 (50)		3.8 (50)	97	50/50	3.7 (50)	95	50/50	3.7 (50)	95	50/50				
11-7	3.8 (50)		3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.8 (50)	100	50/50				
12-7	3.8 (50)		3.7 (50)	97	50/50	3.7 (50)	97	50/50	3.7 (50)	97	50/50				
13-7	3.8 (50)		3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.7 (50)	97	50/50				
14-7	3.6 (50)	50/50	3.7 (50)	103	50/50	3.6 (50)	100	50/50	3.5 (49)	97	50/50				
18-7	3.6 (50)	50/50	3.7 (50)	103	50/50	3.5 (50)	97	50/50	3.6 (50)	100	50/50				
22-7	3.8 (50)	50/50	3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.7 (50)	97	50/50				
26 - 7	3.9 (50)	50/50	4.0 (50)	103	50/50	3.9 (50)	100	50/50	4.0 (50)	103	50/50				
30-7	3.8 (50)	50/50	3.8 (50)	100	50/50	3.7 (50)	. 97	50/50	3.9 (49)	103	49/50		-		
34-7	3.8 (50)	50/50	3.8 (50)	100	50/50	3.7 (50)	97	50/50	3.8 (49)	100	49/50				
38-7	4.0 (50)	50/50	3.9 (50)	98	50/50	3.9 (50)	98	50/50	3.8 (49)	95	49/50				
42-7	4.1 (50)	50/50	4.0 (50)	98	50/50	3.9 (50)	95	50/50	3.8 (49)	93	49/50				
46-7	3.9 (50)	50/50	3.9 (50)	100	50/50	3.9 (50)	100	50/50	3.8 (49)	97	49/50				
50-7	4.1 (50)	50/50	3.9 (49)	95	49/50	3.9 (49)	95	49/50	3.9 (49)	95	49/50				
54-7	4.0 (50)	50/50	3.8 (48)	95	48/50	3.8 (48)	95	48/50	3.9 (49)	98	49/50				
58-7	3.8 (50)	50/50	3.9 (47)	103	47/50	3.6 (48)	95	48/50	3.7 (49)	97	49/50				
62-7	4.1 (50)	50/50	4.0 (46)	98	46/50	3.8 (47)	93	47/50	3.9 (49)	95	49/50				
66-7	4.2 (49)	49/50	4.0 (45)	95	45/50	4.0 (46)	95	46/50	3.9 (48)	93	48/50				
70-7	4.1 (49)	49/50	4.1 (41)	100	41/50	4.0 (46)	98	46/50	4.0 (48)	98	48/50				
74-7	4.0 (47)	47/50	4.1 (40)	103	40/50	3.9 (44)	98	44/50	3.7 (48)	93	48/50				
78-7	4.0 (44)	44/50	4.0 (39)	100	39/50	3.8 (44)	95	44/50	3.8 (46)	95	46/50				
82-7	4.1 (44)	44/50	4.3 (36)	105	36/50	4.1 (41)	100	41/50	4.0 (42)	98	42/50				
86-7	4.4 (41)	41/50	4.2 (34)	95	34/50	4.3 (40)	98	40/50	4.1 (39)	93	39/50				
90-7	4.5 (40)	40/50	4.2 (34)	93	34/50	4.1 (38)	91	38/50	4.0 (36)	89	36/50				
94-7	4.3 (39)	39/50	4.4 (33)	102	33/50	4.3 (36)	100	36/50	3.8 (32)	88	32/50				
98-7	4.6 (34)		4.4 (30)	96	30/50	4.4 (34)	96	34/50	3.9 (30)	85	30/50				
102-7	4.2 (32)		4.2 (28)	100	28/50	4.2 (32)	100	32/50	4.0 (24)	95	24/50				
104-7	4.3 (29)		4.2 (26)	98	26/50	4.2 (31)	98	31/50	3.9 (20)	91	20/50				

PAGE : 2

(B10040)

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\sim$ 

PAGE : 1

Group Name	Administration w	veek-day(effective)					
	1-7(7)	2–7 (7)	3–7 (7)	4–7 (7)	5-7(7)	6-7(7)	7-7(7)
ontrol	3.8± 0.3	3.8± 0.3	3.8± 0.3	3.9± 0.2	$3.9\pm 0.3$	3.9± 0.3	4.0± 0.3
	0.0 - 0.0	0.0 - 0.0	J. 0 - 0. J	3.9 - 0.2	J. 7 U. J	3.9- 0.3	4.0 - 0.3
000 ppm	3.8± 0.4	3.7± 0.3	3.7± 0.3	3.8± 0.3	3.9± 0.3	3.8± 0.2	$3.9\pm 0.3$
0000 ppm	$3.8\pm 0.3$	3.7± 0.2	3.7± 0.2	3.8± 0.2*	3.8± 0.3	3.8± 0.2	3.9± 0.3 <b>*</b> ≭
0000 ppm	3.6± 0.2 <b>*</b> *	3.7± 0.2**	3.7± 0.2**	3.8± 0.2 <b>≭</b>	3.7± 0.2*	3.8± 0.4**	3.8± 0.2**
Significant difference ;	*:P≦0.05 **	• : P ≤ 0.01		Test of Dunnett			
HAN260)							BA

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 2

Group Name	Administration w	eek-day(effective)					
	8-7(7)	9-7(7)	10-7(7)	11-7 (7)	12-7(7)	13-7 (7)	14-7(7)
Control	4.1± 0.3	4.2± 0.3	4.2± 0.3	4.2± 0.3	4.2± 0.3	4.3± 0.3	3.9± 0.3
5000 ppm	4.0± 0.2	4.2± 0.3	4.1± 0.3	4.1± 0.2	4.0± 0.2	4.1± 0.3*	3.9± 0.3
10000 ppm	4.0± 0.2**	4.1± 0.3	4.1± 0.2*	4.1± 0.3	4.0± 0.3*	4.1± 0.3**	3.9± 0.3
20000 ppm	4.0± 0.3*	4.1± 0.3 <b>∗</b>	4.0± 0.3 <b>*</b> *	4.0± 0.3 <b>*</b> *	4.0± 0.3 <b>*</b> ∗	4.0± 0.2**	3.9± 0.2

Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01	Test of Dunnett	

(HAN260)

### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\sim \sim$ 

PAGE : 3

Group Name	Administration we	ek-day(effective)					
	18-7(7)	22–7 (7)	26-7(7)	30-7 (7)	34-7(7)	38-7(7)	42-7(7)
Control	4.1 $\pm$ 0.3	4.2± 0.2	4.4± 0.3	4.3± 0.3	4.3± 0.3	4.4± 0.3	4.5± 0.3
5000 ppm	4.0± 0.2*	4.1± 0.3	4.2± 0.3*	4.2± 0.3	4.2± 0.3	4.3± 0.3*	4.4± 0.3
10000 ppm	3.9± 0.3**	4.0± 0.3**	4.2± 0.3*	4.1± 0.3 <b>*</b> *	4.2± 0.3	4.2± 0.3**	4.3± 0.3**
20000 ppm	3.9± 0.3**	4.0± 0.3**	4.1± 0.3**	4.2 $\pm$ 0.3	4.1± 0.3*	4.2± 0.3**	<b>4.</b> 3 ± 0. 3 <b>**</b>
	•						

Significant difference ; ★: P ≤ 0.05 ★★ : P ≤ 0.01 Test of Dunnett

(HAN260)

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\sim$ 

PAGE: 4

Group Name		week-day(effective)					
	46-7 (7)	50-7(7)	54-7(7)	58-7(7)	62-7(7)	66-7(7)	70-7(7)
Control	4.4± 0.3	4.4± 0.3	4.4± 0.3	4.4± 0.3	4.7± 0.3	4.6± 0.6	4.8± 0.5
5000 ррт	4.3± 0.3	4.3± 0.3	4.2± 0.3**	4.2± 0.3**	4.5 ± 0.3**	4.6± 0.5	4.8± 0.3
10000 ppm	4.2± 0.3*	4.2± 0.3	4.1± 0.3**	4.1± 0.3**	4.3± 0.3 <b>*</b> *	4.5± 0.3**	4.6± 0.4**
10000 ppm	1.2	1.2_ 0.0	1.1_ 0.000	7.1± 0.000	1.0 - 0.0	1.0± 0.0	4.0 - 0.4**
20000 ppm	4.2± 0.3 <b>*</b> *	4.2± 0.3**	4.0± 0.3**	4.2± 0.3**	4.3± 0.3**	4.3± 0.3**	4.5± 0.3**
						• · · ·	
Significant difference ;	*:P≤0.05 *	* : P ≦ 0.01		Test of Dunnett			
(HAN260)							
(TAN200)							

### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 5

74-7 (7)	78-7 (7)	82-7 (7)	86-7 (7)	90-7(7)	94-7 (7)	98-7(7)
0± 0.4	4.9± 0.4	4.9± 0.8	5.1± 0.4	4.8± 0.6	4.8± 0.6	5.2± 0.7
8± 0.4	4.7± 0.8	4.9± 0.5	4.9± 0.7	4.8± 0.5	4.8± 0.4	5.0± 0.6
	4.6± 0.4**	4.8± 0.3	4.9± 0.3*	4.8± 0.4	4.7± 0.5	4.9± 0.3*
5± 0.3 <b>*</b> *	4.6± 0.3 <b>*</b> *	4.6± 0.4**	4.6± 0.5 <b>*</b> *	4.7± 0.4	4.5± 0.4*	4.6± 0.4**
	0± 0.4 8± 0.4 7± 0.5** 6± 0.3**	8±     0.4     4.7±     0.8       7±     0.5**     4.6±     0.4**	8±       0.4       4.7±       0.8       4.9±       0.5         7±       0.5**       4.6±       0.4**       4.8±       0.3	8±       0.4       4.7±       0.8       4.9±       0.5       4.9±       0.7         7±       0.5**       4.6±       0.4**       4.8±       0.3       4.9±       0.3*	8±       0.4       4.7±       0.8       4.9±       0.5       4.9±       0.7       4.8±       0.5         7±       0.5**       4.6±       0.4**       4.8±       0.3       4.9±       0.3*       4.8±       0.4	8±       0.4       4.7±       0.8       4.9±       0.5       4.9±       0.7       4.8±       0.5       4.8±       0.4         7±       0.5**       4.6±       0.4**       4.8±       0.3       4.9±       0.3*       4.8±       0.4       4.7±       0.5

(HAN260)

.

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

Test of Dunnett

~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1.j[C UNIT : g	rj:BDF1]		FOOD CONSUMPTION CHANGE ALL ANIMALS	ES (SUMMARY)			
REPORT TYPE : A1 104 SEX : MALE						•	PAGE : 6
Group Name	Administration 102-7(7)	week-day(effective) 104-7(7)			······································		
Control	5.0± 0.5	4.9± 0.5					
5000 ppm	4.8± 0.8	4.8± 0.7					
10000 ppm	4.6± 0.4 <b>*</b> *	4.6± 0.4*					
20000 ppm	4.5± 0.6**	4.4± 0.5**					
Significant difference ;	* : P ≦ 0.05 *	* : P ≦ 0.01		Test of Dunnett			

BAIS 4

(HAN260)

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

-----

PAGE : 7

Administration 1-7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7 (7)	5-7(7)	6-7(7)	7-7(7)
3.4± 0.3	$3.4\pm$ 0.2	3.5± 0.2	$3.4\pm 0.2$	3.5± 0.2	3.6± 0.2	3.7± 0.2
3.3± 0.3	3.3± 0.2	3.4± 0.2	3.4± 0.2	3.5± 0.2	$3.5\pm 0.2$	3.7± 0.2
3.4± 0.3	3.3± 0.2	3.3± 0.2	3.3± 0.2*	3.5± 0.2	3.4± 0.2**	3.6± 0.2*
3.4± 0.3	3.3± 0.2	3.4± 0.2	3.3± 0.2*	3.4 生 0.2**	3.4± 0.2*	3.5± 0.2**
	$\begin{array}{rrrr} 1-7(7) \\ \hline & 3.4 \pm & 0.3 \\ \hline & 3.3 \pm & 0.3 \\ \hline & 3.4 \pm & 0.3 \end{array}$	$3.4\pm$ $0.3$ $3.4\pm$ $0.2$ $3.3\pm$ $0.3$ $3.3\pm$ $0.2$ $3.4\pm$ $0.3$ $3.3\pm$ $0.2$	$1-7(7)$ $2-7(7)$ $3-7(7)$ $3.4\pm 0.3$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.3\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.3\pm 0.2$	$1-7(7)$ $2-7(7)$ $3-7(7)$ $4-7(7)$ $3.4\pm 0.3$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.2$ $3.3\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.3\pm 0.2$ $3.3\pm 0.2$	$1-7(7)$ $2-7(7)$ $3-7(7)$ $4-7(7)$ $5-7(7)$ $3.4\pm 0.3$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.3\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.3\pm 0.2$ $3.3\pm 0.2$	$1-7(7)$ $2-7(7)$ $3-7(7)$ $4-7(7)$ $5-7(7)$ $6-7(7)$ $3.4\pm 0.3$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.6\pm 0.2$ $3.3\pm 0.3$ $3.3\pm 0.2$ $3.4\pm 0.2$ $3.4\pm 0.2$ $3.5\pm 0.2$ $3.5\pm 0.2$ $3.4\pm 0.3$ $3.3\pm 0.2$ $3.3\pm 0.2$ $3.3\pm 0.2$ $3.3\pm 0.2*$ $3.5\pm 0.2$

Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01	Test of Dunnett	

(HAN260)

•

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\overline{}$ 

PAGE : 8

·-----

Froup Name	Administration	week-day(effective)					
	8–7 (7)	9–7 (7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	14-7(7)
		(, ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (					
ntrol	3.8± 0.2	3.8± 0.2	3.9±. 0.3	3.8± 0.3	3.8± 0.2	3.8± 0.3	$3.6 \pm 0.2$
500 ppm	3.8± 0.2	3.8± 0.2	3.8± 0.2	3.8± 0.3	3.7± 0.2	3.8± 0.2	3.7± 0.3
100 mgg 000	$3.7 \pm 0.3$	3.7± 0.2	3.7± 0.3**	3.7± 0.2	3.7± 0.3	3.7± 0.2	3.6± 0.3
0000 ppm	3.8± 0.3	3.8± 0.2	3.7± 0.3 <b>*</b> *	3.8± 0.2	3.7± 0.3	$3.7\pm 0.3$	3.5± 0.2
					_		
Significant differen	ce; *:P≦0.05 **	* : P ≦ 0.01		Test of Dunnett			
HAN260)							В

### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\sim$ 

PAGE : 9

~~~

| Group Name | Administration
18-7(7) | week-day(effective)
22-7(7) | 26-7(7) | 30-7(7) | 34-7(7) | 38-7(7) | 42-7(7) |
|---------------------------------------|---------------------------|--------------------------------|----------|-----------------|----------|----------|--------------|
| | | | | | | | |
| Control | 3.6± 0.6 | 3.8± 0.3 | 3.9± 0.4 | 3.8± 0.4 | 3.8± 0.4 | 4.0± 0.4 | 4.1± 0.4 |
| 2500 ppm | 3.7± 0.3 | 3.8± 0.3 | 4.0± 0.3 | 3.8± 0.3 | 3.8± 0.4 | 3.9± 0.5 | 4.0± 0.4 |
| 5000 ppm | 3.5± 0.3 | 3.7± 0.3 | 3.9± 0.3 | 3.7± 0.4 | 3.7± 0.3 | 3.9± 0.4 | $3.9\pm$ 0.4 |
| 10000 ppm | 3.6± 0.4 | 3.7± 0.3 | 4.0± 0.3 | 3.9± 0.4 | 3.8± 0.4 | 3.8± 0.4 | 3.8± 0.4** |
| · · · · · · · · · · · · · · · · · · · | | | | | | | |
| Significant difference | ; * : P \leq 0.05 | ** : P ≦ 0.01 | | Test of Dunnett | | | |
| (HAN960) | | | | | | | |

(HAN260)

.

BAIS 4

.

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 \cdot \smile

PAGE : 10

~~~~

Group Name	Administration	week-day(effective)						
	46-7(7)	50-7(7)	54-7(7)	58-7(7)	62-7(7)	66-7(7)	70-7(7)	
Control	3.9± 0.4	4.1± 0.6	4.0± 0.5	3.8± 0.5	4.1± 0.6	4.2± 0.5	4.1± 0.6	
500 ppm	3.9± 0.4	$3.9\pm 0.5$	3.8± 0.4	3.9± 0.4	4.0± 0.5	4.0± 0.7*	4.1± 0.4	
ազգ 000	3.9± 0.4	3.9± 0.4	3.8± 0.4	$3.6\pm 0.4$	3.8± 0.5∗	4.0± 0.4*	4.0± 0.4	
10000 ppm	3.8± 0.4	3.9± 0.4	3.9± 0.4	3.7± 0.5	3.9± 0.5	3.9± 0.4**	4.0± 0.5	
Significant differen	nce; $*: P \leq 0.05$	** : P ≦ 0.01		Test of Dunnett				
(HAN260)						····		BAI

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

-----

`\_\_\_`

PAGE : 11

Group Name	Administration	week-day(effective)					
	74–7 (7)	78–7 (7)	. 82–7 (7)	86-7(7)	90-7(7)	94-7(7)	98–7 (7)
ontrol	4.0± 0.6	4.0± 0.5	4.1± 0.6	4.4± 0.5	4.5± 0.6	4.3± 0.9	4.6± 0.7
2500 ppm	4.1± 0.5	4.0± 0.6	4.3± 0.6	4.2± 0.7	4.2± 0.6	4.4± 0.9	4.4± 0.7
5000 թթա	$3.9\pm$ 0.5	3.8± 0.5	4.1± 0.5	4.3± 0.9	4.1± 0.5*	4.3± 0.5	4.4± 0.4
10000 ppm	3.7± 0.4	3.8± 0.4	4.0± 0.5	4.1± 0.5 <b>≭</b>	4.0± 0.8 <b>*</b> *	3.8± 0.5**	3.9± 0.7**
Significant differe	ence; *:P≦0.05 ≉	o∗ : P ≦ 0.01		Test of Dunnett			
(HAN260)				n my = = = + :			

.

#### FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 $\sim$ 

PAGE : 12

Group Name		eek-day(effective)		 	 
	102-7(7)	104-7(7)			
-					
Control	4.2± 0.6	4.3± 0.8			
2500 ppm	4.2± 0.7	4.2± 0.7			
5000 ppm	4.2± 0.6	4.2± 0.6			
10000 ppm	4.0± 0.5	3.9± 0.5			

Significant difference ;  $* : P \leq 0.05$   $** : P \leq 0.01$ 

Test of Dunnett

~~~~~

(HAN260)

TABLE E 1

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN WATER CONSUMPTION(WC) AND SURVIVAL

~

 \sim

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

| | Control | | 5000 | ppm | | 10000 | ppm | | 20000 | ppm | | | | |
|----------|---------|-------------------|----------|---------------|------------------|----------|-----------------|-------------------|----------|---------------|------------------|---|------|--|
| leek-Day | Av. WC. | No. of
Surviv. | Av. WC. | % of
cont. | No.of
Surviv. | Av. WC. | % of
cont. | No. of
Surviv. | Av. WC. | % of
cont. | No.of
Surviv. | _ | | |
| ı Study | | <50> | | <50> | | | <50> | | | <50> | | | | |
| 1-7 | 4.5 (5 | | 4.0 (50) | 89 | 50/50 | 4.0 (49) | 89 | 50/50 | 3.7 (49) | 82 | 50/50 | |
 | |
| 2-7 | 4.3 (4 | | 4.0 (50) | 93 | 50/50 | 3.9 (50) | 91 | 50/50 | 3.7 (50) | 86 | 50/50 | | | |
| 3-7 | 4.3 (4 | | 4.0 (50) | 93 | 50/50 | 3.8 (49) | 88 | 50/50 | 3.6 (49) | 84 | 50/50 | | | |
| 4-7 | 4.2 (4 | | 3.8 (50) | 90 | 50/50 | 3.7 (50) | 88 | 50/50 | 3.4 (50) | 81 | 50/50 | | | |
| 5-7 | 4.5 (5 | | 3.8 (50) | 84 | 50/50 | 3.6 (49) | ⁻ 80 | 50/50 | 3.5 (50) | 78 | 50/50 | | | |
| 6-7 | 4.2 (5 | | 3.7 (50) | 88 | 50/50 | 3.5 (49) | 83 | 50/50 | 3.3 (50) | 79 | 50/50 | | | |
| 7-7 | 4.3 (5 | | 3.8 (50) | 88 | 50/50 | 3.6 (50) | 84 | 50/50 | 3.3 (50) | 77 | 50/50 | | | |
| 8-7 | 4.2 (5 | | 3.7 (50) | 88 | 50/50 | 3.5 (50) | 83 | 50/50 | 3.2 (50) | 76 | 50/50 | | | |
| 9-7 | 4.1 (5 | | 3.6 (50) | 88 | 50/50 | 3.3 (50) | 80 | 50/50 | 3.1 (50) | 76 | 50/50 | | | |
| 10-7 | 4.0 (5 | | 3.4 (50) | 85 | 50/50 | 3.2 (50) | 80 | 50/50 | 3.0 (49) | 75 | 50/50 | | | |
| 11-7 | 3.8 (5 | | 3.4 (50) | 89 | 50/50 | 3.2 (50) | 84 | 50/50 | 3.0 (50) | 79 | 50/50 | | | |
| 12-7 | 3.9 (5 | | 3.4 (50) | 87 | 50/50 | 3.2 (50) | 82 | 50/50 | 3.0 (50) | 77 | 50/50 | | | |
| 13-7 | 3.8 (5 | | 3.3 (50) | 87 | 50/50 | 3.1 (50) | 82 | 50/50 | 2.9 (50) | 76 | 50/50 | | | |
| 14-7 | 3.9 (5 | | 3.4 (50) | 87 | 50/50 | 3.2 (50) | 82 | 50/50 | 3.1 (50) | 79 | 50/50 | | | |
| 18-7 | 3.8 (5 | | 3.3 (49) | 87 | 50/50 | 3.3 (50) | 87 | 50/50 | 2.9 (49) | 76 | 50/50 | | | |
| 22-7 | 3.8 (5 | | 3.3 (50) | 87 | 50/50 | 3.1 (49) | 82 | 50/50 | 2.8 (50) | 74 | 50/50 | | | |
| 26-7 | 3.7 (4 | | 3.3 (50) | 89 | 50/50 | 3.2 (49) | 86 | 50/50 | 3.0 (48) | 81 | 50/50 | | | |
| 30-7 | 3.7 (5 | | 3.3 (49) | 89 | 49/50 | 3.1 (50) | 84 | 50/50 | 2.9 (50) | 78 | 50/50 | | | |
| 34-7 | 3.8 (5 | | 3.3 (49) | 87 | 49/50 | 3.1 (50) | 82 | 50/50 | 2.9 (50) | 76 | 50/50 | | | |
| 38-7 | 3.8 (5 | 0) 50/50 | 3.3 (49) | 87 | 49/50 | 3.2 (50) | 84 | 50/50 | 3.0 (50) | 79 | 50/50 | | | |
| 42-7 | 3.8 (4 | 9) 50/50 | 3.4 (49) | 89 | 49/50 | 3.2 (50) | 84 | 50/50 | 3.0 (50) | 79 | 50/50 | | | |
| 46-7 | 3.9 (5 | | 3.3 (49) | 85 | 49/50 | 3.2 (50) | 82 | 50/50 | 3.0 (50) | 77 | 50/50 | | | |
| 50-7 | 3.8 (5 | | 3.3 (49) | 87 | 49/50 | 3.3 (50) | 87 | 50/50 | 2.9 (50) | 76 | 50/50 | | | |
| 54-7 | 3.9 (5 | 0) 50/50 | 3.3 (49) | 85 | 49/50 | 3.3 (50) | 85 | 50/50 | 3.1 (50) | 79 | 50/50 | | | |
| 58-7 | 3.8 (4 | 9) 50/50 | 3.3 (49) | 87 | 49/50 | 3.2 (49) | 84 | 49/50 | 3.1 (49) | 82 | 49/50 | | | |
| 62-7 | 4.1 (5 | 0) 50/50 | 3.5 (49) | 85 | 49/50 | 3.5 (49) | 85 | 49/50 | 3.3 (49) | 80 | 49/50 | | | |
| 66-7 | 4.2 (5 | 0) 50/50 | 3.7 (49) | 88 | 49/50 | 3.6 (49) | 86 | 49/50 | 3.3 (49) | 79 | 49/50 | | | |
| 70-7 | 4.3 (4 | 9) 49/50 | 3.7 (47) | 86 | 47/50 | 3.6 (49) | 84 | 49/50 | 3.4 (49) | 79 | 49/50 | | | |
| 74-7 | 4.3 (4 | 6) 47/50 | 3.8 (47) | 88 | 47/50 | 3.7 (48) | 86 | 48/50 | 3.5 (49) | 81 | 49/50 | | | |
| 78-7 | 4.6 (4 | 6) 47/50 | 3.9 (45) | 85 | 46/50 | 3.9 (48) | 85 | 48/50 | 3.7 (49) | 80 | 49/50 | | | |
| 82-7 | 4.4 (4 | 5) 46/50 | 4.0 (43) | 91 | 43/50 | 3.9 (46) | 89 | 46/50 | 3.6 (48) | 82 | 48/50 | | | |
| 86-7 | 4.4 (4 | 3) 44/50 | 3.7 (41) | 84 | 41/50 | 3.9 (44) | 89 | 45/50 | 3.4 (48) | 77 | 48/50 | | | |
| 90-7 | 4.5 (3 | | 4.0 (40) | 89 | 40/50 | 3.8 (42) | 84 | 43/50 | 3.7 (45) | 82 | 45/50 | | | |
| 94-7 | 4.7 (3 | | 4.1 (38) | 87 | 38/50 | 4.0 (40) | 85 | 41/50 | 3.8 (45) | 81 | 45/50 | | | |
| 98-7 | 4.9 (3 | | 4.4 (36) | 90 | 36/50 | 4.2 (36) | 86 | 36/50 | 3.8 (45) | 78 | 45/50 | | | |
| 102-7 | 4.9 (3 | | 4.1 (34) | 84 | 35/50 | 4.2 (36) | 86 | 36/50 | 3.9 (41) | 80 | 41/50 | | | |
| 104-7 | 4.9 (2 | | 4.1 (32) | 84 | 33/50 | 4.1 (35) | 84 | 36/50 | 3.9 (40) | 80 | 41/50 | | | |

(B10040)

BAIS 4

PAGE : 1

TABLE E 2

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

 $\sim -$

 \sim

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

| | Control 2500 ppm | | | | 5000 ppm 10000 ppm | | | | | | | |
|----------------------|------------------|--------------------------|----------|-----------------------|--------------------|----------|-----------------------|------------------|----------|-----------------------|-------------------|--|
| ∛eek-Day
on Study | Av. WC. | No.of
Surviv.
<50> | Av. WC. | % of
cont.
<50> | No. of
Surviv. | Av. WC. | % of
cont.
<50> | No.of
Surviv. | Av. WC. | % of
cont.
<50> | No. of
Surviv. | |
| 1-7 | 4.3 (50 |) 50/50 | 3.8 (50) | 88 | 50/50 | 3.8 (50) | 88 | 50/50 | 3.8 (50) | 88 | 50/50 | |
| 2-7 | 4.1 (50 |) 50/50 | 3.9 (50) | 95 | 50/50 | 3.7 (50) | 90 | 50/50 | 3.7 (50) | 90 | 50/50 | |
| 3-7 | 4.1 (50 |) 50/50 | 3.9 (50) | 95 | 50/50 | 3.8 (50) | 93 | 50/50 | 3.8 (50) | 93 | 50/50 | |
| 4-7 | 4.0 (50 |) 50/50 | 3.9 (50) | 98 | 50/50 | 3.7 (50) | 93 | 50/50 | 3.6 (50) | 90 | 50/50 | |
| 5-7 | 4.1 (50 |) 50/50 | 3.8 (49) | 93 | 50/50 | 3.7 (50) | 90 | 50/50 | 3.6 (50) | 88 | 50/50 | |
| 6-7 | 4.1 (50 |) 50/50 | 3.9 (50) | 95 | 50/50 | 3.6 (50) | 88 | 50/50 | 3.7 (50) | 90 | 50/50 | |
| 7-7 | 4.3 (50 |) 50/50 | 4.2 (50) | 98 | 50/50 | 4.0 (50) | 93 | 50/50 | 3.9 (50) | 91 | 50/50 | |
| 8-7 | 4.0 (50 |) 50/50 | 3.9 (49) | 98 | 50/50 | 3.9 (50) | 98 | 50/50 | 3.8 (50) | 95 | 50/50 | |
| 9-7 | 4.0 (50 |) 50/50 | 3.9 (50) | 98 | 50/50 | 3.7 (50) | 93 | 50/50 | 3.6 (50) | 90 | 50/50 | |
| 10-7 | 4.0 (50 |) 50/50 | 3.8 (50) | 95 | 50/50 | 3.6 (50) | 90 | 50/50 | 3.7 (50) | 93 | 50/50 | |
| 11-7 | 3.8 (50 |) 50/50 | 3.8 (50) | 100 | 50/50 | 3.5 (50) | 92 | 50/50 | 3.7 (50) | 97 | 50/50 | |
| 12-7 | 3.8 (50 |) 50/50 | 3.7 (50) | 97 | 50/50 | 3.7 (50) | 97 | 50/50 | 3.6 (50) | 95 | 50/50 | |
| 13-7 | 3.9 (50 |) 50/50 | 3.7 (50) | 95 | 50/50 | 3.5 (50) | 90 | 50/50 | 3.5 (50) | 90 | 50/50 | |
| 14-7 | 3.8 (50 |) 50/50 | 3.7 (50) | 97 | 50/50 | 3.6 (50) | 95 | 50/50 | 3.4 (50) | 89 | 50/50 | |
| 18-7 | 4.2 (50 |) 50/50 | 3.8 (48) | 90 | 50/50 | 3.6 (50) | 86 | 50/50 | 3.6 (50) | 86 | 50/50 | |
| 22-7 | 4.1 (49 |) 50/50 | 3.7 (49) | 90 | 50/50 | 3.7 (50) | 90 | 50/50 | 3.5 (50) | 85 | 50/50 | |
| 26-7 | 4.0 (50 | | 3.7 (49) | 93 | 50/50 | 3.6 (50) | 90 | 50/50 | 3.7 (50) | 93 | 50/50 | |
| 30-7 | 4.0 (50 |) 50/50 | 3.6 (48) | 90 | 50/50 | 3.4 (50) | 85 | 50/50 | 3.4 (49) | 85 | 49/50 | |
| 34-7 | 4.0 (49 |) 50/50 | 3.6 (49) | 90 | 50/50 | 3.6 (49) | 90 | 50/50 | 3.4 (48) | 85 | 49/50 | |
| 38-7 | 3.8 (49 |) 50/50 | 3.6 (49) | 95 | 50/50 | 3.7 (50) | 97 | 50/50 | 3.4 (48) | 89 | 49/50 | |
| 42-7 | 3.9 (50 |) 50/50 | 3.5 (49) | 90 | 50/50 | 3.6 (50) | 92 | 50/50 | 3.3 (49) | 85 | 49/50 | |
| 46-7 | 3.9 (50 | | 3.5 (50) | 90 | 50/50 | 3.4 (49) | 87 | 50/50 | 3.3 (49) | 85 | 49/50 | |
| 50-7 | 3.9 (50 |) 50/50 | 3.4 (48) | 87 | 49/50 | 3.4 (49) | 87 | 49/50 | 3.2 (49) | 82 | 49/50 | |
| 54-7 | 3.8 (50 |) 50/50 | 3.5 (48) | 92 | 48/50 | 3.4 (48) | 89 | 48/50 | 3.4 (49) | 89 | 49/50 | |
| 58-7 | 3.7 (50 |) 50/50 | 3.5 (47) | 95 | 47/50 | 3.2 (48) | 86 | 48/50 | 3.2 (49) | 86 | 49/50 | |
| 62-7 | 3.9 (49 |) 50/50 | 3.6 (46) | 92 | 46/50 | 3.5 (47) | 90 | 47/50 | 3.3 (49) | 85 | 49/50 | |
| 66-7 | 4.1 (48 |) 49/50 | 3.7 (43) | 90 | 45/50 | 3.4 (46) | 83 | 46/50 | 3.3 (48) | 80 | 48/50 | |
| 70-7 | 4.0 (47 |) 49/50 | 3.7 (40) | 93 | 41/50 | 3.5 (46) | 88 | 46/50 | 3.1 (48) | 78 | 48/50 | |
| 74-7 | 4.3 (46 | | 3.9 (40) | 91 | 40/50 | 3.5 (44) | 81 | 44/50 | 3.3 (48) | 77 | 48/50 | |
| 78-7 | 4.2 (44 | | 3.8 (37) | 90 | 39/50 | 3.5 (44) | 83 | 44/50 | 3.4 (46) | 81 | 46/50 | |
| 82-7 | 4.1 (43 |) 44/50 | 3.9 (35) | 95 | 36/50 | 3.6 (41) | 88 | 41/50 | 3.4 (42) | 83 | 42/50 | |
| 86-7 | 4.2 (40 | | 3.5 (34) | 83 | 34/50 | 3.5 (40) | 83 | 40/50 | 3.4 (39) | 81 | 39/50 | |
| 90-7 | 4.3 (39 | | 3.7 (34) | 86 | 34/50 | 3.6 (38) | 84 | 38/50 | 3.3 (35) | 77 | 36/50 | |
| 94-7 | 4.3 (38 | | 3.9 (33) | 91 | 33/50 | 3.7 (36) | 86 | 36/50 | 3.5 (32) | 81 | 32/50 | |
| 98-7 | 4.3 (32 | | 4.1 (30) | 95 | 30/50 | 3.8 (34) | 88 | 34/50 | 3.5 (30) | 81 | 30/50 | |
| 102-7 | 4.3 (32 | | 3.9 (28) | 91 | 28/50 | 3.7 (32) | 86 | 32/50 | 3.8 (24) | 88 | 24/50 | |
| 104-7 | 4.2 (29 | | 3.7 (26) | 88 | 26/50 | 3.7 (31) | 88 | 31/50 | 3.8 (20) | 90 | 24/50 | |

(B10040)

BAIS 4

PAGE : 2

TABLE E 3

WATER CONSUMPTION CHANGES: MALE

.

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

~~~~

PAGE : 1

| Group Name          | Administration<br>1-7(3) | week-day(effective)<br>2-7(3)           | 3-7 (3)    | 4-7 (3)             | 5-7(3)              | 6-7(3)     | 7-7(3)              |
|---------------------|--------------------------|-----------------------------------------|------------|---------------------|---------------------|------------|---------------------|
| Control             | 4.5± 0.7                 | 4.3± 0.8                                | 4.3± 0.8   | 4.2± 0.7            | 4.5± 0.9            | 4.2± 0.9   | 4.3± 0.7            |
| 000 ppm             | 4.0± 0.9**               | 4.0± 0.7                                | 4.0± 0.7   | 3.8± 0.7*           | 3.8± 0.6**          | 3.7± 0.7** | 3.8± 0.7**          |
| 0000 ppm            | 4.0± 0.8 <b>*</b> *      | 3.9± 0.8*                               | 3.8± 0.6** | 3.7± 0.8 <b>*</b> * | 3.6± 0.6**          | 3.5± 0.5** | 3.6± 0.7**          |
| 0000 ppm            | 3.7± 0.5 <b>*</b> *      | 3.7± 0.8**                              | 3.6± 0.4** | 3.4± 0.6 <b>*</b> * | 3.5± 0.5 <b>*</b> * | 3.3± 0.5** | 3.3± 0.4 <b>*</b> * |
|                     |                          |                                         |            |                     |                     |            |                     |
| Significant differe | ence; *:P≦0.05 **        | * : P ≦ 0.01                            |            | Test of Dunnett     |                     |            |                     |
| (HAN260)            |                          | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |            |                     |                     |            | B                   |

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

~~

PAGE : 2

| Group Name          | Administration<br>8-7(3) | week-day(effective)<br>9-7(3) | 10-7(3)             | 11-7(3)         | 12-7(3)             | 13-7(3)    | 14-7(3)             |
|---------------------|--------------------------|-------------------------------|---------------------|-----------------|---------------------|------------|---------------------|
|                     |                          |                               |                     |                 |                     | 10 1 (0)   |                     |
| Control             | 4.2± 0.7                 | 4.1± 0.6                      | 4.0± 0.7            | 3.8± 0.6        | 3.9± 0.6            | 3.8± 0.5   | 3.9± 0.5            |
| 000 ppm             | 3.7± 0.7₩*               | 3.6± 0.6**                    | 3.4± 0.6 <b>*</b> * | 3.4± 0.5**      | 3.4± 0.5**          | 3.3± 0.5** | 3.4± 0.5 <b>*</b> * |
| 10000 ppm           | 3.5± 0.6**               | 3.3± 0.5**                    | 3.2± 0.5₩           | 3.2± 0.4**      | 3.2± 0.4**          | 3.1± 0.4** | 3.2± 0.4**          |
| 20000 ppm           | 3.2± 0.6**               | 3.1± 0.4**                    | 3.0± 0.4**          | 3.0± 0.4**      | 3.0± 0.5 <b>*</b> * | 2.9± 0.4** | 3.1± 0.4**          |
|                     |                          |                               |                     |                 |                     |            |                     |
| Significant differe | ence; $*: P \leq 0.05$ * | * : P ≦ 0.01                  |                     | Test of Dunnett |                     |            |                     |
| (HAN260)            |                          |                               |                     |                 |                     |            |                     |

#### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

~~~

~~

PAGE : 3

| Group Name | Administration v
18-7(3) | week-day(effective)
22-7(3) | 26-7 (3) | 30-7 (3) | 34-7 (3) | 38-7 (3) | 42–7 (3) |
|--------------------------|-----------------------------|---------------------------------------|---------------------|-----------------|---------------------|------------|---------------------|
| Control | 3.8± 0.5 | 3.8± 0.4 | 3.7± 0.3 | 3.7± 0.3 | 3.8± 0.5 | 3.8± 0.4 | 3.8± 0.4 |
| 5000 ppm | 3.3± 0.4** | 3.3± 0.3** | 3.3± 0.3** | 3.3± 0.5** | 3.3± 0.3** | 3.3± 0.3** | 3.4± 0.3** |
| 10000 ppm | 3.3± 0.6** | 3.1± 0.4** | 3.2± 0.6 * ∗ | 3.1± 0.4** | 3.1± 0.4** | 3.2± 0.4** | 3.2± 0.4** |
| 20000 ppm | 2.9± 0.4** | 2.8± 0.3** | 3.0± 0.5 * * | 2.9± 0.3** | 2.9± 0.3 * * | 3.0± 0.3** | 3.0± 0.3 * ≉ |
| | | · · · · · · · · · · · · · · · · · · · | | | | | |
| Significant difference ; | * : P ≦ 0.05 * | ⊧ : P ≦ 0.01 | | Test of Dunnett | | | |
| (HAN260) | | | | | | | BAIS |

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

| Group Name | Administration w
46-7(3) | eek-day(effective)
50-7(3) | 54-7 (3) | 58-7(3) | 62-7(3) | 66-7(3) | 70-7(3) |
|------------|-----------------------------|-------------------------------|---------------------|------------|------------|------------|---------------------|
| | | | | | | | |
| Control | 3.9± 0.6 | 3.8 ± 0.5 | 3.9± 0.4 | 3.8± 0.5 | 4.1± 0.4 | 4.2± 0.8 | 4.3± 0.8 |
| 5000 ppm | 3.3± 0.3** | 3.3± 0.3** | 3.3± 0.3** | 3.3± 0.3** | 3.5± 0.3** | 3.7± 0.4** | 3.7± 0.4** |
| 10000 ppm | 3.2± 0.4** | 3.3± 0.4 * * | 3.3± 0.4 * ∗ | 3.2± 0.3** | 3.5± 0.3** | 3.6± 0.4** | 3.6± 0.5** |
| 20000 ppm | 3.0± 0.3** | 2.9± 0.3** | 3.1± 0.3 * * | 3.1± 0.3** | 3.3± 0.3** | 3.3± 0.3** | 3.4± 0.3 * ≭ |
| | | | | | | | |

(HAN260)

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

.

Test of Dunnett

.

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;]:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

PAGE : 5

| Group Name | Administration
74-7(3) | week-day(effective)
78-7(3) | 82-7(3) | 86-7(3) | 90-7(3) | 94-7(3) | 98-7(3) |
|--------------------------|---------------------------|--------------------------------|------------|-----------------|---------------------|------------|------------|
| | | | | | | | |
| Control | 4.3± 0.5 | 4.6± 0.5 | 4.4± 0.7 | 4.4± 0.7 | 4.5± 1.0 | 4.7± 0.6 | 4.9± 0.8 |
| 000 ppm | 3.8± 0.5** | 3.9± 0.7** | 4.0± 0.5** | 3.7± 0.7** | 4.0± 0.6 * * | 4.1± 0.7** | 4.4± 0.8* |
| 0000 թթա | 3.7± 0.7 * ∗ | 3.9± 0.6** | 3.9± 0.5** | 3.9± 0.7** | 3.8± 0.5 * ∗ | 4.0± 0.7** | 4.2± 0.6** |
| 0000 ppm | 3.5± 0.3 * * | 3.7± 0.3** | 3.6± 0.4** | 3.4± 0.6** | 3.7± 0.3 * * | 3.8± 0.6** | 3.8± 0.5** |
| | | | | | | | |
| Significant difference ; | * : P ≦ 0.05 * | * : P ≦ 0.01 | | Test of Dunnett | | | |
| (HAN260) | | | | | | | B |

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 6

BAIS 4

| Group Name | Administration w
102-7(3) | k-day(effective)
104-7(3) | |
|------------|------------------------------|------------------------------|--|
| Control | 4.9± 1.0 | 4.9± 0.8 | |
| 5000 ppm | 4.1± 0.8** | 4.1± 0.8** | |
| 10000 ppm | 4.2± 0.8** | 4.1± 0.5** | |
| 20000 ppm | 3.9± 0.6** | 3.9± 0.8** · | |

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

Test of Dunnett

(HAN260)

TABLE E 4

WATER CONSUMPTION CHANGES: FEMALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

 \sim

PAGE : 7

| week-day(effective)
2-7(3) | 3-7 (3) | 4-7 (3) | 5-7 (3) | 6-7 (3) | 7-7 (3) |
|-------------------------------|---------------------|---------------------|-----------------------------|-----------------------------|-----------------------------|
| 4.1± 0.4 | 4.1± 0.4 | 4.0± 0.3 | 4.1± 0.4 | 4.1± 0.4 | 4.3± 0.4 |
| 3.9± 0.5** | 3.9± 0.4 | 3.9± 0.4 | 3.8± 0.3** | 3.9± 0.4 | 4.2± 0.6 |
| 3.7± 0.3 * * | 3.8± 0.3 * * | 3.7± 0.4 * * | 3.7± 0.3 * * | 3.6± 0.4** | 4.0± 0.4** |
| 3.7± 0.5** | 3.8± 0.5** | 3.6± 0.4** | 3.6± 0.4** | 3.7± 0.4** | 3.9± 0.4** |
| | | | | | |
| * : P ≦ 0.01 | | Test of Dunnett | | | |
| * | : P ≦ 0.01 | : P ≤ 0.01 | a: P ≤ 0.01 Test of Dunnett | a: P ≤ 0.01 Test of Dunnett | a: P ≤ 0.01 Test of Dunnett |

(HAN260)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 8

`~___~

| | | | | 11-7 (3) | 12-7(3) | 13-7 (3) | 14-7 (3) |
|-----------|-----------|---------------------|---------------------|------------|-----------|------------|---------------------|
| Control | 4.0± 0.4 | 4.0± 0.4 | 4.0± 0.4 | 3.8± 0.4 | 3.8± 0.4 | 3.9± 0.5 | 3.8± 0.4 |
| 2500 ppm | 3.9± 0.4 | 3.9± 0.6* | 3.8± 0.4* | 3.8± 0.4 | 3.7± 0.6 | 3.7± 0.4* | 3.7± 0.5 |
| 5000 ppm | 3.9± 0.5 | 3.7± 0.6 * * | 3.6± 0.3 * ≉ | 3.5± 0.4** | 3.7± 0.4 | 3.5± 0.4** | 3.6± 0.5* |
| 10000 ppm | 3.8± 0.4* | 3.6± 0.4** | 3.7± 0.4** | 3.7± 0.4 | 3.6± 0.3* | 3.5土 0.4** | 3.4± 0.3 * * |

| Significant difference ; | * : P ≦ 0.05 | ** : P ≦ 0.01 | Test of Dunnett | | |
|--------------------------|--------------|---------------|-----------------|--|--|
| | | | | | |
| (HANOCO) | | | | | |

(HAN260)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

~____

 \sim

PAGE : 9

| Group Name | Administration w | eek-day(effective) | | | | | |
|------------|---------------------------------------|--------------------|---------------------|------------|--------------------|---------------|---------------------|
| | 18-7 (3) | 22-7(3) | 26-7(3) | 30-7(3) | 34-7(3) | 38-7 (3) | 42-7 (3) |
| | · · · · · · · · · · · · · · · · · · · | | | | | | |
| Control | 4.2± 0.7 | 4.1± 0.7 | 4.0± 0.8 | 4.0± 0.8 | 4.0 \pm 0.8 | 3.8± 0.7 | 3.9± 0.6 |
| 2500 ppm | 3.8± 0.5** | 3.7土 0.3** | 3.7± 0.5 | 3.6± 0.4 | 3.6± 0.7** | 3.6± 0.4 | 3.5± 0.5** |
| 2000 ppm | 0.0 | 0.12 0.0 | 0. Finite 0. 0 | 3.0 - 0.4 | J. U.L U. 177 | 5.01 0.4 | 3.9 - 0.9** |
| 5000 ppm | 3.6± 0.5** | 3.7± 0.4** | 3.6± 0.4 | 3.4± 0.5** | 3.6± 0.4* | 3.7 ± 0.4 | 3.6± 0.8** |
| 10000 ppm | 3.6± 0.3** | | | | | | |
| | 3. 0 ⊥ 0, 3≁≁ | 3.5± 0.4** | 3.7± 0.9 * * | 3.4± 0.5** | 3.4± 0.6 ** | 3.4土 0.5** | 3.3± 0.4 * * |
| | | | | | | | |

| Significant difference ; | * : P \leq 0.05 | ** : P ≤ 0.01 | Test of Dunnett | |
|--------------------------|-------------------|----------------------|-----------------|--|
| (114N9c9) | | | | |

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 10

| · · · · | | | | | | |
|----------|------------|---------------------|--------------------------------|--|--|--|
| 9± 0.7 | 3.9± 0.5 | 3.8± 0.6 | 3.7± 0.4 | 3.9± 0.6 | 4.1± 0.5 | 4.0± 0.7 |
| 5± 0.6** | 3.4± 0.7** | 3.5± 0.6* | 3.5± 0.8 * * | 3.6± 0.7 * ≉ | 3.7± 0.8** | 3.7± 0.6 |
| 4± 0.8** | 3.4± 0.4** | 3.4± 0.5 * * | 3.2± 0.5 * * | 3.5± 0.5** | 3.4± 0.5** | 3.5± 0.7 * * |
| 3± 0.5** | 3.2± 0.5** | 3.4± 0.4** | 3.2± 0.4 * * | 3.3± 0.5** | 3.3± 0.5** | 3.1± 0.4** |
| | 4± 0.8** | 4± 0.8** 3.4± 0.4** | 4± 0.8** 3.4± 0.4** 3.4± 0.5** | 5± 0.6** 3.4± 0.7** 3.5± 0.6* 3.5± 0.8** 4± 0.8** 3.4± 0.4** 3.4± 0.5** 3.2± 0.5** | 5± 0.6** 3.4± 0.7** 3.5± 0.6* 3.5± 0.8** 3.6± 0.7** 4± 0.8** 3.4± 0.4** 3.4± 0.5** 3.2± 0.5** 3.5± 0.5** | 5± 0.6** 3.4± 0.7** 3.5± 0.6* 3.5± 0.8** 3.6± 0.7** 3.7± 0.8** 4± 0.8** 3.4± 0.4** 3.4± 0.5** 3.2± 0.5** 3.5± 0.5** 3.4± 0.5** |

(HAN260)

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

~~~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 11

| Group Name             | Administration         | week-day(effective)     |                     |                     |               |            |                    |
|------------------------|------------------------|-------------------------|---------------------|---------------------|---------------|------------|--------------------|
|                        | 74-7 (3)               | 78-7 (3)                | 82-7 (3)            | 86-7 (3)            | 90-7(3)       | 94–7 (3)   | 98–7 (3)           |
|                        |                        |                         |                     |                     |               |            |                    |
| Control                | 4.3± 0.7               | 4.2± 0.8                | 4.1± 0.7            | 4.2± 0.6            | 4.3± 0.6      | 4.3± 1.0   | 4.3± 0.7           |
| 2500 ppm               | 3.9± 1.0**             | 3.8± 1.1**              | 3.9± 0.9            | 3.5± 0.8**          | 3.7± 0.8**    | 3.9± 1.0   | 4.1± 0.7           |
| Jooo ppm               | 0.0 - 1.000            | <b>0.</b> 0 ± 1. 1 ···· | 3.9± 0.9            | 3.0 - 0.0**         | J. 1 - U. Omm | 3.9- 1.0   | 4.1 - 0.7          |
| 5000 ppm               | 3.5± 0.5**             | 3.5± 0.6**              | 3.6± 0.6 <b>*</b> ∗ | 3.5± 0.6**          | 3.6± 0.9**    | 3.7± 0.7** | 3.8± 0.7*          |
| 10000 ppm              | 3.3± 0.6 <b>*</b> ∗    | 3.4± 0.7**              | 3.4± 0.5 <b>*</b> * |                     |               |            |                    |
|                        | J. J_ U. UTT           | 3.41 U. (**             | 3.4 0.5**           | 3.4± 0.8 <b>*</b> * | 3.3± 0.9**    | 3.5土 0.7** | 3.5± 0.9 <b>**</b> |
|                        |                        |                         |                     |                     |               |            |                    |
| Significant difference |                        | <b>*</b> : P ≦ 0.01     |                     | *<br>               |               |            |                    |
| Significant difference | $* \cdot r \ge 0.00$ * | $* \cdot P \ge 0.01$    |                     | Test of Dunnett     |               |            |                    |

(HAN260)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

### WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 12

-----

| Group Name | Administration w<br>102-7(3) | eek-day(effective)<br>104-7(3) |   |  |  |  |
|------------|------------------------------|--------------------------------|---|--|--|--|
| Control    | 4.3± 0.7                     | 4.2± 0.8                       |   |  |  |  |
| 2500 ppm   | 3.9± 0.8                     | 3.7± 1.1                       |   |  |  |  |
| 5000 ppm   | 3.7± 0.8 <b>*</b> *          | 3.7± 1.0                       |   |  |  |  |
| 10000 ppm  | 3.8± 0.8*                    | 3.8± 0.8                       | • |  |  |  |
|            |                              |                                |   |  |  |  |

| Significant difference ; | * : P ≦ 0.05 | ** : P ≤ 0.01 | Test of Dunnett |        |
|--------------------------|--------------|---------------|-----------------|--------|
| (HAN260)                 |              |               |                 | RATS A |

(HAN260)

## TABLE F 1

# CHEMICAL INTAKE CHANGES: MALE

~~~~

.

 \sim

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

PAGE : 1

| Adminis | tration | (weeks) | | | | | | | | | | | |
|-----------|--------------------------------------|-----------------------|---|---|--|--|---|---|--|--|--|---|--|
| 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | |
| 0± | 0 | $0\pm$ | 0 | 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 |
| $809\pm$ | 165 | $800\pm$ | 124 | 767± | 131 | 716± | 134 | 683± | 105 | 648± | 124 | 660± | 141 |
| 1621± | 322 | $1554\pm$ | 328 | $1452\pm$ | 224 | $1362\pm$ | 325 | 1300± | 218 | $1241\pm$ | 179 | $1267\pm$ | 282 |
| $3077\pm$ | 482 | $2970\pm$ | 670 | 2716± | 347 | $2537\pm$ | 474 | 2525土 | 384 | $2376\pm$ | 415 | $2361\pm$ | 354 |
| | 1
$0\pm$
$809\pm$
$1621\pm$ | 809± 165
1621± 322 | 1 2 $0 \pm$ $0 \pm$ $809 \pm$ 165 $800 \pm$ $1621 \pm$ 322 $1554 \pm$ | 1 2 $0 \pm$ $0 \pm$ 0 $809 \pm$ 165 $800 \pm$ 124 $1621 \pm$ 322 $1554 \pm$ 328 | 1 2 3 $0 \pm$ 0 $0 \pm$ $0 \pm$ $809 \pm$ 165 $800 \pm$ 124 $767 \pm$ $1621 \pm$ 322 $1554 \pm$ 328 $1452 \pm$ | 1 2 3 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $809 \pm$ 165 $800 \pm$ 124 $767 \pm$ 131 $1621 \pm$ 322 $1554 \pm$ 328 $1452 \pm$ 224 | 1 2 3 4 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $809 \pm$ 165 $800 \pm$ 124 $767 \pm$ 131 $716 \pm$ $1621 \pm$ 322 $1554 \pm$ 328 $1452 \pm$ 224 $1362 \pm$ | 1 2 3 4 $0 \pm$ | 1 2 3 4 5 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $809 \pm$ 165 $800 \pm$ 124 $767 \pm$ 131 $716 \pm$ 134 $683 \pm$ $1621 \pm$ 322 $1554 \pm$ 328 $1452 \pm$ 224 $1362 \pm$ 325 $1300 \pm$ | 1 2 3 4 5 $0 \pm$ 0 $809 \pm$ 165 $800 \pm$ 124 $767 \pm$ 131 $716 \pm$ 134 $683 \pm$ 105 $1621 \pm$ 322 $1554 \pm$ 328 $1452 \pm$ 224 $1362 \pm$ 325 $1300 \pm$ 218 | 1 2 3 4 5 6 $0 \pm$ 0 0 $0 \pm$ 0 0 0 $0 \pm$ 0 0< | 1 2 3 4 5 6 $0 \pm$ 0 $809 \pm$ 165 $800 \pm$ 124 767 \pm 131 716 \pm 134 $683 \pm$ 105 $648 \pm$ 124 $1621 \pm$ 322 1554 \pm 328 1452 \pm 224 1362 \pm 325 1300 \pm 218 1241 \pm 179 | 1 2 3 4 5 6 7 $0 \pm$ </td |

(HAN300)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg∕kg∕day REPORT TYPE : A1 104 SEX : MALE

PAGE : 2

~

| Adminis | | | | | | | | · | | | | | |
|-----------|--------------------------|--|---|---|---|---|---|---|--|--|---|---|--|
| 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | |
| 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 | 0± | 0 |
| $636\pm$ | 128 | $590\pm$ | 112 | 559± | 116 | $538\pm$ | 100 | 526± | 106 | $505\pm$ | 95 | $514\pm$ | 97 |
| 1181± | 238 | 1100± | 191 | $1045\pm$ | 198 | 1007± | 179 | $999\pm$ | 158 | $934\pm$ | 149 | $968\pm$ | 171 |
| $2227\pm$ | 411 | $2101\pm$ | 341 | 1982± | 324 | $1944\pm$ | 360 | $1897\pm$ | 352 | 1776± | 289 | $1898\pm$ | 326 |
| | 8
0±
636±
1181± | $\begin{array}{cccc} 8 & & & & & & \\ 0 \pm & 0 & & & & & \\ 636 \pm & 128 & & & & \\ 1181 \pm & 238 & & & \\ \end{array}$ | 8 9 $0 \pm$ $0 \pm$ $636 \pm$ 128 $590 \pm$ $1181 \pm$ 238 $1100 \pm$ | 8 9 $0 \pm$ $0 \pm$ 0 $636 \pm$ 128 $590 \pm$ 112 $1181 \pm$ 238 $1100 \pm$ 191 | 8 9 10 $0 \pm$ 0 $0 \pm$ $0 \pm$ $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ | 8 9 10 $0 \pm$ 0 $0 \pm$ 0 $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ 116 $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ 198 | 8 9 10 11 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $0 \pm$ $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ 116 $538 \pm$ $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ 198 $1007 \pm$ | 8 9 10 11 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ 116 $538 \pm$ 100 $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ 198 $1007 \pm$ 179 | 8 9 10 11 12 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ 116 $538 \pm$ 100 $526 \pm$ $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ 198 $1007 \pm$ 179 $999 \pm$ | 8 9 10 11 12 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $0 \pm$ 0 $636 \pm$ 128 $590 \pm$ 112 $559 \pm$ 116 $538 \pm$ 100 $526 \pm$ 106 $1181 \pm$ 238 $1100 \pm$ 191 $1045 \pm$ 198 $1007 \pm$ 179 $999 \pm$ 158 | 8 9 10 11 12 13 $0 \pm$ 0 | 8 9 10 11 12 13 $0 \pm$ 0 $0 \pm$ < | 8 9 10 11 12 13 14 $0 \pm$ 0 0 $0 \pm$ 0 $0 \pm$ 0 0 <th< td=""></th<> |

~~~~

(HAN300)

÷

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

PAGE : 3

| Administration (weeks) |                          |                                   |                                                                              |                                                                                         |                                                                                                                  |                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|--------------------------|-----------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18                     |                          | 22                                |                                                                              | 26                                                                                      |                                                                                                                  | 30                                                                                                                                    |                                                                                                                                                                | 34                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 38                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                          |                                   |                                                                              |                                                                                         |                                                                                                                  |                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0±                     | 0                        | 0±                                | 0                                                                            | 0±                                                                                      | 0                                                                                                                | 0±                                                                                                                                    | 0                                                                                                                                                              | 0±                                                                                                                                                                                            | 0                                                                                                                                                                                                                                  | 0±                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0±                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $469\pm$               | 86                       | $434\pm$                          | 60                                                                           | 421±                                                                                    | 57                                                                                                               | 401±                                                                                                                                  | 73                                                                                                                                                             | 386±                                                                                                                                                                                          | 57                                                                                                                                                                                                                                 | 371±                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 376±                                                                                                                                                                                                                                                                          | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 911±                   | 198                      | $816\pm$                          | 138                                                                          | $809\pm$                                                                                | 198                                                                                                              | 764±                                                                                                                                  | 121                                                                                                                                                            | 723±                                                                                                                                                                                          | 117                                                                                                                                                                                                                                | 735±                                                                                                                                                                                                                          | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 729±                                                                                                                                                                                                                                                                          | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1703土                  | 292                      | $1565\pm$                         | 204                                                                          | 1576±                                                                                   | 318                                                                                                              | $1481\pm$                                                                                                                             | 195                                                                                                                                                            | 1449±                                                                                                                                                                                         | 172                                                                                                                                                                                                                                | $1421\pm$                                                                                                                                                                                                                     | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1424\pm$                                                                                                                                                                                                                                                                     | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | 18<br>0±<br>469±<br>911± | 18<br>0± 0<br>469± 86<br>911± 198 | 18     22 $0 \pm$ $0 \pm$ $469 \pm$ $86$ $434 \pm$ $911 \pm$ $198$ $816 \pm$ | 18     22 $0 \pm$ $0 \pm$ $469 \pm$ $86$ $434 \pm$ $60$ $911 \pm$ $198$ $816 \pm$ $138$ | 18     22     26 $0 \pm$ $0 \pm$ $0 \pm$ $469 \pm$ $86$ $434 \pm$ $60$ $411 \pm$ $911 \pm$ $198$ $816 \pm$ $138$ | 18     22     26 $0 \pm$ $0$ $0 \pm$ $0$ $469 \pm$ $86$ $434 \pm$ $60$ $421 \pm$ $57$ $911 \pm$ $198$ $816 \pm$ $138$ $809 \pm$ $198$ | 18     22     26     30 $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $469 \pm$ $86$ $434 \pm$ $60$ $421 \pm$ $57$ $911 \pm$ $198$ $816 \pm$ $138$ $809 \pm$ $198$ $764 \pm$ | 18       22       26       30 $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $0$ $469 \pm$ $86$ $434 \pm$ $60$ $421 \pm$ $57$ $401 \pm$ $73$ $911 \pm$ $198$ $816 \pm$ $138$ $809 \pm$ $198$ $764 \pm$ $121$ | 18       22       26       30       34 $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $469 \pm$ $86$ $434 \pm$ $60$ $421 \pm$ $57$ $401 \pm$ $73$ $386 \pm$ $911 \pm$ $198$ $816 \pm$ $138$ $809 \pm$ $198$ $764 \pm$ $121$ $723 \pm$ | 18       22       26       30       34 $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $0$ $0 \pm$ $0$ $469 \pm$ 86 $434 \pm$ 60 $421 \pm$ 57 $401 \pm$ 73 $386 \pm$ 57 $911 \pm$ 198 $816 \pm$ 138 $809 \pm$ 198 $764 \pm$ 121 $723 \pm$ 117 | 18       22       26       30       34       38 $0 \pm 0$ | 18       22       26       30       34       38 $0 \pm 0$ $469 \pm 86$ $434 \pm 60$ $421 \pm 57$ $401 \pm 73$ $386 \pm 57$ $371 \pm 50$ $911 \pm 198$ $816 \pm 138$ $809 \pm 198$ $764 \pm 121$ $723 \pm 117$ $735 \pm 125$ | 18       22       26       30       34       38       42 $0 \pm$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ |

(HAN300)

 $\sim$ 

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

PAGE: 4

| roup Name                             | Adminis   | stration | (weeks)   |     |           |     |           |     |           |     |           |     |           |     |
|---------------------------------------|-----------|----------|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|
|                                       | 46        |          | 50        |     | 54        |     | 58        |     | 62        |     | 66        |     | 70        |     |
| · · · · · · · · · · · · · · · · · · · |           |          |           |     |           |     |           |     |           |     |           |     |           |     |
| Control                               | 0±        | 0        | $0\pm$    | 0   | 0±        | 0   | 0±        | 0   | 0±        | 0   | 0±        | 0   | 0±        | 0   |
| 5000 ppm                              | $361\pm$  | 48       | $345\pm$  | 46  | $339\pm$  | 39  | $342\pm$  | 37  | 360±      | 44  | 375±      | 50  | 375±      | 53  |
| 10000 ppm                             | 707±      | 104      | $696\pm$  | 103 | 686±      | 122 | $662\pm$  | 79  | 709±      | 81  | 728±      | 97  | 725±      | 105 |
| 20000 ppm                             | $1358\pm$ | 167      | $1298\pm$ | 151 | $1348\pm$ | 153 | $1327\pm$ | 156 | $1403\pm$ | 152 | $1388\pm$ | 171 | $1422\pm$ | 163 |

(HAN300)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

### CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

~\_\_\_\_

 $\overline{\phantom{a}}$ 

PAGE : 5

| Group Name | Adminis   | stration | (weeks)  |     |       |     |           |     |          |     |           |     |           |     |
|------------|-----------|----------|----------|-----|-------|-----|-----------|-----|----------|-----|-----------|-----|-----------|-----|
|            | 74        |          | 78       |     | 82    |     | 86        |     | 90       |     | 94        |     | - 98      |     |
| Control    | 0±        | 0        | 0±       | 0   | 0±    | 0   | 0±        | 0   | 0±       | 0   | 0±        | 0   | 0±        | 0   |
| 5000 ppm   | $381\pm$  | 64       | $401\pm$ | 80  | 406±  | 72  | · 374±    | 90  | 413±     | 94  | 430±      | 107 | 454±      | 123 |
| 10000 ppm  | 733±      | 147      | 793±     | 129 | 796±  | 143 | 793±      | 174 | $768\pm$ | 125 | 814±      | 133 | $864\pm$  | 148 |
| 20000 ppm  | $1446\pm$ | 158      | 1544±    | 210 | 1507± | 205 | $1410\pm$ | 239 | 1512±    | 231 | $1596\pm$ | 400 | $1589\pm$ | 293 |

(HAN300)

BAIS 4

.

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

### CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

~

PAGE : 6

| Group Name | Administ  | tration | (weeks)   |     |
|------------|-----------|---------|-----------|-----|
| •          | 102       |         | 104       |     |
|            |           |         |           |     |
| Control    | $0\pm$    | 0       | 0±        | 0   |
| 5000 ppm   | $432\pm$  | 111     | $434\pm$  | 123 |
| 10000 ppm  | 872±      | 175     | 874±      | 173 |
| 20000 ppm  | $1654\pm$ | 342     | $1665\pm$ | 388 |

(HAN300)

TABLE F 2

## CHEMICAL INTAKE CHANGES: FEMALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:EDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 7

1

| Group Name | Adminis   | stration | (weeks)  |     |           | •   |          |     |           |     |           |     |           |     |
|------------|-----------|----------|----------|-----|-----------|-----|----------|-----|-----------|-----|-----------|-----|-----------|-----|
|            | 1         |          | 2        |     | 3         |     | 4        |     | 5         |     | 6         |     | 7         |     |
|            |           |          |          |     |           |     |          |     |           |     |           |     |           |     |
| Control    | 0±        | 0        | 0±       | 0   | 0±        | 0   | 0±       | 0   | 0±        | 0   | 0±        | 0   | 0±        | 0   |
| 2500 ppm   | 484±      | 70       | 487±     | 69  | 471±      | 37  | 451±     | 47  | 436±      | 39  | 441±      | 48  | 459±      | 73  |
| 5000 թթա   | $948\pm$  | 97       | $917\pm$ | 90  | 909±      | 83  | $865\pm$ | 70  | $833\pm$  | 68  | 815±      | 79  | 879±      | 87  |
| 10000 ppm  | $1925\pm$ | 207      | 1830±    | 236 | $1809\pm$ | 225 | 1679±    | 216 | $1635\pm$ | 182 | $1639\pm$ | 181 | $1718\pm$ | 200 |
|            |           |          |          |     |           |     |          |     |           |     |           |     |           |     |

(HAN300)

 $\sim$ 

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg∕kg⁄day REPORT TYPE : A1 104 SEX : FEMALE

.

PAGE : 8

| Group Name | Adminis   | stration | (weeks)   |     |           |     |           |     |          |     |       |     |           |     |
|------------|-----------|----------|-----------|-----|-----------|-----|-----------|-----|----------|-----|-------|-----|-----------|-----|
|            | 8         |          | 9         |     | 10        |     | 11        |     | 12       |     | 13    |     | 14        |     |
| Control    | 0±        | 0        | 0±        | 0   | 0±        | 0   | 0±        | 0   | 0±       | 0   | .0±   | 0   | 0±        | 0   |
| 2500 ppm   | 419±      | 41       | 408±      | 70  | 395±      | 50  | 394±      | 45  | 387±     | 69  | 374±  | 56  | 368±      | 64  |
| 5000 ppm   | $835\pm$  | 98       | $785\pm$  | 140 | 763±      | 75  | 746±      | 77  | $763\pm$ | 81  | 713±  | 83  | 732±      | 105 |
| 10000 ppm  | $1649\pm$ | 173      | $1538\pm$ | 187 | $1561\pm$ | 193 | $1540\pm$ | 187 | 1494±    | 162 | 1444± | 194 | $1399\pm$ | 155 |
|            |           |          |           |     |           |     |           |     |          |     |       |     |           |     |

(HAN300)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 9

| Group Name | Admini    | stration | (weeks)   |     |           |     |           |     |          |     |           |     |           |     |
|------------|-----------|----------|-----------|-----|-----------|-----|-----------|-----|----------|-----|-----------|-----|-----------|-----|
|            | 18        |          | 22        |     | 26        |     | 30        |     | 34       |     | 38        |     | 42        |     |
| Control    | 0±        | 0        | 0±        | 0   | 0±        | 0   | 0±        | 0   | 0±       | 0   | 0±        | 0   | 0±        | 0   |
| 2500 ppm   | $360\pm$  | 57       | 341±      | 42  | 335±      | 60  | $316\pm$  | 48  | 308±     | 74  | 300±      | 48  | 288±      | 57  |
| 5000 yym   | $697\pm$  | 88       | $697\pm$  | 87  | 672±      | 85  | $606\pm$  | 93  | $629\pm$ | 97  | 611±      | 88  | 610±      | 143 |
| 10000 ppm  | $1386\pm$ | 154      | $1311\pm$ | 174 | $1332\pm$ | 365 | $1183\pm$ | 222 | 1191±    | 265 | $1135\pm$ | 195 | $1121\pm$ | 213 |

(HAN300)

 $\sim -$ 

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 10

| Group Name | Adminis | stration | (weeks)   |     |       |     |          |     |          |     |           |     |          |     |
|------------|---------|----------|-----------|-----|-------|-----|----------|-----|----------|-----|-----------|-----|----------|-----|
|            | 46      |          | 50        |     | 54    |     | 58       |     | 62       |     | 66        |     | 70       |     |
| Control    | 0±      | 0        | 0±        | 0   | 0±    | 0   | 0±       | 0   | 0±       | 0   | 0±        | 0   | 0±       | 0   |
| 2500 ppm   | 283±    | 61       | 269±      | 78  | 271±  | 79  | 261±     | 67  | $265\pm$ | 61  | 269±      | 75  | $267\pm$ | 47  |
| 5000 ppm   | 551±    | 122      | $535\pm$  | 95  | 532±  | 99  | $504\pm$ | 89  | $536\pm$ | 93  | $516\pm$  | 99  | $534\pm$ | 150 |
| 10000 ppm  | 1060土   | 210      | $1020\pm$ | 213 | 1041± | 192 | 994±     | 176 | $997\pm$ | 189 | $1006\pm$ | 200 | $936\pm$ | 176 |

(HAN300)

BAIS 4

-

### STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

### CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 11

| Group Name | Admini | stration | (weeks)   |     |       |     |           |     |          |     |           |     |          |     |
|------------|--------|----------|-----------|-----|-------|-----|-----------|-----|----------|-----|-----------|-----|----------|-----|
|            | 74     |          | 78        |     | 82    |     | 86        |     | 90       |     | 94        |     | 98       |     |
|            |        |          |           |     |       |     |           |     |          |     |           |     |          |     |
| Control    | 0±     | 0        | 0±        | 0   | 0±    | 0   | 0±        | 0   | 0±       | 0   | 0±        | 0   | 0±       | 0   |
| 2500 ppm   | 286±   | 73       | 275±      | 78  | 276±  | 78  | 247±      | 53  | $259\pm$ | 61  | 275±      | 64  | 288±     | 58  |
| 5000 ppm   | 523±   | 104      | 520±      | 117 | 543±  | 117 | $524\pm$  | 126 | 526±     | 151 | $545\pm$  | 128 | $561\pm$ | 133 |
| 10000 ppm  | 1008±  | 200      | $1048\pm$ | 259 | 1004± | 177 | $1006\pm$ | 248 | $978\pm$ | 286 | $1046\pm$ | 196 | 1049±    | 242 |

(HAN300)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

### CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 12

•

| Group Name | Admin<br>102 | nistration | (weeks)<br>104 |     |  | <br> |  | <br> |  |
|------------|--------------|------------|----------------|-----|--|------|--|------|--|
| Control    | 0±           | 0          | 0±             | 0   |  | <br> |  |      |  |
| 2500 ppm   | 281±         | 64         | 281±           | 104 |  |      |  |      |  |
| 5000 ppm   | 548±         | 131        | $548\pm$       | 152 |  |      |  |      |  |
| 10000 ppm  | 1145±        | 225        | $1220\pm$      | 353 |  |      |  |      |  |

(HAN300)

BAIS 4

.

## TABLE G 1

### HEMATOLOGY: MALE

| STUDY NO. : 0613<br>ANIMAL : MOUSE<br>MEASURE. TIME : 1 | B6D2F1/Cr1,j[Cr,j:BDF1] | HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W) |
|---------------------------------------------------------|-------------------------|--------------------------------------------|
| SEX : MALE                                              | REPORT TYPE : AI        |                                            |

PAGE : 1 )

| Group Name | NO. of<br>Animals | RED BLOOD CELL<br>1 0 <sup>6</sup> /µl | HEMOGLOBIN<br>g∕dl | HEMATOCRIT<br>% | MCV<br>f <b>l</b> | MCH<br>pg | MCHC<br>g∕dℓ | PLATELET<br>1 O³/µl |
|------------|-------------------|----------------------------------------|--------------------|-----------------|-------------------|-----------|--------------|---------------------|
| Control    | 35                | 9.25± 1.98                             | 13.5± 2.7          | 42.2± 7.2       | 46.4± 4.9         | 14.6± 0.8 | 31.7± 1.8    | $1653 \pm 373$      |
| 5000 ppm   | 32                | 9.06± 1.71                             | 13. $3\pm$ 2. 4    | 41.6± 6.6       | 46.6± 3.7         | 14.7± 0.6 | 31.7± 1.7    | 1577± 416           |
| 10000 ppm  | 36                | 9.45± 1.03                             | 13.8± 1.4          | 43.1± 3.8       | 45.8± 2.3         | 14.7± 0.8 | 32.0± 0.7    | 1579± 391           |
| 20000 ррт  | 39                | $9.56 \pm 0.54$                        | 14.1± 0.9          | 43.9± 2.4       | 46.0土 1.1         | 14.8± 0.4 | 32.2土 0.7    | $1548 \pm 334$      |

(HCL070)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

Significant difference ; \* :  $P \leq 0.05$ 

**\*\*** : P ≦ 0.01

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

SEX : MALE PAGE : 2 NO. of RETICULOCYTE Group Name Animals % 35  $3.5 \pm 3.7$ Control 3.6± 3.9 5000 ppm 32 10000 ppm 36 2.7± 1.0 20000 ppm 39 2.5 ± 0.9

.

Test of Dunnett

(HCL070)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE : 3

| NO. of<br>Animals | WBC<br>1 O <sup>3</sup> /µl | Dif<br>N-BAND                                                                                                                                      | ferential                                                                                                                                                                                                  | WBC (%<br>N-SEG                                                                                                                                                                                    | <b>6</b> )                                                                                                                                                                                                                                                                        | EOSINO                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   | BASO                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | MONO                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                          | LYMPHO                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                  | OTHER                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35                | . 4.62± 2.54                | $2\pm$                                                                                                                                             | 5                                                                                                                                                                                                          | 29±                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                | 2土                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                 | 0±                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | 4±                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62±                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                               | 1±                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32                | 4.31± 2.26                  | 1±                                                                                                                                                 | 3                                                                                                                                                                                                          | 25±                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                | 2±                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                 | 0±                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | 4±                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68±                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                               | 1±                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36                | 4.60± 2.66                  | 1±                                                                                                                                                 | 1                                                                                                                                                                                                          | 24±                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                | 3±                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                 | 0±                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | $5\pm$                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66±                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                               | 1±                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39                | 4.07± 2.05                  | 1±                                                                                                                                                 | 1                                                                                                                                                                                                          | 28±                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                | 2土                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                 | 0±                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | 4土                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        | $65\pm$                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                               | 0土                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Animals<br>35<br>32<br>36   | Animals         1 $0^3 / \mu \ell$ 35         . 4.62±         2.54           32         4.31±         2.26           36         4.60±         2.66 | Animals         1 $O^3 / \mu \ell$ N-BAND           35         . 4.62 ±         2.54         2 ±           32         4.31 ±         2.26         1 ±           36         4.60 ±         2.66         1 ± | Animals       1 $O^3 / \mu \ell$ N-BAND         35       . 4.62±       2.54       2±       5         32       4.31±       2.26       1±       3         36       4.60±       2.66       1±       1 | Animals         1 $0^3 / \mu^2$ N-BAND         N-SEG           35         . 4.62±         2.54         2±         5         29±           32         4.31±         2.26         1±         3         25±           36         4.60±         2.66         1±         1         24± | Animals         1 $0^3 / \mu \ell$ N-BAND         N-SEG           35         4.62±         2.54         2±         5         29±         13           32         4.31±         2.26         1±         3         25±         12           36         4.60±         2.66         1±         1         24±         10 | Animals         1 $0^3 / \mu \ell$ N-BAND         N-SEG         EOSINO           35         . 4.62 ±         2.54         2 ±         5         29 ±         13         2 ±           32         4.31 ±         2.26         1 ±         3         25 ±         12         2 ±           36         4.60 ±         2.66         1 ±         1         24 ±         10         3 ± | Animals         1 $0^3 / \mu^2$ N-BAND         N-SEG         EOSINO           35         4.62±         2.54         2±         5         29±         13         2±         1           32         4.31±         2.26         1±         3         25±         12         2±         1           36         4.60±         2.66         1±         1         24±         10         3±         3 | Animals       1 $0^3 / \mu^2$ N-BAND       N-SEG       EOSINO       BASO         35       . 4.62±       2.54       2±       5       29±       13       2±       1       0±         32       4.31±       2.26       1±       3       25±       12       2±       1       0±         36       4.60±       2.66       1±       1       24±       10       3±       3       0± | Animals       1 $0^3 / u^2$ N-BAND       N-SEG       EOSINO       BASO         35       4.62±       2.54       2±       5       29±       13       2±       1       0±       0         32       4.31±       2.26       1±       3       25±       12       2±       1       0±       0         36       4.60±       2.66       1±       1       24±       10       3±       3       0±       0 | Animals       1 $0^3 / \mu^2$ N-BAND       N-SEG       EOSINO       BASO       MONO         35       . 4.62±       2.54       2±       5       29±       13       2±       1       0±       0       4±         32       4.31±       2.26       1±       3       25±       12       2±       1       0±       0       4±         36       4.60±       2.66       1±       1       24±       10       3±       3       0±       0       5± | Animals     1 $0^3 / u^2$ N-BAND     N-SEG     EOSINO     BASO     MONO       35     4.62±     2.54     2±     5     29±     13     2±     1     0±     0     4±     2       32     4.31±     2.26     1±     3     25±     12     2±     1     0±     0     4±     2       36     4.60±     2.66     1±     1     24±     10     3±     3     0±     0     5±     2 | Animals $1 0^3 / u^2$ N-BAND       N-SEG       EOSINO       BASO       MONO       LYMPHO         35 $4.62 \pm 2.54$ $2 \pm 5$ $29 \pm 13$ $2 \pm 1$ $0 \pm 0$ $4 \pm 2$ $62 \pm$ 32 $4.31 \pm 2.26$ $1 \pm 3$ $25 \pm 12$ $2 \pm 1$ $0 \pm 0$ $4 \pm 2$ $68 \pm$ 36 $4.60 \pm 2.66$ $1 \pm 1$ $24 \pm 10$ $3 \pm 3$ $0 \pm 0$ $5 \pm 2$ $66 \pm$ 39 $4.07 \pm 2.05$ $1 \pm 1$ $28 \pm 16$ $2 \pm 1$ $0 \pm 0$ $4 \pm 2$ $65 \pm$ | Animals $1 \ 0^3 / \mu^2$ N-BAND       N-SEG       EOSINO       BASO       MONO       LYMPHO         35 $4.62 \pm 2.54$ $2\pm 5$ $29 \pm 13$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $62\pm 17$ 32 $4.31 \pm 2.26$ $1\pm 3$ $25\pm 12$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $68\pm 14$ 36 $4.60 \pm 2.66$ $1\pm 1$ $24\pm 10$ $3\pm 3$ $0\pm 0$ $5\pm 2$ $66\pm 11$ 39 $4.07 \pm 2.05$ $1\pm 1$ $28\pm 16$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $65\pm 16$ | Animals $1 \ 0^3 / \mu \ell$ N-BAND       N-SEG       EOSINO       BASO       MONO       LYMPHO       OTHER         35 $4.62 \pm 2.54$ $2\pm 5$ $29\pm 13$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $62\pm 17$ $1\pm$ 32 $4.31 \pm 2.26$ $1\pm 3$ $25\pm 12$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $68\pm 14$ $1\pm$ 36 $4.60 \pm 2.66$ $1\pm 1$ $24\pm 10$ $3\pm 3$ $0\pm 0$ $5\pm 2$ $66\pm 11$ $1\pm 3$ 39 $4.07 \pm 2.05$ $1\pm 1$ $28\pm 16$ $2\pm 1$ $0\pm 0$ $4\pm 2$ $65\pm 16$ $0\pm$ |

Significant difference ;  $*: P \leq 0.05$ \*\* : P ≦ 0.01 Test of Dunnett

(HCL070)

### TABLE G 2

## HEMATOLOGY: FEMALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

### HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

#### Group Name NO. of RED BLOOD CELL HEMOGLOBIN HEMATOCRIT MCV MCH MCHC PLATELET Animals 1 0<sup>6</sup>∕µl g∕dl % f L g∕dℓ $10^3/\mu\ell$ рg Control 27 9.44± 1.16 14.0± 1.8 43.8± 4.9 46.5 $\pm$ 1.5 14.8± 0.5 32.0± 1.1 967± 313 2500 ppm 258.76± 1.67 $13.2 \pm$ 2.241.8± 5.2 $48.8 \pm$ 6.8 15.2± 0.9 31.4± 2.1 $1012\pm$ 423 5000 ррт 30 9.46± 0.93 13.9± 1.5 43.3± 3.8 $45.9\pm$ 1.8 14.7± 0.6 32.1± 1.0 $980\pm$ 339 10000 ppm 18 9.25± 1.07 13.7± 1.9 42.5± 4.6 46.1± 2.2 14.8土 0.8 $32.2 \pm 1.1$ $1049\pm$ 250

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

Test of Dunnett

(HCL070)

BAIS 4

#### PAGE : 4

| STUDY NO. : 06<br>ANIMAL : MO<br>MEASURE. TIME | USE B6D2F1/Cr1j   | [Crj:BDF1]      |     | GY (SUMMARY)<br>Als (105W) |      |          |
|------------------------------------------------|-------------------|-----------------|-----|----------------------------|------|----------|
| SEX : FEMALE                                   | REPORT 7          | ГҮРЕ : АІ       |     |                            |      | PAGE : 5 |
| Group Name                                     | NO. of<br>Animals | RETICULOCY<br>% | re  |                            |      |          |
| Control                                        | 27                | 3.6± 2.         | 6   |                            |      |          |
| 2500 ppm                                       | 25                | 6.7± 10.        | 8   |                            |      |          |
| 5000 ppm                                       | 30                | 4.1± 4.         | . 2 |                            |      |          |
| 10000 ppm                                      | 18                | 4.0± 3.         | 8   |                            |      |          |
|                                                |                   |                 |     | <br>                       | <br> | <br>     |

Test of Dunnett

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01

(HCL070)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

ALL ANIMALS (105W)

 $\sim \sim$ 

#### NO. of WBC Differential WBC (%) Group Name Animals $10^3/\mu\ell$ N-SEG EOSINO BASO N-BAND Control 27 11.42± 36.08 $1\pm$ 1 $19\pm$ 8 $3\pm$ 4 $0\pm$

2500 ppm 2522.16± 96.11  $2\pm$  $28\pm$ 3 14  $3\pm$ 4 0± 0  $4\pm$ 2  $56\pm$ 20  $6\pm$ 5000 ppm 30 4.17± 2.97  $1\pm$  $21\pm$ 1 10  $1\pm$ 1  $0\pm$ 0  $4\pm$ 2  $68\pm$ 13  $5\pm$ 10000 ppm 18 3.46± 2.90  $1\pm$ 1  $27\pm$ 16  $2\pm$ 1  $0\pm$ 0  $5\pm$  $62\pm$ 18  $4\pm$ 2 **\*\*** : P ≦ 0.01 Test of Dunnett

Significant difference ;  $*: P \leq 0.05$ 

(HCL070)

BAIS 4



21

19

9

6

OTHER

 $7\pm$ 

.

MONO

 $4\pm$ 

2

0

LYMPHO

 $67\pm$ 

17

HEMATOLOGY (SUMMARY)

## TABLE H 1

# BIOCHEMISTRY: MALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

### BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

| SEX : MALE | REPORT 1          | YPE : A1              |                 |           |                      |                    |                        | PAGE :                |
|------------|-------------------|-----------------------|-----------------|-----------|----------------------|--------------------|------------------------|-----------------------|
| Group Name | NO. of<br>Animals | TOTAL PROTEIN<br>g∕dl | ALBUMIN<br>g∕dl | A/G RATIO | T-BILIRUBIN<br>mg∕dℓ | GLUCOSE<br>mg∕dl   | T−CHOLESTEROL<br>mg∕dl | TRIGLYCERIDE<br>mg∕dℓ |
| Control    | 35                | 5.0± 0.8              | 2.3± 0.4        | 0.9± 0.1  | 0.13± 0.03           | $156 \pm 52$       | 112± 41                | 46± 27                |
| 000 ppm    | 32                | 5.0 $\pm$ 0.8         | 2.4± 0.4        | 1.0± 0.2  | 0.13± 0.03           | 175± 38            | 110± 45                | 45± 22                |
| 0000 ppm   | 36                | 5.4± 0.9              | 2.6± 0.4        | 0.9± 0.1  | 0.13± 0.02           | 194± 26 <b>**</b>  | 127± 52                | 45± 18                |
| 20000 ppm  | 40                | 5.0 $\pm$ 0.5         | 2.4± 0.3        | 1.0± 0.1* | 0.13± 0.03           | 190± 41 <b>*</b> ≉ | $105 \pm 30$           | 44± 24                |

`~\_\_\_\_`

(HCL074)

BAIS 4

,

| SEX : MALE | REPORT 1          | TYPE : Al             |                      |             |             |              |               | PAGE : :            |
|------------|-------------------|-----------------------|----------------------|-------------|-------------|--------------|---------------|---------------------|
| Group Name | NO. of<br>Animals | PHOSPHOLIPID<br>mg∕dℓ | AST<br>I U∕ <b>£</b> | ALT<br>IU⁄£ | LDH<br>IU∕¢ | ALP<br>IU∕ℓ  | G-GTP<br>IU∕ℓ | CK<br>I U∕ <b>£</b> |
| Control    | 35                | 186± 61               | 174± 292             | 97± 169     | 571± 667    | 136± 48      | 1± 1          | 91± 115             |
| 5000 ppm   | 32                | 194± 72               | 74± 47               | 44± 73      | 424± 393    | 139± 131     | 1± 1          | 60± 33              |
| 10000 ppm  | 36                | 219± 67               | 98± 140              | 73± 132     | 452± 277    | 133± 43      | 1± 1          | $55\pm$ 23          |
| 20000 ppm  | 40                | 185± 40               | $79 \pm 103$         | 32± 44*     | 409± 192    | $135 \pm 35$ | 1± 1          | $59\pm$ 30          |

Significant difference ; \* :  $P \leq 0.05$ \*\* : P ≦ 0.01

(HCL074)

Test of Dunnett

BAIS 4

# BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

 $\sim$  .

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

 $\sim$ 

|            |                   |                        |                         |   |                 |      | •                 |   |                  |     |                  |                |  |
|------------|-------------------|------------------------|-------------------------|---|-----------------|------|-------------------|---|------------------|-----|------------------|----------------|--|
| Group Name | NO. of<br>Animals | UREA NITROGEN<br>mg∕d£ | SODIUM<br>mEq⁄ <b>L</b> |   | POTASSI<br>mEq/ |      | CHLORIDE<br>mEq⁄£ |   | CALCIUN<br>mg∕dℓ | [   | INORGAN<br>mg∕dl | VIC PHOSPHORUS |  |
| Control    | 35                | 28.6± 21.1             | 154土                    | 2 | 4.6±            | 0.9  | $122\pm$          | 5 | 8.7±             | 0.5 | 6.1±             | 0.9            |  |
| 000 ppm    | 32                | 24.4± 9.9              | $153\pm$                | 3 | 4.2±            | 0.3* | $121\pm$          | 4 | 8.7±             | 0.4 | 5.8±             | 0.8            |  |
| mqq 0000   | 36                | 22.5± 3.4              | $153\pm$                | 2 | 4.2±            | 0.3  | 120±              | 3 | 8.9±             | 0.6 | 5.7±             | 0.6            |  |
| 0000 ppm   | 40                | 22.7± 10.1*            | $153\pm$                | 2 | 4.3±            | 0.3  | $121\pm$          | 2 | $8.6\pm$         | 0.3 | 5.8±             | 0.8            |  |

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

Test of Dunnett

~~

(HCL074)

### TABLE H 2

# BIOCHEMISTRY: FEMALE

STUDY NO. : 0613 BIOCHEMISTRY (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (105W) MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1

.

PAGE: 4

| Group Name | NO. of<br>Animals | TOTAL H<br>g∕dl | PROTEIN | ALBUMIN<br>g∕dl | I    | A/G RAT | 10  | T-BILI<br>mg∕dℓ |       | GLUCOSE<br>mg∕dl |    | T−CHOLE<br>mg∕dℓ | STEROL | TRIGLYC<br>mg∕d£ | ERIDE |
|------------|-------------------|-----------------|---------|-----------------|------|---------|-----|-----------------|-------|------------------|----|------------------|--------|------------------|-------|
| ontrol     | 28                | 5.0土            | 0. 6    | 2.5±            | 0. 3 | 1.0土    | 0.2 | 0.14±           | 0.05  | 134±             | 31 | 82土              | 28     | 52±              | 38    |
| 2500 ppm   | 25                | 5.2±            | 0.9     | 2.5±            | 0.3  | 1.0±    | 0.3 | 0.18±           | 0.17  | $136\pm$         | 30 | 86±              | 36     | 37±              | 21    |
| 5000 ppm   | 31                | 4.9±            | 0.4     | 2.5±            | 0.2  | 1.0±    | 0.2 | 0.14±           | 0.05  | 138±             | 37 | 74±              | 25     | 36±              | 20    |
| 10000 ppm  | 19                | 5.1±            | 0.5     | $2.5\pm$        | 0.2  | 1.0±    | 0.2 | 0.13±           | 0. 03 | 147±             | 20 | $82\pm$          | 24     | $38\pm$          | 25    |

### 

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 DEDODT TYDE

### BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

----

| SEX : FEMALE | REPORT 1          | ГҮРЕ : АІ             |              |        |          |             |               | PAGE : 5            |
|--------------|-------------------|-----------------------|--------------|--------|----------|-------------|---------------|---------------------|
| Group Name   | NO. of<br>Animals | PHOSPHOLIPID<br>mg∕dl | AST<br>IU∕₽  |        |          | ALP<br>IU∕₽ | G−GTP<br>IU∕£ | ск<br>I U∕ <b>£</b> |
| Control      | 28                | $145 \pm 42$          | $141\pm$ 156 | 53± 40 | 467± 266 | $234\pm159$ | 1± 1          | 82± 45              |
| 2500 ppm     | 25                | 151± 65               | 127± 99      | 60± 63 | 719± 872 | 173± 70     | 1± 1          | $118 \pm 153$       |
| 5000 ppm     | 31                | 138± 39               | 142± 142     | 52± 60 | 602± 648 | 194± 79     | 1± 1          | 97± 91              |
| 10000 ppm    | 19                | 149± 36               | 100± 45      | 29± 9  | 573± 631 | 170± 67     | 1± 0          | 104土 60             |
|              |                   |                       |              |        |          |             |               |                     |

Test of Dunnett

 $\sim \sim$ 

Significant difference ; \* :  $P \leq 0.05$ **\*\*** : P ≦ 0.01

(HCL074)

 STUDY NO. : 0613

 ANIMAL
 : MOUSE B6D2F1/Cr1j[Cr.j:BDF1]

 MEASURE. TIME : 1

 SEX : FEMALE
 REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

 $\sim \sim$ 

#### NO. of UREA NITROGEN SODIUM Group Name POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg∕dℓ mEq∕ℓ mEq∕**ℓ** mEq∕ℓ mg∕dl mg∕dℓ Control 2816.8± 5.9 $152\pm$ 2 4.2± 0.4 $121\pm$ 3 9.0± 0.4 6.1± 1.1 2500 ppm 2520.7± 11.6 $152\pm$ 2 4.3± 0.5 $121\pm$ 3 $9.0\pm$ 0.5 6.3± 1.5 5000 ppm 31 19.0± 10.0 $152\pm$ 2 4.3± 0.6 $121\pm$ 2 $8.9\pm$ 0.4 6.3± 1.3 10000 ppm 19 18.0± 4.4 $151\pm$ 2 4.1± 0.4 $120\pm$ 3 8.8± 0.5 5.9± 1.0

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HCL074)

BAIS 4

#### PAGE : 6

# TABLE I 1

# URINALYSIS: MALE

| roup Name  | NO. of  | pH_ |   |     |     |     |     |     |     | Protein       |     | <u>(1)</u>                                                                              | Katana ka ka                        | 0 1 1 1 1                           |
|------------|---------|-----|---|-----|-----|-----|-----|-----|-----|---------------|-----|-----------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| noup walle | Animals |     |   | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | CHI | $-\pm+2+3+4+$ | CHI | $\begin{array}{rrrr} \text{Glucose}_{-} \\ - \pm + 2 + 3 + 4 + \end{array}  \text{CHI}$ | Ketone body $ \pm$ $+$ 2+ 3+ 4+ CHI | Occult blood<br>$- \pm + 2+ 3+$ CHI |
|            |         |     |   |     |     |     |     |     |     |               |     |                                                                                         |                                     |                                     |
| ontrol     | 33      | 0   | 3 | 9   | 8   | 12  | 1   | 0   |     | 0 17 14 1 1 0 |     | 33 0 0 0 0 0                                                                            | 15 9 9 0 0 0                        | 27 0 1 1 4                          |
| 000 ppm    | 33      | 0   | 1 | 11  | 17  | 4   | 0   | 0   |     | 0 10 16 6 1 0 |     | 33 0 0 0 0 0                                                                            | 8 12 12 1 0 0                       | 29 0 0.0 4                          |
| 0000 ppm   | 36      | 0   | 3 | 16  | 15  | 2   | 0   | 0   | *   | 0 4 18 14 0 0 | **  | 36 0 0 0 0 0                                                                            | 8 12 14 2 0 0                       | 32 0 0 0 4                          |
| 000 ppm    | 40      | 0   | 4 | 25  | 9   | 2   | 0   | 0   | **  | 0 10 26 4 0 0 |     | 40 0 0 0 0 0                                                                            | 12 12 16 0 0 0                      | 38 0 0 0 2                          |

(HCL101)

| Group Name | NO. of<br>Animals | Urobilinogen<br>± + 2+ 3+ 4+ CHI      |      |     |                                       |  |
|------------|-------------------|---------------------------------------|------|-----|---------------------------------------|--|
|            |                   | · · · · · · · · · · · · · · · · · · · | <br> | *** | · · · · · · · · · · · · · · · · · · · |  |
| Control    | 33                | 33 0 0 0 0                            |      |     |                                       |  |
| 5000 ppm   | 33                | 33 0 0 0 0                            |      |     |                                       |  |
| 10000 ppm  | 36                | 36 0 0 0 0                            |      |     |                                       |  |
| 20000 ppm  | 40                | 40 0 0 0 0                            |      |     |                                       |  |

 $\sim$ 

# TABLE I 2

# URINALYSIS: FEMALE

| roup Name | NO. of  | pH_  |     |     |     |     |     |     |     | Protein            | Glucose          | Ketone body        | Occult blood       |
|-----------|---------|------|-----|-----|-----|-----|-----|-----|-----|--------------------|------------------|--------------------|--------------------|
|           | Animals | 5. 0 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | CHI | - ± + 2+ 3+ 4+ CHI | ± + 2+ 3+ 4+ CHI | - ± + 2+ 3+ 4+ CHI | $-\pm$ + 2+ 3+ CHI |
| ontrol    | 30      | 0    | 2   | 4   | 0   | 9   | 11  | 4   |     | 0 4 15 9 2 0       | 30 0 0 0 0 0     | 6 18 3 3 0 0       | 25 0 0 4 1         |
| 500 ppm   | 26      | 0    | 3   | 6   | 6   | 5   | 5   | 1   | *   | 0 1 7 17 1 0       | 26 0 0 0 0 0     | 1 15 6 4 0 0       | 17 1 4 1 3         |
| 000 ppm   | 32      | 0    | 2   | 4   | 5   | 11  | 9   | 1   |     | 0 1 18 12 1 0      | 32 0 0 0 0 0     | 0 18 10 4 0 0 *    | 28 0 1 0 3         |
| 0000 ppm  | 21      | 0    | 1   | 2   | 6   | 10  | 1   | 1   | **  | 0 1 10 8 2 0       | 21 0 0 0 0 0     | 2 12 4 3 0 0       | 20 0 0 0 1         |

~~

(HCL101)

|                               | DUSE B6D2F1/Cr1   | j[Crj:BDF1]                      | URINALYSIS | S |                                       |      |            |
|-------------------------------|-------------------|----------------------------------|------------|---|---------------------------------------|------|------------|
| MEASURE. TIME<br>SEX : FEMALE |                   | TYPE : AI                        |            |   |                                       |      | PAGE : 4   |
| Group Name                    | NO. of<br>Animals | Urobilinogen<br>± + 2+ 3+ 4+ CHI |            |   |                                       |      |            |
|                               |                   |                                  |            |   |                                       |      | <br>·      |
| Control                       | 30                | 30 0 0 0 0                       |            |   |                                       |      |            |
| 2500 ppm                      | 26                | 26 0 0 0 0                       |            |   |                                       |      |            |
| 5000 ppm                      | 32                | 32 0 0 0 0                       |            |   |                                       |      |            |
| 10000 ppm                     | 21                | 21 0 0 0 0                       |            |   |                                       |      |            |
|                               |                   |                                  |            |   |                                       | <br> |            |
| Significar                    | nt difference     | $* : P \leq 0.05$ ** : P         | ≦ 0.01     |   | Test of CHI SQUARE                    |      |            |
| (HCL101)                      |                   |                                  |            |   | · · · · · · · · · · · · · · · · · · · | <br> | <br>BAIS 4 |

 $\sim$ 

TABLE J 1

# GROSS FINDINGS: MALE: ALL ANIMALS

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

# GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0-105W)

| EX :       | MALE                       |                              |                   |                    |                      | PAGE :              |
|------------|----------------------------|------------------------------|-------------------|--------------------|----------------------|---------------------|
| rgan       | Findings                   | Group Name<br>NO. of Animals | Control<br>50 (%) | 5000 ppm<br>50 (%) | 10000 ppm<br>·50 (%) | 20000 ppm<br>50 (%) |
| lin (ann   | -                          |                              | D ( 1)            |                    |                      |                     |
| kin/app    | erosion                    |                              | 2 (4)             | 0 ( 0)             | 0 ( 0)               | 0 ( 0)              |
|            | scab                       |                              | 1 ( 2)            | 3 (6)              | 1 ( 2)               | 1 (2)               |
| ubcutis    | edema                      |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)               | 1 (2)               |
|            | mass                       |                              | 4 (8)             | 2 ( 4)             | 1 (2)                | 0 ( 0)              |
| ung        | red                        |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)               | 1 ( 2)              |
|            | white zone                 |                              | 0 ( 0)            | 0 ( 0)             | 1 ( 2)               | 0 ( 0)              |
|            | red zone                   |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)               | 0 ( 0)              |
|            | nodule                     |                              | 9 (18)            | 12 (24)            | 9 (18)               | 9 (18)              |
|            | adhesion                   |                              | 1 (2)             | 0 ( 0)             | 0 ( 0)               | 0 ( 0)              |
| ymph node  | enlarged                   |                              | 13 (26)           | 6 (12)             | 3 (6)                | 5 (10)              |
| •          | nodule                     |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)               | 0 ( 0)              |
| pleen      | enlarged                   |                              | 8 (16)            | 1 (2)              | 1 (2)                | 2 (4)               |
|            | white zone                 |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)               | 1 ( 2)              |
|            | red zone                   |                              | 1 (2)             | 0 ( 0)             | 0 ( 0)               | 0 ( 0)              |
|            | black zone                 |                              | 1 (2)             | 0 ( 0)             | 0 ( 0)               | 2 ( 4)              |
|            | nodule                     |                              | 2 (4)             | 0 ( 0)             | 3 (6)                | 2 (4)               |
|            | deformed                   |                              | 0 ( 0)            | 1 (2)              | 1 (2)                | 0 ( 0)              |
|            | accentuation of white pulp |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)               | 1 (2)               |
| eart       | white zone                 |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)               | 1 (2)               |
| alivary gl | nodule                     |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)               | 0 ( 0)              |
| orestomach | nodule                     |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)               | 1 (2)               |
|            | thick                      |                              | 1 (2)             | 0 ( 0)             | 0 ( 0)               | 0 ( 0)              |

(HPT080)

#### STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

# GROSS FINDINGS (SUMMARY)

# ALL ANIMALS (0-105W)

| SEX :       | MALE                   | <br>                             |                   |                    |                     | PAGE : 2            |
|-------------|------------------------|----------------------------------|-------------------|--------------------|---------------------|---------------------|
| Organ       | Findings               | <br>Group Name<br>NO. of Animals | Control<br>50 (%) | 5000 ppm<br>50 (%) | 10000 ppm<br>50 (%) | 20000 ppm<br>50 (%) |
| gl stomach  | thick                  |                                  | 1 (2)             | 2 (4)              | 2 (4)               | 0 ( 0)              |
| duodenum    | nodule                 |                                  | 1 (2)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| small intes | nodule                 |                                  | 0 ( 0)            | 0 ( 0)             | 2 ( 4)              | 0 ( 0)              |
|             | dilated                |                                  | 0 ( 0)            | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
|             | thick                  |                                  | 1 (2)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| liver       | enlarged               | Ŷ                                | 1 (2)             | 1 ( 2)             | 0 ( 0)              | 2 ( 4)              |
|             | white zone             |                                  | 7 (14)            | 4 ( 8)             | 1 (2)               | 1 (2)               |
|             | red zone               |                                  | 2 (4)             | 2 ( 4)             | 2 (4)               | 4 ( 8)              |
|             | yellow zone            |                                  | 1 (2)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
|             | nodule                 |                                  | 17 (34)           | 18 (36)            | 19 (38)             | 11 (22)             |
|             | cyst .                 |                                  | 0 ( 0)            | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| pancreas    | nodule                 |                                  | 0 ( 0)            | 1 ( 2)             | 0 ( 0)              | 1 (2)               |
| kidney      | enlarged               |                                  | 0 ( 0)            | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
|             | white zone             |                                  | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (2)               |
|             | hydronephrosis         |                                  | 1 (2)             | 3 ( 6)             | 4 ( 8)              | 0 ( 0)              |
| urin bladd  | nodule                 |                                  | 1 (2)             | 0 ( 0)             | 1 ( 2)              | 0 ( 0)              |
|             | urine:marked retention |                                  | 3 (6)             | 1 ( 2)             | 1 (2)               | 0 ( 0)              |
| pituitary   | enlarged               |                                  | 0 ( 0)            | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| thyroid     | enlarged               |                                  | 1 (2)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| testis      | enlarged               |                                  | 1 (2)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
|             | small                  |                                  | 0 ( 0)            | 0 ( 0)             | 2 ( 4)              | 1 ( 2)              |
| epididymis  | nodule                 |                                  | 2 (4)             | 1 ( 2)             | 1 ( 2)              | 0 ( 0)              |

-

# GROSS FINDINGS (SUMMARY)

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

# ALL ANIMALS (0-105W)

| gah       | Findings      | Group Name Control<br>NO. of Animals 50 (%) | 5000 ppm<br>50 (%) | 10000 ppm<br>50 (%) | 20000 ppm<br>50 (%) |
|-----------|---------------|---------------------------------------------|--------------------|---------------------|---------------------|
| min ves   | red           | 0 ( 0)                                      | 1 (2)              | 0 ( 0)              | 0 ( 0)              |
| ep/cli gl | nodule        | 0 ( 0)                                      | 1 ( 2)             | 1 ( 2)              | 0 ( 0)              |
| in        | enlarged      | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| riph nerv | nodule        | 0 ( 0)                                      | 0 ( 0)             | 1 ( 2)              | 0 ( 0)              |
| der gl    | enlarged      | 0 ( 0)                                      | 0 ( 0)             | 1 (2)               | 1 ( 2)              |
|           | nodule        | 2 (4)                                       | 2 ( 4)             | 1 ( 2)              | 0 ( 0)              |
| cle       | nodule        | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| э         | nodule        | 1 ( 2)                                      | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| ıra       | nodule        | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| iastinum  | mass          | 1 (2)                                       | 0 ( 0)             | 1 ( 2)              | 0 ( 0)              |
| itoneum   | nodule        | 1 (2)                                       | 0 ( 0)             | 1 ( 2)              | 1 (2)               |
| roperit   | mass          | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| ominal c  | ascites       | 1 (2)                                       | 2 ( 4)             | 1 (2)               | 0 ( 0)              |
| racic ca  | hemorrhage    | 0 ( 0)                                      | 2 ( 4)             | 1 ( 2)              | 1 ( 2)              |
| ·         | pleural fluid | 3 (6)                                       | 3 ( 6)             | 1 ( 2)              | 2 ( 4)              |
| er        | ulcer         | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
|           | tail:nodule   | 1 (2)                                       | 2 ( 4)             | 1 ( 2)              | 0 ( 0)              |
|           | ear:nodule    | 1 (2)                                       | 0 ( 0)             | 0 ( 0)              | 1 ( 2)              |
|           | nose:elevated | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)              | 0 ( 0)              |
| le body   | anemic        | 0 ( 0)                                      | 1 (2)              | 0 ( 0)              | 0 ( 0)              |

(HPT080)

TABLE J 2

# GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

#### STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

# GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| SEX :       | MALE       |                                       |                              |                   |                    |                     | PAGE : 1           |
|-------------|------------|---------------------------------------|------------------------------|-------------------|--------------------|---------------------|--------------------|
| Organ       | Findings   | · · · · · · · · · · · · · · · · · · · | Group Name<br>NO. of Animals | Control<br>15 (%) | 5000 ppm<br>17 (%) | 10000 ppm<br>14 (%) | 20000 ppm<br>9 (%) |
|             |            |                                       |                              |                   |                    |                     |                    |
| skin/app    | scab       |                                       |                              | 0 ( 0)            | 1 ( 6)             | 0 ( 0)              | 0 ( 0)             |
| subcutis    | edema      |                                       |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (11)             |
|             | mass       |                                       |                              | 2 (13)            | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
| lung        | red        |                                       |                              | 0 ( 0)            | 1 ( 6)             | 0 ( 0)              | 1 (11)             |
|             | white zone |                                       |                              | 0 ( 0)            | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
|             | red zone   |                                       |                              | 0 ( 0)            | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
|             | nodule     |                                       |                              | 2 (13)            | 4 (24)             | 3 (21)              | 3 (33)             |
|             | adhesion   |                                       |                              | 1 (7)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| lymph node  | enlarged   |                                       |                              | 6 (40)            | 4 (24)             | 2 (14)              | 0 ( 0)             |
| spleen      | enlarged   |                                       |                              | 5 (33)            | 0 ( 0)             | 0 ( 0)              | 2 (22)             |
|             | white zone |                                       |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (11)             |
|             | nodule     |                                       |                              | 1 (7)             | 0 ( 0)             | 2 (14)              | 0 ( 0)             |
| heart       | white zone |                                       |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (11)             |
| forestomach | thick      |                                       |                              | 1 (7)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| gl stomach  | thick      |                                       |                              | 1 (7)             | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| duodenum    | nodule     |                                       |                              | 1 (7)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| small intes | nodule     |                                       |                              | 0 ( 0)            | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
|             | thick      |                                       |                              | 1 (7)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| liver       | enlarged   |                                       |                              | 1 (7)             | 0 ( 0)             | 0 ( 0)              | 2 (22)             |
|             | -          |                                       |                              |                   |                    | ,                   | u ( 55,            |

3 (20)

1 (7)

8 (53)

2 (12)

1 ( 6)

7 (41)

0 ( 0)

0 ( 0)

6 (43)

white zone

red zone

nodule

1 (11)

2 (22)

7 (78)

#### STUDY NO. : 0613 : MOUSE B6D2F1/Cr1j[Crj:BDF1] ANIMAL REPORT TYPE : A1

## GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : MALE

| Organ       | Findings               | Group Name Control<br>NO. of Animals 15 (%) | 5000 ppm<br>17 (%) | 10000 ppm<br>14 (%) | 20000 ppm<br>9 (%) |
|-------------|------------------------|---------------------------------------------|--------------------|---------------------|--------------------|
| kidney      | enlarged               | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
|             | white zone             | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)              | 1 (11)             |
|             | hydronephrosis         | 1 (7)                                       | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| urin bladd  | nodule                 | 1 ( 7)                                      | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
|             | urine:marked retention | 3 (20)                                      | 1 (6)              | 1 (7)               | 0 ( 0)             |
| pituitary   | enlarged               | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| thyroid     | enlarged               | 1 (7)                                       | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| testis      | enlarged               | 1 (7)                                       | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
|             | small                  | 0 ( 0)                                      | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
| epididymis  | nodule                 | 1 (7)                                       | 1 ( 6)             | 1 (7)               | 0 ( 0)             |
| semin ves   | red                    | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| prep/cli gl | nodule                 | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| brain       | enlarged               | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| periph nerv | nodule                 | 0 ( 0)                                      | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
| Harder gl   | enlarged               | 0 ( 0)                                      | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
|             | nodule                 | 1 (7)                                       | 0 ( 0)             | 0 ( 0)              | 0 ( 0)             |
| muscle      | nodule                 | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| pleura      | nodule                 | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| mediastinum | mass                   | 1 ( 7)                                      | 0 ( 0)             | 1 (7)               | 0 ( 0)             |
| retroperit  | mass                   | 0 ( 0)                                      | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| abdominal c | ascites                | 1 (7)                                       | 1 ( 6)             | 1 (7)               | 0 ( 0)             |
| thoracic ca | hemorrhage             | 0 ( 0)                                      | 2 (12)             | 1 (7)               | 1 (11)             |

PAGE : 2

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

## SEX : MALE

## GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

5

| rgan       | Findings      | Group Name<br>NO. of Animals | Control<br>15 (%) | 5000 ppm<br>17 (%) | 10000 ppm<br>14 (%) | 20000 ppm<br>9 (%) |
|------------|---------------|------------------------------|-------------------|--------------------|---------------------|--------------------|
|            |               |                              |                   |                    | · · · · · ·         |                    |
| noracic ca | pleural fluid |                              | 3 (20)            | 3 (18)             | 1 (7)               | 0 ( 0)             |
| her        | tail:nodule   |                              | 0 ( 0)            | 1 ( 6)             | 0 ( 0)              | 0 ( 0)             |
|            | ear:nodule    |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (11)             |
|            | nose:elevated |                              | 0 ( 0)            | 1 (6)              | 0 ( 0)              | 0 ( 0)             |
| ole body   | anemic        |                              | 0 ( 0)            | 1 (6)              | 0 ( 0)              | 0 ( 0)             |

(HPT080)

BAIS 4

e

PAGE : 3

TABLE J 3

# GROSS FINDINGS: MALE: SACRIFICED ANIMALS

# STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

# GROSS FINDINGS (SUMMARY)

# SACRIFICED ANIMALS (105W)

· \_\_\_\_

SEX : MALE

|             |                            |                              |                   |                    |                     | 1100 1              |
|-------------|----------------------------|------------------------------|-------------------|--------------------|---------------------|---------------------|
| Organ       | Findings                   | Group Name<br>NO. of Animals | Control<br>35 (%) | 5000 ррш<br>33 (%) | 10000 ppm<br>36 (%) | 20000 ppm<br>41 (%) |
| skin/app    | erosion                    |                              | 2 (6)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
|             | scab                       |                              | 1 (3)             | 2 ( 6)             | 1 ( 3)              | 1 ( 2)              |
| subcutis    | mass                       |                              | 2 ( 6)            | 2 ( 6)             | 0 ( 0)              | 0 ( 0)              |
| lung        | nodule                     |                              | 7 (20)            | 8 (24)             | 6 (17)              | 6 (15)              |
| lymph node  | enlarged                   |                              | 7 (20)            | 2 ( 6)             | 1 ( 3)              | 5 (12)              |
|             | nodule                     |                              | 0 ( 0)            | 1 ( 3)             | 0 ( 0)              | 0 ( 0)              |
| spleen      | enlarged                   |                              | 3 (9)             | 1 ( 3)             | 1 (3)               | 0 ( 0)              |
|             | red zone                   |                              | 1 (3)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
|             | black zone                 |                              | 1 (3)             | 0 ( 0)             | 0 ( 0)              | 2 ( 5)              |
|             | nodule                     |                              | 1 (3)             | 0 ( 0)             | 1 ( 3)              | 2 ( 5)              |
|             | deformed                   |                              | 0 ( 0)            | 1 ( 3)             | 1 ( 3)              | 0 ( 0)              |
|             | accentuation of white pulp |                              | 0 ( 0)            | 1 (3)              | 0 ( 0)              | 1 ( 2)              |
| salivary gl | nodule                     |                              | 0 ( 0)            | 1 ( 3)             | 0 ( 0)              | 0 ( 0)              |
| forestomach | nodule                     |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 ( 2)              |
| gl stomach  | thick                      |                              | 0 ( 0)            | 1 ( 3)             | 2 ( 6)              | 0 ( 0)              |
| small intes | nodule                     |                              | 0 ( 0)            | 0 ( 0)             | 1 ( 3)              | 0 ( 0)              |
|             | dilated                    |                              | 0 ( 0)            | 1 ( 3)             | 0 ( 0)              | 0 ( 0)              |
| liver       | enlarged                   |                              | 0 ( 0)            | 1 (3)              | 0 ( 0)              | 0 ( 0)              |
|             | white zone                 |                              | 4 (11)            | 2 ( 6)             | 1 ( 3)              | 0 ( 0)              |
|             | red zone                   |                              | 1 (3)             | 1 ( 3)             | 2 ( 6)              | 2 ( 5)              |
|             | yellow zone                |                              | 1 (3)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
|             | nodule                     |                              | 9 (26)            | 11 ( 33)           | 13 (36)             | 4 (10)              |
|             |                            |                              |                   |                    |                     |                     |

BAIS 4

PAGE : 1

# GROSS FINDINGS (SUMMARY)

# SACRIFICED ANIMALS (105W)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

-

| Organ       | Findings       | Group Name<br>NO. of Animals | Control<br>35 (%) | 5000 ppm<br>33 (%) | 10000 ppm<br>36 (%) | 20000 ppm<br>41 (%) |
|-------------|----------------|------------------------------|-------------------|--------------------|---------------------|---------------------|
| liver       | cyst           |                              | 0 ( 0)            | 1 (3)              | 0 (* 0)             | 0 ( 0)              |
| pancreas    | nodule         |                              | 0 ( 0)            | 1 ( 3)             | 0 ( 0)              | 1 (2)               |
| kidney      | hydronephrosis |                              | 0 ( 0)            | 3 (9)              | 4 (11)              | 0 ( 0)              |
| testis      | small          |                              | 0 ( 0)            | 0 ( 0)             | 1 ( 3)              | 1 (2)               |
| epididymis  | nodule         |                              | 1 (3)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| prep/cli gl | nodule         |                              | 0 ( 0)            | 0 ( 0)             | 1 (3)               | 0 ( 0)              |
| Harder gl   | enlarged       |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 1 (2)               |
|             | nodule         |                              | 1 (3)             | 2 ( 6)             | 1 ( 3)              | 0 ( 0)              |
| oone        | nodule         |                              | 1 ( 3)            | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |
| peritoneum  | nodule         |                              | 1 (3)             | 0 ( 0)             | 1 ( 3)              | 1 ( 2)              |
| abdominal c | ascites        |                              | 0 ( 0)            | 1 ( 3)             | 0 ( 0)              | 0 ( 0)              |
| thoracic ca | pleural fluid  |                              | 0 ( 0)            | 0 ( 0)             | 0 ( 0)              | 2 (5)               |
| other       | ulcer          |                              | 0 ( 0)            | 1 ( 3)             | 0 (0)               | 0 ( 0)              |
|             | tail:nodule    |                              | 1 (3)             | 1 ( 3)             | 1 (3)               | 0 ( 0)              |
|             | ear:nodule     |                              | 1 (3)             | 0 ( 0)             | 0 ( 0)              | 0 ( 0)              |

(HPT080)

BAIS 4

PAGE : 2

TABLE J 4

# GROSS FINDINGS: FEMALE: ALL ANIMALS

# STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

#### GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

-----

#### Group Name Control 2500 ppm 5000 ppm 10000 ppm Findings\_ NO. of Animals 50 (%) Organ\_ 50 (%) 50 (%) 50 (%) skin/app nodule 1 (2) 0 ( 0) 1 (2) 0 ( 0) erosion 1 (2) 0 (0) 0 ( 0) 0 ( 0) subcutis edema 4 (8) 3 (6) 5 (10) 7 (14) mass 3 (6) 5 (10) 1 (2) 3 (6) lung white zone 0 ( 0) 1 (2) 0 ( 0) 0 ( 0) red zone 1 (2) 0 ( 0) 1 (2) 1 (2) nodule 2 (4) 3 (6) 0 ( 0) 3 (6) lymph node enlarged 7 (14) 13 (26) 13 (26) 14 (28) spleen enlarged 10 (20) 9 (18) 10 (20) 12 (24) white zone 0 ( 0) 0 ( 0) 0 ( 0) 1 (2) nodule 1 (2) 0 ( 0) 0 ( 0) 1 (2) deformed 0 ( 0) 0 ( 0) 1 (2) 0 ( 0) accentuation of white pulp 1 (2) 0 ( 0) 0 ( 0) 0 ( 0) salivary gl nodule 1 (2) 0 ( 0) 0 ( 0) 0 ( 0) forestomach nodule 0 ( 0) 1 (2) 0 ( 0) 0 ( 0) gl stomach ulcer 1 (2) 0 ( 0) 0 ( 0) 0 ( 0) liver enlarged 4 (8) 4 (8) 0 ( 0) 2 (4) white zone 7 (14) 9 (18) 4 (8) 7 (14) red zone 6 (12) 4 (8) 3 (6) 1 (2) nodule 5 (10) 4 (8) 9 (18) 4 (8) pancreas red 0 ( 0) 0 ( 0) 0 ( 0) 1 (2)

1 (2)

0 ( 0)

0 ( 0)

PAGE : 4

(HPT080)

kidney

pale

0 ( 0)

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

# GROSS FINDINGS (SUMMARY)

# ALL ANIMALS (0-105W)

~

| Organ      | Findings               | Group Name Control<br>NO. of Animals 50 (%) | 2500 ppm<br>50 (%) | 5000 ppm<br>50 (%) | 10000 ppm<br>50 (%) |
|------------|------------------------|---------------------------------------------|--------------------|--------------------|---------------------|
| kidney     | white                  | 0 ( 0)                                      | 1 (2)              | 0 ( 0)             | 0 ( 0)              |
|            | nodule                 | 0 ( 0)                                      | 1 ( 2)             | 1 ( 2)             | 1 ( 2)              |
|            | hydronephrosis         | 4 ( 8)                                      | 4 ( 8)             | 2 ( 4)             | 5 (10)              |
| rin bladd  | urine marked retention | 2 ( 4)                                      | 2 ( 4)             | 0 ( 0)             | 1 (2)               |
| oituitary  | enlarged               | 2 ( 4)                                      | 4 ( 8)             | 2 ( 4)             | 2 (4)               |
|            | red zone               | 1 ( 2)                                      | 3 (6)              | 1 (2)              | 1 (2)               |
|            | nodule                 | 5 (10)                                      | 2 ( 4)             | 2 (4)              | 2 (4)               |
| hyroid     | enlarged               | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (2)               |
| vary       | enlarged               | 3 ( 6)                                      | 7 (14)             | 8 (16)             | 5 (10)              |
|            | cyst                   | 4 ( 8)                                      | 2 ( 4)             | 5 (10)             | 2 (4)               |
| terus      | enlarged               | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)             | 0 ( 0)              |
|            | nodule                 | 9 (18)                                      | 14 (28)            | 9 (18)             | 14 (28)             |
|            | dilated lumen          | 0 ( 0)                                      | 0 ( 0)             | 1 (2)              | 0 ( 0)              |
| agina      | nodule                 | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (2)               |
| orain      | red zone               | 1 ( 2)                                      | 0 ( 0)             | 1 ( 2)             | 0 ( 0)              |
| eriph nerv | nodule                 | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (2)               |
| уө         | turbid                 | 0 ( 0)                                      | 0 ( 0)             | 1 (2)              | 1 (2)               |
| arder gl   | enlarged               | 1 ( 2)                                      | 0 ( 0)             | 0 ( 0)             | 1 (2)               |
|            | nodule                 | 2 ( 4)                                      | 0 ( 0)             | 0 ( 0)             | 2 (4)               |
| one        | nodule                 | 0 ( 0)                                      | 1 ( 2)             | 0 ( 0)             | 0 ( 0)              |
| ediastinum | mass                   | 2 ( 4)                                      | 1 ( 2)             | 3 (6)              | 3 (6)               |
| eritoneum  | mass                   | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (2)               |

PAGE : 5

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX

~

## GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

| :  | FEMALE   |       |
|----|----------|-------|
|    |          | Grou  |
| an | Findings | NO. ( |

| Organ       | Findings      | Group Name<br>NO. of Animals | Control<br>50 (%) | 2500 ppm<br>50 (%) | 5000 ppm<br>50 (%) | 10000 ppm<br>50 (%) |
|-------------|---------------|------------------------------|-------------------|--------------------|--------------------|---------------------|
|             |               |                              |                   |                    |                    |                     |
| peritoneum  | thick         |                              | 0 ( 0)            | 1 ( 2)             | 0 ( 0)             | 2 (4)               |
| retroperit  | nodule        |                              | 0 ( 0)            | 1 (2)              | 0 ( 0)             | 0 ( 0)              |
|             | mass          |                              | 1 ( 2)            | 0 ( 0)             | 0 ( 0)             | 1 ( 2)              |
| abdominal c | hemorrhage    |                              | 0 ( 0)            | 1 (2)              | 4 (8)              | 4 ( 8)              |
|             | ascites       |                              | 9 (18)            | 12 (24)            | 7 (14)             | 13 ( 26)            |
| thoracic ca | pleural fluid |                              | 12 (24)           | 12 (24)            | 11 (22)            | 14 (28)             |
| other       | scab          |                              | 0 ( 0)            | 1 (2)              | 0 ( 0)             | 0 ( 0)              |
|             | tail:nodule   |                              | 0 ( 0)            | 1 (2)              | 0 ( 0)             | 0 ( 0)              |
|             | ear:nodule    |                              | 1 ( 2)            | 1 ( 2)             | 0 ( 0)             | 0 ( 0)              |
| whole body  | anemic        |                              | 1 ( 2)            | 0 ( 0)             | 0 ( 0)             | 1 ( 2)              |
|             |               |                              |                   |                    |                    |                     |

,

(HPT080)

\_\_\_\_\_

BAIS 4

PAGE : 6

TABLE J 5

# GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS

## STUDY NO. : 0613 ANIMAL : MO REPORT TYPE : A SEX : FEMALE

# GROSS FINDINGS (SUMMARY) ND ANIMALS (0-105W)

| 0010                        | anona Lination (n |
|-----------------------------|-------------------|
| MOUSE B6D2F1/Cr1j[Crj:BDF1] | DEAD AND MORIBUND |
| Λ1                          |                   |
| FEMALE                      |                   |

|         |                        |                                             |                    | ·                  |                     |
|---------|------------------------|---------------------------------------------|--------------------|--------------------|---------------------|
| gan     | Findings               | Group Name Control<br>NO. of Animals 21 (%) | 2500 ppm<br>24 (%) | 5000 ppm<br>19 (%) | 10000 ppm<br>30 (%) |
| n/app   | erosion                | 1 ( 5)                                      | 0 ( 0)             | 0 ( 0)             | 0 ( 0)              |
| cutis   | edema                  | 4 (19)                                      | 3 (13)             | 5 (26)             | 7 (23)              |
|         | mass                   | 3 (14)                                      | 3 (13)             | 1 ( 5)             | 2 (7)               |
| g       | red zone               | 1 (5)                                       | 0 ( 0)             | 1 (5)              | 1 ( 3)              |
|         | nodule                 | 1 ( 5)                                      | 1 ( 4)             | 0 ( 0)             | 2 (7)               |
| ph node | enlarged               | 4 (19)                                      | 8 (33)             | 7 (37)             | 10 (33)             |
| een     | enlarged               | 7 (33)                                      | 6 (25)             | 7 (37)             | 11 (37)             |
|         | white zone             | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 ( 3)              |
| ər      | enlarged               | . 4 (19)                                    | 4 (17)             | 0 ( 0)             | 2 (7)               |
|         | white zone             | 6 (29)                                      | 9 (38)             | 4 (21)             | 7 (23)              |
|         | red zone               | 1 ( 5)                                      | 0 ( 0)             | 0 ( 0)             | 1 (3)               |
|         | nodule                 | I (5)                                       | 3 (13)             | 2 (11)             | 3 (10)              |
| creas   | red                    | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (3)               |
| ney     | pale                   | 1 ( 5)                                      | 0 ( 0)             | 0 ( 0)             | 0 ( 0)              |
|         | nodule                 | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (3)               |
|         | hydronephrosis         | 3 (14)                                      | 2 ( 8)             | 1 (5)              | 2 (7)               |
| n bladd | urine:marked retention | 2 (10)                                      | 2 ( 8)             | 0 ( 0)             | 1 (3)               |
| uitary  | enlarged               | 1 ( 5)                                      | 1 ( 4)             | 1 (5)              | 1 (3)               |
|         | red zone               | 1 ( 5)                                      | 1 (4)              | 0 ( 0)             | 0 ( 0)              |
|         | nodule                 | 1 ( 5)                                      | 1 ( 4)             | 0 ( 0)             | 2 (7)               |
| roid    | enlarged               | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (3)               |
| у       | enlarged               | 3 (14)                                      | 6 (25)             | 5 (26)             | 5 (17)              |

PAGE: 4

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

## GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

.

1.

| SEX :       | FEMALE        |                                                 |                    |                    |                     |  |  |
|-------------|---------------|-------------------------------------------------|--------------------|--------------------|---------------------|--|--|
| Organ       | Findings      | <br>Group Name Control<br>NO. of Animals 21 (%) | 2500 ppm<br>24 (%) | 5000 ppm<br>19 (%) | 10000 ppm<br>30 (%) |  |  |
|             |               |                                                 |                    |                    |                     |  |  |
| ovary       | cyst          | 1 (5)                                           | 0 ( 0)             | 2 (11)             | 0 ( 0)              |  |  |
| iterus      | enlarged      | 0 ( 0)                                          | 1 ( 4)             | 0 ( 0)             | 0 ( 0)              |  |  |
|             | nodule        | 7 (33)                                          | 9 (38)             | 6 (32)             | 10 ( 33)            |  |  |
| agina       | nodule        | 0 ( 0)                                          | 0 ( 0)             | 0 ( 0)             | 1 ( 3)              |  |  |
| orain       | red zone      | 1 ( 5)                                          | 0 ( 0)             | 1 (5)              | 0 ( 0)              |  |  |
| эуе         | turbid        | 0 ( 0)                                          | 0 ( 0)             | 1 (5)              | 0 ( 0)              |  |  |
| larder gl   | enlarged      | 1 (5)                                           | 0 ( 0)             | 0 ( 0)             | 0 ( 0)              |  |  |
|             | nodule        | 0 ( 0)                                          | 0 ( 0)             | 0 ( 0)             | 1 ( 3)              |  |  |
| nediastinum | mass          | 2 (10)                                          | 1 ( 4)             | 3 (16)             | 3 (10)              |  |  |
| peritoneum  | mass          | 0 ( 0)                                          | 0 ( 0)             | 0 ( 0)             | 1 (3)               |  |  |
|             | thick         | 0 ( 0)                                          | 1 ( 4)             | 0 ( 0)             | 2 ( 7)              |  |  |
| etroperit   | nodule        | 0 ( 0)                                          | 1 ( 4)             | 0 ( 0)             | 0 ( 0)              |  |  |
|             | mass          | 1 ( 5)                                          | 0 ( 0)             | 0 ( 0)             | 1 ( 3)              |  |  |
| bdominal c  | hemorrhage    | 0 ( 0)                                          | 1 ( 4)             | 4 (21)             | 4 (13)              |  |  |
|             | ascites       | 8 (38)                                          | 9 (38)             | 5 (26)             | 10 (33)             |  |  |
| horacic ca  | pleural fluid | 10 (48)                                         | 10 (42)            | 9 (47)             | 13 (43)             |  |  |
| ther        | scab          | 0 ( 0)                                          | 1 ( 4)             | 0 ( 0)             | 0 ( 0)              |  |  |
|             | ear:nodule    | 1 (5)                                           | 1 ( 4)             | 0 ( 0)             | 0 ( 0)              |  |  |
| hole body   | anemic        | 1 (5)                                           | 0 ( 0)             | 0 ( 0)             | 1 (3)               |  |  |

BAIS 4

`

TABLE J 6

# GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

#### GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

#### 5000 ppm Group Name Control 2500 ppm 10000 ppm Findings\_ NO. of Animals 29 (%) 26 (%) 31 (%) 20 (%) nodule 1 (3) 0 ( 0) 1 (3) 0 ( 0) mass 0 ( 0) 2 (8) 0 ( 0) 1 (5) white zone 0 ( 0) 1 (4) 0 ( 0) 0 ( 0) nodule 1 (3) 2 (8) 0 ( 0) 1 (5) enlarged 3 (10) 5 (19) 6 (19) 4 (20) enlarged 3 (10) 3 (12) 3 (10) 1 (5) nodule 1 (3) 0 ( 0) 0 ( 0) 1 (5) deformed 0 ( 0) 0 ( 0) 1 (3) 0 ( 0) accentuation of white pulp 1 (3) 0 ( 0) 0 ( 0) 0 ( 0) nodule 1 (3) 0 ( 0) 0 ( 0) 0 ( 0) nodule 0 ( 0) 1 ( 4) 0 ( 0) 0 ( 0) ulcer 1 (3) 0 ( 0) 0 ( 0) 0 ( 0)

0 ( 0)

1 (4)

gl stomach liver white zone 1 (3) 0 ( 0) red zone 5 (17) 4 (15) nodule 4 (14) 1 (4) kidney white 0 ( 0) 1 (4) nodule 0 ( 0) 1 (4) hydronephrosis 1 (3) 2 (8) pituitary enlarged 1 (3) 3 (12) red zone 0 ( 0) 2 (8) nodule 4 (14) 1 (4)

Organ\_

skin/app

subcutis

lymph node

salivary gl

forestomach

spleen

lung

PAGE : 3

BAIS 4

0 ( 0)

0 ( 0)

1 (5)

0 ( 0)

0 ( 0)

3 (15)

1 (5)

1 (5)

0 ( 0)

0 ( 0)

0 ( 0)

3 (10)

7 (23)

0 ( 0)

1 (3)

1 (3)

1 (3)

1 (3)

2 (6)

3 (10)

ovary

enlarged

# GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

# BDF1]

ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] REPORT TYPE : A1 SEX : FEMALE

STUDY NO. : 0613

| SEX :       | FEMALE        |                                             | ·                  |                    | PAGE :              |
|-------------|---------------|---------------------------------------------|--------------------|--------------------|---------------------|
| Organ       | Findings      | Group Name Control<br>NO. of Animals 29 (%) | 2500 ppm<br>26 (%) | 5000 ppm<br>31 (%) | 10000 ppm<br>20 (%) |
| ovary       | cyst          | 3 (10)                                      | 2 ( 8)             | 3 (10)             | 2 (10)              |
| uterus      | nodule        | 2 ( 7)                                      | 5 (19)             | 3 (10)             | 4 (20)              |
|             | dilated lumen | • 0 ( 0)                                    | 0 ( 0)             | 1 ( 3)             | 0 ( 0)              |
| periph nerv | nodule        | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 ( 5)              |
| eye         | turbid        | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (5)               |
| Harder gl   | enlarged      | 0 ( 0)                                      | 0 ( 0)             | 0 ( 0)             | 1 (5)               |
|             | nodule        | 2 ( 7)                                      | 0 ( 0)             | 0 ( 0)             | 1 (5)               |
| polie       | nodule        | 0 ( 0)                                      | 1 ( 4)             | 0 ( 0)             | 0 ( 0)              |
| abdominal c | ascites       | 1 ( 3)                                      | 3 (12)             | 2 (6)              | 3 (15)              |
| horacic ca  | pleural fluid | 2 ( 7)                                      | 2 ( 8)             | 2 (6)              | 1 ( 5)              |
| other       | tail:nodule   | 0 ( 0)                                      | 1 (4)              | . 0 ( 0)           | 0 ( 0)              |

(HPT080)

# TABLE K 1

# ORGAN WEIGHT, ABSOLUTE: MALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE UNIT: g

## ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE : 1 Group Name NO. of Body Weight ADRENALS TESTES HEART LUNGS KIDNEYS Animals 35 41.4± 8.0 Control 0.011± 0.002 0.200± 0.035 0.224± 0.018 0.212± 0.069 0.648± 0.047 5000 ppm 3244.4± 7.4  $0.010 \pm 0.002$  $0.223 \pm 0.033$ 0.221± 0.022 0.199± 0.057 0.695± 0.175 10000 թթա 36  $44.0 \pm 5.1$ 0.010± 0.002 0.216± 0.037  $0.221 \pm 0.025$  $0.202 \pm 0.030$  $0.786 \pm 0.576$ 20000 ppm 40 44.0± 6.8  $0.010 \pm 0.002$ 0.209± 0.042 0.219± 0.019 0.216± 0.141  $0.665 \pm 0.061$ 

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01

Test of Dunnett

(HCL040)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE UNIT: g

## ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

\*\* : P ≦ 0.01

PAGE : 2 Group Name NO. of SPLEEN LIVER BRAIN Animals 35 0.452± 0.017 Control  $0.162 \pm 0.255$ 1.688± 0.721 5000 ppm 32 0.114± 0.079  $1.806 \pm 1.050$ 0.455± 0.017 10000 ppm 36 0.120± 0.092 1.812± 0.562 0.454± 0.015 20000 ppm 40  $0.095 \pm 0.078$  $1.585 \pm 0.279$  $0.452 \pm 0.022$ Significant difference ; \* : P ≦ 0.05

Test of Dunnett

(HCL040)

. ----

TABLE K 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

## ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE UNIT: g

PAGE : 3

| Group Name | NO. of<br>Animals | Body Weight       | ADRENALS     | OVARIES           | HEART        | LUNGS             | KIDNEYS      |  |
|------------|-------------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|--|
|            |                   | W                 |              |                   |              |                   |              |  |
| Control    | 28                | 32.9± 5.9         | 0.014± 0.003 | 0.049± 0.094      | 0.182± 0.032 | 0.205± 0.057      | 0.470± 0.169 |  |
| 2500 ppm   | 25                | 30.6± 3.4         | 0.015± 0.003 | $0.041 \pm 0.044$ | 0.178± 0.031 | $0.215 \pm 0.067$ | 0.562± 0.269 |  |
| 5000 ppm   | 31                | 31.4± 4.8         | 0.014± 0.003 | 0.200± 0.659      | 0.176± 0.022 | 0.193± 0.023      | 0.552± 0.514 |  |
| 10000 ррм  | 19                | 28.9 <u>+</u> 3.9 | 0.013± 0.001 | 0.105± 0.243      | 0.164± 0.014 | 0. 198 ± 0. 040   | 0.475± 0.145 |  |

(HCL040)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE UNIT: g

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

## ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

 $\sim \sim$ 

PAGE : 4 SPLEEN LIVER Group Name NO. of BRAIN Animals Control 28  $0.307 \pm 0.648$  $1.642 \pm 0.607$ 0.473± 0.018 2500 ppm 25 0.296± 0.363  $1.577 \pm 0.406$ 0.481± 0.018 5000 ppm 31 0.223± 0.159 1.430± 0.200 0.470± 0.018 10000 ppm 190.172± 0.116  $1.367 \pm 0.254$  $0.472 \pm 0.021$ 

Test of Dunnett

(HCL040)

# TABLE L 1

# ORGAN WEIGHT, RELATIVE: MALE

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : MALE UNIT: %

## ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

.

PAGE : 1

| Group Name | NO. of<br>Animals | Body Weight<br>(g) | ADRENALS             | TESTES       | HEART        | LUNGS        | KIDNEYS      |  |
|------------|-------------------|--------------------|----------------------|--------------|--------------|--------------|--------------|--|
| Control    | 35                | 41. 4± 8. 0        | 0.027± 0.009         | 0.499± 0.127 | 0.563± 0.128 | 0.535± 0.207 | 1.630± 0.374 |  |
| 5000 ppm   | 32                | 44.4± 7.4          | 0.024± 0.008         | 0.514± 0.104 | 0.513± 0.107 | 0.464± 0.181 | 1.638± 0.651 |  |
| 10000 ppm  | 36                | 44.0± 5.1          | $0.022\pm 0.005$     | 0.495± 0.092 | 0.510± 0.080 | 0.466± 0.094 | 1.851± 1.554 |  |
| 20000 ppm  | 40                | 44.0± 6.8          | <b>0.024</b> ± 0.008 | 0.483± 0.101 | 0.508± 0.075 | 0.534± 0.569 | 1.538± 0.201 |  |

(HCL042)

BAIS 4

.

## STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] REPORT TYPE : Λ1 SEX : MALE UNIT: %

# ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

 $\overline{}$ 

PAGE : 2

| Group Name | NO. of<br>Animals | SPLEEN       | LIVER        | BRAIN          |  |
|------------|-------------------|--------------|--------------|----------------|--|
| Control    | 35                | 0.448± 0.789 | 4.195± 1.960 | 1. 138± 0. 262 |  |
| 5000 ppm   | 32                | 0.270± 0.229 | 4.160± 2.405 | 1.057± 0.218   |  |
| 10000 թթա  | 36                | 0.286± 0.247 | 4.204± 1.523 | 1.047± 0.132   |  |
| 20000 ppm  | 40                | 0.214± 0.158 | 3.662± 0.809 | 1.053± 0.182   |  |

(HCL042)

.

TABLE L 2

ORGAN WEIGHT, RELATIVE: FEMALE

#### ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

| Group Name | NO. of<br>Animals | Body Weight<br>(g) | ADRENALS     | OVARIES      | HEART        | LUNGS        | KIDNEYS       |
|------------|-------------------|--------------------|--------------|--------------|--------------|--------------|---------------|
| Control    | 28                | 32.9± 5.9          | 0.044± 0.010 | 0.156± 0.316 | 0.565± 0.123 | 0.646± 0.227 | 1.465± 0.605  |
| 2500 ppm   | 25                | 30.6± 3.4          | 0.048± 0.012 | 0.136± 0.139 | 0.591± 0.140 | 0.714± 0.260 | 1.901± 1.133* |
| 5000 ppm   | 31                | 31.4± 4.8          | 0.045± 0.011 | 0.662± 2.166 | 0.567± 0.085 | 0.622± 0.095 | 1.797± 1.713  |
| 10000 ppm  | 19                | 28.9± 3.9          | 0.047± 0.007 | 0.401± 0.994 | 0.572± 0.062 | 0.699± 0.173 | 1.669± 0.562* |

(HCL042)

BAIS 4

#### ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

~~

.

PAGE : 4

~~~

| Group Name | NO. of
Animals | SPLEEN | LIVER | BRAIN | |
|-------------------|-------------------|-------------------|--------------|-------------------|--|
| Control | 28 | 0.965± 1.956 | 5.051± 1.810 | 1.481± 0.255 | |
| 2500 ppm | 25 | 1.001± 1.315 | 5.179± 1.269 | 1.588± 0.179 | |
| 5000 ppm | 31 | 0.727 ± 0.535 | 4.618± 0.762 | 1.525 ± 0.214 | |
| 100 00 ppm | 19 | 0.609± 0.437 | 4.755± 0.821 | 1.652± 0.172* | |

(HCL042)

TABLE M 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

•

|)rgan | Group
- No. o
Grade
Findings | f Animals on Study 50 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccc} 20000 \text{ ppm} \\ 50 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ |
|-------------|--|---|---|---|---|
| Integumenta | cy system∕appandage} | | | | |
| kin/app | ulcer | <50>
0 1 1 0
(0) (2) (2) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0 |
| | necrosis | 0 0 0 0
(0) (0) (0) (0) | 0 i 0 0
(0) (2) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0 |
| | scab | 2 1 0 0
(4)(2)(0)(0) | 1 2 0 0
(2) (4) (0) (0) | 0 1 0 0
(0) (2) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| Respiratory | system} | | | | |
| asal cavit | eosinophilic change:olfactory epithelium | $\langle 50 \rangle$
16 1 0 0
(32) (2) (0) (0) | <50>
23 0 1 0
(46) (0) (2) (0) | <50>
18 1 0 0
(36) (2) (0) (0) | <50>
15 0 0 0
(30) (0) (0) (0 |
| | eosinophilic change:respiratory epithelium | 16 3 0 0 (32) (6) (0) (0) | 9 0 1 0
(18) (0) (2) (0) | 10 0 0 0
(20)(0)(0)(0) | 12 0 0 0
(24) (0) (0) (0 |
| | respiratory metaplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0 |
| | inflammation foreign body | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | .0 0 0 0
(0) (0) (0) (0 |

ь (c) с:b/а*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

•

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

1 0

(2)(0)(0)(0)

0 0

0

0 0 0

| | | oup Name Control
. of Animals on Study 50 | | 5000 ррт
50 | 10000 ррт
50 | ענע 20000 ענש
50 |
|--------------|--|--|----------------|--|--|--|
| Organ | | ade <u>1 2</u> | 3 4
(%) (%) | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | $\frac{1}{(\%)} \begin{array}{c} 2 & 3 & 4 \\ (\%) & (\%) & (\%) & (\%) \end{array}$ |
| {Respiratory | system) | | | | | |
| nasal cavit | inflammation:respiratory epithelium | <50)
1 0
(2) (0) (| 0 0 | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | respiratory metaplasia:olfactory epithel | ium 21 0
(42)(0)(| 0 0
0) (0) | 8 0 0 0 **
(16) (0) (0) (0) | 11 0 0 0
(22)(0)(0)(0) | 11 0 0 0
(22) (0) (0) (0) |
| | respiratory metaplasia:gland | 24 0
(48) (0) (| 0 0
0) (0) | 13 1 0 0
(26) (2) (0) (0) | 19 1 0 0
(38) (2) (0) (0) | 19 1 0 0
(38) (2) (0) (0) |
| | squamous cell metaplasia:respiratory epi | thelium 0 0
(0) (0) (| 0 0
0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 1 0 0 0
(2) (0) (0) (0) |
| nasopharynx | eosinophilic change | <50>
1 1
(2) (2) (| 0 0 | <50>
1 0 1 0
(2) (0) (2) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| lung | hemorrhage | <50>
0 0
(0) (0) (| 0 0 | <50>
1 2 0 0
(2) (4) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |

0 0 0 0

0 0 0 0

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe ≺a≻ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

edema

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

 \sim

| Drgan | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} 20000 \text{ ppm} \\ 50 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ |
|-------------|---------------------------------------|---|---|---|---|
| | Findings | (%) (%) (%) | | (%) (%) (%) | (%) (%) (%) (%) |
| Kespiratory | system} | | | | |
| Ing | inflammatory infiltration | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
2 1 0 0
(4) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | accumulation of foamy cells | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | bronchiolar-alveolar cell hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(4)(0)(0)(0) | 2 1 0 0
(4)(2)(0)(0) |
| Hematopoiet | ic system) | | | | |
| one marrow | congestion | $\begin{array}{cccc} <50 \\ 1 & 0 & 0 & 0 \\ (2) & (0) & (0) & (0) \\ \end{array}$ | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| | increased hematopoiesis | 6 0 0 0
(12)(0)(0)(0) | 6 0 0 0
(12) (0) (0) (0) | 7 0 0 0
(14) (0) (0) (0) | 6 0 0 0
(12) (0) (0) (0) |
| | myelofibrosis | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 3 0 0 0
(6)(0)(0)(0) |
| | megakaryocyteincreased | 1 0 0 0
(2)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0613 HISTOPATHOLOG ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0 REPORT TYPE : A1 SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name Control
No. of Animals on Study 50 | 5000 ррт
50 | 10000 ppm
50 | 20000 ррт
50 | |
|-------------|------------------------------|--|--|--|--|--|
| rgan | Findings | Grade <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | <u>1 2 3 4</u>
(%) (%) (%) (%) | |
| ematopoieti | c system) | | | | | |
| one marrow | granulopoiesis:increased | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| mph node | lymphadenitis | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| een | angiectasis | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | |
| | deposit of melanin | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(4)(0)(0)(0) | |
| | extramedullary hematopoiesis | 10 6 0 0
(20) (12) (0) (0) | 12 10 0 0
(24) (20) (0) (0) | 15 6 0 0
(30) (12) (0) (0) | 10 5 0 0
(20)(10)(0)(0) | |
| | follicular hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 1 0 0
(0) (2) (0) (0) | 0 0 0 0
(0)(0)(0)(0) | |

{Circulatory system}

| heart | <50> | <50> | <50> | <50> |
|----------------|---------------|--------------|---------------------|---------------------|
| mineralization | 2 	 0 	 0 	 0 | 2 1 0 0 | 0 0 0 0 | 0 0 0 0 |
| | (4)(0)(0)(0) | (4)(2)(0)(0) | (0) (0) (0) (0) | (0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 ${\rm \langle a \, \rangle} \qquad {\rm a}$: Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

 \sim

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name Control
No. of Animals on Study 50 | | | 20000 ppm
50 | |
|------------|-------------------------|--|---------|---|---|--|
| gan | Findings | | 1 2 3 4 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{1 2 3 4}{(\%) (\%) (\%) (\%)}$ | |
| irculatory | system) | | | | | |
| art | arteritis | <50>
0 0 0
(0) (0) (0) (0) | | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| ery/aort | arteritis | <50>
0 0 0 0
(0) (0) (0) (0) | | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| gestive sy | stem} | | | | | |
| th | dysplasia | <50>
1 0 0 (
2) (0) (0) (0) | | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| gue | arteritis | <50>
0 0 0 (
(0) (0) (0) (0) | | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| ivary gl | abscess | <50>
1 0 0 (
(2) (0) (0) (0) | | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |
| mach | hyperplasia:forestomach | <50>
0 1 1 (
(0) (2) (2) (0 | | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | |

Grade 1:Slight 2:Moderate 3:Marked 4:Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; $*:P \leq 0.05$ $**:P \leq 0.01$ Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 $\sim \sim$

| brgan | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 20000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|--------------|-------------------------------|---|---|---|--|
| ligestive sy | stem) | | | | |
| omach | erosion:glandular stomach | $\begin{array}{cccc} <50 \\ 3 & 1 & 0 & 0 \\ (& 6) & (& 2) & (& 0) & (& 0) \end{array}$ | <50>
8 0 0 0
(16) (0) (0) (0) | <50>
8 0 0 0
(16) (0) (0) (0) | <50>
7 0 0 0
(14) (0) (0) (0) |
| | hyperplasia:glandular stomach | 17 0 0 0
(34) (0) (0) (0) | 16 0 0 0
(32) (0) (0) (0) | 19 0 0 0
(38) (0) (0) (0) | 13 0 0 0
(26)(0)(0)(0)(0) |
| rge intes | lymphoid hyperplasia | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| ver | necrosis:focal | $\langle 50 \rangle$
1 1 0 0
(2) (2) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | fatty change:central | 0 0 0 0
(0) (0) (0) (0) | 0 0 1 0
(0) (0) (2) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory infiltration | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory cell nest | 6 0 0 0
(12) (0) (0) (0) | 3 0 0 0
(6)(0)(0)(0) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0 0 0
(2)(0)(0)(0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion (c) c∶b⁄a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name Control | 5000 muyu | 10000 yym | 20000 ppm |
|------------|------------------------|--|---|--|---|
| , | | No. of Animals on Study 50 | 50 | 50 | 50 |
| | Findings | Grade <u>1 2 3 4</u>
(%) (%) (%) (%) | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | <u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| igestive s | system) | | | | |
| ver | clear cell focus | <pre> <50>
0 0 0 0
(0) (0) (0) (0)</pre> | <50>
0 2 0 0
(0) (4) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| | acidophilic cell focus | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 2 0 0
(0) (4) (0) (0) | 2 0 1 0
(4) (0) (2) (0) | 2 1 0 0
(4) (2) (0) (0) |
| | basophilic cell focus | 1 0 0 0
(2)(0)(0)(0) | 2 0 0 0
(4)(0)(0)(0) | 0 1 0 0
(0) (2) (0) (0) | 3 0 0 0
(6)(0)(0)(0) |
| | bile duct hyperplasia | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | biliary cyst | 0 0 0 0
(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| 11 bladd | cyst | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <49>
0 0 0 0
(0) (0) (0) (0) | <49>
1 0 0 0
(2) (0) (0) (0) |
| | hyperplasia | 2 0 0 0.
(4)(0)(0)(0)(0) | 1 0 0 0
(2)(0)(0)(0)(0) | 2 0 0 0
(4)(0)(0)(0) | 2 0 0 0
(4) (0) (0) (0) |
| rinary sys | stem) | | | | |
| dney | cyst | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle \qquad a$: Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

2

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| rgan | Findings | Group Name
No. of Animals
Grade | $\begin{array}{c} \text{Control} \\ \text{on Study} & 50 \\ \underline{1 2 3 4} \\ \underline{- (\%) (\%) (\%) (\%)} \end{array}$ | 5000 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 20000 \text{ µpm} \\ 50 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ |
|------------|---------------------------|---------------------------------------|--|--|---|--|
| | | · · · · · · · · · · · · · · · · · · · | | | | |
| Jrinary sy | rstem) | | | | | |
| idney | hyaline droplet | | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
3 0 0 0
(6) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
5 0 0 0
(10) (0) (0) (0) |
| | inflammatory infiltration | | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| | lymphocytic infiltration | | 2 1 0 0
(4) (2) (0) (0) | 1 0 0 0
(2) (0) (0) (0) | 4 0 0 0
(8)(0)(0)(0) | 2 0 0 0
(4) (0) (0) (0) |
| | osseous metaplasia | | 1 0 0 0
(2) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | scar | | 2 1 0 0
(4) (2) (0) (0) | 3 1 0 0
(6)(2)(0)(0) | 1 0 0 0
(2)(0)(0)(0) | 1 0 0 0
(2)(0)(0)(0) |
| | inflammatory polyp | | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 2 0 0
(0) (4) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | hydronephrosis | | 0 0 0 1
(0) (0) (0) (2) | 1 0 4 0
(2)(0)(8)(0) | 0 2 2 0
(0) (4) (4) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | mineralization:cortex | | 3 0 0 0
(6)(0)(0)(0) | i 0 0 0
(2)(0)(0)(0) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 0 0 0
(0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name
No. of Animals on S | | ntrol
5(|) . | | | 5000 | թրա
50 | | | | 1 | 0000 | թթա
50 | | | | | 2000 |)0 pp
50 | n | | |
|----------------|------------------------------|-----------------------------------|----------|--------------|--------|-----------------|-----------------|------|-----------|--------|-------|---|-----------------|----------|-----------|----------|-----------------|---|-----------------|------|-------------|--------|-----------------|--|
| Organ | Findings | Grade | <u> </u> | 2
(%) | 3 (%) | <u>4</u>
(%) | <u>1</u>
(%) | (9 | | 3 (%) | 4 (%) | | <u>1</u>
(%) | 2
(%) | | 3
(%) | <u>4</u>
(%) | | <u>1</u>
(%) | | 2
(%) | 3 (%) | <u>4</u>
(%) | |
| {Urinary syste | em) | | | | | | | | | | | | | | | | | | | | | | | |
| kidney | regeneration proximal tubule | | 2 | <50
1 |)> | 0 | 2 | | <50> | ,
0 | 0 | | 2 | <
0 | 50> | 0 | 0 | | 3 | | <502
0 | >
0 | 0 | |
| | | | (4)(| (2) | (0) (| (0) | (4) | |)) (| 0) | (0) | (| -
4) | (0) | (| 0) (| 0) | (| 6) | (| 0) (| 0) | (0) | |
| urin bladd | dilatation | | 0 | <50
2 |)> | 0 | 0 | | <50> | > | 0 | | 1 | <
0 | 50> | 0 | 0 | | 0 | | <50)
0 | >
0 | | |
| | | | (0) (| (<u>4</u>) | (2) | (0) | (0) | | ,
)) (| 2) | (0) | (| 1
2) | (0) | | 0) (| 0) | (| 0) | | 0) (| 0) | (0) | |
| | lymphocytic infiltration | | 0 | 0 | 0 | 0 | 1 | (| | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | | 0 | 0 | 0 | |
| | | | (0)(| (0) (| (0) | (0) | (2) | ((|)) (| 0) | (0) | (| 0) | (0) | (| 0) (| 0) | (| 0) | (| 0) (| 0) | (0) | |

| urethra | | <50> | <50> | <50> | <50> |
|---------|--------------|---------------------|---------------------|---------------------|---------------------|
| | inflammation | 0 1 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 |
| | | (0) (2) (0) (0) | (0) (0) (0) (0) | (0) (0) (0) (0) | (0) (0) (0) (0) |

{Endocrine system}

| pituitary | | | <50> | <50> | <50> | <50> |
|-----------|--------------|---|--------------------------------|-------------------------|-------------------------|-------------------------|
| | hyperplasia | | 0 2 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 0 0 |
| | | | (0)(4)(0)(0) | (0) (0) (0) (0) | (0) (0) (0) (0) | (2)(0)(0)(0) |
| | Rathke pouch | • | 0 0 0 0
(0) (0) (0) (0) | 4 0 0 0
(8)(0)(0)(0) | 3 0 0 0
(6)(0)(0)(0) | 2 0 0 0
(4)(0)(0)(0) |

Grade l : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) с:b/а*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| Organ | Findings | | <u>3 4</u>
(%) (%) | 5000 ррт
-50
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
50
(%) (%) (%) (%)
(%) (%) (%) | 20000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|---------------|---------------------------|----------------------------|-----------------------|--|---|--|
| {Endocrine sy | stem} | | | | | |
| thyroid | cyst | <50>
0 0
(0) (0) (| 0 0 | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | follicular hyperplasia | 1 0
(2) (0) (| 0 0
0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0) (2) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | C-cell hyperplasia | 2 0
(4)(0)(| 0 0
0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| parathyroid | cyst | <50>
0 0
(0) (0) (| 0 0 | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| adrenal | spindle-cell hyperplasia | <50>
3 0
(6) (0) (| 0 0
0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:cortical cell | 0 0
(0) (0) (| 0 0
0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 1 0
(0) (0) (2) (0) | 0 1 0 0
(0) (2) (0) (0) |
| {Reproductive | system) | | | | | |
| testis | atrophy | <50>
0 0
(0) (0) (| 0 0
0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

.

| | | Group Name
No. of Animals on Stud | | ontro]
F | l
50 | | | | | 50 | 000 | թթm
50 | | | | | 10 | 0000 | թթո
50 | | | | | 200 | 00 pj
50 | | | |
|-------------|---------------------------|--------------------------------------|----------|---|------------|-----------|---------|---|---|----------------|---------|-------------|----------|-----|----------------|---|-----------------|----------------|-----------|-----------|---------|-----|----------|-----|----------------|-----------------|-----|----------|
| rgan | Findings | Grade | <u> </u> | 2
(%) | | 3
%) | 4 (%) | | (| <u>1</u>
%) | 2
(% | | 3
(%) | (9 | <u>1</u>
6) | | <u>1</u>
(%) | 2
(%) | | 3
%) | 4 (%) | | <u> </u> | | 2 (%) | 3 (%) | | 4
(%) |
| eproductive | e system) | | | | | | | • | | | | | | | | | | | | | | | | | | | | |
| stis | xanthogranuloma | (| 0
0) | <td< td=""><td>50>
(2</td><td></td><td>0
0)</td><td></td><td></td><td>0
0) (</td><td>0</td><td></td><td>0
0)</td><td>((</td><td></td><td>(</td><td>0
0)</td><td><
0
(0)</td><td></td><td>0
0) (</td><td>0
0)</td><td>(</td><td>0
0)</td><td>(</td><td><50
0
0)</td><td>0>
0
(0)</td><td>• (</td><td>0
0)</td></td<> | 50>
(2 | | 0
0) | | | 0
0) (| 0 | | 0
0) | ((| | (| 0
0) | <
0
(0) | | 0
0) (| 0
0) | (| 0
0) | (| <50
0
0) | 0>
0
(0) | • (| 0
0) |
| ididymis | inflammatory infiltration | (| 0
0) | <9
1
(2) | | D) (| 0
0) | | | 0
0) (| 0 | <50>
) (| 0
0) | ((|))) | (| 0
0) | 0 | | 0
0) (| 0
0) | (| 2
4) | (| <50
0
0) | 0>
0
(0) | | 0
0) |
| | spermatogenic granuloma | (| 0
0) | 0
(0) | | D
D) (| 0
0) | | (| 1
2) (| 0 |) (| 0
0) | ((|))) | (| 1
2) | 1
(2) | | 0
0) (| 0
0) | (| 1
2) | | 0
0) | 0
(0) | | 0
0) |
| | xanthogranuloma | (| 0
0) | 0
(0) | (2 | | 0
0) | | (| 0
0) (| 0 |) (| 0
0) | (|))) | (| 0
0) | 0
(0) | (| 0
0) (| 0
0) | (| 0
0) | | 0
0) | 0
(0) | | 0
0) |
| nin ves | inflammation | (| 0
0) | <8
0
(0) | |)
)) (| 0
0) | | | 0
0) (| 0 | | 0
0) | (| | (| 1
2) | 0 | | 0
0) (| 0
0) | (| 0
0) | | <50
0
0) | 0>
0
(0) | (| 0
0) |
| ostate | lymphocytic infiltration | (| 0
0) | <8
0
(0) | |)
(| 0
0) | | (| 1
2) (| 0 | <50>
) (| 0
0) | ((|) | (| 0
0) | 0 | | 0
0) (| 0
0) | . (| 0
0) | | <50
0
0) | 0>
0
(0) | (| 0
0) |
| | hyperplasia | (| 0
0) | 0
(0) | |)
)) (| 0
0) | | | 0
0) (| 0 | | 0
0) | (| | (| 1
2) | 0
(0) | | 0
0) (| 0
0) | (| 0
0) | | 0
0) | 0
(0) | (| 0
0) |

<a>> a : Number of animals examined at the site b : Number of animals with lesion

b (c) с:b/а*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 12

| | | Group Name Control
No. of Animals on Study 50
Grade <u>1</u> 234 | 5000 ppm
50
_1 2 3 4 | 10000 ррш
50
_1 2 3 4 | 20000 ppm
50
1 2 3 4 |
|---------------|----------------|--|--|--|--|
|)rgan | Findings | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) | (%) (%) (%) (%) |
| (Reproductive | system) | | | | |
| prep/cli gl | cyst | <50>
0 0 1 0
(0) (0) (2) (0) | <50>
2 0 0 0
(4) (0) (0) (0) | $\begin{array}{cccc} <50> \\ 1 & 0 & 0 & 0 \\ (2) & (0) & (0) & (0) \end{array}$ | <50>
0 0 0 0
(0) (0) (0) (0) |
| Nervous syst | em} | | | | |
| orain | hemorrhage | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 1 0
(0) (0) (2) (0) |
| | mineralization | 16 0 0 0
(32) (0) (0) (0) | 15 0 0 0
(30) (0) (0) (0) | 9 0 0 0
(18) (0) (0) (0) | 17 0 0 0
(34) (0) (0) (0) |
| | epidermal cyst | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0)(0) | 0 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0) (2) (0) (0) |
| pinal cord | hemorrhage | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| | necrosis:focal | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |

b b: Number of animals with lesion

.

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name | Control | 5000 ppm | 10000 ppm | 20000 µpm |
|-------|----------|---------------------|-----------------|---------------------------------------|-----------------|------------|
| | | No. of Animals on S | tudy 50 | 50 | 50 | 50 |
| | | Grade | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 |
| Organ | Findings | | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (% |
| | | | | · · · · · · · · · · · · · · · · · · · | | |

{Special sense organs/appendage}

| Harder gl | | | <50> | • | | | | <5 | 0> | | | | | | <50 | > | | | | | | <50> | | | |
|------------------------|-----------|--------|------|------|----|---|------|----|-----|------|----|-----|----|---|------|----|---|----|---|------|------|------|----|------|--|
| hypern | plasia | 1 | 0 | 0 | 0 | | 0 | 0 | C |) | 0 | | 1 | | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | |
| | | (2)(| 0) (| 0) (| 0) | (| 0) (| 0) | (0 |)) (| 0) | (| 2) | (| 0) (| 0) | | 0) | (| 0) (| (0) | | 0) | (0) | |
| | | | | | | | | | | | | | | | | | | | | | | | | | |
| {Musculoskeletal syste | em) | | | | | | | | | | | | | | | | | | | | | | | | |
| muscle | | | <50> | | | | | <5 | 0> | | | | | | <50 | > | | | | | | <50> | | | |
| necros | sis | 0 | 0 | 0 | 0 | | 0 | 1 | 0 |) | 0 | | 0 | | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | |
| | | (0) (| 0) (| 0) (| 0) | (| 0) (| 2) | (0 |)) (| 0) | . (| 0) | (| 0) (| 0) | (| 0) | (| 0) (| (0) |) (| 0) | (0) | |
| minera | alization | 1 | 0 | 0 | 0 | | 0 | 0 | C |) | 0 | | 0 | | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | |
| | | (2) (| 0) (| 0) (| 0) | | 0) (| 0) | (0 |) (| 0) | (| 0) | | 0) (| 0) | | 0) | (| 0) (| (0) | | 0) | (0) | |
| | | | | | | | | | | | | | | | | | | | | | | | | | |

{Body cavities}

| pleura | | <50> | <50> | <50> | <50> |
|------------|------------|---|--|--|--|
| | pleuritis | 0 0 1 0
(0) (0) (2) (0) | 0 0 0 0 0
(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| retroperit | hemorrhage | -
<50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE : 13

4

(%) (%) TABLE M 2

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

 $\overline{}$

|)rgan | Group Na
No. of A
Grade | ame Control
Animals on Study 15
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
17
<u>1 2 3 4</u>
(%) (%) (%) (%) | $ \begin{array}{c} 10000 \text{ ppm} \\ 14 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ | 20000 ppm
9
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|--------------|--|---|---|---|---|
| gan | | (%) (%) (%) (%) | (%) (%) (%)
 | | (%) (%) (%) (%) |
| Integumentar | ry system/appandage) | | | | |
| kin/app | necrosis | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
0 1 0 0
(0) (6) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| | scab | 1 0 0 0
(7)(0)(0)(0)(0) | 0 1 0 0
(0) (6) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| Respiratory | system) | | | | |
| asal cavit | eosinophilic change:olfactory epithelium | <15>
3 0 0 0
(20) (0) (0) (0) | $\begin{array}{c} <17 \\ 2 & 0 & 1 & 0 \\ (12) & (0) & (6) & (0) \end{array}$ | $\langle 14 \rangle$
4 0 0 0
(29) (0) (0) (0). | <pre>< 9> 2 0 0 0 (22) (0) (0) (0)</pre> |
| | eosinophilic change respiratory epithelium | 3 0 0 0
(20) (0) (0) (0) | 2 0 1 0
(12) (0) (6) (0) | 2 0 0 0
(14) (0) (0) (0) | 2 0 0 0
(22) (0) (0) (0) |
| | respiratory metaplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammation:foreign body | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammation:respiratory epithelium | 1 0 0 0
(7)(0)(0)(0)(0) | 0 0 0 0
(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0)(0)(0)(0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 2

| Organ | Group Name
No. of Anima
Grade
Findings | Control als on Study 15 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
17
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
14
<u>1 2 3 4</u>
(%) (%) (%) (%) | 20000 ppm
9
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|------------------------------|--|---|---|--|--|
| (p | | | | | |
| {Respiratory | system) | | | | |
| nasal cavit | respiratory metaplasia:olfactory epithelium | <15>
7 0 0 0
(47) (0) (0) (0) | <17>
1 0 0 0 *
(6) (0) (0) (0) | <14>
5 0 0 0
(36) (0) (0) (0) | < 9>
1 0 0 0
(11) (0) (0) (0) |
| | respiratory metaplasia:gland | 4 0 0 0
(27) (0) (0) (0) | 2 0 0 0
(12) (0) (0) (0) | 5 0 0 0
(36)(0)(0)(0) | 3 0 0 0
(33)(0)(0)(0) |
| nasopharynx | eosinophilic change | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
0 0 1 0
(0) (0) (6) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| lung | hemorrhage | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 2 0 0
(6) (12) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | <pre> < 9>
0 0 0 0
(0) (0) (0) (0)</pre> |
| | edema | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(7) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory infiltration | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(7) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | bronchiolar-alveolar cell hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0) (11) (0) (0) |
| Grade
< a >
b
(c) | 1 : Slight 2 : Moderate 3 : Marked
a : Number of animals examined at the site
b : Number of animals with lesion
c : b / a * 100
ifference : * : $P \le 0.05$ ** : $P \le 0.01$ Tes | 4 : Severe | | | |

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| Findings | Group Name Control No. of Animals on Study 15 Grade 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
17
<u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{c} 10000 \text{ ppm} \\ 14 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | 20000 ppm
9
<u>1 2 3 4</u>
(%) (%) (%) |
|------------------------------|---|---|--|--|
| : system) | | | | |
| increased hematopoiesis | <15>
3 0 0 0
(20) (0) (0) (0) | <17>
3 0 0 0
(18) (0) (0) (0) | <pre> <14></pre> | < 9>
4 0 0 0
(44) (0) (0) (0) |
| lymphadenitis | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 0 0 0
(6) (0) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| extramedullary hematopoiesis | <15>
2 4 0 0
(13) (27) (0) (0) | <17>
5 7 0 0
(29) (41) (0) (0) | <14>
4 4 0 0
(29) (29) (0) (0) | < 9>
0 3 0 0
(0) (33) (0) (0) |
| system) | | | | |
| mineralization | <15>
2 0 0 0
(13) (0) (0) (0) | <17>
2 1 0 0
(12) (6) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| arteritis | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(6) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| arteritis | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 0 0 0
(6) (0) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | <pre> < 9> 0 0 0 0 (0) (0) (0) (0)</pre> |
| | : system)
increased hematopoiesis
lymphadenitis
extramedullary hematopoiesis
system)
mineralization
arteritis | No. of Animals on Study 15 Grade $1 - 2 - 3 - 4$ Findings (%) increased hematopoiesis $3 - 0 - 0$ increased hematopoiesis $3 - 0 - 0$ lymphadenitis $0 - 0 - 0$ extramedullary hematopoiesis (15) mineralization (15) $2 - 4 - 0 - 0$ (13) (27) (20) (0) (13) (27) (20) (0) (13) (27) (20) (0) (13) (27) (20) (0) (13) (27) (20) (0) (13) (27) (20) (0) (13) (0) (0) (0) (13) (0) (13) (0) (13) (0) (13) (0) (13) (0) (13) (0) (15) (0) (15) (15) | No. of Animals on Study 15 17 Findings | No. of Animals on Study 15 17 14 Indings 17 14 Findings 17 14 Findings 17 1 1 2 3 4 Findings 17 1 2 3 4 System (155 (17) (14) (155 (17) (14) (155 (17) (14) (155 (17) (14) (15) (17) (14) (15) (17) (14) (15) (17) (14) (13) (27) (14) (13) (21) (0) (0) (0) |

Grade 1:Slight 2:Moderate 3:Marked 4:Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P ≤ 0.05 ** : P ≤ 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| | | Group Name Control
No. of Animals on Study 15
Grade <u>1 2 3 4</u> | 5000 ppm
17
<u>1 2 3 4</u> | 10000 ppm
14
1 2 3 4 | 20000 ppm
9
1 2 3 4 |
|----------|-------------------------------|--|--|--|--|
| gan | Findings | (%) (%) (%) | (%) (%) (%) | (%) (%) (%) (%) | `(%) (%) (%) (%) |
| igestive | system} | | | | |
| ngue | arteritis | $\begin{array}{cccc} <15> \\ 0 & 0 & 0 & 0 \\ (& 0) & (& 0) & (& 0) \\ \end{array}$ | $\begin{array}{cccc} <17>\\ 1 & 0 & 0 & 0\\ (6) & (0) & (0) & (0) \end{array}$ | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| omach | hyperplasia:forestomach | $\langle 15 \rangle$
0 0 1 0
(0) (0) (7) (0) | <17>
1 1 0 0
(6) (6) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | <pre></pre> |
| | erosion:glandular stomach | 1 0 0 0
(7)(0)(0)(0) | 3 0 0 0
(18) (0) (0) (0) | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:glandular stomach | 1 0 0 0
(7)(0)(0)(0)(0) | 4 0 0 0
(24) (0) (0) (0) | 2 0 0 0
(14) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| ver | necrosis:focal | <15>
1 1 0 0
(7) (7) (0) (0) | <17>
0 0 0 0
(0) (0) (0) (0) | <14>
1 0 0 0
(7) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| | fatty change:central | 0 0 0 0
(0) (0) (0) (0) | 0 0 1 0
(0) (0) (6) (0) | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory cell nest | 2 0 0 0
(13) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |

< a > a : Number of animals examined at the site b b : Number of animals with lesion

(c) c: b / a * 100

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 5

| Organ | Findings | Group Name Control No. of Animals on Study 15 Grade 1 2 3 4 (%) (%) (%) (%) (%) | $\begin{array}{c} 5000 \text{ ppm} \\ 17 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | $\begin{array}{ccc} 10000 \text{ ppm} \\ 14 \\ \underline{1 & 2 & 3 & 4} \\ (\%) & (\%) & (\%) & (\%) \end{array}$ | 20000 ppm
9
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|--------------|------------------------------|---|---|--|---|
| {Digestive s | system) | | | | |
| liver | acidophilic cell focus | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
0 1 0 0
(0) (6) (0) (0) | $ \begin{array}{c} <14 \\ 0 & 0 & 0 & 0 \\ (& 0) & (& 0) & (& 0) & (& 0) \end{array} $ |

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 |
| | bile duct hyperplasia | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| {Urinary sys | stem) | | | | |
| kidney | hyaline droplet . | <15>
2 0 0 0
(13) (0) (0) (0) | <17>
2 0 0 0
(12) (0) (0) (0) | $\begin{array}{ccccc} <14 \\ 1 & 0 & 0 & 0 \\ (7) & (0) & (0) & (0) \end{array}$ | < 9>
4 0 0 0
(44) (0) (0) (0) |
| | scar | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(6)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | hydronephrosis | 0 0 0 1
(0) (0) (0) (7) | 1 0 1 0
(6)(0)(6)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | mineralization:cortex | 2 0 0 0
(13) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | regeneration:proximal tubule | 0 1 0 0
(0) (7) (0) (0) | 0 0 0 0
(0)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| EX : | MALE | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | PAGE : |
|-------------|------------------------|---|---|--|---|
| 'gan | Findings | Group Name Control No. of Animals on Study 15 Grade 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
17
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
14
<u>1 2 3 4</u>
(%) (%) (%) (%) | 20000 ppm
9
<u>1 2 3 4</u>
(%) (%) (%) (%) |
| rinary syst | em) | | | | |
| in bladd | dilatation | <15>
0 2 1 0
(0) (13) (7) (0) | <17>
0 0 1 0
(0) (0) (6) (0) | <14>
1 0 0 0
(7) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| ethra | inflammation | <15>
0 1 0 0
(0) (7) (0) (0) | <17>
0 0 0 0
(0) (0) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| ndocrine sy | stem) | | | | |
| tuitary | Rathke pouch | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 0 0 0
(6) (0) (0) (0) | <14>
0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| yroid | cyst | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 0 0 0
(6) (0) (0) (0) | <14>
· 0 0 0 0
(0) (0) (0) (0) | < 9>
0 0 0 0
(0) (0) (0) (0) |
| | follicular hyperplasia | 1 0 0 0
(7)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| rathyroid | cyst | <15>
0 0 0 0
(0) (0) (0) (0) | <17>
1 0 0 0
(6) (0) (0) (0) | <pre> <14></pre> | < 9>
0 0 0 0
(0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle \qquad a$: Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105%)

~~~

| Organ          | Findings                 | Group Name         Control           No. of Animals on Study         15           Grade         1         2         3         4           (%)         (%)         (%)         (%) | 5000 ppm<br>17<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | $\begin{array}{c} 10000 \text{ ppm} \\ 14 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \end{array}$ | 20000 ppm<br>9<br><u>1 2 3 4</u><br>(%) (%) (%) (%)    |
|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| {Endocrine sys | tem)                     |                                                                                                                                                                                   |                                                     |                                                                                                                  |                                                        |
| adrenal        | spindle-cell hyperplasia | <15><br>2 0 0 0<br>( 13) ( 0) ( 0) ( 0)                                                                                                                                           | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <14><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                           | < 9><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |
| {Reproductive  | system)                  |                                                                                                                                                                                   |                                                     |                                                                                                                  |                                                        |
| testis         | atrophy                  | <15><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                            | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <14><br>1 0 0 0<br>( 7) ( 0) ( 0) ( 0)                                                                           | <pre></pre>                                            |
|                | xanthogranuloma          | 0 0 1 0<br>( 0) ( 0) ( 7) ( 0)                                                                                                                                                    | 0 0 0 0<br>(0)(0)(0)(0)(0)                          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                         |
| epididymis     | spermatogenic granuloma  | $\langle 15 \rangle$<br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                            | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <14><br>0 1 0 0<br>( 0) ( 7) ( 0) ( 0)                                                                           | < 9><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |
|                | xanthogranuloma          | 0 0 1 0<br>( 0) ( 0) ( 7) ( 0)                                                                                                                                                    | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                         |
| prep/cli gl    | cyst                     | <15><br>0 0 1 0<br>( 0) ( 0) ( 7) ( 0)                                                                                                                                            | <17><br>1 0 0 0<br>( 6) ( 0) ( 0) ( 0)              | <14><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                           | <pre> &lt; 9&gt; 0 0 0 0   ( 0) ( 0) ( 0) ( 0) .</pre> |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$  a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01  $\,$  Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 8

|                              |                                                                                                                                                                         | Group Name<br>No. of Animals on Stu | Cont:<br>ly | 15                    |             |    |           | ) ppm<br>17       |           |                 |           | 1000 | 0 pp<br>14        |              |                 |     | 20         | 000 1    | opm<br>9        |            |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|-----------------------|-------------|----|-----------|-------------------|-----------|-----------------|-----------|------|-------------------|--------------|-----------------|-----|------------|----------|-----------------|------------|
| Organ                        | Findings                                                                                                                                                                | Grade                               | <u> </u>    | 2 <u>3</u><br>%) (%   |             | Ī  |           | 2<br>(%)          | 3 (%)     | <u>4</u><br>(%) | <u> </u>  | (    | 2<br>%)           | 3<br>(%)     | <u>4</u><br>(%) | -   | 1<br>(%)   | 2<br>(%) | <u>3</u><br>(%) |            |
|                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                   |                                     |             |                       |             |    |           |                   |           |                 |           |      |                   |              |                 |     |            |          |                 |            |
| Nervous syst                 | em}                                                                                                                                                                     |                                     |             |                       |             |    |           |                   |           |                 |           |      |                   |              |                 |     |            |          |                 |            |
| orain                        | hemorrhage                                                                                                                                                              | (                                   | 0<br>0) (   | <15><br>0 0<br>0) ( 0 |             |    | 0<br>0) ( | <17)<br>0<br>0) ( | 0         | 0<br>0)         | 0<br>( 0) | (    | <14<br>0<br>0) (  | ><br>0<br>0) | 0<br>( 0)       |     | 0<br>0) (  |          | 9><br>1<br>(11) | 0<br>) ( 0 |
|                              | mineralization                                                                                                                                                          | (                                   | 3<br>20) (  | 0 0<br>0)(0           |             | (1 | 2<br>2) ( | 0<br>0) (         | 0<br>0) ( | 0<br>0)         | 3<br>(21) | (    | 0<br>0) (         | 0<br>0)      | 0<br>(0)        | ( : | 2<br>22) ( | 0<br>0)  | 0               | 0<br>) ( 0 |
|                              | epidermal cyst                                                                                                                                                          | (                                   | 0 (         | 0 0<br>0) ( 0         |             | (  | 1<br>6) ( | 0<br>0) (         | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | (    | 0<br>0) (         | 0<br>0)      | 0<br>(0)        | (   | 0<br>0) (  | 1<br>11) | 0<br>( 0)       | 0<br>) ( 0 |
| spinal cord                  | hemorrhage                                                                                                                                                              | (                                   |             | <15><br>0 0<br>0) ( 0 |             | (  | D<br>D) ( | <17><br>0<br>0) ( | 0         | 0<br>0)         | 0<br>( 0) | (    | <14<br>0<br>0) (  | 0            | 0<br>( 0)       |     | 1<br>11) ( | 0        | 9><br>0<br>( 0) | 0<br>) ( 0 |
|                              | necrosis:focal                                                                                                                                                          | (                                   |             | 0 0<br>0) ( 0         | 0<br>) ( 0) | (  | 1<br>5) ( | 0<br>0) (         | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | (    | 0<br>0) (         | 0<br>0)      | 0<br>(0)        | (   | 0<br>0) (  | 0<br>0)  | 0<br>( 0)       | 0<br>) ( 0 |
| {Musculoskele                | tal system)                                                                                                                                                             |                                     |             |                       |             |    |           |                   |           |                 |           |      |                   |              |                 |     |            |          |                 |            |
| nuscle                       | necrosis                                                                                                                                                                | (                                   |             | <15><br>0 0<br>0) ( 0 |             |    | )<br>)) ( | <172<br>1<br>6) ( | 0         | 0<br>0)         | ( 0)      |      | <14)<br>0<br>0) ( | 0            | 0<br>( 0)       |     | 0<br>0) (  | 0        |                 | 0<br>) ( 0 |
| Grade<br>〈 a 〉<br>b<br>( c ) | 1: Slight 2: Moderate 3<br>a: Number of animals examined at the s<br>b: Number of animals with lesion<br>c: $b / a * 100$<br>ifference: $* : P \le 0.05 **: P \le 0.05$ |                                     |             |                       |             |    |           |                   |           |                 |           |      |                   |              |                 |     |            | ,        |                 |            |

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

~~/

|                |                | Group Name Control<br>No. of Animals on Study 15 | 5000 ppm<br>17                           | 10000 ppm<br>14                                                                      | 20000 ppm<br>9                         |
|----------------|----------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|
| Organ          | Findings       | Grade <u>1 2 3 4</u><br>(%) (%) (%) (%)          | <u>1 2 3 4</u><br>(%) (%) (%) (%)        | 1 2 3 4<br>(%) (%) (%) (%)                                                           | <u>1 2 3 4</u><br>(%) (%) (%) (%)      |
| {Musculoskele  | tal system)    |                                                  |                                          |                                                                                      |                                        |
| muscle         | mineralization | <15><br>1 0 0 0<br>( 7) ( 0) ( 0) ( 0)           | <17><br>0 · 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <14><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                               | < 9><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |
| (Body cavities | s}             |                                                  |                                          |                                                                                      |                                        |
| pleura         | pleuritis      | <15><br>0 0 1 0<br>( 0) ( 0) ( 7) ( 0)           | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)   | $ \begin{array}{c} <14 \\ 0 & 0 & 0 & 0 \\ ( & 0) & ( & 0) & ( & 0) \\ \end{array} $ | < 9><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |
| retroperit     | hemorrhage     | <15><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)           | <17><br>0 l 0 0<br>( 0) ( 6) ( 0) ( 0)   | <14><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                               | < 9><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

TABLE M 3

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

|              |                       | Group Name<br>No. of Animals on |      | ontrol<br>35 |          |       | !                   | 1q 000   | om<br>33 |                 |    | 100       | 100 pr<br>36 |          |                 | 20           | 0000 pj<br>4 | -         |       |
|--------------|-----------------------|---------------------------------|------|--------------|----------|-------|---------------------|----------|----------|-----------------|----|-----------|--------------|----------|-----------------|--------------|--------------|-----------|-------|
| Organ        | Findings              | Grade                           | (%)  | 2<br>(%)     | 3<br>(%) | 4 (%) | <u>    1</u><br>(%) | 2<br>(%) | 3<br>(%) | <u>4</u><br>(%) | (9 | ()<br>()  | 2<br>(%)     | 3<br>(%) | <u>4</u><br>(%) | <br>1<br>(%) | 2<br>(%)     | 3<br>(%)  | 4 (%) |
| {Integumenta | ary system/appandage} |                                 |      |              |          |       |                     |          |          |                 |    |           |              |          |                 |              |              |           |       |
| skin/app     | ulcer                 |                                 | 0    | <3           | 5>       | 0     | 0                   | <3<br>0  | 33>      | 0               |    | )         | <36<br>0     | i><br>0  | 0               | 0            | <4:<br>0     |           | 0     |
|              | urei                  |                                 | ( 0) | (3)          | (3)(     | 0)    | ( 0)                | ( 0)     | (0)      | (0)             |    | ,<br>)) ( | 0) (         | (0)(     | 0<br>0)         | 0) (         | (0)          | 0<br>( 0) | ( 0)  |
|              | scab                  |                                 | 1    | 1            | 0        | 0     | 1                   | 1        | 0        | 0               | (  | )         | 1            | 0        | 0               | 1            | 0            | 0         | 0     |

{Respiratory system}

| nasal cavit | eosinophilic change:olfactory epithelium        | <35><br>13 1 0 0<br>(37) (3) (0) (0) | <33><br>21 0 0 0<br>( 64) ( 0) ( 0) ( 0) | <36><br>14 1 0 0<br>(39) (3) (0) (0) | <41><br>13 0 0 0<br>( 32) ( 0) ( 0) ( 0) |
|-------------|-------------------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|
|             | eosinophilic change:respiratory epithelium      | 13 3 0 0<br>(37) (9) (0) (0)         | 7 0 0 0<br>(21)(0)(0)(0)                 | 8 0 0 0<br>(22) (0) (0) (0)          | 10 0 0 0<br>(24) (0) (0) (0)             |
|             | respiratory metaplasia:olfactory epithelium     | 14 0 0 0<br>(40)(0)(0)(0)            | 7 0 0 0<br>(21)(0)(0)(0)                 | 6 0 0 0<br>(17) (0) (0) (0)          | 10 0 0 0<br>(24) (0) (0) (0)             |
|             | respiratory metaplasia:gland                    | 20 0 0 0<br>(57)(0)(0)(0)            | 11 l 0 0<br>(33)(3)(0)(0)                | 14 1 0 0<br>(39)(3)(0)(0)            | 16 1 0 0<br>(39)(2)(0)(0)                |
|             | squamous cell metaplasia:respiratory epithelium | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)           | 1 0 0 0<br>(3)(0)(0)(0)              | 1 0 0 0<br>(2)(0)(0)(0)(0)               |

1 : Slight Grade 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

с:b/а\*100 (c)

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square /

(HPT150)

BAIS4

PAGE: 1

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 2

`~~~

| Organ            | I                                                                                                                                                             | Group Name<br>No. of Animals on Stud<br>Grade |           | ntrol<br>3<br><u>2</u><br>(%) |          | 4 (%)   | - | 50<br><u>1</u><br>(%) | 00 p<br><u>2</u><br>(%) | 33  | 3<br>(%) | 4(%)      |   | <u> </u> |   | )0 p)<br>3(<br><u>2</u><br>(%) |                |   | <u>4</u><br>(%) |   | 2       | 0000<br>2<br>(% | 41  | 3<br>(%) | 4         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-------------------------------|----------|---------|---|-----------------------|-------------------------|-----|----------|-----------|---|----------|---|--------------------------------|----------------|---|-----------------|---|---------|-----------------|-----|----------|-----------|
| {Respiratory s   | system)                                                                                                                                                       |                                               |           |                               |          |         |   |                       |                         |     |          |           |   |          |   |                                |                |   |                 |   |         |                 |     |          |           |
| asopharynx       | eosinophilic change                                                                                                                                           | (                                             | 1<br>3) ( | <3<br>1<br>3)                 | 0        | 0<br>0) |   | 1<br>3) (             | 0                       |     | 0<br>0)  | 0<br>( 0) | ( | 1<br>3)  |   | <3)<br>0<br>0)                 | 6><br>0<br>(0) |   | 0<br>0)         |   | 1<br>2) | 0               |     | 0        | 0<br>( 0) |
| ung              | inflammatory infiltration                                                                                                                                     | . (                                           | 0<br>0) ( | <3<br>0<br>0)                 | 0        | 0<br>0) |   | 1<br>3) (             | 0                       | 33> |          | 0<br>( 0) | ( | 1<br>3)  |   | <3)<br>1<br>3)                 | 5><br>0<br>(0) |   | 0<br>0)         | ( | 0<br>0) | 0               |     | 0        | 0<br>( 0) |
|                  | accumulation of foamy cells                                                                                                                                   | (                                             | 1<br>3) ( | 0<br>0)                       | 0        | 0<br>0) | ( | 0<br>0) (             | 0<br>0)                 |     | 0<br>0)  | 0<br>( 0) | ( | 0<br>0)  | ( | 0<br>0)                        | 0              | ( | 0<br>0)         | ( | 0<br>0) | 0<br>( 0)       |     | 0<br>0)  | 0<br>( 0) |
|                  | bronchiolar-alveolar cell hyperplasia                                                                                                                         | . (                                           | 0<br>0) ( | 0<br>0)                       | 0<br>( 0 | 0<br>0) | ( | 0<br>0) (             | 0<br>0)                 | (   | 0<br>0)  | 0<br>( 0) | ( | 2<br>6)  | ( | 0<br>0)                        | 0<br>( 0)      | ( | 0<br>0)         | ( | 2<br>5) | 0               | ) ( | 0<br>0)  | 0<br>( 0) |
| Hematopoietic    | ; system)                                                                                                                                                     |                                               |           |                               |          |         |   |                       |                         |     |          |           |   |          |   |                                |                |   |                 |   |         |                 |     |          |           |
| one marrow       | congestion                                                                                                                                                    | (                                             | 1<br>3) ( | <3<br>0<br>0)                 | 0        | 0<br>0) | ( | 0<br>0) (             | 0                       |     | 0<br>0)  | 0<br>(0)  | ( | 0<br>0)  | ( | <30<br>0<br>0)                 | 6><br>0<br>(0) | ( | 0<br>0)         |   | 1<br>2) | 0               |     | 0        | 0<br>( 0) |
|                  | increased hematopoiesis                                                                                                                                       | (                                             | 3<br>9) ( | 0<br>0)                       | 0<br>( 0 | 0<br>0) |   | 3<br>9) (             | 0<br>0)                 |     | 0<br>0)  | 0<br>( 0) | ( | 4<br>11) | ( | 0<br>0)                        | 0<br>( 0)      | ( | 0<br>0)         | ( | 2<br>5) | 0               |     | 0<br>0)  | 0<br>( 0) |
| (a ><br>b<br>(c) | I : Slight2 : Moderate3a : Number of animals examined at the sib : Number of animals with lesionc : b / a * 100fference ;* : $P \leq 0.05$ ** : $P \leq 0.05$ |                                               |           |                               |          | <br>    |   |                       |                         |     |          |           |   |          |   |                                |                |   |                 |   |         |                 |     |          |           |

.

(HPT150)

.

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| )rgan          | Findings                     | Group Name<br>No. of Animals on Stu<br>Grade | $ \begin{array}{c} \text{Control} \\ \text{idy} & 35 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ | 5000 ppm<br>33<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 10000 ppm<br>36<br><u>1 2 3 4</u><br>(%) (%) (%) (%)       | 20000 ppm<br>41<br><u>1 2 3 4</u><br>(%) (%) (%) (%)       |
|----------------|------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| (Hematopoietic | system)                      |                                              |                                                                                                                                     |                                                     |                                                            |                                                            |
| oone marrow    | myelofibrosis                | (                                            | <35><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                              | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <pre> &lt;36&gt;<br/>0 0 0 0<br/>( 0) ( 0) ( 0) ( 0)</pre> | <pre> &lt;41&gt;     3 0 0 0     ( 7) ( 0) ( 0) ( 0)</pre> |
|                | megakaryocyte:increased      | (                                            | 1 0 0 0<br>(3)(0)(0)(0)(0)                                                                                                          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 1 0 0 0<br>(3)(0)(0)(0)(0)                                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                             |
|                | granulopoiesis:increased     | . (                                          | 0 0 0 0<br>(0)(0)(0)(0)                                                                                                             | 0 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                    | 1 0 0 0<br>(3)(0)(0)(0)(0)                                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                             |
| ymph node      | lymphadenitis                | (                                            | <35><br>0 1 0 0<br>( 0) ( 3) ( 0) ( 0)                                                                                              | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <36><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | <41><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     |
| pleen          | angiectasis                  | (                                            | <35><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                              | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <36><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | <41><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                     |
|                | deposit of melanin           | (                                            | 1 0 0 0<br>(3)(0)(0)(0)                                                                                                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                             | 2 0 0 0<br>( 5) ( 0) ( 0) ( 0)                             |
|                | extramedullary hematopoiesis | (                                            | 8 2 0 0<br>(23) (6) (0) (0)                                                                                                         | 7 3 0 0<br>(21) (9) (0) (0)                         | 11 2 0 0<br>(31) (6) (0) (0)                               | 10 2 0 0<br>(24) (5) (0) (0)                               |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| Organ         | Findings                      | Group Name Co<br>No. of Animals on Study<br>Grade <u>1</u><br>(%) | ntrol<br>35<br><u>2</u><br>(%) | 3<br>(%) | <u>4</u><br>(%) | <u>1</u><br>(%) | 5000 pj<br>2<br>(%) | pm<br>33<br>3<br>(% |           | 4 (%)   | <u>    1</u><br>(% |      | 000 pr<br>36<br><u>2</u><br>(%) |           | 4 (%)     | <u>    1</u><br>(% |     | )00 pr<br>41<br>2<br>(%) |           | <u>4</u><br>(%) |
|---------------|-------------------------------|-------------------------------------------------------------------|--------------------------------|----------|-----------------|-----------------|---------------------|---------------------|-----------|---------|--------------------|------|---------------------------------|-----------|-----------|--------------------|-----|--------------------------|-----------|-----------------|
| {Hematopoieti | c system}                     |                                                                   |                                |          |                 |                 |                     |                     |           |         |                    |      |                                 |           |           |                    |     |                          |           |                 |
| spleen        | follicular hyperplasia        | 0                                                                 | <35<br>0<br>0) (               | 0        | 0<br>( 0)       | 1<br>( 3)       | 0                   | 33><br>0<br>( 0     | )<br>)) ( | 0<br>0) | 0                  | )) ( | <36<br>1<br>3)                  | 0         | 0<br>( 0) | 0                  | ) ( | <41<br>0<br>0) (         | 0         | 0<br>( 0)       |
| {Digestive sy | stem}                         |                                                                   |                                |          |                 |                 |                     |                     |           |         |                    |      |                                 |           |           |                    |     |                          |           |                 |
| tooth         | dysplasia                     | 1                                                                 | <35<br>0<br>0) (               | 0        | 0<br>( 0)       | 0<br>( 0)       | 0                   | 33><br>0<br>( 0     | )<br>)) ( | 0<br>0) | 0                  | ) (  | <36<br>0<br>0) (                | 0         | 0<br>( 0) | 0<br>( 0)          |     | <41<br>0<br>0) (         | 0         | 0<br>( 0)       |
| salivary gl   | abscess                       | 1<br>(-3)                                                         | <35<br>0<br>0) (               | 0        | 0<br>( 0)       | 0<br>( 0)       | 0                   | 33><br>0<br>( 0     | )<br>)) ( | 0<br>0) | 0<br>( 0)          | ) (  | <36<br>0<br>0) (                | 0         | 0<br>( 0) | 0<br>( 0)          | ) ( | <41<br>0<br>0) (         | 0         | 0<br>( 0)       |
| stomach       | hyperplasia:forestomach       | 0<br>( 0) (                                                       | <35<br>1<br>3) (               | 0        | 0<br>( 0)       | 0<br>( 0)       | 0                   |                     |           | 0<br>0) | 1<br>( 3)          | ) (  | <36<br>0<br>0) (                | 0         | 0<br>( 0) | 0<br>( 0)          |     | <41<br>0<br>0) (         | 0         | 0<br>( 0)       |
|               | erosion:glandular stomach     | 2<br>( 6) (                                                       | 1<br>3) (                      | 0<br>0)  | 0<br>( 0)       | 5<br>(15)       | 0<br>( 0)           | 0<br>( 0            | )<br>)) ( | 0<br>0) | 7<br>(19)          | ) (  | 0<br>0) (                       | 0<br>( 0) | 0<br>( 0) | 7<br>(17)          | ) ( | 0<br>0) (                | 0<br>( 0) | 0<br>( 0)       |
|               | hyperplasia:glandular stomach | 16<br>(46)                                                        | 0<br>0) (                      | 0<br>0)  | 0<br>( 0)       | 12<br>(36)      | 0<br>( 0)           | 0                   |           | 0<br>0) | 17<br>(47)         |      | 0<br>0) (                       | 0<br>( 0) | 0<br>( 0) | 13<br>( 32)        |     | 0<br>0) (                | 0<br>( 0) | 0<br>( 0)       |

Grade 1 : Slight 2 : Moderate 3 ∶ Marked 4 : Severe

<a> a : Number of animals examined at the site b : Number of animals with lesion

b

(c) с:b/а\*100

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 5

|              |                           | Group Name<br>No. of Animals on Study<br>Grade | 1         | ntrol<br>3<br>2 | 5<br>3    | 4         |     | 1         |   | ppm<br>33<br>2   | 3       | 4         |   | 1       | 2         | 86<br>3                    |             |   | 1       |     | 0 ppm<br>41<br>2  | 3       | 4         |
|--------------|---------------------------|------------------------------------------------|-----------|-----------------|-----------|-----------|-----|-----------|---|------------------|---------|-----------|---|---------|-----------|----------------------------|-------------|---|---------|-----|-------------------|---------|-----------|
| rgan         | Findings                  | (                                              | %)        | (%)             | (%)       | (%)       |     | (%)       | ( | %)               | (%)     | (%)       |   | (%)     | (%)       | (%)                        | ) (%)       |   | (%)     | (9  | 6)<br>            | (%)     | (%)       |
| Digestive sy | ystem)                    |                                                |           |                 |           |           |     |           |   |                  |         |           |   |         |           |                            |             |   |         |     |                   |         |           |
| arge intes   | lymphoid hyperplasia      |                                                | 0<br>0) ( | <3:<br>1<br>3)  | 0         | 0<br>( 0) | ,   | 0<br>( 0) |   | <33<br>0<br>0) ( | 0       | 0<br>( 0) | ( | 0<br>0) | 0         | 86><br>0<br>( 0)           | 0<br>) ( 0) | ( | 0<br>0) |     | <41><br>0<br>0) ( | 0       | 0<br>( 0) |
| iver         | necrosis:focal            |                                                | 0<br>0) ( | <3:<br>0<br>0)  | 0         | 0<br>( 0) | . 1 | 1<br>(3)  | ( | <33<br>0<br>0) ( | 0       | 0<br>( 0) | ( | 0<br>0) | 0         | 86><br>0<br>( 0)           | 0<br>) ( 0) | ( | 0<br>0) | (   | <41><br>0<br>0) ( | 0       | 0<br>( 0) |
|              | inflammatory infiltration |                                                | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) | I   | 0<br>( 0) |   | 0<br>0) (        | 0<br>0) | 0<br>( 0) | ( | 1<br>3) | 0<br>( 0) | 0<br>( 0)                  | 0<br>) ( 0) | ( | 0<br>0) |     | 0<br>0) (         | 0<br>0) | 0<br>( 0) |
|              | inflammatory cell nest    |                                                | 4<br>1) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) | I   | 3<br>(9)  | ( | 0<br>0) (        | 0<br>0) | 0<br>( 0) | ( | 1<br>3) | 0<br>( 0) | 0<br>( 0)                  | 0<br>) ( 0) | ( | 1<br>2) | ( ) | 0<br>0) (         | 0<br>0) | 0<br>( 0) |
|              | clear cell focus          | (                                              | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) |     | 0<br>( 0) | ( | 2<br>6) (        | 0<br>0) | 0<br>( 0) | ( | 0<br>0) | 0<br>( 0) | 0<br>( 0)                  | 0<br>) ( 0) | ( | 1<br>2) |     | 0<br>0) (         | 0<br>0) | 0         |
|              | acidophilic cell focus    |                                                | 1<br>3) ( | 1<br>3)         | 0<br>( 0) | 0         | i   | 0<br>( 0) | ( | 1<br>3) (        | 0<br>0) | 0<br>( 0) | ( | 2<br>6) | 0<br>( 0) | ( <u>1</u><br>( <u>3</u> ) | 0<br>) ( 0) | ( | 2<br>5) | ( ; | 1<br>2) (         | 0<br>0) | 0<br>( 0) |
|              | basophilic cell focus     |                                                | 1<br>3) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) | I   | 2<br>(6)  | ( | 0<br>0) (        | 0<br>0) | 0<br>( 0) | ( | 0<br>0) | 1<br>(3)  | 0<br>( 0)                  | 0<br>) ( 0) | ( | 3<br>7) |     | 0<br>0) (         | 0<br>0) | 0<br>( 0) |
|              | biliary cyst              |                                                | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) | I   | 0<br>( 0) |   | 0<br>0) (        | 0<br>0) | 0<br>( 0) | ( | 0<br>0) | 0<br>( 0) | 0                          | 0<br>) ( 0) | ( | 1<br>2) |     | 0<br>0) (         | 0<br>0) | 0<br>( 0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle \, a \, \rangle \qquad a$  : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 6

| Organ          | Findings                  | Group Name<br>No. of Animals on Stud<br>Grade | 1 2                      | <u>3 4</u><br>%) (%) | 5000 ppm<br>33<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 10000 ppm<br>36<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 20000 ppm<br>41<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|----------------|---------------------------|-----------------------------------------------|--------------------------|----------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                |                           |                                               |                          |                      |                                                     |                                                      |                                                      |
| {Digestive sys | stem}                     |                                               |                          |                      |                                                     |                                                      |                                                      |
| gall bladd     | cyst                      | . (                                           | <35><br>0 0<br>0) ( 0) ( | 0 0<br>0) ( 0)       | <33><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)              | <36><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               | <41><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)               |
|                | hyperplasia               | . (                                           | 2 0<br>6) ( 0) (         | 0 0<br>0) ( 0)       | 1 0 0 0<br>(3)(0)(0)(0)                             | 2 0 0 0<br>( 6) ( 0) ( 0) ( 0)                       | 2 0 0 0<br>(5)(0)(0)(0)                              |
| {Urinary syste | em)                       |                                               |                          |                      |                                                     |                                                      |                                                      |
| kidney         | cyst                      | (                                             | <35><br>0 0<br>0) ( 0) ( | 0 0<br>0) ( 0)       | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <36><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               | <41><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)               |
|                | hyaline droplet           | (                                             | 0 0<br>0) ( 0) (         | 0 0<br>0) ( 0)       | 1 0 0 0<br>(3)(0)(0)(0)                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 1 0 0 0<br>(2) (0) (0) (0)                           |
|                | inflammatory infiltration | (                                             | 1 0<br>3) ( 0) (         | 0 0<br>0) ( 0)       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 1 0 0 0<br>(2)(0)(0)(0)                              |
|                | lymphocytic infiltration  | . (                                           | 2 1<br>6) ( 3) (         | 0 0<br>0) ( 0)       | 1 0 0 0<br>(3)(0)(0)(0)                             | 4 0 0 0<br>(11) (0) (0) (0)                          | 2 0 0 0<br>(5)(0)(0)(0)                              |
|                | osseous metaplasia        | (                                             | 1 0<br>3) ( 0) (         | 0 0<br>0) ( 0)       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$  a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c∶b⁄a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

| STUDY NO. : 0613<br>ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] |                              | HISTOPATHOLOGICAL FINDING<br>SACRIFICED ANIMALS (105W)           | RY)                                                        | •<br>•                                 |                                                                                            |
|----------------------------------------------------------|------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|
| REPORT TYPE<br>SEX                                       | : A1<br>: MALE               |                                                                  |                                                            |                                        | PAGE :                                                                                     |
|                                                          |                              | Group Name Control<br>No. of Animals on Study 35<br>Grade1 2 3 4 | 5000 ppm<br>33<br>1 2 3 4                                  | 10000 ppm<br>36<br>1 2 3 4             | 20000 ppm<br>41<br>1 2 3 4                                                                 |
| Organ                                                    | Findings                     | (%) (%) (%)                                                      | (%) (%) (%)                                                | (%) (%) (%) (%)                        | (%) (%) (%) (%)                                                                            |
| {Urinary syst                                            | tem)                         |                                                                  |                                                            |                                        |                                                                                            |
| kidney                                                   | scar                         | <pre> &lt;35&gt;     2 1 0 0     ( 6) ( 3) ( 0) ( 0)</pre>       | <pre> &lt;33&gt;<br/>2 1 0 0<br/>( 6) ( 3) ( 0) ( 0)</pre> | <36><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0) | $\begin{array}{cccc} <41>\\ 1 & 0 & 0 & 0\\ ( \ 2) & ( \ 0) & ( \ 0) & ( \ 0) \end{array}$ |
|                                                          | inflammatory polyp           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                             | 0 2 0 0<br>( 0) ( 6) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                             |
|                                                          | hydronephrosis               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 0 0 3 0<br>( 0) ( 0) ( 9) ( 0)                             | 0 2 2 0<br>( 0) ( 6) ( 6) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                             |
|                                                          | mineralization:cortex        | 1 0 0 0<br>(3)(0)(0)(0)                                          | 1 0 0 0<br>(3)(0)(0)(0)                                    | 1 0 0 0<br>(3)(0)(0)(0)                | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                             |
|                                                          | regeneration:proximal tubule | 2 0 0 0<br>( 6) ( 0) ( 0) ( 0)                                   | 2 0 0 0<br>( 6) ( 0) ( 0) ( 0)                             | 2 0 0 0<br>(6)(0)(0)(0)                | 3 0 0 0<br>(7)(0)(0)(0)                                                                    |
| urin bladd                                               | lymphocytic infiltration     | <35><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           | <33><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)                     | <36><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <41><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                     |
| {Endocrine sy                                            | vstem)                       |                                                                  |                                                            |                                        |                                                                                            |
| pituitary                                                | hyperplasia                  | $\langle 35 \rangle$<br>0 2 0 0<br>(0) (5) (0) (0) (2)           |                                                            |                                        | <41><br>1 0 0 0<br>( 2) ( 2) ( 2) ( 2)                                                     |

| Grade | l : Slight | 2 : Moderate | 3 : Marked | 4 : Severe |
|-------|------------|--------------|------------|------------|
|-------|------------|--------------|------------|------------|

 $\langle a \rangle$  a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

(2)(0)(0)(0)

.

.

( 0) ( 0) ( 0) ( 0)

( 0) ( 0) ( 0) ( 0)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~

| rgan | Findings | Group Name
No. of Animals on Stu
Grade | 1 2 3 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 20000 ppm
41
1 2 3 4
(%) (%) (%) (%) |
|--------------|---------------------------|--|---------------------------------|---|---|---|
| indocrine sy | stem} | | | | | |
| tuitary | Rathke pouch | (| <35>
0 0 0
0) (0) (0) (| <pre><33> 0 3 0 0 0 0) (9) (0) (0) (0)</pre> | <36>
3 0 0 0
(8) (0) (0) (0) | <41>
2 0 0 0
(5) (0) (0) (0) |
| yroid | cyst | (| <35>
0 0 0
0) (0) (0) (| <33>
0 0 0 0 0
0) (0) (0) (0) (0) | <36>
1 0 0 0
(3) (0) (0) (0) | <41>
0 0 0 0
(0) (0) (0) (0) |
| | follicular hyperplasia | . (| 0 0 0
0)(0)(0)(0)(| 0 0 0 0 0
0) (0) (0) (0) (0) | 0 1 0 0
(0) (3) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | C-cell hyperplasia | (| 2 0 0
6) (0) (0) (| 0 0 0 0 0
0) (0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0) | 0 0 0 0 0
(0) (0) (0) (0) |
| rathyroid | cyst | . (| <35>
0 0 0
0) (0) (0) (| <33>
0 0 0 0 0
0) (0) (0) (0) (0) | <36>
0 0 0 0
(0) (0) (0) (0) | <41>
1 0 0 0
(2) (0) (0) (0) |
| renal | spindle-cell hyperplasia | (| <35>
1 0 0
3) (0) (0) (| <33>
0 1 0 0 0
0) (3) (0) (0) (0) | <36>
2 0 0 0
(6) (0) (0) (0) | <41>
0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:cortical cell | (| 0 0 0
0) (0) (0) (| 0 1 0 0 0
0) (3)(0)(0)(0) | 0 0 1 0
(0) (0) (3) (0) | 0 1 0 0
(0) (2) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c∶b∕a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 \sim

| SEX : | MALE | · · · | | | PAGE : 9 |
|---------------|---------------------------|---|---|--|--|
| Organ | Findings | Group Name Control No. of Animals on Study 35 Grade 1 2 3 4 (%) (%) (%) (%) | 5000 ppm
33
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
36
<u>1 2 3 4</u>
(%) (%) (%) (%) | 20000 ppm
41
<u>1 2 3 4</u>
(%) (%) (%) (%) |
| {Reproductive | system) | | | | |
| testis | atrophy | <35>
0 0 0 0
(0) (0) (0) (0) | <333>
0 0 0 0
(0) (0) (0) (0) | <36>
1 0 0 0
(3) (0) (0) (0) | <41>
1 0 0 0
(2) (0) (0) (0) |
| epididymis | inflammatory infiltration | 0 1 0 0
(0) (3) (0) (0) | <33>
0 0 0 0
(0) (0) (0) (0) | <36>
0 0 0 0
(0) (0) (0) (0) | <41>
2 0 0 0
(5) (0) (0) (0) |
| | spermatogenic granuloma | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0) | 1 0 0 0
(3)(0)(0)(0) | 1 0 0 0
(2)(0)(0)(0) |
| semin ves | inflammation | <35>
0 0 0 0
(0) (0) (0) (0) | <33>
0 0 0 0
(0) (0) (0) (0) | <36>
1 0 0 0
(3) (0) (0) (0) | <41>
0 0 0 0
(0) (0) (0) (0) |
| prostate | lymphocytic infiltration | <35>
0 0 0 0
(0) (0) (0) (0) | <33>
1 0 0 0
(3) (0) (0) (0) | <36>
0 0 0 0
(0) (0) (0) (0) | <11>
0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| prep/cli gl | cyst | 35> 0 0 0 0 0 0 0 0 0 0 0 0 | <33>
1 0 0 0
(3) (0) (0) (0) | <36>
1 0 0 0
(3) (0) (0) (0) | <41>
0 0 0 0
(0) (0) (0) (0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference : * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| | | Group Name
No. of Animals | Control
on Study 35 | 5000 ppm
33 | 10000 ррм
36 | 20000 ppm
41 |
|----------------|-------------------|------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Organ | Findings | Grade | <u>1 2 3 4</u>
(%) (%) (%) (%) |
| | | | | ~ | | |
| Nervous system | n | | | | | |
| brain | mineralization | | <35>
13 0 0 0 | <33>
13 0 0 0 | <36>
6 0 0 0 | <41>
15 0 0 0 |
| | | | (37) (0) (0) (0) | (39) (0) (0) (0) | (17) (0) (0) (0) | (37) (0) (0) (0 |
| {Special sense | organs/appendage) | | | | | |
| Harder gl | | | <35> | <33> | <36> | <41> |
| 0 | hyperplasia | | 1 0 0 0 | 0 0 0 0 | 1 0 0 0 | 0 0 0 0 |
| | | | (3)(0)(0)(0) | (0) (0) (0) (0) | (3)(0)(0)(0) | (0)(0)(0)(0) |

(HPT150)

BAIS4

TABLE M 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

|)rgau | Findings | Group Name
No. of Animals on Stu
Grade | tudy
_1
(% | L | ntro
{
2
(%) | 50 | 3 | 4 (%) | <u>1</u>
(%) | 0 pp
5
<u>2</u>
(%) | m
0
3
(% | 4 (%) | | <u>1</u>
(%) | ppm
50
<u>2</u>
%) | | | <u>4</u>
%) | - | 10
<u>1</u>
(%) | 0000
<u>2</u>
(%) | 50 | <u>3</u>
(%) | <u>4</u>
(%) |
|---------------|-----------------------|--|------------------|---|-----------------------|----|-----------|-----------|-----------------|------------------------------|-------------------|-----------|---|-----------------|-----------------------------|--------------|-----|----------------|---|-----------------------|-------------------------|----|-----------------|-----------------|
| Integumentary | / system/appandage} | | | | | | | | | | | | | | | | | | | | | | | |
| kin/app | ulcer | . 1 | 1
(2 | | 0 | | 0
0) (| 0
(0) | 0
(0) | 0 | i0>
0
(0 | 0
(0) | (| 0
0) | <50
0
0) (| >
0
0) | | D
D) | | 0
0) (| 0 | | 0
0) (| 0 |
| | scab | | 0
(0 | | 0
0) | | 0
0) (| 0
(0) | 0
(0) | 2
4) | 0
(0 | 0
(0) | (| 0
0) | 0
0) (| 0
0) | | 0
D) | | 0
0) (| 0
(0) | | 0
0) (| 0 |
| | sebaceous hyperplasia | | 1 | | 0
0) | | 0
0) (| 0
(0) | 0
(0) | 0
0) | 0
(0 | 0
(0) | (| 0
0) | 0
0) (| 0
0) | () | | | 0
0) (| ·0
(0) | | 0
0) (| 0 |
| ubcutis | hemorrhage | | 0 | | 0 | | 0
0) (| 0
(0) | 1
(2) | 0
0
0) | 0 | 0
(0) | (| 0
0) | <50
0
0) (| >
0
0) | | D
D) | | 0
0) (| 0 | | 0
0) (| 0 |
| | inflammation | | 0
(0 | | 0
0) | | 1
2) (| 0
(0) | 0
(0) | 0
0) | 0 | 0
(0) | (| 0
0) | 0
0) (| 0
0) | () | | | 0
0) (| 0
(0) | | 0
0) (| 0 |
| Respiratory s | system) | | | | | | | | | | | | | | | | | | | | | | | |
| nasal cavit | exudate | | 0 | | 0 | | 0
0) (| 0
(0) | 0
(0) | 0 | 0>
0
(0 | 0
(0) | (| 1
2) | <50
0
0) (| >
0
0) | |)
) | | 0
0) (| 0 | | 0
0) (| 0 |

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

~

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

~----

| rgau | Group N
No. of
Grade | ame Control
Animals on Study 50
(%) (%) (%) (%) | 2500 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{cccc} 10000 & \text{ppm} & & \\ & 50 & \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) & (\%) \end{array}$ |
|------------|---|---|--|---|---|
| espiratory | system) | | | | |
| sal cavit | inflammatory infiltration | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | eosinophilic change:olfactory epithelium | 15 1 0 0
(30)(2)(0)(0) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9 0 0 0
(18) (0) (0) (0) | 9 0 0 0
(18) (0) (0) (0) |
| | eosinophilic change:respiratory epithelium | 26 8 0 0
(52)(16)(0)(0) | 28 3 0 0
(56)(6)(0)(0) | 35 2 0 0
(70) (4) (0) (0) | 33 1 0 0
(66)(2)(0)(0) |
| | inflammation:respiratory epithelium | 2 0 0 0
(4) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 6 0 0 0
(12) (0) (0) (0) | 2 0 0 0
(4) (0) (0) (0) |
| | respiratory metaplasia:olfactory epithelium | 15 0 0 0
(30)(0)(0)(0) | 6 0 0 0 *
(12) (0) (0) (0) | 11 0 0 0
(22) (0) (0) (0) | 10 0 0 0
(20) (0) (0) (0) |
| | respiratory metaplasia:gland | 22 1 0 0
(44) (2) (0) (0) | 22 0 0 0
(44) (0) (0) (0) | 18 2 0 0
(36) (4) (0) (0) | 21 0 0 0
(42)(0)(0)(0) |
| | squamous cell metaplasia:respiratory epitheli | um 1 0 0 0
(2)(0)(0)(0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| sopharynx | eosinophilic change | <50>
9 2 0 0
(18) (4) (0) (0) | <50>
4 1 0 0
(8) (2) (0) (0) | <50>
3 1 0 0
(6) (2) (0) (0) | <50>
2 0 0 0 =
(4) (0) (0) (0) |

b : Number of animals with lesion b

с:b/а*100 (c)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

PAGE : 15 ____

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| SEX : | FEMALE | | | | PAGE : |
|---------------|---------------------------------------|--|--|--|--|
| | Group N
No. of
Grade | ame Control
Animals on Study 50
<u>I 2</u> 3 4 | 2500 ppm
50
1 2 3 4 | 5000 ppm
50
1 2 3 4 | 10000 ppm
50
<u>1 2 3 4</u> |
| Organ | Findings | (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) |
| {Respiratory | system) | | | | |
| lung | inflammatory infiltration | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) |
| | lymphocytic infiltration | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | bronchiolar-alveolar cell hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | arteritis | 0 0 0 0
(0)(0)(0)(0) | 1 0 0 0
(2) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| (Hematopoieti | c system) | | | | |
| oone marrow | increased hematopoiesis | <50>
5 0 0 0
(10) (0) (0) (0) | <50>
9 0 0 0
(18) (0) (0) (0) | <50>
6 0 0 0
(12) (0) (0) (0) | <50>
5 0 0 0
(10) (0) (0) (0) |
| | myelofibrosis | 1 0 0 0
(2)(0)(0)(0) | 0 1 0 0
(0) (2) (0) (0) | 2 0 0 0
(4)(0)(0)(0) | 2 0 0 0
(4) (0) (0) (0) |
| | megakaryocyte:increased | 0 0 0 0 | 0 0 0 0 | | 0 0 0 0 |

(0) (0) (0) (0)

(2)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

(0) (0) (0) (0)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~

PAGE : 17

| Organ | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%) | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|-------------|------------------------------|---|--|---|--|
| {Hematopoie | tic system} | | | | |
| spleen | fibrosis:focal | <50>
0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 1 0
(0) (0) (2) (0) |
| | extramedullary hematopoiesis | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10 10 1 0
(20) (20) (2) (0) | 11 7 0 0
(22) (14) (0) (0) | 8 5 つ0 0
(16) (10) (0) (0) |
| | follicular hyperplasia | 1 0 0 0
(2)(0)(0)(0) | 0 1 0 0
(0) (2) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| {Circulator | y system) | | | | |
| heart | thrombus | <50>
0 0 1 0
(0) (0) (2) (0) | <50>
0 0 1 0
(0) (0) (2) (0) | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | mineralization | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0 0 0
(2)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 5 0 0 0
(10) (0) (0) (0) |
| | inflammatory cell nest | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(4)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | myocardial fibrosis | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |

b b: Number of animals with lesion

•

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

PAGE : 18

| | | Group Name Control
No. of Animals on Study 50
Grade <u>1 2 3 4</u> | 2500 ppm
50
<u>1 2 3 4</u> | 5000 ppm
50
<u>1 2 3 4</u> | 10000 ppm
50
<u>1 2 3 4</u> |
|--------------|--------------------------|--|--|--|--|
|)rgan | Findings | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) |
| Circulatory | system) | | | | |
| neart | arteritis | <pre><50> 0 0 0 0 (0) (0) (0) (0)</pre> | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 1 0 0
(0) (2) (0) (0) |
| rtery/aort | arteritis | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 1 0
(0) (0) (2) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| Digestive sy | stem) | | | | |
| tongue | arteritis | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) |
| salivary gl | lymphocytic infiltration | <50>
1 0 0 0
(2) (0) (0) (0) | <49>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) |
| stomach | ulcer:forestomach | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:forestomach | 1 0 0 0
(2) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(4) (0) (0) (0) | 4 0 0 0
(8) (0) (0) (0) |

ь (с) с: b/а*100

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 19

|)rgan | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%) | $\begin{array}{cccc} 2500 \text{ ppm} \\ 50 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | 5000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|-------------|-------------------------------|---|--|---|--|
| Digestive s | ystem) | | | | |
| tomach | erosion:glandular stomach | <50>
5 2 0 0
(10) (4) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
7 0 0 0
(14). (0) (0) (0) | 2 0 0 0
(4)(0)(0)(0) |
| | ulcer:glandular stomach | 1 0 0 0
(2) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:glandular stomach | 15 0 0 0
(30) (0) (0) (0) | 16 0 0 0
(32) (0) (0) (0) | 12 0 0 0
(24) (0) (0) (0) | 8 0 0 0
(16) (0) (0) (0) |
| iver | angiectasis | <50>
0 1 1 0
(0) (2) (2) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
4 0 0 0
(8) (0) (0) (0) | <50>
1 0 0 0
(2)(0)(0)(0) |
| | necrosis:central | 0 1 0 0
(0) (2) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | necrosis:focal | 1 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(4)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory infiltration | 1 0 0 0
(2)(0)(0)(0) | 2 0 0 0
(4)(0)(0)(0) | 1 0 0 0
(2) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory cell nest | 11 0 0 0
(22) (0) (0) (0) | 7 0 0 0
(14) (0) (0) (0) | 12 0 0 0
(24) (0) (0) (0) | 8 0 0 0
(16)(0)(0)(0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a> a: Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| :BDF1] | ALL ANIMALS | 1011 11201 240120 | 000 |
|--------|-------------|-------------------|-----|
| | | | |

PAGE : 20

|)rgan | Findings | Group Name
No. of Animals on Stu
Grade | Contro
dy
<u>1 2</u>
(%) (%) | 50
3 | 4 (%) | 2
 | 500 pp
5
<u>2</u>
(%) | m
60
<u>3</u>
(%) | 4(%) | <u> </u> | |) ppm
50
<u>2</u>
(%) | | 4 (%) | | 10
1
(%) | 000 p
5
<u>2</u>
(%) | | 4 |
|--------------|------------------------------|--|---------------------------------------|------------------|-----------|-----------|--------------------------------|----------------------------|-----------|----------|-----|--------------------------------|----------------|-----------|---|----------------|-------------------------------|-----------------|----------|
| rgan | r maings | | (%) (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |) | (%) | (%) | (%) | | (%) | (%) | (%) | |
| Digestive sy | stem) | | | | | | | | | | | | | | | | | | |
| iver | extramedullary hematopoiesis | (| <
0 0
0) (0) | 50>
0
(0) | 0
(0) | 1
(2) | <5
0
(0) | 0 | 0
(0) | 1
(2 | | <50
0
0) (| >
0
0) (| 0
(0) | (| 0
0) (| <5
0
(0) | 0>
0
(0) | 0
(0 |
| , | clear cell focus | (| 0 0
0) (0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0 |) (| 1
2) (| 0
0) (| 0
(0) | | 1
2) (| | 0
(0) | 0
(0 |
| | acidophilic cell focus | (| 0 2
0) (4) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 3
(6 |) (| 0
0) (| 0
0) (| 0
(0) | (| 1
2) (| 1
2) | 0
(0) | 0
(0 |
| | basophilic cell focus | (| 0 0
0) (0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0 | | 1
2) (| 0
0) (| 0
(0) | (| 0
0) (| 0
(0) | 0
(0) | 0
(0 |
| | biliary cyst | (| 0 0
0) (0) | 0
(0) | 0
(0) | 1
(2) | 0
(0) | 0
(0) | 0
(0) | 0
(0 |) (| 0
0) (| 0
0) (| 0
(0) | (| 0
0) (| 0
()) | 0
(0) | 0
(0 |
| gall bladd | lıyperplasia | (| <
1 0
2) (0) | 49>
0
(0) | 0
(0) | 0
(0) | <4
0
(0) | 0 | 0
(0) | 0 | | <50
0
0) (| >
0
0) (| 0
(0) | (| 1
2) (| <5
0
(0) | 0>
0
(0) | 0
(0 |
| oancreas | fibrosis:focal | . (| <
0 0
0) (0) | 50>
0
(0) | 0
(0) | 0
(0) | <5
0
(0) | 0 | 0
(0) | 0
(0 | | <50
0
0) (| >
0
0) (| 0
(0) | (| 0
0) (| | 0>
1
(2) | 0
(0 |

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

(HPT150)

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 21

| Organ | Findings | Group Name
No. of Animals on Stud
Grade | | 1trol
50
<u>2</u>
(%) | 3 (%) | 4 (%) | | 2
1
(%) | 500 p
2
(%) | 50 | 3
(%) | 4(%) | | 5
- <u>1</u>
(%) | 000 p
<u>2</u>
(%) | 50 | 3
%) | 4 (%) | - | 10
<u>1</u>
(%) |)000
2
(%) | 50
3 | ;) (| <u>4</u>
(%) |
|----------------|---------------------------|---|------------|--------------------------------|-----------|-----------|-----|---------------|-------------------|----|------------|---------|---|------------------------|--------------------------|------------------|-----------|---------|---|-----------------------|------------------|----------|-----------|-----------------|
| {Urinary syste | m) . | | | | | | | | | | | | | | | | | | | | | | | |
| kidney | cyst | (| 0
0) (| <50
0
0) (| 0 | 0
(0) | (| 1
2) | 0 | | 0
0) (| 0
0) | (| 0
0) | 0 | :50>
(
((|)
)) (| 0
0) | | 0
0) (| 0 | |)
)) (| 0
0) |
| · | hyaline droplet | (| 7
14) (| 0
0) (| 0
(0) | 0
(0) | (| 14
28) | 0
(0) | (| 0
0) (| 0
0) | (| 5
10) | 0
(0) | ((|)
)) (| 0
0) | | 14
28) (| 0
(0) | 0
(0 |)
)) (| 0
0) |
| | deposit of hemosiderin | (| 0
0) (| 0
0) (| 0
0) | 0
(0) | (| 0
0) | 0
(0) | | 0
0) (| 0
0) | (| 1
2) | 0
(0) | ((|)
) (| 0
0) | (| 0
0) (| 0
0) | 0
(0 |)
)) (| 0
0) |
| | inflammatory infiltration | (| 0
0) (| 0
0) (| 0
0) | 0
(0) | (| 2
4) | 0
(0) | | 0
0)- (| 0
0) | (| 0
0) | 0
(0) | ((|)
)) (| 0
0) | (| 0
0) (| 0
(0) | 0
(0 |)
)) (| 0
0) |
| | lymphocytic infiltration | . (| 4
8) (| 0
0) (| 0
0) | 0
(0) | (| 3
6) | 0
(0) | | 0
0) (| 0
0) | (| 3
6) | 0
(0) | (| | 0
0) | (| 2
4) (| 0
(0) | (0 |)
)) (| 0
0) |
| | scar | (| 1
2) (| 0
0) (| 0
0) | 0
(0) | (| 0
0) | 0
(0) | (| 0
0) (| 0
0) | (| 1
2) | 0
(0) | ((|)
)) (| 0
0) | (| 2
4) (| 0
(0) | 0
(0 |)
)) (| 0
0) |
| | inflammatory polyp | (| 0
0) (| 2
4) (| 0
0) | 0
(0) | . (| 2
4) | 1
(2) | (| 0
0) (| 0
0) | (| 1
2) | 0
(0) | |)
)) (| 0
0) | (| 0
0) (| 2
(4) | 0
(0 |)))(| 0
0) |
| | hydronephrosis | (| 0
0) (| 0
0) (| 2
4) | 2
(4) | (| 1
2) | 1
(2) | (| 2
4) (| 0
0) | (| 0
0) | 0
(0) | (4 | 2
4) (| 0
0) | | 1
2) (| 3
(6) | | 2) (| 0
0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | | Group Name
No. of Animals on | | ntrol
50 | | | | 25 | 00 pp
5 | | | | | 50 | 1q 00 | om
50 | | | | 10 | 0000 | ppm
50 | |
|--------------|----------------------------|---------------------------------|--------------|------------------|-----------|---------|---|-----------|---------------|-----------|-----------|---|---|-----------|-----------------|-----------------|-----|-----------------|---|-----------|-----------------|------------------|------------|
| Organ | Findings | Grade | <u> </u> (%) | 2
(%) | 3 (%) | 4 (%) | | 1
(%) | 2 (%) | 3
(%) | 4
(%) | - | - | 1
(%) | 2 (%) | 3 (% | | <u>4</u>
(%) | - | 1
(%) | 2
(%) | 3 | |
| {Urinary sys | stem} | | | | | | | | | | | | | | | | | | | | | | |
| kidney | pyelonephritis | | 0
(0) (| <50
0
0) (| 1 | 0
0) | (| 0
0) (| <5
0
0) | 0 | 0
(0) | | (| 0
0) (| <(
0
(0) | i0>
0
(0 |) (| 0
0) | (| 0
0) (| | 50>
0
(0) |) ((|
| | arthritis | | 0
(0) (| 0) (| 0
0) (| 0
0) | (| 0
0) (| 0
0) | 0
(0) | 0
(0) | | (| 0
0) (| 1
(2) | 0
(0 |) (| 0
0) | (| 0
0) (| 0
(0) | 0
(0) | () ((|
| | hyaline droplet:glomerulus | | 0
(0) (| 0
0) (| 0
0) (| 0
0) | (| 0
0) (| 1
2) | 0
(0) | 0
(0) | | (| 0
0) (| 0
(0) | 0 |) (| 0
0) | (| 0
0) (| 0
(0) | 0
(0) | (
) ((|
| urin bladd | dilatation | | 0
(0) (| <50
1
2) (| 1 | 0
0) | (| 1
2) (| <5
2
4) | 0 | 0
(0) | | (| 0
0) (| <(
0
(0) | i0>
0
(0 |) (| 0
0) | (| 0
0) (| <:
1
(2) | 50>
0
(0) | (
) ((|
| | inflammatory infiltration | | 0
(0) (| 0
0) (| 0
0).(| 0
0) | (| 1
2) (| 0
0) | 0
(0) | 0
(0) | | (| 0
0) (| 0
(0) | 0 |) (| 0
0) | (| 0
0) (| 0
0) | 0
(0) | (
) ((|
| | lymphocytic infiltration | | 0
(0) (| 0
0) (| 0
0) (| 0
0) | (| 1
2) (| 0
0) | 0
(0) | 0
(0) | | (| 0
0) (| 0
(0) | 0 |) (| 0
0) | (| 0
0) (| 0
0) | 0
· (0) | (
) ((|

{Endocrine system}

| pituitary | <50> | <50> | <50> | <50> |
|-------------|---------------------|--------------|--------------|--------------|
| angiectasis | 0 0 0 0 | 1 0 0 0 | 1 0 0 0 | 1 0 0 0 |
| | (0) (0) (0) (0) | (2)(0)(0)(0) | (2)(0)(0)(0) | (2)(0)(0)(0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

STUDY NO. : 0613 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W) REPORT TYPE : A1 : FEMALE SEX Group Name Control 2500 ppm No. of Animals on Study 50 50 2 2 Grade 3 3 1 4 1 4 Findings_ (%) (%) Organ___ (%) (%) (%) (%) (%) (%) (%)

| {Endocrine sys | stem) | | | |
|----------------|--------------------|---|--|--|
| pituitary | cyst | <50> <50> 0 0 0 0 0 (0) (0) (0) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia | 7 2 1 0 4 5 3 0 (14) (4) (2) (0) (8) (10) (6) (0) | 9 2 3 0
(18) (4) (6) (0) | 5 2 4 0
(10) (4) (8) (0) |
| | Rathke pouch | 1 0 0 0 0 0 0 (2) (0) (0) (0) (0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| thyroid | cyst | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <50>
0 0 0 0
(0) (0) (0) (0) | . <50>
0 0 0 0
(0) (0) (0) (0) |
| | C-cell hyperplasia | 3 0 0 0 0 0 0 (6) (0) (0) (0) (0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) | 1 0 0 0
(2)(0)(0)(0) |
| parathyroid | hyperplasia | <50> <50>
1 0 0 0 0 0 0 0
(2) (0) (0) (0) (0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| adrena1 | degeneration | <50> <50> 0 0 0 0 1 0 (0) (0) (0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

a : Number of animals examined at the site <a>>

b b : Number of animals with lesion

(c) с: b / а * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE : 23

4

(%)

10000 ppm

2

(%)

50

(%) (%)

3

5000 ppm

2 3

(%)

50

(%)

4

(%)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

PAGE : 24

| | | Group Name
No. of Animals c | | trol
50 | | | 250 | 0 pp
5 | | | 5 | ар 000
1 | om.
50 | | | 10 | 000° pj
51 | | |
|---------------|---------------------------|--------------------------------|--------------|-------------------|-------------------|-----------------|--------------|----------------|-------------|-----------------|--|-------------|------------------|-----------------|---|-------------|----------------|-----------|-----------|
| Organ | Grade | Grade | 1 | 2 | <u>3</u>
(%) (| <u>4</u>
(%) | 1(%) | 2
(%) | 3
(%) | <u>4</u>
(%) | <u> </u> | 2
(%) | 3
(%) | <u>4</u>
(%) | (| 1
(%) | 2 (%) | 3
(%) | 4
(%) |
| Endocrine sys | tem) | | | | | | | | | | | | | | | | | | |
| adrenal | spindle-cell hyperplasia | | 32
(64) (| <50>
2
4) (| | 0
0) | 32
(64) (| <50
1
2) | 0 | 0
(0) | 30
(60) | 1 | 50>
0
(0) | 0
(0) | | :5
i0) (| <50
2
4) | 0 | 0
(0) |
| | focal fatty change:cortex | | 0
(0) (| 3
6) (| | 0
0) | 1
(2)(| 1
2) | 0
(0) (| 0 | 0
(0) | 1
(2) | 0
(0) | 0
(0) | | | 0
· 0) | 0
(0) | 0
(0) |
| Reproductive | system) | | | | | | | | | | | | | | | | | | |
| ovary | angiectasis | | 0
(0) (| <50>
0
0) (| | 0
0) | 1
(2)(| <50
0
0) | 0 | 0 | 0
(0) | | 50>
0
(0) | 0
(0) | (| 0
0) (| <50
0
0) | 0 | 0
(0) |
| | cyst | | 5
(10) (| 0
0) (| | 0
0) | 2
(4) (| 0
0) | 0
(0) (| 0
(0) | 5
(10) | 0
(0) | 0
(0) | 0
(0) | | 2
4) (| 3
6) | 0
(0) | 0
(0) |
| | hyperplasia | | 0
(0) (| 0
0) (| | 0
0) | 0
(0) (| 0
0) | 0
(0) (| 0
(0) | 0
(0) | 1
(2) | 0
(0) | 0
(0) | | 0
0) (| 0
0) | 0
(0) | 0
(0) |
| iterus | dilatation | | 0
(0) (| | | 0
0) | 0
(0) (| | • 0 | 0 | $\begin{pmatrix} 1 \\ (2) \end{pmatrix}$ | 0 | i0>
0
(0) | 0
(0) | | 0
0) (| <50
0
0) | 0 | 0
(0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference : $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| rgan | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%) | 2500 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|-------------|--------------------------------|---|--|---|--|
| Reproductiv | ve system) | | | | |
| terus | thrombus | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| | inflammatory infiltration | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | stromal hyperplasia | I 0 0 0
(2)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0 |
| | cystic endometrial hyperplasia | 26 0 0 0
(52) (0) (0) (0) | 16 1 0 0
(32)(2)(0)(0) | 22 I 0 0
(44)(2)(0)(0) | 16 1 0 0
(32) (2) (0) (0) |
| gina | polyp | . <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 1 0 0
(0) (2) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| mmary gl | cyst | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0 |
| ep∕cli gl | cyst | <50>
0 0 0 0
(0) (0) (0) (0) | <50> 0 0 0 (0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0 |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

BAIS4

PAGE : 25

 \sim

 STUDY NO.
 : 0613

 ANIMAL
 : MOUSE B6D2F1/Cr1j[Crj:BDF1]

 REPORT TYPE
 : A1

 SEX
 : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| | Group Name
No. of Animals | Control
on Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
|----------------|------------------------------|---|-----------------------------------|-----------------------------------|-----------------------------------|
| Findings | Grade | <u> 1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) |
| tem) | | <50> | <50> | <50> | <50> |
| hemorrhage | | 0 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(2)(0)(0)(0) |
| mineralization | | 5 0 0 0
(10) (0) (0) (0) | 7 0 0 0
(14) (0) (0) (0) | 5 0 0 0
(10) (0) (0) (0) | 7 0 0 0
(14) (0) (0) (0) |

{Special sense organs/appendage}

0rgan___

brain

{Nervous system}

| еуе | | <50> <50> | <50> | <50> |
|-----------|---------------------------|--|--|--|
| | inflammatory infiltration | 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0) (2) (0) (0) |
| | cataract | 0 0 0 0 0 0 0 (0) (0) (0) (0) (0) (0) | 1 0 0 0
(2) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | retinal atrophy | 0 0 0 0 0 0 0 (0) (0) (0) (0) (0) (0) | 0 0 1 0
(0) (0) (2) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | keratitis | 0 0 0 0 0 0 0 (0) <td>0 0 0 0 0
(0) (0) (0) (0)</td> <td>1 0 1 0
(2)(0)(2)(0)</td> | 0 0 0 0 0
(0) (0) (0) (0) | 1 0 1 0
(2)(0)(2)(0) |
| Harder gl | degeneration | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \sim

PAGE : 27

 $\sim \sim \sim$

|)rgan | Findings | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%) | 2500 ppm
50
<u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{cccc} 5000 \text{ ppm} \\ 50 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|----------------|---------------------|---|---|--|---|
| {Special sense | e organs/appendage} | ······································ | | | |
| larder gl | hyperplasia | <pre> <50> 0 0 0 0 (0) (0) (0) (0)</pre> | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| Musculoskelet | tal system) | | | | |
| uscle | mineralization | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
1 0 · 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
2 0 0 0
(4) (0) (0) (0) |
| DINE | osteosclerosis | <50>
1 0 0 0
(2) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |
| Body cavities | 5) | | | | |
| ediastinum | inflammation | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 1 0 0
(0) (2) (0) (0) |
| eritoneum | peritonitis | <50>
0 0 1 0
(0) (0) (2) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) | <50>
0 0 0 0
(0) (0) (0) (0) |

(HPT150)

TABLE M 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

 \sim

PAGE : 10

| Organ | Group
No. of
Grade | Name Control 21 21 1 2 3 4 (%) (%) (%) (%) | 2500 ppm
24
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
19
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
30
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|---|---|--|---|---|--|
| {Integumentar | ry system/appandage) | | | | |
| skin/app | ulcer | <21>
1 0 0 0
(5) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| | scab | 0 0 0 0
(0) (0) (0) (0) | 0 2 0 0
(0)(8)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| subcutis | inflammation | $\begin{array}{c} <21 \\ 0 & 0 & 1 & 0 \\ (& 0) & (& 0) & (& 5) & (& 0) \end{array}$ | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| {Respiratory | system) | | | | |
| nasal cavit | exudate | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
1 0 0 0
(5) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| | eosinophilic change:olfactory epithelium | 5 1 0 0
(24)(5)(0)(0) | 5 0 0 0
(21) (0) (0) (0) | 2 0 0 0
(11) (0) (0) (0) | 4 0 0 0
(13) (0) (0) (0) |
| | eosinophilic change:respiratory epithelium | 9 2 0 0
(43)(10)(0)(0) | 12 0 0 0
(50) (0) (0) (0) | 10 1 0 0
(53)(5)(0)(0) | 20 0 0 0
(67) (0) (0) (0) |
| Grade
< a >
b
(c)
Significant d | 1: Slight 2: Moderate 3: Mark a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 , lifference; *: P ≤ 0.05 ** : P ≤ 0.01 | ted 4: Severe
Test of Chi Square | | | |

(HPT150)

•

BAIS4

-

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

~_____

PAGE : 11

|)rgan | Group Name
No. of Animals on
Grade
Findings | Control
Study 21
(%) (%) (%) (%) | 2500 ppm
24
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
19
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
30
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|----------------|--|---|---|---|--|
| {Respiratory s | vstam) | | | | |
| nasal cavit | inflammation:respiratory epithelium | <21>
1 0 0 0
(5) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(11) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| | respiratory metaplasia:olfactory epithelium | 6 0 0 0
(29)(0)(0)(0) | 2 0 0 0
(8) (0) (0) (0) | 2 0 0 0
(11) (0) (0) (0) | 2 0 0 0
(7)(0)(0)(0) |
| | respiratory metaplasia:gland | 11 0 0 0
(52) (0) (0) (0) | 6 0 0 0
(25)(0)(0)(0) | 5 0 0 0
(26) (0) (0) (0) | 12 0 0 0
(40)(0)(0)(0) |
| | squamous cell metaplasia:respiratory epithelium | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| ıasopharynx | eosinophilic change | <21>
3 1 0 0
(14) (5) (0) (0) | <24>
1 0 0 0
(4) (0) (0) (0) | <19>
3 1 0 0
(16) (5) (0) (0) | <30>
2 0 0 0
(7) (0) (0) (0) |
| lung | inflammatory infiltration | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
2 0 0 0
(8) (0) (0) (0) | <19>
1 0 0 0
(5) (0) (0) (0) | <pre> <30> 1 0 0 0 (3) (0) (0) (0)</pre> |
| (Hematopoietic | system) | | | | |
| oone marrow | increased hematopoiesis | <21>
4 0 0 0
(19) (0) (0) (0) | <24>
5 0 0 0
(21) (0) (0) (0) | <19>
6 0 0 0
(32) (0) (0) (0) | <30>
5 0 0 0
(17) (0) (0) (0) |

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| SEX : | FEMALE | | | | PAGE : 12 |
|----------------|------------------------------|---|---|--|--|
| Organ | Findings | Group Name Control No. of Animals on Study 21 Grade 1 2 3 4 (%) (%) (%) (%) | 2500 ppm
24
<u>1 2 3 4</u>
(%) (%) (%) (%) | $ \begin{array}{c} 5000 \text{ ppm} \\ 19 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ | 10000 ppm
30
<u>1 2 3 4</u>
(%) (%) (%) (%) |
| (Hematopoietic | c system) | | | | |
| spleen | extramedullary hematopoiesis | <21>
4 4 2 0
(19) (19) (10) (0) | <24>
1 9 1 0
(4) (38) (4) (0) | <19>
2 7 0 0
(11) (37) (0) (0) | <30>
3 5 0 0
(10) (17) (0) (0) |
| {Circulatory | system} | | | | |
| heart | thrombus | <21>
0 0 1 0
(0) (0) (5) (0) | <24>
0 0 1 0
(0) (0) (4) (0) | <19>
0 1 0 0
(0) (5) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| | mineralization | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 5 0 0 0
(17) (0) (0) (0) |
| | inflammatory cell nest | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | myocardial fibrosis | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0) |
| | artoritis | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4)(0)(0)(0) | 1 0 0 0
(5)(0)(0)(0) | 0 1 0 0
(0) (3) (0) (0) |
| artery/aort | arteritis | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 1 0
(0) (0) (5) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| 1 | | |
|---|--|--|
| | | |
| | | |

| 0rgan | Findings | Group Name Control No. of Animals on Study 21 Grade 1 2 3 4 (%) (%) (%) (%) (%) | 2500 ppm
24
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
19
<u>1 2 3 4</u>
(%) (%) (%) (%) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|---------------|-------------------------------|---|---|---|---|
| {Digestive sy | rstem} | | | | |
| tongue | arteritis | $\langle 21 \rangle$
1 0 0 0
(5) (0) (0) (0) | $\begin{array}{cccc} <24 \\ 1 & 0 & 0 & 0 \\ (\ 4) & (\ 0) & (\ 0) & (\ 0) \end{array}$ | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
1 0 0 0
(3) (0) (0) (0) |
| stomach | ulcer:forestomach | $\begin{array}{cccc} & <21 \\ 1 & 0 & 0 & 0 \\ (5) & (0) & (0) & (0) \end{array}$ | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| ••
• | hyperplasia:forestomach | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0) |
| | erosion:glandular stomach | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | ulcer:glandular stomach | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia:glandular stomach | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 2 0 0 0
(7)(0)(0)(0) |
| liver | necrosis:central | <21>
0 1 0 0
(0) (5) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

(HPT150)

BAIS4

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

`____

 \sim

| Organ | Findings | Group Name Control No. of Animals on Study 21 Grade 1 2 3 4 (%) (%) (%) (%) (%) | 2500 ppm
24
<u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{c} 5000 \text{ ppm} \\ 19 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | 10000 ppm
30
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|-----------|---------------------------|---|---|---|--|
| Digestive | system} | | | | |
| iver | necrosis:focal | $\begin{array}{cccc} & <21 \\ 1 & 0 & 0 & 0 \\ (& 5) & (& 0) & (& 0) \end{array}$ | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
<(0) (0) (0) (0) |
| | inflammatory infiltration | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory cell nest | 2 0 0 0
(10) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | acidophilic cell focus | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 1 0 0
(3)(3)(0)(0) |
| rinary sy | stem) | | | | |
| dney | hyaline droplet | $\begin{array}{c} <21> \\ 6 & 0 & 0 \\ (29) & (0) & (0) \\ \end{array}$ | <24>
12 0 0 0
(50) (0) (0) (0) | <19>
5 0 0 0
(26) (0) (0) (0) | <30>
12 0 0 0
(40) (0) (0) (0) |
| | scar | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory polyp | 0 1 0 0
(0) (5) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 $\,$ Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

PAGE : 15

| | | Group Name Control
No. of Animals on Study 21 | 2500 ppm
24 | 5000 ррт
19 | 10000 ррт
30 |
|---|--|--|----------------|--|--|
|)rgan | Findings | Grade <u>1 2 3 4</u>
(%) (%) (%) (%) | | <u>1 2 3 4</u>
(%) (%) (%) (%) | 1 2 3 4
(%) (%) (%) (%) |
| {Urinary syst | tem) | | | | |
| kidney | hydronephrosis | 0 0 1 2
(0) (0) (5) (10 | | <19>
0 0 1 0
(0) (0) (5) (0) | <30>
0 1 1 0
(0) (3) (3) (0) |
| | arthritis | 0 0 0 0
(0) (0) (0) (0 | | 0 1 0 • 0
(0) (5) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| ırin bladd | dilatation | <21>
0 1 1 0
(0) (5) (5) (0 | | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 1 0 0
(0) (3) (0) (0) |
| {Endocrine sy | ystem) | | | | |
| oituitary | angiectasis | <21>
0 0 0 0
(0) (0) (0) (0 | | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
1 0 0 0
(3) (0) (0) (0) |
| | hyperplasia | 2 0 0 0
(10) (0) (0) (0 | | 1 1 0 0
(5)(5)(0)(0) | 1 2 2 0
(3)(7)(7)(0) |
| | Rathke pouch | 1 0 0 0
(5)(0)(0)(0) | | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| Grade
< a >
b
(c)
Significant d | l : Slight 2 : Moderate
a : Number of animals examined at th
b : Number of animals with lesion
c : b / a * 100
lifference ; * : P ≤ 0.05 **: | | | | |

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105%)

| PAGE | : | 16 |
|------|---|----|
|------|---|----|

| | | Group Name
No. of Animals on Study
Grade | 21 | 4 | 2 | 500 pp | 4 | 4 | | | 9 | | | 100 | 000 pp
30 | I | 4 |
|------------------------|---|--|------------------------|-------|------------|------------------|----------------|-----------------|------------|-----------------|-----------------|-----------------|---|-------------|------------------|----------------|-----------------|
| Organ | Findings | | 2 <u>3</u>
%) (%) | 4 (%) | (%) | 2
(%) | 3
(%) | <u>4</u>
(%) | <u> </u> | 2
(%) | 3
(%) | <u>4</u>
(%) | | (%) | 2
(%) | 3
(%) | <u>4</u>
(%) |
| {Endocrine sys | stem) | | | | | | | | | | | | | | | | |
| thyroid | cyst | | <21>
0 0
0) (0) | | 1
(4) | <2
0
(0) | | 0
(0) | 0
(0) | <1
0
(0) | 9>
0
(0) | 0
(0) | (| 0
0) ·(| <30
0
0) (| >
0
0) | 0
(0) |
| | C-cell hyperplasia | | 0 0
0)(0) | | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | 0
(0) | | 1
3) (| 0
0) (| 0
0) | 0
(0) |
| parathyroid | hyperplasia | (| <21>
0 0
0) (0) | | 0
(0) | | 4>
0
(0) | 0
(0) | 0
(0) | 0 | 9>
0
(0) | 0
(0) | | 0
0) (| <30
0
0) (| >
0
0) | 0
(0) |
| adrenal | degeneration | | <21>
0 0
0) (0) | | 0
(0) | <2
1
(4) | 0 | 0
(0) | 0
(0) | 0 | 9>
0
(0) | 0
(0) | (| 0
0) (| <30
0
0) (| >
0
0) | 0
(0) |
| | spindle-cell hyperplasia | | 0 0
0)(0) | | 12
(50) | 0
(0) | 0
(0) | 0
(0) | 10
(53) | 0
(0) | 0
(0) | 0
(0) | | 10
33) (| 0
0) (| 0
0) | 0*
(0) |
| {Reproductive | system) | | | | | | | | | | | | | | | | |
| ovary | angiectasis | | <21>
) 0
)) (0) | | 1
(4) | <2-
0
(0) | 0 | 0
(0) | 0
(0) | Λ | 9>
0
(0) | 0
(0) | (| 0
0) (| <30
0
0) (| >
0
0) (| 0
(0) |
| <a>)
b
(c) | 1 : Slight 2 : Moderate
a : Number of animals examined at th
b : Number of animals with lesion
c : b / a * 100
ifference : $* : P \leq 0.05 $ **: | | | · . | | | | | | | | | | | | | |

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

 \sim

PAGE : 17

| | | roup Name Control ,
b. of Animals on Study 21 | 2500 ppm
24 | 5000 ppm
19 | 10000 ppm
30 |
|-----------------|--|---|--|---|--|
|)rgan | | ade 1 2 3 4 (%) (%) (%) (%) (%) | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)} \frac{4}{(\%)}$ | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) |
| Reproductive | system) | | | | |
| ovary | cyst | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
3 0 0 0
(16) (0) (0) (0) | <30>
0 2 0 0
(0) (7) (0) (0) |
| terus | stromal hyperplasia | $\langle 21 \rangle$
1 0 0 0
(5) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| | cystic endometrial hyperplasia | 4 0 0 0
(19) (0) (0) (0) | 3 0 0 0
(13) (0) (0) (0) | 2 0 0 0
(11) (0) (0) (0) | 3 0 0 0
(10) (0) (0) (0 |
| rep/cli gl | cyst | <pre><21> 0 0 0 0 (0) (0) (0) (0)</pre> | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
1 0 0 0
(5) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0) |
| Nervous syste | em) | | | | |
| rain | hemorrhage | $\begin{array}{cccc} & <21 \\ 0 & 0 & 0 & 0 \\ (& 0) & (& 0) & (& 0) \\ \end{array}$ | <pre> <24>
0 0 0 0
(0) (0) (0) (0)</pre> | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
1 0 0 0
(3) (0) (0) (0) |
| | mineralization | 1 0 0 0
(5)(0)(0)(0) | 2 0 0 0
(8) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 3 0 0 0
(10) (0) (0) (0) |
| a >
b
(c) | 1: Slight 2: Moderate 3:
a: Number of animals examined at the site
b: Number of animals with lesion
c: $b / a * 100$
(forence; $*: P \leq 0.05 \Rightarrow **: P \leq 0$ | | | | |

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| | | Group Name
No. of Animals o
Grade | Control
n Study 21
1 2 3 4 | 2500 ppm
24
1 2 3 4 | 5000 ppm
19
1 2 3 4 | 10000 ppm
30
1 2 3 4 |
|-------------|----------------------|---|--|--|--|--|
| gan | Findings | | (%) (%) (%) | (%) (%) (%) (%) | $\frac{1}{(\%)} (\%) (\%) (\%)$ | $\frac{1}{(\%)}$ $(\%)$ $(\%)$ $(\%)$ $(\%)$ |
| ecial sen | se organs/appendage) | | | | | |
| | cataract | | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | $\begin{array}{c} <19 \\ 1 & 0 & 0 & 0 \\ (5) & (0) & (0) & (0) \end{array}$ | <30>
0 0 0 0
(0) (0) (0) (0) |
| | retinal atrophy | | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 1 0
(0)(0)(5)(0) | 0 0 0 0
(0) (0) (0) (0) |
| der gl | degeneration | | <21>
1 0 0 0
(5) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
1 0 0 0
(5) (0) (0) (0) | <30>
0 0 0 0
(0) (0) (0) (0 |
| | hyperplasia | | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| sculoskel | ətal system) | | | | | |
| cle | mineralization | | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
1 0 0 0
(4) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
2 0 0 0
(7) (0) (0) (0) |
| ody cavitie | es] | | | | | |
| liastinum | inflammation | | <21>
0 0 0 0
(0) (0) (0) (0) | <24>
0 0 0 0
(0) (0) (0) (0) | <19>
0 0 0 0
(0) (0) (0) (0) | <30>
0 1 0 0
(0) (3) (0) (0) |

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

c:b/a*100 (c)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| | | Group Name
No. of Animals | Control
on Study 21 | 2500 ppm
24 | 5000 ррт
19 | 10000 ppm
30 | |
|-------------|---|------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---|--|
| rgan | Findings | Grade | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | $\frac{1}{(\%)} \begin{array}{cccc} 2 & 3 & 4 \\ (\%) & (\%) & (\%) & (\%) \\ \end{array}$ | |
| | 1 | | | | | | |
| ody cavitie | S) | | | | | | |
| ritoneum | | | <21> | <24> | <19> | <30> | |
| | peritonitis | | 0 0 1 0
(0)(0)(5)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0)(0)(0)(0) | |
| rade
a≻ | 1 : Slight 2 : Moderate
a : Number of animals examined a | | 4 : Severe | | | | |
| b
(c) | b : Number of animals with lesic
c : b / a * 100 | n | | | | | |

(HPT150)

BAIS4

.

TABLE M 6

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| | | Control
als on Study 29 | 2500 ррм
26 | 5000 ррт
31 | 10000 ppm
20 |
|-------------------------|--|---|--|--|--|
| rgan | Grade | <u> </u> | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) |
| [ntegumenta] | ry system/appandage} | | | | |
| kin/app | sebaceous hyperplasia | $\begin{array}{cccc} & <29 \\ 1 & 0 & 0 & 0 \\ (3) & (0) & (0) & (0) \end{array}$ | <26>
0 0 0 0
(0) (0) (0) (0) | <pre> <31>
0 0 0 0
(0) (0) (0) (0)</pre> | <20>
0 0 0 0
(0) (0) (0) (0) |
| ubcutis | hemorrhage | <29>
0 0 0 0
(0) (0) (0) (0) | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | . <20>
0 0 0 0
(0) (0) (0) (0) |
| Respiratory | system) | | | | |
| sal cavit | inflammatory infiltration | <29>
0 0 0 0
(0) (0) (0) (0) | <pre> <26>
0 0 0 0
(0) (0) (0) (0)</pre> | <pre> <31> 1 0 0 0 (3) (0) (0) (0)</pre> | <20>
0 0 0 0
(0) (0) (0) (0) |
| | eosinophilic change:olfactory epithelium | 10 0 0 0
(34) (0) (0) (0) | 5 1 0 0
(19) (4) (0) (0) | 7 0 0 0
(23) (0) (0) (0) | 5 0 0 0
(25) (0) (0) (0) |
| | eosinophilic change:respiratory epithelium | 17 6 0 0
(59) (21) (0) (0) | 16 3 0 0
(62)(12)(0)(0) | 25 1 0 0
(81) (3) (0) (0) | 13 1 0 0
(65)(5)(0)(0) |
| | inflammation:respiratory epithelium | 1 0 0 0
(3)(0)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 4 0 0 0
(13) (0) (0) (0) | 2 0 0 0
(10) (0) (0) (0) |
| rade
a ≻
b
c) | 1 : Slight 2 : Moderate 3 : Marked a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 | 4 : Severe | | | |

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~

~~~

|            | No.                                        | np Name Control<br>of Animals on Study 29                                                    | 2500 ppm<br>26                                                               | 5000 ppm<br>31                                                   | 10000 ppm<br>20                        |
|------------|--------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|
| gan        | Grad                                       | (%) (%) (%) (%)                                                                              | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}$             | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}$ | <u>1 2 3 4</u><br>(%) (%) (%) (%)      |
| espiratory | system)                                    |                                                                                              |                                                                              |                                                                  |                                        |
| sal cavit  | respiratory metaplasia:olfactory epitheliu | m (29)<br>9 0 0 0<br>(31) (0) (0) (0)                                                        | <pre> &lt;26&gt;     4     0     0     0     ( 15) ( 0) ( 0) ( 0) ( 0)</pre> | <31><br>9 0 0 0<br>(29) (0) (0) (0)                              | <pre> &lt;20&gt;</pre>                 |
|            | respiratory metaplasia:gland               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                         | 16 0 0 0<br>(62) (0) (0) (0)                                                 | 13 2 0 0<br>(42) (6) (0) (0)                                     | 9 0 0 0<br>(45)(0)(0)(0)               |
|            | squamous cell metaplasia:respiratory epith | nelium 1 0 0 0<br>(3)(0)(0)(0)                                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 1 0 0 0<br>(5)(0)(0)(0)                |
| sopharynx  | eosinophilic change                        | $\begin{array}{c} \langle 29 \rangle \\ 6 & 1 & 0 & 0 \\ (21) & (3) & (0) & (0) \end{array}$ | $\begin{array}{c} <26 \\ 3 & 1 & 0 \\ (12) & (4) & (0) & (0) \end{array}$    | <31><br>0 0 0 0 *<br>( 0) ( 0) ( 0) ( 0)                         | <20><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |
| ng         | inflammatory infiltration                  | <29><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)                                                       | <26><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                       | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           | <20><br>1 0 0 0<br>( 5) ( 0) ( 0) ( 0) |
|            | lymphocytic infiltration                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                               | 1 0 0 0<br>(3) (0) (0) (0)                                       | - 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)       |
|            | bronchiolar—alveolar cell hyperplasia      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                               | 1 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         |

b b: Number of animals with lesion (c) c: b / a \* 100

Significant difference :  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(HPT150)

BAIS4

# HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~

| | | Group Name Control
No. of Animals on Study 29
Grade 1 2 3 4 | 2500 ppm
26
1 2 3 4 | 5000 ppm
31
1 2 3 4 | 10000 ppm
20 |
|-------------|------------------------------|---|---|--|--|
| rgalı | Findings | Grade 1 2 3 4 (%) (%) (%) (%) (%) (%) | 1 2 3 4
(%) (%) (%) (%) | 1 2 3 4
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) |
| espiratory | system) | | | | |
| Ing | arteritis | <29>
0 0 0 0
(0) (0) (0) (0) | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <pre> <20>
0 0 0 0
(0) (0) (0) (0)</pre> |
| ematopoieti | c system) | | | | |
| ne marrow | increased hematopoiesis | $\begin{array}{c} <29 > \\ 1 & 0 & 0 & 0 \\ (3) & (0) & (0) & (0) \end{array}$ | <26>
4 0 0 0
(15) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| | myelofibrosis | 1 0 0 0
(3)(0)(0)(0) | 0 1 0 0
(0)(4)(0)(0) | 2 0 0 0
. (6) (0) (0) (0) | 2 0 0 0
(10) (0) (0) (0) |
| | megakaryocyte:increased | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(3)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| leen | fibrosis:focal | <29>
0 0 0 0
(0) (0) (0) (0) | <pre><26> 0 0 0 0 (0) (0) (0) (0)</pre> | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 1 0
(0) (0) (5) (0) |
| | extramedullary hematopoiesis | 8 0 0 0
(28) (0) (0) (0) | 9 1 0 0
(35) (4) (0) (0) | 9 0 0 0
(29) (0) (0) (0) | 50000
(25)(0)(0)(0) |

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

(HPT150)

. •

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~~

|             |                        | Group Name Control<br>No. of Animals on Study 29 |                                                               | 2500 ppm<br>26                                                | 5000 ppm<br>31                                                               | 10000 ppm<br>20                                 |
|-------------|------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|
| rgan        | Findings               | Grade                                            | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ | $\frac{\begin{array}{ccccccccccccccccccccccccccccccccccc$                    | $\frac{1}{(\%)} \frac{23}{(\%)} \frac{4}{(\%)}$ |
| Hematopoiet | ic system)             |                                                  |                                                               |                                                               |                                                                              |                                                 |
| pleen       | follicular hyperplasia |                                                  | <29><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)                        | <26><br>0 1 0 0<br>( 0) ( 4) ( 0) ( 0)                        | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                       | <20><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          |
| Circulatory | system)                | X                                                |                                                               |                                                               |                                                                              |                                                 |
| eart        | mineralization         |                                                  | <29><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)                        | <26><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        | <pre></pre>                                                                  | <20><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0           |
|             | inflammatory cell nest |                                                  | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                | 1 0 0 0<br>(3)(0)(0)(0)                                                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0                   |
|             | myocardial fibrosis    |                                                  | 1 0 0 0<br>(3)(0)(0)(0)                                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                  |
| Digestive s | ystem)                 |                                                  |                                                               |                                                               |                                                                              |                                                 |
| ongue       | arteritis              |                                                  | <29><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        | <26><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                        | $\begin{array}{c} <31 \\ 1 & 0 & 0 & 0 \\ (3) & (0) & (0) & (0) \end{array}$ | <20><br>1 0 0 0<br>( 5) ( 0) ( 0) ( 0)          |

(HPT150)

c:b/a\*100

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$  Test of Chi Square

(c)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~

PAGE : 15

| | | Group Name Control
No. of Animals on Study 29 | | 2500 ppm
26 | | | 5000 ppm
31 | | | | | 10000 ppm
20 | | | | | | | | | | | | |
|--------------|-------------------------------|--|-----------------|----------------|-----------|----------|----------------|-------------|---------------|-----------|---|-----------------|----------|-----------|---------------|-----------|---|-----------------|---|-----------|-----------------|----------|----------------|----------|
| rgan | Findings | Grade | <u>1</u>
(%) | 2 (%) | 3 | 4 | - | 1
(%) | 2 (%) | 3
(%) | | <u>4</u>
(%) | (| 1
%) | 2 (%) | 3 (%) | | <u>4</u>
(%) | (| 1
%) | 2 (%) | : | <u>3</u>
%) | 4
(%) |
| Digestive sy | stem) | | | | | | | | | | | | | | | | | | | | | | | |
| alivary gl | lymphocytic infiltration | | 1
(3) (| <29
0
0) | 0 | ((| (| 0
0) (| <2
0
0) | 0 | (| 0
0) | | 1
3) (| <3
0
0) | 0 | (| 0 | | 1
5) (| <2
0
(0) | | 0
0) (| 0
0) |
| tomach | ulcer:forestomach | | 1
(3) (| <29
0
0) | 0 | ((| (| 0
0) (| <2
0
0) | 0 | | 0 | |)
) (| <3
0
0) | 0 | | 0
0) | | 0
0) (| <2
0
0) | | 0
0) (| 0
0) |
| | hyperplasia:forestomach | | 1
(3) (| 0
0) | 0
(0) | ((| (| 0
0) (| 0
0) | 0
(0) | (| 0
0) | (| 2
6) (| 0
0) | 0
(0) | | 0
0) | | 3
5) (| 0
0) | | 0
0) (| 0
0 |
| | erosion:glandular stomach | | 4
(14) (| 2
7) | 0
(0) | | (| 1
4) (| 0
0) | 0
(0) | | 0
0) | | i
)) (| 0
0) | 0
(0) | (| 0
0) | | 2
0) (| 0
0) | | 0
0) (| 0
0) |
| | ulcer:glandular stomach | | 1
(3) (| 0
0) | 0
(0) | 0
(0 | (| 0
0) (| 0
0) | 0
(0) | (| 0
0) | () |)
)) (| 0
0) | 0
(0) | (| 0
0) | | 0
0) (| 0
0) | | 0
0) (| 0
0) |
| | hyperplasia:glandular stomach | | 15
(52) (| 0
0) | 0
(0) | 0
(0 | | 16
52) (| 0
0) | 0
(0) | | 0
0) | 1
(3) | | 0
0) | 0
(0) | (| 0
0) | | 6
0) (| 0
0) | | 0
0) (| 0
0) |
| iver | angiectasis | | 0 | <29
1
3) | 1 | 0
(0 | (| 0
0) (| <2
0
0) | 0 | | 0
0) | | 1
3) (| <3
0
0) | 0 | (| 0
0) | (| 1
5) (| <2
0
0) | 20>
(| | 0
0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 $\,$ ** : P \leq 0.01 $\,$ Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| PAGE | : | 16 |
|------|---|----|
| | | |

| | | Group Name Control
No. of Animals on Study 29
Grade <u>1 2 3 4</u> | 2500 ppm
26
<u>1 2 3 4</u> | 5000 ppm
31
<u>1 2 3 4</u> | 10000 ppm
20
<u>1 2 3 4</u> |
|------------|------------------------------|--|--|------------------------------------|--|
| Organ | Findings | (%) (%) (%) | (%) (%) (%) | (%) (%) (%) (%) | (%) (%) (%) (%) |
| {Digestive | system) | | | | |
| liver | necrosis:focal | <pre></pre> | <26>
0 0 0 0
(0) (0) (0) (0) | <31>
2 0 0 0
(6) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| | inflammatory infiltration | 1 0 0 0
(3) (0) (0) (0) | 1 0 0 0
(4)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | inflammatory cell nest | 9 0 0 0
(31)(0)(0)(0) | 7 0 0 0
(27)(0)(0)(0) | 11 0 0 0
(35) (0) (0) (0) | 8 0 0 0
(40) (0) (0) (0) |
| | extramedullary hematopoiesis | 0 0 0 0
(0) (0) (0) (0) | i 0 0 0
(4)(0)(0)(0) | 1 0 0 0
(3) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | clear cell focus | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0) (3) (0) (0) | 1 1 0 0
(5)(5)(0)(0) |
| | acidophilic cell focus | 0 2 0 0
(0) (7) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 3 0 0 0
(10) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| | basophilic cell focus | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 0 1 0 0
(0)(3)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | biliary cyst | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(4)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |

Grade 1:Slight 2:Moderate 3:Marked 4:Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~

PAGE : 17

| Organ                    |                                                                                                                                                                                 | p Name Control<br>of Animals on Study 29<br>e <u>1 2 3 4</u><br>(%) (%) (%) (%) | 2500 ppm<br>26<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 5000 ppm<br>31<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 10000 ppm<br>20<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| {Digestive sy            | /stem)                                                                                                                                                                          |                                                                                 |                                                     | •                                                   |                                                      |
| gall bladd               | hyperplasia                                                                                                                                                                     | <28><br>1 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                          | <25><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <20><br>1 0 0 0<br>( 5) ( 0) ( 0) ( 0)               |
| pancreas                 | fibrosis:focal                                                                                                                                                                  | <29><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                          | <26><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <20><br>0 0 1 0<br>( 0) ( 0) ( 5) ( 0)               |
| {Urinary syst            | tem)                                                                                                                                                                            |                                                                                 |                                                     |                                                     |                                                      |
| idney                    | cyst                                                                                                                                                                            | <29><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                          | <26><br>1 0 0 0<br>( 4) ( 0) ( 0) ( 0)              | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <pre> &lt;20&gt; 0 0 0 0   ( 0) ( 0) ( 0) ( 0)</pre> |
|                          | hyaline droplet                                                                                                                                                                 | 1 0 0 0<br>( 3) ( 0) ( 0) ( 0)                                                  | 2 0 0 0<br>(8)(0)(0)(0)                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 2 0 0 0<br>(10) (0) (0) (0)                          |
|                          | deposit of hemosiderin                                                                                                                                                          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                  | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 1 0 0 0<br>(3)(0)(0)(0)                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       |
|                          | inflammatory infiltration                                                                                                                                                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                  | 2 0 0 0<br>(8)(0)(0)(0)                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       |
| Grade<br>(a)<br>b<br>(c) | <pre>1 : Slight 2 : Moderate 3 : Ma a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 lifterence ; * : P ≤ 0.05 *** : P ≤ 0.05</pre> |                                                                                 |                                                     | ······                                              |                                                      |

(HPT150)

BAIS4

.

### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 $\searrow$ 

PAGE : 18

|              |                            | Group Name Co<br>No. of Animals on Study |                         |         | 2               | 500 ppm<br>26           |              | 5000 ppm<br>31 |                        |           | 10000                | ppm<br>20                  |
|--------------|----------------------------|------------------------------------------|-------------------------|---------|-----------------|-------------------------|--------------|----------------|------------------------|-----------|----------------------|----------------------------|
| 0rgan        | Findings                   | Grade <u>1</u> (%)                       | <u>2</u> 3<br>(%) (%    |         | <u>1</u><br>(%) | <u>2</u> 3<br>(%) (%    |              | <u> </u>       | 2 3<br>(%) (%)         | 4(%)      | <u>1</u> 2<br>(%) (% | 3 4                        |
| Urinary syst | em)                        |                                          |                         |         |                 |                         |              |                |                        |           |                      |                            |
| idney        | lymphocytic infiltration   | 4 (14)                                   | <29><br>0 0<br>( 0) ( 0 |         | 3<br>(12)       | <26><br>0 0<br>( 0) ( 0 |              | 3<br>(10) (    | <31><br>0 0<br>0) ( 0) | 0<br>( 0) | 2 0                  | <20><br>0 0<br>) ( 0) ( 0) |
|              | scar                       | 0<br>( 0) (                              | 0 0<br>(0) (0           |         | 0<br>( 0)       | 0 0<br>( 0) ( 0         |              | 1<br>( 3) (    | 0 0<br>0) ( 0)         | 0<br>( 0) | 20<br>(10) (0        | 00)<br>(0)(0)              |
|              | inflammatory polyp         | 0<br>( 0) (                              | 1 0<br>3)(0             |         | 2<br>( 8)       | 1 0<br>(4)(0            | 0<br>) ( 0)  | 0<br>( 0) (    | 0 0<br>0) ( 0)         | 0<br>( 0) | 0 2<br>( 0) ( 10     | 00)<br>(0)(0)              |
|              | hydronephrosis             | 0<br>( 0) (                              | 0 1<br>( 0) ( 3         | 0) ( 0) | 0<br>( 0)       | 1 1<br>(4)(4            | 0<br>) ( 0)  | 0<br>( 0) (    | 0 1<br>0) ( 3)         | 0<br>( 0) | 1 2<br>(5)(10        | 00)<br>(0)(0)              |
|              | pyelonephritis             | 0<br>( 0) (                              | 0 1<br>0)(3             |         | 0<br>( 0)       | 00<br>(0)(0             |              | 0<br>( 0) (    | 0 0<br>0) ( 0)         | 0<br>( 0) | 00<br>(0)(0)         | 00<br>)(0)(0)              |
|              | hyaline droplet:glomerulus | 0 ( 0) (                                 | 0 0<br>0)(0             |         | 0<br>( 0)       | 1 0<br>(4)(0            | 0.<br>) ( 0) | 0<br>( 0) (    | 0 0<br>0) ( 0)         | 0<br>( 0) | 00<br>(0)(0          | 00<br>(0)(0)               |
| rin bladd    | dilatation                 | 0<br>( 0) (                              | <29><br>0 0<br>0) ( 0   |         | 1<br>( 4)       | <26><br>0 0<br>( 0) ( 0 |              | 0<br>( 0) (    | <31><br>0 0<br>0) ( 0) | 0<br>( 0) | 0 0                  | <20><br>0 0<br>) ( 0) ( 0) |
|              | inflammatory infiltration  | 0<br>( 0) (                              | 0 0<br>0) ( 0           |         | 1<br>( 4)       | 00                      |              | 0<br>( 0) (    | 0 0<br>0) ( 0)         | 0<br>( 0) | 0 0<br>( 0) ( 0)     | 00<br>)(0)(0)              |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; ★ : P ≦ 0.05 ★★ : P ≦ 0.01 Test of Chi Square

(HPT150)

### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

~~~~

| | |
 | |
|--|--|------|--|
| | | | |
| | | | |
| | | | |

~----

PAGE: 19

|)rgan | Findings | rol
29
2 <u>34</u>
%) (%) (%) | 2500 ppm
26
<u>1 2 3 4</u>
(%) (%) (%) (%) | $\begin{array}{c} 5000 \text{ ppm} \\ 31 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$ | 10000 ppm
20
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|----------------|--------------------------|--|---|---|--|
| (Urinary syste | em) | | | | |
| urin bladd | lymphocytic infiltration | <29>
0 0 0
0) (0) (0) | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| Endocrine sys | stem) | | | | |
| oituitary | angiectasis | <29>
0 0 0
0) (0) (0) | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
1 0 0 0
(3) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| | cyst | 0 0 0
0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 2 0 0 0
(6)(0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) |
| | hyperplasia | 2 1 0
7) (3) (0) | 3 4 3 0
(12) (15) (12) (0) | 8 1 3 0
(26) (3) (10) (0) | 4 0 2 0
(20) (0) (10) (0) |
| | Rathke pouch | 0 0 0
0)(0)(0) | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0) | 1 0 0 0
(5)(0)(0)(0) |
| hyroid | C-cell hyperplasia | <29>
0 0 0
0) (0) (0) | <26>
0 0 0 0
(0) (0) (0) (0) | <31>
1 0 0 0
(3) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(HPT150)

BAIS4

•

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 $\sim \sim$

| Organ | Findings | Group Name Control
No. of Animals on Study 29
Grade <u>1 2 3 4</u>
(%) (%) (%) (%) | 2500 ppm
26
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
31
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
20
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|--------------|---------------------------|---|---|--|--|
| {Endocrine s | system) | | | | |
| adrenal | spindle-cell hyperplasia | $\begin{array}{c} <29 \\ 18 & 2 & 0 & 0 \\ (62) & (7) & (0) & (0) \end{array}$ | <pre><26> 20 l 0 0 (77) (4) (0) (0)</pre> | <pre> <31> 20 1 0 0 (65) (3) (0) (0)</pre> | <20>
15 2 0 0
(75) (10) (0) (0) |
| | focal fatty change:cortex | 0 3 0 0
(0) (10) (0) (0) | 1 1 0 0
(4)(4)(0)(0) | 0 1 0 0
(0) (3) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| {Reproductiv | ve system] | | | | |
| ovary | cyst | <29>
5 0 0 0
(17) (0) (0) (0) | <pre><26> 2 0 0 0 (8) (0) (0) (0)</pre> | <pre> <31> 2 0 0 0 (6) (0) (0) (0) </pre> | <20>
2 1 0 0
(10) (5) (0) (0) |
| | hyperplasia | 0 0 0 0
(0) (0) (0) (0) | 0 0 0 0
(0) (0) (0) (0). | 0 1 0 0
(0) (3) (0) (0) | 0 0 0 0
(0) (0) (0) (0) |
| uterus | dilatation | <29>
0 0 0 0
(0) (0) (0) (0) | <pre><26> 0 0 0 0 (0) (0) (0) (0)</pre> | <31>
1 0 0 0
(3) (0) (0) (0) | <pre> <20> 0 0 0 0 (0) (0) (0) (0)</pre> |
| | thrombus | | | 0 0 0 0 | 0 0 0 0 |

(0)(3)(0)(0)

(0) (0) (0) (0)

(0)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 \sim

~~

| lrgan | Findings | Group Name Control No. of Animals on Study 29 Grade 1 2 3 4 (%) (%) (%) (%) (%) | 2500 ppm
26
<u>1 2 3 4</u>
(%) (%) (%) (%) | 5000 ppm
31
<u>1 2 3 4</u>
(%) (%) (%) (%) | 10000 ppm
20
<u>1 2 3 4</u>
(%) (%) (%) (%) |
|---------------------|---|---|---|---|--|
| | | | | | |
| {Reproductiv | e system) | | | | |
| ıterus | inflammatory infiltration | <pre><29> 0 0 0 0 (0) (0) (0) (0)</pre> | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| | cystic endometrial hyperplasia | 22 0 0 0
(76)(0)(0)(0) | 13 1 0 0
(50) (4) (0) (0) | 20 1 0 0
(65)(3)(0)(0) | 13 1 0 0
(65)(5)(0)(0) |
| vagina | polyp | <pre><29> 0 0 0 0 (0) (0) (0) (0) </pre> | <26>
0 0 0 0
(0) (0) (0) (0) | <31>
0 1 0 0
(0) (3) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) |
| mammary gl | cyst | <29>
0 0 0 0
(0) (0) (0) (0) | <26>
1 0 0 0
(4) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0 |
| {Nervous sys | tem) | | | | |
| brain | mineralization | <29>
4 0 0 0
(14) (0) (0) (0) | <26>
5 0 0 0
(19) (0) (0) (0) | <31>
5 0 0 0
(16) (0) (0) (0) | <20>
4 0 0 0
(20) (0) (0) (0) |
| {Special sen | se organs/appendage) | | | | |
| еуе | inflammatory infiltration | <29>
0 0 0 0
(0) (0) (0) (0) | <26>
0 0 0 0
(0) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 1 0 0
(0) (5) (0) (0) |
| Grade
< a >
b | l : Slight 2 : Moderate
a : Number of animals examined at the
b : Number of animals with lesion | 3 : Marked 4 : Severe
e site | | | |

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| | Group Nam
No. of An | e Control
imals on Study 29 | 2500 ppm
26 | 5000 ppm
31 | 10000 ppm
20 | | |
|--------------------------------|--|---|--|--|--|--|--|
| Organ | Grade
_ Findings | <u> 1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | <u>1 2 3 4</u>
(%) (%) (%) (%) | | |
| {Special s | ense organs/appendage) | | | | | | |
| еуе | keratitis | <29>
0 0 0 0
(0) (0) (0) (0) | (26>
0 0 0 0
(0) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
1 0 1 0
(5) (0) (5) (0) | | |
| {Musculosk | eletal system) | | | | | | |
| bone | osteosclerosis | $\begin{array}{cccc} <29 \\ 1 & 0 & 0 & 0 \\ (3) & (0) & (0) & (0) \end{array}$ | <26>
0 0 0 0
(0) (0) (0) (0) | <31>
0 0 0 0
(0) (0) (0) (0) | <20>
0 0 0 0
(0) (0) (0) (0) | | |
| Grade
<a>
b
(c) | 1 : Slight 2 : Moderate 3 : Marked
a : Number of animals examined at the site
b : Number of animals with lesion
c : b / a * 100
t difference ; $* : P \leq 0.05 *** : P \leq 0.01$ | 4 : Severe
Test of Chi Square | | | | | |

.

(HPT150)

BAIS4

TABLE N 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

| 0 - 52 NO. OF EXAMINED ANIMALS 0 1 0 0 NO. OF ANIMALS WITH TUNORS
NO. OF ANIMALS WITH STURIES TWINKS 0 0 0 0 0 NO. OF ANIMALS WITH STURIES TWINKS
NO. OF ANIMALS WITH STURIES TWINKS 0 0 0 0 0 NO. OF EXAMINED ANIMALS 0 0 0 0 0 0 NO. OF EXAMINED ANIMALS 0 0 0 0 0 0 NO. OF EXAMINED ANIMALS 3 3 2 1 1 1 So of ANIMALS WITH STORES
NO. OF ANIMALS WITH STORES TWO STORES 3 2 1 1 NO. OF EXAMINED ANIMALS 3 2 1 1 1 NO. OF ANIMALS WITH STORE TWORES
NO. OF ANIMALS WITH STORES TWO STORES 3 2 1 1 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF EXAMINED ANIMALS 12 13 12 1 NO. OF EXAMINED | 10000 ppm 20000 ppm | 10000 ppm | 5000 ppm | Control | Group Name | Items | Time-related Ite |
|--|---------------------|-----------|----------|---------|--------------|---|------------------|
| NO. OF ANTIMALS WITH NUMER TINORS 0 | 0 0 | 0 | | 0 | | NO. OF EXAMINED ANIMALS | 0 – 52 NO. |
| No. OF BENIGN TWORES 0 | | | • | 0
0 | | | |
| NO. OF MALICRANT TRAVES 0 | 0 0 | 0 | 0 | 0 | | | |
| 53 - 78 NO. OF EXMINED ANIMALS 3 3 2 1 NO. OF ANIMALS WITH TUMORS 3 2 1 1 NO. OF ANIMALS WITH SUNCE TUMORS 1 2 1 1 NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 0 NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 1 NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 1 NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 1 NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 1 79 - 104 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 10 12 12 12 NO. OF ANIMALS WITH MURTIPLE TUMORS 4 4 3 0 NO. OF ANIMALS WITH MURTIPLE TUMORS 10 12 12 12 NO. OF ANIMALS WITH MURTIPLE TUMORS 10 12 | 0 0 | 0 | 0 | | | NO. OF MALIGNANT TUMORS | NO. |
| N0. OF ANIMALS WITH TUMORS 3 2 1 1 N0. OF ANIMALS WITH SINCLE TUMORS 1 2 1 1 N0. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 0 N0. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 1 N0. OF DENTISH TUMORS 2 0 0 1 N0. OF MALIGNANT TUMORS 2 0 0 1 N0. OF FAMIMALS WITH TUMORS 3 2 1 0 N0. OF ANIMALS TITH MULTIPLE TUMORS 3 2 1 1 79 - 104 N0. OF EXAMINED ANIMALS 12 13 12 8 N0. OF ANIMALS WITH TUMORS 10 12 10 8 5 N0. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 12 12 12 N0. OF ANIMALS WITH MULTIPLE TUMORS 14 16 15 12 12 12 | | | | | | , <u>, ,</u> , , ,, , , , , , , , , , , | |
| N0. OF ANIMALS WITH SINCLE TUMORS 1 2 1 1 N0. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 0 N0. OF BENIGN TUMORS 2 0 0 1 N0. OF BENIGN TUMORS 2 0 0 1 N0. OF DUAL TUMORS 3 2 1 1 79 - 104 N0. OF EXAMINED ANIMALS 12 13 12 8 N0. OF ANIMALS WITH TUMORS 10 12 10 8 N0. OF ANIMALS WITH TUMORS 6 9 6 5 N0. OF ANIMALS WITH TUMORS 10 12 10 8 N0. OF ANIMALS WITH TUMORS 4 3 0 0 N0. OF ANIMALS WITH MULTIPLE TUMORS 4 3 0 0 N0. OF ANIMALS WITH MULTIPLE TUMORS 14 15 12 12 105 - 105 N0. OF EXAMINED ANIMALS 35 33 36 41 N0. OF ANIMALS WITH SINGLE TUMORS 21 23 26 22 N0. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 | | | | | | | |
| NO. OF ANIMALS WITH MULTIPLE TUMORS 2 0 0 0 NO. OF BENIEN TUMORS 2 0 0 1 NO. OF BENIEN TUMORS 3 2 1 0 NO. OF MALIGNANT TUMORS 3 2 1 0 NO. OF TUTAL TUMORS 3 2 1 0 79 - 104 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 6 9 6 5 NO. OF BENIENT TUMORS 4 3 0 3 NO. OF BENIENT TUMORS 4 4 3 0 NO. OF BENIENT TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH MULTIPLE TUMORS 21 23 26 22 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH MULTIPLE TUMORS 21 23 26 22 22 | | | | 3 | | | |
| NO. OF MALIGNANT TUMORS 3 2 1 0 NO. OF TOTAL TUMORS 5 2 1 1 79 - 104 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 6 9 6 5 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 3 4 3 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 NO. OF BENICH TUMORS 4 4 3 0 NO. OF TOTAL TUMORS 10 12 12 12 NO. OF TOTAL TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | * * | | | 2 | | | |
| NO. OF TOTAL TUMORS 5 2 1 1 79 - 104 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 6 9 6 5 NO. OF ANIMALS WITH SINGLE TUMORS 4 3 4 3 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 NO. OF BENIGN TUMORS 4 4 3 0 NO. OF MALIGNANT TUMORS 10 12 12 12 NO. OF MALIGNANT TUMORS 10 12 12 12 NO. OF MALIGNANT TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | | 0 | | = | | | |
| 79 - 104 NO. OF EXAMINED ANIMALS 12 13 12 8 NO. OF ANIMALS WITH TUMORS 10 12 10 8 NO. OF ANIMALS WITH TUMORS 6 9 6 5 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 3 4 3 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 NO. OF ANIMALS WITH MULTIPLE TUMORS 4 4 3 0 NO. OF BENICH TUMORS 4 4 3 0 NO. OF MALIGNANT TUMORS 10 12 12 12 NO. OF TOTAL TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH MULTIPLE TUMORS 12 10 17 17 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | | , - | | | \checkmark | | |
| 13 12 13 12 8 N0. OF ANIMALS WITH TUMORS 10 12 10 8 N0. OF ANIMALS WITH SINGLE TUMORS 6 9 6 5 N0. OF ANIMALS WITH SINGLE TUMORS 6 9 6 5 N0. OF ANIMALS WITH MULTIPLE TUMORS 4 3 4 3 N0. OF BENIGN TUMORS 4 4 3 0 N0. OF MALIGNANT TUMORS 10 12 12 12 N0. OF TOTAL TUMORS 10 12 12 12 N0. OF TOTAL TUMORS 10 12 12 12 N0. OF TOTAL TUMORS 14 16 15 12 105 - 105 N0. OF EXAMINED ANIMALS 35 33 36 41 . N0. OF ANIMALS WITH TUMORS 21 23 26 22 . N0. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 . N0. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | | . 1 | 2 | | | | |
| NO. OF ANIMALS WITH SINGLE TUMORS6965NO. OF ANIMALS WITH MULTIPLE TUMORS4343NO. OF BENIGN TUMORS4430NO. OF MALIGNANT TUMORS10121212NO. OF MALIGNANT TUMORS14161512105 - 105NO. OF EXAMINED ANIMALS35333641NO. OF ANIMALS WITH TUMORS21232622NO. OF ANIMALS WITH TUMORS12101717NO. OF ANIMALS WITH SINGLE TUMORS91395 | 12 8 | 12 | 13 | . 12 | | NO. OF EXAMINED ANIMALS | 79 - 104 NO. |
| NO. OF ANIMALS WITH MULTIPLE TUMORS4343NO. OF BENIGN TUMORS4430NO. OF MALIGNANT TUMORS10121212NO. OF TOTAL TUMORS14161512105 - 105NO. OF EXAMINED ANIMALS35333641NO. OF ANIMALS WITH TUMORS21232622NO. OF ANIMALS WITH SINGLE TUMORS12101717NO. OF ANIMALS WITH MULTIPLE TUMORS91395 | | 10 | | | | | |
| NO. OF BENIGN TUMORS 4 4 4 3 0 NO. OF MALIGNANT TUMORS 10 12 12 12 NO. OF TOTAL TUMORS 10 12 12 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 . NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | | | | | | | |
| NO. OF MALIGNANT TUMORS 10 12 12 12 NO. OF TOTAL TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | 4 3 | 4 | 3 | 4 | | NO. OF ANIMALS WITH MOLTH LE TOMORS | 110. |
| NO. OF TOTAL TUMORS 14 16 15 12 105 - 105 NO. OF EXAMINED ANIMALS 35 33 36 41 NO. OF ANIMALS WITH TUMORS 21 23 26 22 NO. OF ANIMALS WITH SINGLE TUMORS 12 10 17 17 NO. OF ANIMALS WITH MULTIPLE TUMORS 9 13 9 5 | 3 0 | 3 | | 4 | | | |
| 105 - 105NO. OF EXAMINED ANIMALS35333641NO. OF ANIMALS WITH TUMORS21232622NO. OF ANIMALS WITH SINGLE TUMORS12101717NO. OF ANIMALS WITH MULTIPLE TUMORS91395 | | | | | | | |
| NO. OF ANIMALS WITH TUMORS21232622NO. OF ANIMALS WITH SINGLE TUMORS12101717NO. OF ANIMALS WITH MULTIPLE TUMORS91395 | 15 12 | 15 | 16 | . 14 | | NO. OF TOTAL TORORS | NO. |
| NO. OF ANIMALS WITH SINGLE TUMORS12101717NO. OF ANIMALS WITH MULTIPLE TUMORS91395 | 36 41 | 36 | 33 | 35 | | NO. OF EXAMINED ANIMALS | 105 - 105 NO. |
| NO. OF ANIMALS WITH SINGLE TUMORS12101717NO. OF ANIMALS WITH MULTIPLE TUMORS91395 | 26 22 | 26 | 23 | 21 | | | |
| | 17 17 | | 10 | | | | |
| | 9 5 | 9 | 13 | 9 | | NO. OF ANIMALS WITH MULTIPLE TUMORS | NO. |
| 18 14 17 14 | 17 14 | 17 | 14 | 18 | | NO. OF BENIGN TUMORS | NO. |
| NO. OF MALIGNANT TUMORS 18 26 20 16 | 20 16 | 20 | . 26 | 18 | | | |
| NO. OF TOTAL TUMORS 36 40 37 30 | 37 30 | 37 | 40 | 36 | | NO. OF TOTAL TUMORS | NO. |

PAGE : 1

.

(HPT070)

MENDED OF ANTIMA C WITH THUODE AND

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

|--|

| e-related
_Weeks | Items | Group Name | Control | 5000 ppm | 10000 ppm | 20000 ppm | |
|---------------------|-------------------------------------|------------|---------|----------|-----------|-----------|--|
| × | | | | | | | |
| 0 - 105 | NO. OF EXAMINED ANIMALS | | 50 | 50 | 50 | 50 | |
| | NO. OF ANIMALS WITH TUMORS | | 34 | 37 | 37 | 31 | |
| | NO. OF ANIMALS WITH SINGLE TUMORS | | 19 | 21 | 24 | 23 | |
| | NO. OF ANIMALS WITH MULTIPLE TUMORS | | 15 | 16 | 13 | 8 | |
| | NO. OF BENIGN TUMORS | | 24 | 18 | 20 | 15 | |
| | NO. OF MALIGNANT TUMORS | | 31 | 40 | 33 | 28 | |
| | NO. OF TOTAL TUMORS | | 55 | 58 | 53 | 43 | |

(HPT070)

BAIS4

.

TABLE N 2

NUMBER OF ANIMALS WITH TUMORS AND

NUMBER OF TUMORS-TIME RELATED: FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

rj:BDF1j

Time-related Items___ Group Name 2500 ppm Control 5000 ppm 10000 ppm ____Weeks_ 0 - 52 NO. OF EXAMINED ANIMALS 2 . NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS Û NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 53 - 78 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 79 - 104 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 105 - 105 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS (HPT070)

BAIS4

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

~~~

#### STUDY NO. : 0613 : MOUSE B6D2F1/Cr1j[Crj:BDF1] ANIMAL REPORT TYPE : A1 SEX FEMALE

| `ime-related<br>Weeks | Items                               | Group Name | Control | 2500 ppm | 5000 ppm | 10000 ppm |  |
|-----------------------|-------------------------------------|------------|---------|----------|----------|-----------|--|
| 0 - 105               | NO. OF EXAMINED ANIMALS             |            | 50      | 50       | 50       | 50        |  |
| 0 100                 |                                     |            | 50      | 00       | 50       | 50        |  |
|                       | NO. OF ANIMALS WITH TUMORS          |            | 37      | 42       | 42       | 40        |  |
|                       | NO. OF ANIMALS WITH SINGLE TUMORS   |            | 25      | 27       | 32       | 29        |  |
|                       | NO. OF ANIMALS WITH MULTIPLE TUMORS |            | 12      | 15       | 10       | 11        |  |
|                       | NO. OF BENIGN TUMORS                |            | 25      | 21       | 20       | 15        |  |
|                       | NO. OF MALIGNANT TUMORS             |            | 29      | 37       | 33       | 40        |  |
|                       | NO. OF TOTAL TUMORS                 |            | 54      | 58       | 53       | 55        |  |

(HPT070)

TABLE O 1

### HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

### HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 $\sim$ 

| Organ ·        | Findings                       | Group Name Control<br>No. of animals on Study 50 | 5000 ppm<br>50  | 10000 ррт<br>50 | 20000 ppm<br>50  |
|----------------|--------------------------------|--------------------------------------------------|-----------------|-----------------|------------------|
| {Integumentary | y system/appandage)            |                                                  |                 |                 |                  |
| subcutis       | lipoma                         | <50><br>1 ( 2%)                                  | <50><br>1 ( 2%) | <50><br>0 ( 0%) | <50><br>0 ( 0%)  |
|                | schwannoma                     | 1 ( 2%)                                          | 0 ( 0%)         | 0 ( 0%)         | 0 ( 0%)          |
|                | schwannoma malignant           | 0 ( 0%)                                          | 1 ( 2%)         | 1 ( 2%)         | 1 ( 2%)          |
|                | histiocytic sarcoma            | 0 ( 0%)                                          | 1 ( 2%)         | 0 ( 0%)         | 0 ( 0%)          |
|                | mastcytoma:malignant           | 0 ( 0%)                                          | 1 ( 2%)         | 0 ( 0%)         | 0 ( 0%)          |
|                | hemangiosarcoma                | 1 ( 2%)                                          | 0 ( 0%)         | 0 ( 0%)         | 0 ( 0%)          |
| Respiratory    | system)                        |                                                  |                 |                 |                  |
| asal cavit     | histiocytic sarcoma            | . <50><br>0 ( 0%)                                | <50><br>1 ( 2%) | <50><br>1 ( 2%) | <50><br>0 ( 0%)  |
| ung            | bronchiolar-alveolar adenoma   | <50><br>7 (14%)                                  | <50><br>4 ( 8%) | <50><br>4 ( 8%) | <50><br>3 ( 6%)  |
|                | bronchiolar-alveolar carcinoma | 4 ( 8%)                                          | 10 ( 20%)       | 7 (14%)         | 5 (10%)          |
| (Hematopoietic | c system)                      |                                                  |                 |                 |                  |
| one marrow     | hemangioma                     | <50><br>0 ( 0%)                                  | <50><br>0 ( 0%) | <50><br>0 ( 0%) | <50><br>1 ( 2%)  |
| lymph node     | malignant lymphoma             | <50><br>13 ( 26%)                                | <50><br>6 (12%) | <50><br>6 (12%) | <50><br>6 ( 12%) |

<a> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c:b / a \* 100

(HPT085)

### HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|                |                          |                                          |       |               |        |               |       |               |       |               | TAGE 2 |
|----------------|--------------------------|------------------------------------------|-------|---------------|--------|---------------|-------|---------------|-------|---------------|--------|
| Organ          | Findings                 | Group Name Cc<br>No. of animals on Study | ontro | 1<br>50       | 5000 p | opm<br>50     | 10000 | ppm<br>50     | 20000 | ррт<br>50     |        |
| {Hematopoieti  | c system)                |                                          |       |               |        |               |       |               |       |               |        |
| spleen         | histiocytic sarcoma      |                                          | 1     | <50><br>(2%)  | 0      | <50><br>( 0%) | 1     | <50><br>(2%)  | 0     | <50><br>( 0%) |        |
|                | malignant lymphoma       |                                          | 0     | ( 0%)         | 0      | ( 0%)         | 0     | ( 0%)         | 2     | ( 4%)         |        |
|                | hemangiosarcoma          |                                          | 1     | (2%)          | 1      | ( 2%)         | 2     | ( 4%)         | 1     | (2%)          |        |
| {Digestive sys | stem)                    |                                          |       |               |        |               |       |               |       |               |        |
| salivary gl    | histiocytic sarcoma      |                                          | 0     | <50><br>(0%)  | 1      | <50><br>(2%)  | 0     | <50><br>( 0%) | 0     | <50><br>( 0%) |        |
| stomach        | squamous cell papilloma  |                                          | 0     | <50><br>(0%)  | 1      | <50><br>( 2%) | 0     | <50><br>( 0%) | 1     | <50><br>( 2%) |        |
| small intes    | adenocarcinoma           |                                          | 0     | <50><br>( 0%) | 1      | <50><br>( 2%) | 1     | <50><br>(2%)  | 0     | <50><br>( 0%) |        |
| liver          | hemangioma               |                                          | 0     | <50><br>( 0%) | 1      | <50><br>(2%)  | 0     | <50><br>( 0%) | 0     | <50><br>( 0%) |        |
|                | hepatocellular adenoma   |                                          | 12    | (24%)         | 7      | ( 14%)        | 14    | (28%)         | 7     | (14%)         |        |
|                | histiocytic sarcoma      |                                          | 3     | ( 6%)         | 3      | ( 6%)         | 1     | ( 2%)         | 4     | ( 8%)         |        |
|                | hemangiosarcoma          |                                          | 1     | (2%)          | 2      | ( 4%)         | 3     | ( 6%)         | 1     | ( 2%)         |        |
|                | hepatocellular carcinoma |                                          | 6     | (12%)         | 9      | ( 18%)        | 6     | ( 12%)        | 6     | ( 12%)        |        |
| gall bladd     | papillary adenoma        |                                          | 0     | <50><br>( 0%) | 0      | <50><br>( 0%) | 1     | <49><br>( 2%) | 1     | <49><br>( 2%) |        |

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b / a \* 100

(HPT085)

# STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : Λ1 SEX : MALE

### HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~

|                | MALL                | · · · · · · · · · · · · · · · · · · · |                                       |              |               |        |                 |       |               |       |               | PAGE : |
|----------------|---------------------|---------------------------------------|---------------------------------------|--------------|---------------|--------|-----------------|-------|---------------|-------|---------------|--------|
| 0rgan          | Findings            |                                       | Group Name<br>_ No. of animals on Stu | Contro<br>dy | 1<br>50       | 5000 p | opm<br>50       | 10000 | ppm<br>50     | 20000 | ррт<br>50     |        |
| {Urinary syste | em)                 |                                       |                                       |              |               |        |                 |       |               |       |               |        |
| kidney         | histiocytic sarcoma |                                       |                                       | 0            | <50><br>( 0%) | 0      | <50><br>( 0%)   | 0     | <50><br>( 0%) | 1     | <50><br>(2%)  |        |
| urin bladd     | histiocytic sarcoma |                                       |                                       | 0            | <50><br>( 0%) | 0      | <50><br>( 0%)   | 1     | <50><br>(2%)  | 1     | <50><br>( 2%) |        |
| {Endocrine sys | stem)               |                                       |                                       |              |               |        |                 |       |               |       |               |        |
| pituitary      | adenoma             |                                       |                                       | 0            | <50><br>( 0%) | 2      | <50><br>-(, 4%) | 0     | <50><br>( 0%) | 0     | <50><br>( 0%) |        |
| thyroid        | C-cell carcinoma    |                                       |                                       | 1            | <50><br>( 2%) | 0      | <50><br>( 0%)   | 0     | <50><br>( 0%) | 0     | <50><br>( 0%) |        |
| {Reproductive  | system}             |                                       |                                       |              |               |        |                 |       |               |       |               |        |
| epididymis     | histiocytic sarcoma |                                       |                                       | 0            | <50><br>( 0%) | 1      | <50><br>( 2%)   | 0     | <50><br>( 0%) | 0     | <50><br>( 0%) |        |
| semin ves      | histiocytic sarcoma |                                       |                                       | 0            | <50><br>( 0%) | 0      | <50><br>( 0%)   | 1     | <50><br>(2%)  | 0     | <50><br>( 0%) |        |
| {Nervous syste | em)                 |                                       |                                       |              |               |        |                 |       |               |       |               |        |
| periph nerv    | histiocytic sarcoma |                                       |                                       | 0            | <50><br>( 0%) | 0      | <50><br>( 0%)   | 1     | <50><br>(2%)  | 0     | <50><br>( 0%) |        |
| {Special sense | e organs/appendage) |                                       |                                       |              |               |        |                 |       |               |       |               |        |
| Harder gl      | adenoma             |                                       |                                       | 2            | <50><br>( 4%) | 2      | <50><br>( 4%)   | 1     | <50><br>(2%)  | 2     | <50><br>( 4%) |        |
|                | adenocarcinoma      |                                       |                                       | 0            | ( 0%)         | 0      | ( 0%)           | 1     | (2%)          | 0     | ( 0%)         |        |
|                |                     |                                       |                                       |              |               |        |                 |       |               |       |               |        |

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b/a\*100

(HPT085)

BAIS4

### HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

5000 ppm Group Name Control 10000 ppm 20000 ppm Organ\_ Findings\_ No. of animals on Study 50 50 50 50 {Musculoskeletal system} bone <50> <50> <50> <50> osteoma 1 (2%) 0 ( 0%) 0 ( 0%) 0 (0%) 0 ( 0%) 1 (2%) 0 ( 0%) 0 ( 0%) osteosarcoma {Body cavities}

< a > a : Number of animals examined at the site b (c) b : Number of animals with neoplasm c : b / a \* 100

(HPT085)

BAIS4

.

PAGE : 4

~~

TABLE O 2

### HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

### HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~~~~

·----

| SEX : | FEMALE | | | | PAGE : |
|----------------|--------------------------------|--|------------------|------------------|-------------------|
| Organ | Findings | Group Name Control
No. of animals on Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 מספס
50 |
| [Integumentary | y system/appandage) | | | | |
| subcutis | schwannoma | <50>
0 (0%) | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) |
| | hemangioma | 1 (2%) | 0 (0%) | 0 (0%) | 0 (0%) |
| | fibrosarcoma | 0 (0%) | 1 (2%) | 1 (2%) | 0 (0%) |
| Respiratory s | system) | | | | |
| ung | bronchiolar-alveolar adenoma | 、
<50>
2 (4%) | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) |
| | bronchiolar-alveolar carcinoma | 2 (4%) | 2 (4%) | 1 (2%) | 3 (6%) |
| lematopoietio | c system) | | | | |
| one marrow | hemangioma | <50>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) | <50>
1 (2%) |
| ymph node | malignant lymphoma | <50>
12 (24%) | <50>
18 (36%) | <50>
19 (38%) | <50>
16 (32%) |
| pleen | hemangioma | <50>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) | <50>
1 (2%) |
| | malignant lymphoma | 1 (2%) | 0 (0%) | 1 (2%) | 1 (2%) |
|)igestive sys | stem) | | | | |
| alivary gl | histiocytic sarcoma | <50>
1 (2%) | <49>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) |

<a> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm с: b / а * 100

(HPT085)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~~

| SEX | : FEMALE | | | · · · · · · · · · · · · · · · · · · · | | PAG | E : |
|--------------|--------------------------|---------------------------------|---------------------|---------------------------------------|------------------|------------------|-----|
| Organ | Findings | Group Name
No. of animals on | Control
Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 | |
| | | | | | | | |
| {Digestive s | system) | | | | | | |
| stomach | squamous cell papilloma | | <50>
0 (0%) | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) | |
| liver | hemangioma | | <50>
3 (6%) | <50>
3 (6%) | <50>
3 (6%) | <50>
1 (2%) | |
| | hepatocellular adenoma | | 3 (6%) | 1 (2%) | 4 (8%) | 1 (2%) | |
| | histiocytic sarcoma | | 2 (4%) | 0 (0%) | 0 (0%) | 1 (2%) | |
| | hemangiosarcoma | | 0 (0%) | 0 (0%) | 1 (2%) | 0 (0%) | |
| | hepatocellular carcinoma | | 1 (2%) | 1 (2%) | 1 (2%) | 2 (4%) | |
| {Endocrine s | system) | | | | | | |
| pituitary | adenoma | | <50>
12 (24%) | <50>
9 (18%) | <50>
5 (10%) | <50>
6 (12%) | |
| | adenocarcinoma | | 0 (0%) | 0 (0%) | 0 (0%) | 1 (2%) | |
| thyroid | C-cell carcinoma | | <50>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) | <50>
1 (2%) | |
| {Reproductiv | re system) | | | | | | |
| ovary | cystadenoma | | <50>
0 (0%) | <50>
0 (0%) | <50>
3 (6%) | <50>
1 (2%) | |
| | hemangioma | | 0 (0%) | 1 (2%) | 4 (8%) | 0 (0%) | |
| | . در | | | | | | |
| | | | | | | | |

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b/a*100

(HPT085)

BAIS4

| ANIMAL
REPORT TYPE | : 0013
: MOUSE B6D2F1/Cr1,j[Cr,j:BDF1]
: A1
: FEMALE | HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LES.
ALL ANIMALS (0-105W) | IUNS (SUMMART) | | PAGE : |
|-----------------------|---|--|-----------------|-----------------|-----------------|
| Organ | Findings | Group Name Control
No. of animals on Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
| {Reproductive | e system) | | | | |
| uterus | leiomyoma | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) |
| | endometrial stromal polyp | 0 (0%) | 1 (2%) | 1 (2%) | 0 (0%) |
| | histiocytic sarcoma | 8 (16%) | 14 (28%) | 7 (14%) | 14 (28%) |
| | hemangiosarcoma | 0 (0%) | 0 (0%) | 1 (2%) | 0 (0%) |
| | endometrial stromal sarcoma | 0 (0%) | 0 (0%) | 1 (2%) | 0 (0%) |
| mammary gl | adenocarcinoma | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) | <50>
1 (2%) |
| {Nervous syst | tem} | | | | |
| brain | meningioma:malignant | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) | <50>
0 (0%) |
| {Special sens | se organs/appendage) | | | | |
| Harder gl | adenoma | <50>
3 (6%) | <50>
2 (4%) | <50>
0 (0%) | <50>
4 (8%) |
| {Musculoskele | etal system} | | - | | |
| muscle | rhabdomyosarcoma | <50>
0 (0%) | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) |
| bone | osteoma | <50>
0 (0%) | <50>
1 (2%) | <50>
0 (0%) | <50>
0 (0%) |

<a> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm с:b/а*100

(HPT085)

STUDY NO. : 0613

BAIS4

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

7

TABLE P 1

NEOPLASTIC LESIONS-INCIDENCE AND

STATISTICAL ANALYSIS: MALE

STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

SEX : MALE

Group Name Control 5000 ppm 10000 ppm 20000 ppm SITE : lung TUMOR : bronchiolar-alveolar adenoma Tumor rate Overall rates(a) 7/50(14.0) 4/50(8.0) 4/50(8.0)3/50(6,0)Adjusted rates(b) 20.00 12.12 11.11 7.32 Terminal rates(c) 7/35(20.0) 4/33(12.1) 4/36(11.1) 3/41 (7.3) Statistical analysis Peto test Standard method(d) P = ----Prevalence method(d) P = 0.9414Combined analysis(d) P = -----Cochran-Armitage test(e) P = 0.2102Fisher Exact test(e) P = 0.2623P = 0.2623P = 0.1589SITE : lung TUMOR : bronchiolar-alveolar carcinoma Tumor rate Overall rates(a) 4/50(8.0) 10/50(20.0) 5/50(10.0) 7/50(14.0) Adjusted rates(b) 9.76 24.24 13.16 10.64 Terminal rates(c) 3/35(8.6) 8/33(24.2) 4/36(11.1) 3/41 (7.3) Statistical analysis Peto test Standard method(d) P = 0.5791Prevalence method(d) P = 0.6094Combined analysis(d) P = 0.6373Cochran-Armitage test(e) P = 0.8311Fisher Exact test(e) P = 0.0739P = 0.2623P = 0.5000SITE : lung TUMOR : bronchiolar-alveolar adenoma, bronchiolar-alveolar carcinoma Tumor rate Overall rates(a) 11/50(22.0) 14/50 (28.0) 11/50(22.0)8/50(16.0) Adjusted rates(b) 28.57 36.36 23.6817.02 Terminal rates(c) 10/35(28.6) 12/33 (36. 4) 8/36(22.2) 6/41(14.6)Statistical analysis Peto test Standard method(d) P = 0.5791Prevalence method(d) P = 0.9016Combined analysis(d) P = 0.9071Cochran-Armitage test(e) P = 0.2989Fisher Exact test(e) P = 0.3224P = 0.5952P = 0.3055

(HPT360A)

BAIS4

STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 2

| Group Name | Control | 5000 ppm | 10000 ppm | 20000 ppm |
|---------------------------------|--|---------------------------------------|--------------|----------------|
| | SITE : lymph node | | | |
| | TUMOR : malignant lymphoma | | | |
| Tumor rate | | | | |
| Overall rates(a) | 13/50(26.0) | 6/50(12.0) | 6/50(12.0) | 6/50(12.0) |
| Adjusted rates(b) | 17.14 | 12. 12 | 8.33 | 14.63 |
| Terminal rates(c) | 6/35(17.1) | 4/33 (12. 1) | 3/36(8.3) | 6/41(14.6) |
| Statistical analysis | | | | |
| Peto test
Standard method(d) | P = 0.9976 | | | |
| Prevalence method(d) | P = 0.5755 | | | |
| Combined analysis(d) | P = 0.9697 | | | |
| Cochran-Armitage test(e) | P = 0.1056 | | | |
| Fisher Exact test(e) | 1 - 0.1000 | P = 0.0624 | P = 0.0624 | P = 0.0624 |
| | | 1 - 0.0024 | 1 - 0.0024 | r - 0.0024 |
| | SITE : liver | | | |
| | TUMOR : hepatocellular adenoma | | | |
| Tumor rate | Tomon nepatocorratar adenoma | | | |
| Overall rates(a) | 12/50(24.0) | 7/50(14.0) | 14/50(28.0) | 7/50(14.0) |
| Adjusted rates(b) | 25. 71 | 16. 22 | 33. 33 | 14.63 |
| Terminal rates(c) | 9/35 (25, 7) | 5/33 (15.2) | 12/36(33.3) | 6/41 (14. 6) |
| Statistical analysis | | .,, | 10,000,0000, | () I (I I ()) |
| Peto test | | | | |
| Standard method(d) | P = 0.8050 | | | |
| Prevalence method(d) | P = 0.7987 | | | |
| Combined analysis(d) | P = 0.8594 | | | |
| Cochran-Armitage test(e) | P = 0.4028 | | | |
| Fisher Exact test(e) | | P = 0.1540 | P = 0.4100 | P = 0.1540 |
| | ······································ | | | |
| | SITE : liver | | | |
| | TUMOR : histiocytic sarcoma | | | |
| lumor rate | | | | |
| Overall rates(a) | 3/50(6.0) | 3/50 (6.0) | 1/50(2.0) | 4/50 (8.0) |
| Adjusted rates(b) | 2.86 | 3. 03 | 2.78 | 0.0 |
| Terminal rates(c) | 1/35(2.9) | 1/33(3.0) | 1/36(2.8) | 0/41(0.0) |
| Statistical analysis | | | | |
| Peto test | D 0.0010 | | | |
| Standard method(d) | P = 0.2212 | | | |
| Prevalence method(d) | P = 0.8247 | | | |
| Combined analysis(d) | P = 0.4353 | | | |
| Cochran-Armitage test(e) | P = 0.7136 | $\mathbf{p} = \mathbf{o} \cdot cct 1$ | D 0.0007 | |
| Fisher Exact test(e) | | P = 0.6611 | P = 0.3087 | P = 0.5000 |

(HPT360A)

STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

~~~

PAGE : 3

.

| Group Name                                       | Control                     | 5000 ppm               | 10000 ppm             | 20000 ppm     |  |
|--------------------------------------------------|-----------------------------|------------------------|-----------------------|---------------|--|
|                                                  | SITE : liver                |                        |                       |               |  |
|                                                  | TUMOR : hemangiosarcoma     |                        |                       |               |  |
| umor rate                                        |                             |                        |                       |               |  |
| Overall rates(a)                                 | 1/50( 2.0)                  | 2/50( 4.0)             | 3/50( 6.0)            | 1/50( 2.0)    |  |
| Adjusted rates(b)                                | 2.86                        | 6.06                   | 2.78                  | 0.0           |  |
| Terminal rates(c)                                | 1/35( 2.9)                  | 2/33(6.1)              | 1/36( 2.8)            | 0/41( 0.0)    |  |
| tatistical analysis                              |                             |                        |                       |               |  |
| Peto test                                        |                             |                        |                       |               |  |
| Standard method(d)                               | P = 0.1735                  |                        |                       |               |  |
| Prevalence method(d)                             | P = 0.8679                  |                        |                       |               |  |
| Combined analysis(d)                             | P = 0.5743                  |                        |                       |               |  |
| Cochran-Armitage test(e)                         | P = 0.9481                  |                        |                       |               |  |
| Fisher Exact test(e)                             |                             | P = 0.5000             | $\mathbf{P} = 0.3087$ | P = 0.7525    |  |
|                                                  | SITE : liver                |                        |                       |               |  |
|                                                  | TUMOR : hepatocellular card | -i                     |                       |               |  |
| umor rate                                        | Tomok - nepatoceriurar card |                        |                       |               |  |
| Overall rates(a)                                 | 6/50(12.0)                  | 9/50 (18,0)            | 6 (50 ( 10 0)         | C (FO ( 10 0) |  |
|                                                  | 15. 79                      |                        | 6/50(12.0)            | 6/50(12.0)    |  |
| Adjusted rates(b)<br>Terminal rates(c)           | 15.79<br>5/35(14.3)         | 14. 29<br>4/33 (12. 1) | 13.89                 | 9.09          |  |
| tatistical analysis                              | 5/35(14.3)                  | 4/33(12.1)             | 5/36(13.9)            | 2/41 ( 4.9)   |  |
| Peto test                                        |                             |                        |                       |               |  |
| Standard method(d)                               | P = 0.3664                  |                        |                       |               |  |
| Prevalence method(d)                             | P = 0.3004<br>P = 0.8232    |                        |                       |               |  |
| Combined analysis(d)                             | P = 0.8232<br>P = 0.7299    |                        |                       |               |  |
| Combined analysis(d)<br>Cochran-Armitage test(e) |                             |                        |                       |               |  |
| Cochran-Armitiage test(e)                        | P = 0.7529                  |                        |                       |               |  |

(HPT360A)

#### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] SEX : MALE

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

| Group Name               | Control                    | 5000 ppm                       | 10000 ppm   | 20000 ppm   |
|--------------------------|----------------------------|--------------------------------|-------------|-------------|
|                          | SITE : liver               |                                |             |             |
|                          | TUMOR : hepatocellular ade | noma, hepatocellular carcinoma |             |             |
| 'umor rate               | -                          |                                |             |             |
| Overall rates(a)         | 16/50(32.0)                | 16/50 ( 32.0)                  | 18/50(36.0) | 13/50(26.0) |
| Adjusted rates(b)        | 34. 29                     | 30. 56                         | 41.67       | 22.92       |
| Terminal rates(c)        | 12/35(34.3)                | 9/33 (27.3)                    | 15/36(41.7) | 8/41(19.5)  |
| tatistical analysis      |                            |                                |             |             |
| Peto test                |                            |                                |             |             |
| Standard method(d)       | P = 0.5794                 |                                |             |             |
| Prevalence method(d)     | P = 0.8183                 |                                |             |             |
| Combined analysis(d)     | P = 0.8187 ·               |                                |             |             |
| Cochran-Armitage test(e) | P = 0.5201                 |                                |             |             |
| Fisher Exact test(e)     |                            | P = 0.5848                     | P = 0.4165  | P = 0.3299  |

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

N.C. Statistical value cannot be calculated and was not significant.

BAIS4

PAGE :

4

STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] SEX : MALE

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE : 1

| Group Name               | Control                                        | 5000 ppm    | 10000 ppm  | 20000 ppm    |
|--------------------------|------------------------------------------------|-------------|------------|--------------|
|                          |                                                |             |            |              |
|                          | SITE : ALL SITE<br>TUMOR : histiocytic sarcoma |             |            |              |
| ſumor rate               | TOMOR · HISTICCYTIC Salcoma                    |             |            |              |
| Overall rates(a)         | 4/50( 8.0)                                     | 7/50 (14.0) | 6/50(12.0) | 6/50(12.0)   |
| Adjusted rates(b)        | 2.86                                           | 15. 15      | 11.11      | 4. 88        |
| Terminal rates(c)        | 1/35( 2.9)                                     | 5/33 (15.2) | 4/36(11.1) | 2/41 ( 4, 9) |
| Statistical analysis     | 1,000                                          | 0,00 (10.2) | 1,00(11.1) | 2/11( 1.0)   |
| Peto test                |                                                |             |            |              |
| Standard method(d)       | P = 0.3428                                     |             |            |              |
| Prevalence method(d)     | P = 0.5921                                     |             |            |              |
| Combined analysis(d)     | P = 0.4560                                     |             |            |              |
| Cochran-Armitage test(e) | P = 0.6803                                     |             |            |              |
| Fisher Exact test(e)     | 1 0.0000                                       | P = 0.2623  | P = 0.3703 | P = 0.3703   |
|                          | · · · · · · · · · · · · · · · · · · ·          |             |            |              |
|                          | SITE : ALL SITE                                |             |            |              |
|                          | TUMOR : malignant lymphoma                     |             |            |              |
| umor rate                |                                                |             |            |              |
| Overall rates(a)         | 13/50(26.0)                                    | 6/50(12.0)  | 6/50(12.0) | 8/50(16.0)   |
| Adjusted rates(b)        | 17.14                                          | 12. 12      | 8. 33      | 19.51        |
| Terminal rates(c)        | 6/35(17.1)                                     | 4/33(12.1)  | 3/36( 8.3) | 8/41 ( 19.5) |
| Statistical analysis     |                                                |             |            |              |
| Peto test                | D 0.0050                                       |             |            |              |
| Standard method(d)       | P = 0.9976                                     |             |            |              |
| Prevalence method(d)     | P = 0.3175                                     |             |            |              |
| Combined analysis(d)     | P = 0.9017                                     |             |            |              |
| Cochran-Armitage test(e) | P = 0.3182                                     | D 0 0000    |            |              |
| Fisher Exact test(e)     |                                                | P = 0.0624  | P = 0.0624 | P = 0.1631   |

(HPT360A)

#### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE : 2

| Group Name               | Control                                    | 5000 ppm     | 10000 ppm  | 20000 ppm  |  |
|--------------------------|--------------------------------------------|--------------|------------|------------|--|
|                          | SITE : ALL SITE<br>TUMOR : hemangiosarcoma |              |            |            |  |
| Tumor rate               | Tomore - Hemangrosar coma                  |              |            |            |  |
| Overall rates(a)         | 3/50(6.0)                                  | 3/50 ( 6, 0) | 4/50( 8.0) | 2/50(4.0)  |  |
| Adjusted rates(b)        | 8.57                                       | 9.09         | 2.78       | 2.44       |  |
| Terminal rates(c)        | 3/35( 8, 6)                                | 3/33 ( 9, 1) | 1/36(2.8)  | 1/41(2.4)  |  |
| Statistical analysis     |                                            |              | 2,000      |            |  |
| Peto test                |                                            |              |            |            |  |
| Standard method(d)       | P = 0.1846                                 |              |            |            |  |
| Prevalence method(d)     | P = 0.9198                                 |              |            |            |  |
| Combined analysis(d)     | P = 0.7177                                 |              |            |            |  |
| Cochran-Armitage test(e) | P = 0.6872                                 |              |            |            |  |
| Fisher Exact test(e)     |                                            | P = 0.6611   | P = 0.5000 | P = 0.5000 |  |

#### (HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

N.C.:Statistical value cannot be calculated and was not significant.

### TABLE P 2

### NEOPLASTIC LESIONS-INCIDENCE AND

### STATISTICAL ANALYSIS: FEMALE

### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1]

SEX : FEMALE

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE : 5

~

| Group Name               | Control                      | 2500 ppm                               | 5000 ppm              | 10000 ppm   |  |
|--------------------------|------------------------------|----------------------------------------|-----------------------|-------------|--|
|                          | SITE : lung                  |                                        |                       |             |  |
|                          | TUMOR : bronchiolar-alveolar | carcinoma                              |                       |             |  |
| Tumor rate               |                              |                                        |                       |             |  |
| Overall rates(a)         | 2/50( 4.0)                   | 2/50( 4.0)                             | 1/50( 2.0)            | 3/50(6.0)   |  |
| Adjusted rates(b)        | 5.26                         | 7.69                                   | 3. 23                 | 6.90        |  |
| Terminal rates(c)        | 1/29( 3.4)                   | 2/26(7.7)                              | 1/31( 3.2)            | 1/20( 5.0)  |  |
| Statistical analysis     |                              |                                        |                       |             |  |
| Peto test                |                              |                                        |                       |             |  |
| Standard method(d)       | P = 0.1155                   |                                        |                       |             |  |
| Prevalence method(d)     | P = 0.4665                   |                                        |                       |             |  |
| Combined analysis(d)     | P = 0.2751                   |                                        |                       |             |  |
| Cochran-Armitage test(e) | P = 0.6256                   |                                        |                       |             |  |
| Fisher Exact test(e)     |                              | P = 0.6913                             | $\mathbf{P} = 0.5000$ | P = 0.5000  |  |
|                          | SITE : lung                  |                                        |                       |             |  |
|                          | <del>-</del>                 | adenoma, bronchiolar-alveolar carcinom | าล                    |             |  |
| Tumor rate               |                              | ,                                      |                       |             |  |
| Overall rates(a)         | 4/50 ( 8.0)                  | 3/50(6,0)                              | 1/50( 2.0)            | 3/50( 6.0)  |  |
| Adjusted rates(b)        | 10. 53                       | 8.82                                   | 3.23                  | 6.90        |  |
| Terminal rates(c)        | 2/29 ( 6, 9)                 | 2/26(7.7)                              | 1/31(-3,2)            | 1/20( 5.0)  |  |
| Statistical analysis     |                              |                                        |                       |             |  |
| Peto test                |                              |                                        |                       |             |  |
| Standard method(d)       | P = 0.1155                   |                                        |                       |             |  |
| Prevalence method(d)     | P = 0.7930                   |                                        |                       |             |  |
| Combined analysis(d)     | P = 0.6173                   | •                                      |                       |             |  |
| Cochran-Armitage test(e) | P = 0.6370                   |                                        |                       |             |  |
| Fisher Exact test(e)     |                              | P = 0.5000                             | P = 0.1811            | P = 0.5000  |  |
| <u> </u>                 |                              |                                        |                       |             |  |
|                          | SITE : lymph node            |                                        |                       |             |  |
|                          | TUMOR : malignant lymphoma   |                                        |                       |             |  |
| Tumor rate               |                              |                                        |                       |             |  |
| Overall rates(a)         | 12/50(24.0)                  | 18/50 ( 36.0)                          | 19/50( 38.0)          | 16/50(32.0) |  |
| Adjusted rates(b)        | 20. 69                       | 30. 77                                 | 32.26                 | 20.00       |  |
| Terminal rates(c)        | 6/29(20.7)                   | 8/26(30.8)                             | 10/31(32.3)           | 4/20( 20.0) |  |
| Statistical analysis     |                              |                                        |                       |             |  |
| Peto test                |                              | <i>v</i>                               |                       |             |  |
| Standard method(d)       | P = 0.0718                   |                                        |                       |             |  |
| Prevalence method(d)     | P = 0.5195                   |                                        |                       |             |  |
| Combined analysis(d)     | P = 0.1217                   |                                        |                       |             |  |
| Cochran-Armitage test(e) | P = 0.5235                   |                                        |                       |             |  |
| Fisher Exact test(e)     |                              | P = 0.1376                             | P = 0.0971            | P = 0.2522  |  |
| (HPT360A)                |                              |                                        |                       |             |  |

.

•

(HPT360A)

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1]

SEX : FEMALE

PAGE: 6

 $\sim \sim$ 

| Group Name                        | Control                      | 2500 ppm                    | 5000 ррм              | 10000 ppm             |     |
|-----------------------------------|------------------------------|-----------------------------|-----------------------|-----------------------|-----|
|                                   | SITE : liver                 |                             |                       |                       |     |
| n                                 | TUMOR : hemangioma           |                             |                       |                       |     |
| Tumor rate<br>Overall rates(a)    | 3/50(6.0)                    | 3/50(6.0)                   |                       | 1/50/ 0.0)            |     |
| Adjusted rates (b)                | 8.33                         | 11. 11                      | 3/50 ( 6.0)<br>9.68   | 1/50(2.0)             |     |
| Terminal rates(c)                 | 2/29(6.9)                    | 2/26 ( 7.7)                 | 3/31(9.7)             | 0/20(0.0)             |     |
| Statistical analysis              | 2/20( 0.0)                   | b/ b( ( 1.1)                | 5/51( 5.17            | 0/20( 0:0)            |     |
| Peto test                         |                              |                             |                       |                       |     |
| Standard method(d)                | P =                          |                             |                       |                       |     |
| Prevalence method(d)              | P = 0.8274                   |                             |                       |                       |     |
| Combined analysis(d)              | P =                          |                             |                       |                       |     |
| Cochran-Armitage test(e)          | P = 0.3236                   |                             |                       |                       |     |
| Fisher Exact test(e)              |                              | P = 0.6611                  | $\mathbf{P} = 0.6611$ | $\mathbf{P} = 0.3087$ |     |
|                                   |                              | <b>x</b>                    |                       |                       |     |
|                                   | SITE : liver                 |                             |                       |                       |     |
|                                   | TUMOR : hepatocellular adenc | ma                          | •                     |                       |     |
| fumor rate                        |                              |                             |                       |                       |     |
| Overall rates(a)                  | 3/50( 6.0)                   | 1/50 ( 2.0)                 | 4/50( 8.0)            | 1/50( 2.0)            |     |
| Adjusted rates(b)                 | 10.34                        | 3.70                        | 11. 43                | 5.00                  |     |
| Terminal rates(c)                 | 3/29(10.3)                   | 0/26( 0.0)                  | 3/31( 9.7)            | 1/20( 5.0)            |     |
| Statistical analysis<br>Peto test |                              |                             |                       |                       |     |
| Standard method(d)                | P =                          |                             |                       |                       |     |
| Prevalence method(d)              | P = 0.6815                   |                             |                       |                       |     |
| Combined analysis(d)              | P =                          |                             |                       |                       |     |
| Cochran-Armitage test(e)          | P = 0.5259                   |                             |                       |                       |     |
| Fisher Exact test(e)              | 1 - 0. 5259                  | P = 0.3087                  | P = 0.5000            | P = 0.2097            |     |
| TISHEL EXACT LEST(e)              |                              | r - 0.3001                  | F - 0. 5000           | P = 0.3087            |     |
|                                   | SITE : liver                 |                             |                       |                       | . * |
|                                   | TUMOR : hepatocellular adeno | ma,hepatocellular carcinoma |                       |                       |     |
| lumor rate                        |                              |                             |                       |                       |     |
| Overall rates(a)                  | 4/50( 8.0)                   | 2/50( 4.0)                  | 4/50( 8.0)            | 3/50(6.0)             |     |
| Adjusted rates(b)                 | 10.34                        | 7.41                        | 9.68                  | 5.88                  |     |
| Terminal rates(c)                 | 3/29(10.3)                   | 1/26( 3.8)                  | 3/31 ( 9.7)           | 1/20( 5.0)            |     |
| Statistical analysis              |                              |                             |                       |                       |     |
| Peto test                         |                              |                             |                       |                       |     |
| Standard method(d)                | P = 0.3485                   |                             |                       |                       |     |
| Prevalence method(d)              | P = 0.5490                   |                             |                       |                       |     |
| Combined analysis(d)              | P = 0.4708                   |                             |                       |                       |     |
| Cochran-Armitage test(e)          | P = 0.8844                   | B 0 9900                    |                       |                       |     |
| Fisher Exact test(e)              |                              | P = 0.3389                  | P = 0.6425            | P = 0.5000            |     |

(HPT360A)

### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

SEX : FEMALE

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

~

 $\overline{\phantom{a}}$ 

PAGE: 7

| Group Name                                   | Control                                 | 2500 ppm   | 5000 ppm     | 10000 ppm  |  |
|----------------------------------------------|-----------------------------------------|------------|--------------|------------|--|
|                                              | SITE : pituitary gland                  |            |              |            |  |
|                                              | TUMOR : adenoma                         |            |              |            |  |
| Tumor rate                                   |                                         |            |              |            |  |
| Overall rates(a)                             | 12/50(24.0)                             | 9/50(18.0) | 5/50(10.0)   | 6/50(12.0) |  |
| Adjusted rates(b)                            | 30. 56                                  | 25. 71     | 15.15        | 25.00      |  |
| Terminal rates(c)                            | 8/29(27.6)                              | 6/26(23.1) | 4/31 ( 12.9) | 5/20(25.0) |  |
| Statistical analysis                         |                                         |            |              |            |  |
| Peto test                                    | D 0.0017 9                              |            |              |            |  |
| Standard method(d)                           | P = 0.8917 ?                            |            |              |            |  |
| Prevalence method(d)<br>Combined analysis(d) | P = 0.9072<br>P = 0.9362                |            |              |            |  |
| Cochran-Armitage test(e)                     | P = 0.0900                              |            |              |            |  |
| Fisher Exact test(e)                         | 1 - 0.0900                              | P = 0.3121 | P = 0.0542   | P = 0.0961 |  |
|                                              |                                         | 1 = 0.5121 | r - 0.0342   | P - 0.0901 |  |
|                                              | SITE : pituitary gland                  |            |              |            |  |
|                                              | TUMOR : adenoma, adenocarcinoma         |            |              |            |  |
| Tumor rate                                   | - · · · · · · · · · · · · · · · · · · · |            |              |            |  |
| Overall rates(a)                             | 12/50(24.0)                             | 9/50(18,0) | 5/50(10.0)   | 7/50(14.0) |  |
| Adjusted rates(b)                            | 30.56                                   | 25. 71     | 15.15        | 25.00      |  |
| Terminal rates(c)                            | 8/29(27.6)                              | 6/26(23.1) | 4/31 ( 12.9) | 5/20(25.0) |  |
| Statistical analysis                         |                                         |            |              |            |  |
| Peto test                                    |                                         |            |              |            |  |
| Standard method(d)                           | P = 0.3751                              |            |              |            |  |
| Prevalence method(d)                         | P = 0.9072                              |            |              |            |  |
| Combined analysis(d)                         | P = 0.8835                              |            |              |            |  |
| Cochran-Armitage test(e)                     | P = 0.1662                              |            |              |            |  |
| Fisher Exact test(e)                         |                                         | P = 0.3121 | P = 0.0542   | P = 0.1540 |  |
|                                              | SITE : ovary                            |            |              |            |  |
|                                              | TUMOR : cystadenoma                     |            |              |            |  |
| lumor rate                                   |                                         |            |              |            |  |
| Overall rates(a)                             | 0/50(0.0)                               | 0/50(0,0)  | 3/50(6,0)    | 1/50( 2.0) |  |
| Adjusted rates(b)                            | 0.0                                     | 0.0        | 9.68         | 2.13       |  |
| Terminal rates(c)                            | 0/29( 0.0)                              | 0/26( 0.0) | 3/31(9.7)    | 0/20( 0.0) |  |
| Statistical analysis                         |                                         |            | · · ·        |            |  |
| Peto test                                    |                                         |            |              |            |  |
| Standard method(d)                           | P =                                     |            |              |            |  |
| Prevalence method(d)                         | P = 0.1470                              |            |              |            |  |
| Combined analysis(d)                         | P =                                     |            |              |            |  |
| Cochran-Armitage test(e)                     | P = 0.3056                              |            |              |            |  |
| Fisher Exact test(e)                         |                                         | P = N.C.   | P = 0.1212   | P = 0.5000 |  |

(HPT360A)

### STUDY No. : 0613

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

 $\overline{}$ 

|                          | Control                                      | 2500 ppm       | 5000 ppm              | 10000 ppm                              |
|--------------------------|----------------------------------------------|----------------|-----------------------|----------------------------------------|
|                          | SITE : ovary                                 |                |                       |                                        |
|                          | TUMOR : hemangioma                           |                |                       |                                        |
| umor rate                |                                              |                |                       |                                        |
| Overall rates(a)         | 0/50( 0.0)                                   | 1/50(2.0)      | 4/50( 8.0)            | 0/50( 0.0)                             |
| Adjusted rates(b)        | 0.0                                          | 3. 85          | 8.57                  | 0.0                                    |
| Terminal rates(c)        | 0/29( 0.0)                                   | 1/26( 3.8)     | 2/31(6.5)             | 0/20( 0.0)                             |
| tatistical analysis      |                                              |                |                       |                                        |
| Peto test                |                                              |                |                       |                                        |
| Standard method(d)       | P = 0.4037                                   | ,              |                       |                                        |
| Prevalence method(d)     | P = 0.4525                                   |                |                       |                                        |
| Combined analysis(d)     | P = 0.4291                                   |                |                       |                                        |
| Cochran-Armitage test(e) | P = 0.9390                                   |                |                       |                                        |
| Fisher Exact test(e)     |                                              | $P = 0.\ 5000$ | $\mathbf{P} = 0.0587$ | $\mathbf{P} = \mathbf{N}. \mathbf{C}.$ |
|                          | SITE : uterus<br>TUMOR : histiocytic sarcoma |                |                       |                                        |
| umor rate                | TOMOR · HIStrocytic sarcouna                 |                |                       |                                        |
| Overall rates(a)         | 8/50(16.0)                                   | 14/50 (28.0)   | 7/50(14.0)            | 14/50(28.0)                            |
| Adjusted rates(b)        | 6.90                                         | 15.38          | 6.45                  | 14/30(28.0)                            |
| Terminal rates(c)        | 2/29( 6.9)                                   | 4/26 ( 15. 4)  | 2/31(6.5)             | 3/20(15.0)                             |
| tatistical analysis      | 2/29( 0.9)                                   | 4/20(15.4)     | 2/31( 0.3)            | 3/20(15.0)                             |
| Peto test                |                                              |                |                       |                                        |
| Standard method(d)       | P = 0.2268                                   |                |                       |                                        |
| Prevalence method(d)     | P = 0.2208<br>P = 0.1735                     |                |                       |                                        |
| Combined analysis(d)     | P = 0.1331                                   |                |                       |                                        |
| Cochran-Armitage test(e) | P = 0.1331<br>P = 0.3085                     |                |                       | S                                      |
| Fisher Exact test(e)     | r - 0.3003                                   | P = 0.1105     | $\mathbf{P} = 0$ F000 |                                        |
| TSHEL EXACT (est(e)      |                                              | P = 0.1135     | P = 0.5000            | P = 0.1135                             |
| PT360A)                  |                                              |                |                       |                                        |

### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

### SEX : FEMALE

### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 9

| Group Name               | Control                                   | 2500 ppm    | 5000 ppm   | 10000 ppm  |  |
|--------------------------|-------------------------------------------|-------------|------------|------------|--|
| · .                      | SITE : Harderian gland<br>TUMOR : adenoma |             |            |            |  |
| Tumor rate               |                                           |             |            |            |  |
| Overall rates(a)         | 3/50 ( 6.0)                               | 2/50 ( 4.0) | 0/50(0.0)  | 4/50( 8.0) |  |
| Adjusted rates(b)        | 8. 33                                     | 7.69        | 0.0        | 10.00      |  |
| Terminal rates(c)        | 2/29 ( 6.9)                               | 2/26 (7.7)  | 0/31( 0.0) | 2/20(10.0) |  |
| Statistical analysis     |                                           |             |            |            |  |
| Peto test                |                                           |             |            |            |  |
| Standard method(d)       | P =                                       |             |            |            |  |
| Prevalence method(d)     | P = 0.3053                                |             |            |            |  |
| Combined analysis(d)     | P =                                       |             |            |            |  |
| Cochran-Armitage test(e) | P = 0.6038                                |             |            |            |  |
| Fisher Exact test(e)     |                                           | P = 0.5000  | P = 0.1212 | P = 0.5000 |  |

#### (HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$ 

N.C.:Statistical value cannot be calculated and was not significant.

### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : FEMALE

PAGE : 3

| Group Name               | Control                               | 2500 ppm      | 5000 ppm    | 10000 ppm    |
|--------------------------|---------------------------------------|---------------|-------------|--------------|
|                          | SITE : ALL SITE<br>TUMOR : hemangioma |               |             |              |
| lumor rate               | Tomore Honking Long                   |               |             |              |
| Overall rates(a)         | 3/50(6.0)                             | 4/50 ( 8.0)   | 7/50(14.0)  | 2/50(4.0)    |
| Adjusted rates(b)        | 8.33                                  | 14.81         | 17.14       | 5.00         |
| Terminal rates(c)        | 2/29(6,9)                             | 3/26(11.5)    | 5/31(16.1)  | 1/20( 5.0)   |
| Statistical analysis     |                                       |               |             | -, , , ,     |
| Peto test                |                                       |               |             |              |
| Standard method(d)       | P = 0.4037                            |               |             |              |
| Prevalence method(d)     | P = 0.6299                            |               |             |              |
| Combined analysis(d)     | P = 0.6085                            |               |             |              |
| Cochran-Armitage test(e) | P = 0.7245                            |               |             |              |
| Fisher Exact test(e)     |                                       | P = 0.5000    | P = 0.1589  | P = 0.5000   |
|                          | SITE : ALL SITE                       |               |             |              |
|                          | TUMOR : histiocytic sarcoma           |               |             |              |
| Tumor rate               |                                       |               |             |              |
| Overall rates(a)         | 11/50(22.0)                           | 14/50 ( 28.0) | 7/50(14.0)  | 15/50( 30.0) |
| Adjusted rates(b)        | 17.24                                 | 15. 38        | 6.45        | 15.00        |
| Terminal rates(c)        | 5/29(17.2)                            | 4/26 (15.4)   | 2/31 ( 6.5) | 3/20(15.0)   |
| Statistical analysis     |                                       |               |             |              |
| Peto test                |                                       |               |             |              |
| Standard method(d)       | P = 0.1595                            |               |             |              |
| Prevalence method(d)     | P = 0.5142                            |               |             |              |
| Combined analysis(d)     | P = 0.2043                            | •             |             |              |
| Cochran-Armitage test(e) | P = 0.5168                            |               |             |              |
| Fisher Exact test(e)     |                                       | P = 0.3224    | P = 0.2178  | P = 0.2472   |

(HPT360A)

#### STUDY No. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] SEX : FEMALE

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE : 4

| Group Name               | Control                    | 2500 ppm      | 5000 ppm    | 10000 ppm   |  |  |
|--------------------------|----------------------------|---------------|-------------|-------------|--|--|
|                          | SITE : ALL SITE            |               |             |             |  |  |
|                          | TUMOR : malignant lymphoma |               |             |             |  |  |
| ľumor rate               |                            |               |             |             |  |  |
| Overall rates(a)         | 13/50(26.0)                | 18/50 ( 36.0) | 20/50(40.0) | 17/50(34.0) |  |  |
| Adjusted rates(b)        | 24.14                      | 30. 77        | 35.48       | 25.00       |  |  |
| Terminal rates(c)        | 7/29(24.1)                 | 8/26 ( 30.8)  | 11/31(35.5) | 5/20(25.0)  |  |  |
| Statistical analysis     |                            |               |             |             |  |  |
| Peto test                |                            |               |             |             |  |  |
| Standard method(d)       | P = 0.0718                 |               |             |             |  |  |
| Prevalence method(d)     | P = 0.4440                 |               |             |             |  |  |
| Combined analysis(d)     | P = 0.1029                 |               |             |             |  |  |
| Cochran-Armitage test(e) | P = 0.4799                 |               |             |             |  |  |
| Fisher Exact test(e)     |                            | P = 0.1937    | P = 0.1008  | P = 0.2565  |  |  |

### (HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

N.C.:Statistical value cannot be calculated and was not significant.

TABLE Q 1

### HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

~~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] REPORT TYPE : A1 SEX : MALE

| rgan          |                                                                               | Group Name Control<br>No. of Animals on Study 50 | 5000 ppm<br>50 | 10000 ppm<br>50 | 20000 ppm<br>50                       |
|---------------|-------------------------------------------------------------------------------|--------------------------------------------------|----------------|-----------------|---------------------------------------|
| r gan         | rinuings                                                                      |                                                  |                |                 | · · · · · · · · · · · · · · · · · · · |
| Integumentary | system/appandage)                                                             |                                                  |                |                 |                                       |
| ubcutis       | metastasis:spleen tumor                                                       | <50>                                             | <50><br>0      | <50>            | <50>                                  |
|               | metastasis:epididymis tumor                                                   | 0                                                | 1              | 0               | 0                                     |
| kespiratory s | us tom)                                                                       |                                                  |                |                 |                                       |
|               | ystenij                                                                       |                                                  |                |                 |                                       |
| asal cavit    | metastasis:subcutis tumor                                                     | <50><br>0                                        | <50><br>1      | <50><br>0       | <50><br>0                             |
|               | metastasis∶epididymis tumor                                                   | 0                                                | 1              | 0               | 0                                     |
| lig           |                                                                               | <50>                                             | <50>           | (50)            |                                       |
| ng            | leukemic cell infiltration                                                    | 3                                                | 2              | <50><br>2       | <50><br>0                             |
|               | metastasis:liver tumor                                                        | 3                                                | 3              | 1               | 3                                     |
|               | metastasis:subcutis tumor                                                     | 0                                                | 0              | 0               | 1                                     |
|               | metastasis:bone tumor                                                         | 0                                                | 1              | 0               | 0                                     |
|               | metastasis spleen tumor                                                       | 1                                                | 0              | 0               | 0                                     |
| lematopoietic | system)                                                                       |                                                  |                |                 |                                       |
| one marrow    |                                                                               | <50>                                             | <50>           | <50>            | <50>                                  |
|               | leukemic cell infiltration                                                    | 5                                                | 1              | 1               | 1                                     |
|               | metastasis:liver tumor                                                        | 2                                                | 1              | 0               | 2                                     |
|               | metastasis:subcutis tumor                                                     | 1                                                | 0              | 0               | 0                                     |
|               | metastasis:spleen tumor                                                       | I                                                | 0 .            | 2               | 0                                     |
| a><br>b       | a : Number of animals examined at the si<br>b : Number of animals with lesion | te                                               |                |                 |                                       |

(JPT150)

BAIS4

### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

| SEX :         | MALE                                                                     |                                                  |                |                 | PAGE :          |
|---------------|--------------------------------------------------------------------------|--------------------------------------------------|----------------|-----------------|-----------------|
| Organ         | -<br>Findings                                                            | Group Name Control<br>No. of Animals on Study 50 | 5000 ppm<br>50 | 10000 ppm<br>50 | 20000 ppm<br>50 |
|               |                                                                          | · · · · · · · · · · · · · · · · · · ·            |                |                 |                 |
| (Hematopoieti | c system)                                                                |                                                  |                |                 |                 |
| ymph node     | metastasis:liver tumor                                                   | <50><br>0                                        | <50><br>1      | <50><br>0       | <50><br>0       |
|               | metastasis spleen tumor                                                  | 1                                                | 0              | 0               | 0               |
|               | metastasis:urinary bladder tumor                                         | 0                                                | 0              | 1               | 0               |
| hymus         | leukemic cell infiltration                                               | <50><br>1                                        | <50><br>0      | <50><br>0       | <50><br>0       |
| pleen         | leukemic cell infiltration                                               | <50><br>10                                       | <50><br>5      | <50><br>2       | <50><br>1       |
|               | metastasis:liver tumor                                                   | 1                                                | 1              | 0               | 4               |
|               | metastasis:subcutis tumor                                                | 1                                                | 0              | 0               | 0               |
| Circulatory   | system}                                                                  |                                                  |                |                 |                 |
| eart          | leukemic cell infiltration                                               | <50><br>2                                        | <50><br>0      | <50><br>0       | <50><br>0       |
|               | metastasis:subcutis tumor                                                | 0                                                | 0              | 0               | i               |
| Digestive sy  | stem}                                                                    |                                                  |                |                 |                 |
| alivary gl    | leukemic cell infiltration                                               | <50><br>0                                        | <50><br>1      | <50><br>1       | <50><br>0       |
| nall intes    | leukemic cell infiltration                                               | <50><br>3                                        | <50><br>0      | <50><br>2       | <50><br>0       |
| arge intes    | leukemic cell infiltration                                               | <50><br>1                                        | <50><br>0      | <50><br>0       | <50><br>0       |
| ≺a≻<br>b      | a : Number of animals examined at t<br>b : Number of animals with lesion | he site                                          |                |                 |                 |

PAGE : 2

(JPT150)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

|               |                                      | Group Name Control<br>No. of Animals on Study 50 | 5000 ppm<br>50 | 10000 ppm<br>50 | 20000 ppm<br>50 |
|---------------|--------------------------------------|--------------------------------------------------|----------------|-----------------|-----------------|
| rgan          | Findings                             |                                                  |                |                 |                 |
| Digestive sys | stem)                                |                                                  |                |                 |                 |
| iver          |                                      | <50>                                             | <50>           | <50>            | <50>            |
|               | leukemic cell infiltration           | 6                                                | 3              | 1               | 0               |
|               | metastasis:spleen tumor              | 1                                                | 0              | х<br>1          | 0               |
| ancreas       |                                      | <50>                                             | <50>           | <50>            | <50>            |
|               | leukemic cell infiltration           | 0                                                | 1              | 0               | 1               |
|               | metastasis:liver tumor               | 1                                                | 0              | 0               | 0               |
|               |                                      |                                                  |                |                 |                 |
| Urinary syste | em)                                  |                                                  |                |                 |                 |
| idney         |                                      | <50>                                             | <50>           | <50>            | <50>            |
|               | leukemic cell infiltration           | 3                                                | 2              | 0               | 0               |
|               | metastasis:liver tumor               | 1                                                | 0              | 0               | 1               |
|               | metastasis:subcutis tumor            | 0                                                | 0              | 0               | 1               |
| rin bladd     |                                      | <50>                                             | <50>           | <50>            | <50>            |
|               | metastasis:liver tumor               | 1                                                | 0              | 0               | 0               |
| Indocrine sys |                                      |                                                  |                |                 |                 |
| ituitary      |                                      | <50>                                             | <50>           | <50>            | <50>            |
| <b>,</b>      | metastasis:peripheral nerve tumor    | 0                                                | 0              | 1               | 0               |
| Reproductive  | system)                              |                                                  |                |                 |                 |
| estis         |                                      | <50>                                             | <50>           | <50>            | <50>            |
|               | metastasis:liver tumor               | 0                                                | 1              | 0               | 0               |
|               | metastasis:epididymis tumor          | 0                                                | 1              | 0               | 0               |
| a >           | a : Number of animals examined at th |                                                  |                |                 |                 |

(JPT150)

BAIS4

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

### HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

1

~~~

| SEX : | MALE | | | | PAGE : 4 |
|----------------|---|--|----------------|-----------------|-----------------|
| Organ | Findings | Group Name Control
No. of Animals on Study 50 | 5000 ppm
50 | 10000 ppm
50 | 20000 ppm
50 |
| | | | | | |
| {Reproductive | e system) | | | | |
| epididymis | metastasis:liver tumor | <50>
0 | <50>
1 | <50>
0 | <50>
1 |
| semin ves | leukemic cell infiltration | <50>
1 | <50>
0 | <50>
0 | <50>
0 |
| prostate | leukemic cell infiltration | <50>
1 | <50>
1 | <50>
0 | <50>
0 |
| | metastasis:liver tumor | 0 | 0 | 0 | 1 |
| {Nervous syst | tem} | | | | |
| brain | metastasis:subcutis tumor | <50>
0 | <50>
1 | <50>
0 | <50>
0 |
| | metastasis:peripheral merve tumor | 0 | 0 | 1 | 0 |
| {Body cavitie | əs} | | | | |
| peritoneum | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
0 | <50>
1 |
| | metastasis:liver tumor | I | 0 | 0 | 0 |
| <a>→
b | a : Number of animals examined at the b : Number of animals with lesion | e site | | • | |

(JPT150)

TABLE Q 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

| rgan | Findings | Group Name Control
No. of Animals on Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
|--------------|----------------------------|--|----------------|----------------|-----------------|
| | | · · · · · · · · · · · · · · · · · · · | | | |
| [ntegumentar | v system/appandage) | | | | |
| in/app | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
0 | <50>
1 |
| bcutis | leukemic cell infiltration | <50>
1 | <50>
1 | <50>
0 | <50>
0 |
| | metastasis:uterus tumor | 0 | 0 | 0 | 1 |
| espiratory : | system) | | | | |
| sal cavit | leukemic cell infiltration | <50>
1 | · <50>
2 | <50>
1 | <50>
1 |
| ng | leukemic cell infiltration | <50>
8 | <50>
9 | <50>
9 | <50>
8 |
| | metastasis:liver tumor | 1 | 0 | 0 | 1 |
| | metastasis uterus tumor | 2 | 6 | 1 | 5 |
| | metastasis:thyroid tumor | 0 | 0 | 0 | 1 |
| ematopoietio | : system) | | | | |
| ne marrow | leukemic cell infiltration | <50>
5 | <50>
5 | <50>
10 | <50>
7 |
| | metastasis:liver tumor | 0 | 0 | 0 | . 1 . |
| | metastasis:uterus tumor | 5 | 5 | 1 | 4 |
| mph node | metastasis uterus tumor | <50>
1 | <50>
3 | <50>
1 | <50>
1 |

(JPT150)

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

 \sim

~

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

| Organ | Findings | Group Name Cont
No. of Animals on Study | ro1
50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
|--------------|----------------------------|--|-----------|----------------|----------------|-----------------|
| organ | | | | | | |
| | | | | | | |
| Hematopoieti | c system) | | | | | |
| pleen | leukemic cell infiltration | | <50>
7 | <50>
12 | <50>
11 | <50>
13 |
| | metastasis:liver tumor | | 0 | 0 | 0 | 1 |
| | metastasis:uterus tumor | | 1 | 2 | 1 | 7 |
| Circulatory | system) | | | | | |
| neart | leukemic cell infiltration | | <50>
2 | <50>
1 | <50>
2 | <50>
1 |
| | metastasis:uterus tumor | | 0 | 1 | 3 | 1 |
| Digestive sy | vstem) | | | | | |
| ongue | leukemic cell infiltration | | <50>
0 | <50>
0 | <50>
0 | <50>
1 |
| alivary gl | leukemic cell infiltration | | <50>
3 | <50>
1 | <50>
6 | <50>
2 |
| | metastasis:uterus tumor | | 0 | 1 | 0 | 0 |
| tomach | leukemic cell infiltration | | <50>
0 | <50>
0 | <50>
0 | <50>
1 |
| mall intes | metastasis:uterus tumor | | <50>
0 | <50>
1 | <50>
0 | <50>
0 |
| iver | leukemic cell infiltration | | <50>
8 | <50>
9 | <50>
12 | <50>
11 |
| | metastasis:uterus tumor | | 6 | 10 | 5 | 11 |

(JPT150) .

BAIS4

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

 $\sim \sim$

| rgan | Findings | Group Name Control
No. of Animals on Study 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
|-------------|------------------------------|--|----------------|----------------|-----------------|
| | | | | | |
| igestive s | ystem} | | | | |
| ll bladd | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
1 | <50>
0 |
| ncreas | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
4 | <50>
3 |
| | metastasis uterus tumor | 1 | 1 | 0 | 0 |
| rinary sys | tem} | | | | |
| dney | leukemic cell infiltration | <50>
2 | <50>
6 | <50>
9 | <50>
4 |
| | metastasis:uterus tumor | 2 | 4 | 0. | 4 |
| in bladd | leukemic cell infiltration . | <50>
3 | <50>
1 | <50>
5 | <50>
3 |
| ndocrine s | ystem) | | | | |
| tuitary | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
1 | <50>
1 |
| renal | leukemic cell infiltration | <50>
1 | <50>
0 | <50>
0 | <50>
2 |
| eproductive | e system) | | | | |
| ary | leukemic cell infiltration | <50>
1 | <50>
3 | <50>
6 | <50>
7 |
| | metastasis:uterus tumor | 4 | 10 | 3 | 8 |

(JPT150)

STUDY NO. : 0613 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SFY : FEMALE

•

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

~----

| | | Group Name Control | 2500 ppm | 5000 ppm | 10000 ppm |
|-----------------|----------------------------|----------------------------|-----------|-----------|-------------|
| galı | Findings | No. of Animals on Study 50 | 50 | 50 | 50 |
| · - | | | | | |
| eproductive sy | stem} | | | | |
| erus | leukemic cell infiltration | <50>
3 | <50>
1 | <50>
0 | <50>
3 |
| gina | metastasis:uterus tumor | <50>
0 | <50>
0 | <50>
0 | <50>
. 1 |
| Vervous system) | | | | | |
| ain | leukemic cell infiltration | <50>
1 | <50>
2 | <50>
1 | <50>
0 |
| pecial sense o | rgans/appendage) | | | | |
| rder gl | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
1 | <50>
1 |
| lusculoskeletal | system) | | | | |
| scle | leukemic cell infiltration | <50>
0 | <50>
0 | <50>
2 | <50>
1 |
| ody cavities} | | | | | |
| diastinum | leukemic cell infiltration | <50>
1 | <50>
0 | <50>
0 | <50>
0 |
| | metastasis:uterus tumor | 0 | 0 | 0 | 1 |
| ritoneum | leukemic cell infiltration | <50>
0 | <50>
1 | <50>
0 | <50>
3 |
| ŕ | metastasis:uterus tumor | 0 | 0 | 0 | 1 |

(JPT150)

| | 0613
MOUSE B6D2F1/Crlj[Crj:BDF1]
A1 | HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)
ALL ANIMALS (0-105W) | | | | |
|---------------|--|--|-----------------|----------------|----------------|-----------------|
| SEX | FEMALE | | | | | PAGE : |
| | | Group Name
No. of Animals on Study | Control
y 50 | 2500 ppm
50 | 5000 ppm
50 | 10000 ppm
50 |
| Organ | Findings | ······ | | | | |
| {Body cavitie | [22 | | | | | |
| · | | | | | | |
| retroperit | leukemic cell infiltration | | <50>
1 | <50>
1 | <50>
0 | <50>
0 |
| ≺a>
b | a : Number of animals examined at
b : Number of animals with lesion | | | | | |
| (JPT150) | | | | | | BAIS |

TABLE R 1

CAUSE OF DEATH: MALE

| STUDY NO. | : 0613 | COUSE OF DEATH (SUMMARY) |
|-----------|-------------------------------|--------------------------|
| ANIMAL | : MOUSE B6D2F1/Cr1j[Crj:BDF1] | (0-105%) |
| SEX | : MALE | |
| | | |

| Group Name | Control | 5000 ppm | 10000 ppm | 20000 ppm | | |
|---------------------------------------|---------|----------|-----------|-----------|------|---------------------------------------|
| Number of Dead and
Moribund Animal | 15 | 17 | 14 | 9 | | |
| no microscop confirm | 1 | 0 | 3 | 0 |
 | · · · · · · · · · · · · · · · · · · · |
| hepatic lesion | 0 | 1 | 0 | 0 | | |
| oody cavity lesion | 1 | 0 | 0 | 0 | | |
| central nervo lesion | 0 | 0 | 0 | 1 | | |
| urinary retention | 2 | . 1 | 0 | 0 | | |
| erteritis | 0 | 1 | 0 | 0 | | |
| nydronephrosis | 0 | · 1 | 0 | 0 | | |
| cumor d:leukemia | 7 | 2 | 3 | 0 | | |
| cumor d:subcutis | 0 | 1 | 0 | . 1 | | |
| tumor d:lung | 0 | 1 | 1 | 0 | | |
| tumor displeen | 1 | 0 | 1 | 0 | | |
| umor d:liver | 3 | 7 | 4 | 7 | | |
| tumor d∶urin bladd | 0 | 0 | 1 | 0 | | |
| tumor d:periph nerv | 0 | 0 | 1 | 0 | | |
| umor d:bone | 0 | 1 | 0 | 0 | | |
| tumor d:pleura | 0 | 1 | 0 | 0 | | |

(BI0120)

.

BAIS4

TABLE R 2

CAUSE OF DEATH: FEMALE

| STUDY NO.
ANIMAL | : 0613
: MOUSE B6D2F1/Crlj[Crj:BDF1] | COUSE OF DEATH (SUMMARY)
(0-105W) |
|---------------------|---|--------------------------------------|
| SEX | : FEMALE | |
| | | |

 \sim

| Group Name | Control | 2500 ppm | 5000 ppm | 10000 ppm |
|---------------------------------------|---------|----------|----------|-----------|
| Number of Dead and
Moribund Animal | 21 | 24 | 19 | 30 |
| cardiovascular les | 0 | 1 | 0 | 0 |
| eproductive sy les | 0 | 0 | 0 | 1 |
| ody cavity lesion | 0 | 0 | 0 | 1 |
| rinary retention | 2 | 1 | 0 | 0 |
| rteritis | 0 | 0 | 1 | 0 |
| nydronephrosis | 3 | 0 | 1 | 1 |
| peritonitis | 1 | 0 | 0 | 0 |
| tumor d:leukemia | 6 | 10 | 9 | 12 |
| tumor d:subcutis | 0 | 1 | 0 | 0 |
| tumor d:lung | 0 | 0 | 0 | 1 |
| tumor d:liver | 1 | 0 | 1 | 2 |
| tumor d:pituitary | 1 | 0 | 0 | 1 |
| tumor d:thyroid | 0 | . 0 | 0 | 1 |
| tumor d:ovary | 0 | 0 | 1 | 0 |
| tumor d:uterus | 6 | 10 | 6 | 10 |
| tumor d:brain | 1 | 0 | 0 | 0 |
| tumor d:muscle | 0 | 1 | 0 | 0 |
| | | | | |

(BI0120)

BAIS4