2-アミノエタノールのマウスを用いた 経口投与によるがん原性試験(混水試験)報告書

試験番号:0642

TABLES

TABLES

- TABLE A 1SURVIVAL ANIMAL NUMBERS: MALE
- TABLE A 2SURVIVAL ANIMAL NUMBERS: FEMALE
- TABLE B 1 CLINICAL OBSERVATION: MALE
- TABLE B 2CLINICAL OBSERVATION: FEMALE
- TABLE C 1 BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
- TABLE C 2BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS:
FEMALE
- TABLE C 3 BODY WEIGHT CHANGES: MALE
- TABLE C 4BODY WEIGHT CHANGES: FEMALE
- TABLE D 1
 FOOD
 CONSUMPTION
 CHANGES
 AND
 SURVIVAL
 ANIMAL

 NUMBERS:
 MALE
 NALE
 NUMBERS:
 MALE
 NUMBERS:
 NALE
 NUMBERS:
 NUMBERS:
- TABLE D 2FOODCONSUMPTIONCHANGESANDSURVIVALANIMALNUMBERS:FEMALE
- TABLE D 3 FOOD CONSUMPTION CHANGES: MALE
- TABLE D 4FOOD CONSUMPTION CHANGES: FEMALE
- TABLE E 1WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL
NUMBERS: MALE
- TABLE E 2WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL
NUMBERS: FEMALE
- TABLE E 3WATER CONSUMPTION CHANGES: MALE
- TABLE E 4WATER CONSUMPTION CHANGES: FEMALE
- TABLE F 1
 CHEMICAL INTAKE CHANGES: MALE
- TABLE F 2CHEMICAL INTAKE CHANGES: FEMALE

TABLES (CONTINUED)

- TABLE G 1 HEMATOLOGY: MALE
- TABLE G 2
 HEMATOLOGY: FEMALE
- TABLE H 1 BIOCHEMISTRY: MALE
- TABLE H 2BIOCHEMISTRY: FEMALE
- TABLE I 1 URINALYSIS: MALE
- TABLE I 2URINALYSIS: FEMALE
- TABLE J 1GROSS FINDINGS: MALE: ALL ANIMALS
- TABLE J 2GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
- TABLE J 3
 GROSS FINDINGS: MALE: SACRIFICED ANIMALS
- TABLE J 4
 GROSS FINDINGS: FEMALE: ALL ANIMALS
- TABLE J 5GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
- TABLE J 6
 GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
- TABLE K 1 ORGAN WEIGHT, ABSOLUTE: MALE
- TABLE K 2ORGAN WEIGHT, ABSOLUTE: FEMALE
- TABLE L 1 ORGAN WEIGHT, RELATIVE: MALE
- TABLE L 2ORGAN WEIGHT, RELATIVE: FEMALE
- TABLE M 1HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: ALL ANIMALS
- TABLE M 2HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: DEAD AND MORIBUND ANIMALS
- TABLE M 3HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
MALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

- TABLE M 4HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: ALL ANIMALS
- TABLE M 5HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: DEAD AND MORIBUND ANIMALS
- TABLE M 6HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
FEMALE: SACRIFICED ANIMALS
- TABLE N 1NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: MALE
- TABLE N 2NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF
TUMORS-TIME RELATED: FEMALE
- TABLE O 1
 HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
- TABLE O 2HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS:
FEMALE
- TABLE P 1
 NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS:

 MALE
- TABLE P 2NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS:
FEMALE
- TABLE Q 1 HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
- TABLE Q 2HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR:
FEMALE
- TABLE R 1 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE
- TABLE R 2 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj FEMALE MICE

TABLES (CONTINUED)

- TABLE S 1 CAUSE OF DEATH: MALE
- TABLE S 2CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

STUBY NO. : 0642 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

1

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

,

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BA1S4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

up Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0
5000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53.	54	55
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
001101		100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100. 0	100.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/5 0	50/50	50/50
		100.0	100. 0	100. 0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	50	49/50	49/50	48/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50
		98.0	98.0	96.0	96.0	96.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	92.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

•

BAIS4

~

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100.0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
		96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96. 0
2000 թթա	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0
5000 ppm	50	45/50	45/50	45/50	45/50	45/50	44/50	44/50	43/50	43/50	43/50	43/50	43/50	42/50	42/50
		90.0	90.0	90.0	90.0	90.0	88.0	88.0	86.0	86.0	86.0	86.0	86.0	84.0	84.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	98.0	98.0	98.0	98.0	98.0	98.0
800 ppm	50	48/50	48/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50	46/50	45/50	45/50	45/50
		96.0	96.0	96.0	96.0	94.0	94.0	94. 0	94. 0	94. 0	94.0	92. 0	90.0	90.0	90.0
2000 ppm	50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	47/50	46/50	45/50	45/50	45/50	45/50
		100.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	94. 0	92.0	90.0	90.0	90.0	90.0
5000 ppm	50	42/50	42/50	42/50	42/50	42/50	42/50	42/50	42/50	42/50	41/50	41/50	39/50	39/50	39/50
		84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	84.0	82.0	82.0	78.0	78.0	78.0

~_~

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

.

.

BAIS4

· ____

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

up Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	49/50	49/50	48/50	48/50	47/50	47/50	47/50	47/50	46/50	46/50	46/50	46/50	45/50	45/50
		98.0	98.0	96.0	96. 0	94. 0	94. 0	91.0	94. 0	92.0	92.0	92.0	92.0	90. 0	90.0
800 ppm	50	44/50	44/50	44/50	43/50	43/50	42/50	42/50	41/50	40/50	40/50	39/50	38/50	37/50	37/50
		88.0	88. 0	88.0	86.0	86.0	84.0	84. 0	82. 0	80.0	80.0	78.0	76.0	74.0	74.0
2000 ppm	50	44/50	43/50	43/50	43/50	43/50	42/50	42/50	42/50	42/50	42/50	42/50	41/50	41/50	41/50
		88.0	86.0	86.0	86.0	86.0	84.0	84. 0	84.0	84.0	84.0	84. 0	82.0	82.0	82.0
5000 ppm	50	39/50	39/50	39/50	38/50	38/50	37/50	36/50	36/50	35/50	35/50	35/50	35/50	34/50	34/50
		78.0	78.0	78.0	76.0	76.0	74.0	72.0	72.0	70.0	70.0	70.0	70.0	68.0	68.0

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

.

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

Group Name	Animals	Administ	ration (Wee	eks)				
	At start	98	99	100	101	102	103	104
		45 (50	44/50	44/50	10/50	40/50	10/50	41 /50
Contro1	50	45/50	44/50	44/50	42/50	42/50	42/50	41/50
		90.0	88.0	88.0	84. 0	84.0	84.0	82.0
800 ppm	50	35/50	35/50	35/50	34/50	34/50	33/50	31/50
		70.0	70.0	70.0	68.0	68.0	66.0	62.0
2000 ppm	50	41/50	40/50	39/50	38/50	38/50	37/50	37/50
		82.0	80.0	78.0	76.0	76.0	74.0	74.0
5000 ppm	50	34/50	34/50	33/50	33/50	33/50	33/50	33/50
		68.0	68.0	66.0	66. 0	66.0	66.0	66.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS4

.

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

oup Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
0000101		100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

p Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		. 100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0	100. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100.0	100.0	100.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0

Survival rate (%)

(HAN360)

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

up Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100. 0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100. 0	100.0	100. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.0	98.0	98.0	98.0	98.0	98.0
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0

.

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

ł.

BA154

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

oup Name	Animals	Administ	ration (Wee	ks)					•			4			
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	^ک 55
Control	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
Control		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100. 0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	98.0	98.0	98.0	98.0	98.0
2000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
5000 ppm	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0

~ ~

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BA1S4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

up Name	Animals	Administ	ration (Weel	ks)						ж. -					
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0
800 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	47/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	94. 0
2000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50
		98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0
5000 ppm	50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	46/50
		98.0	98.0	98.0	98.0	98.0	96.0	96.0	96.0	96.0	96.0	96.0	94.0	94.0	92.0

~~~

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

| oup Name | Animals  | Administ | ration (Wee | ks)   |       |       |       |       |       |       |       |       |       |       |       |
|----------|----------|----------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | At start | 70       | 71          | 72    | 73    | 74    | 75    | 76    | 77    | 78    | 79    | 80    | 81    | 82    | 83    |
| Control  | 50       | 48/50    | 48/50       | 48/50 | 48/50 | 48/50 | 47/50 | 46/50 | 45/50 | 45/50 | 44/50 | 44/50 | 44/50 | 44/50 | 44/50 |
|          |          | 96.0     | 96.0        | 96.0  | 96. 0 | 96.0  | 94.0  | 92. 0 | 90. 0 | 90. 0 | 88.0  | 88.0  | 88.0  | 88.0  | 88.0  |
| 800 ppm  | 50       | 47/50    | 46/50       | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 46/50 | 45/50 |
|          |          | 94.0     | 92.0        | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 92.0  | 90. 0 |
| 2000 ppm | 50       | 47/50    | 47/50       | 47/50 | 47/50 | 47/50 | 46/50 | 46/50 | 45/50 | 44/50 | 44/50 | 44/50 | 43/50 | 43/50 | 43/50 |
|          |          | 94.0     | 94.0        | 94.0  | 94. 0 | 94.0  | 92.0  | 92.0  | 90. 0 | 88.0  | 88.0  | 88.0  | 86.0  | 86.0  | 86.0  |
| 5000 ppm | 50       | 46/50    | 45/50       | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 | 45/50 |
|          |          | 92.0     | 90.0        | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90.0  | 90. 0 |

· \_\_\_\_

Number of survival/ Number of effective animals

Survival rate(%)

(HAN360)

BAIS4

.

-

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

| oup Name | Animals  | Administ | ration (Wee | ks)   |       |       |       |       |       |       |       |       |       |       |       |
|----------|----------|----------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | At start | 84       | 85          | 86    | 87    | 88    | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    |
|          |          | /        |             |       |       |       |       |       |       |       |       |       |       |       |       |
| Control  | 50       | 44/50    | 44/50       | 44/50 | 43/50 | 43/50 | 43/50 | 43/50 | 43/50 | 42/50 | 42/50 | 42/50 | 42/50 | 41/50 | 39/50 |
|          |          | 88.0     | 88.0        | 88.0  | 86.0  | 86.0  | 86.0  | 86.0  | 86.0  | 84.0  | 84.0  | 84.0  | 84.0  | 82.0  | 78.0  |
| 800 ppm  | 50       | 44/50    | 43/50       | 43/50 | 42/50 | 41/50 | 40/50 | 39/50 | 38/50 | 36/50 | 36/50 | 34/50 | 34/50 | 34/50 | 34/50 |
|          |          | 88.0     | 86.0        | 86.0  | 84.0  | 82. 0 | 80.0  | 78.0  | 76.0  | 72.0  | 72.0  | 68.0  | 68.0  | 68.0  | 68.0  |
| 2000 ppm | 50       | 43/50    | 40/50       | 40/50 | 40/50 | 40/50 | 40/50 | 40/50 | 38/50 | 37/50 | 36/50 | 36/50 | 35/50 | 34/50 | 34/50 |
|          |          | 86.0     | 80. 0       | 80.0  | 80.0  | 80.0  | 80.0  | 80. 0 | 76.0  | 74.0  | 72.0  | 72.0  | 70.0  | 68.0  | 68.0  |
| 5000 ppm | 50       | 43/50    | 41/50       | 40/50 | 40/50 | 38/50 | 37/50 | 37/50 | 35/50 | 34/50 | 33/50 | 33/50 | 33/50 | 32/50 | 32/50 |
|          |          | 86.0     | 82.0        | 80.0  | 80.0  | 76.0  | 74.0  | 74.0  | 70.0  | 68.0  | 66.0  | 66.0  | 66.0  | 64.0  | 64.0  |

Number of survival/ Number of effective animals

Survival rate(%)

#### (HAN360)

BAIS4

.

#### STUDY NO. : 0642 SURVIVAL ANIMAL NUMBERS ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

| Group Name | Animals  | Administ | ration (Wee | eks)  |       |       |       |       | <br> |          |  |
|------------|----------|----------|-------------|-------|-------|-------|-------|-------|------|----------|--|
|            | At start | 98       | 99          | 100   | 101   | 102   | 103   | 104   |      |          |  |
|            |          |          | /           |       |       |       |       |       |      | <u> </u> |  |
| Control    | 50       | 38/50    | 38/50       | 38/50 | 38/50 | 37/50 | 36/50 | 36/50 |      |          |  |
|            |          | 76.0     | 76.0        | 76.0  | 76.0  | 74.0  | 72.0  | 72.0  |      |          |  |
| 800 ppm    | 50       | 33/50    | 33/50       | 33/50 | 32/50 | 32/50 | 30/50 | 29/50 |      |          |  |
|            |          | 66.0     | 66.0        | 66.0  | 64.0  | 64.0  | 60.0  | 58.0  |      |          |  |
| 2000 ppm   | 50       | 34/50    | 32/50       | 30/50 | 29/50 | 26/50 | 24/50 | 23/50 |      |          |  |
|            |          | 68.0     | 64.0        | 60.0  | 58.0  | 52.0  | 48.0  | 46.0  |      |          |  |
| 5000 ppm   | 50       | 30/50    | 30/50       | 29/50 | 28/50 | 26/50 | 25/50 | 24/50 |      |          |  |
|            |          | 60.0     | 60.0        | 58.0  | 56.0  | 52.0  | 50.0  | 48.0  |      |          |  |

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS4

## TABLE B 1

## CLINICAL OBSERVATION: MALE

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

•

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

| linical sign           | Group Name           | Admini | stration We | eek−dav |        |        |        |          |     |     |      |        |        |        |        |
|------------------------|----------------------|--------|-------------|---------|--------|--------|--------|----------|-----|-----|------|--------|--------|--------|--------|
|                        |                      | 1-7    | 2-7         | 3-7     | 4-7    | 5-7    | 6-7    | 7-7      | 8-7 | 9–7 | 10-7 | 11-7   | 12-7   | 13-7   | 14-7   |
| 5 4 /15 8              |                      | 0      | 0           |         | 0      |        |        | <u>_</u> |     |     | 0    | 0      |        |        |        |
| ЕЛТН                   | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 1        | 1   | 1   | 1    | 1      | 1      | 1      | .1     |
| ORIBUND SACRIFICE      | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm             | 0      | 0           | ò       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
| OCOMOTOR MOVEMENT DECR | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | Ō   | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | Ō   | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
| ARALYTIC GAIT          | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | õ      | õ           | ŏ       | ŏ      | õ      | õ      | õ        | Ő   | Ő   | ŏ    | õ      | Ő      | õ      | ŏ      |
|                        | 2000 ppm             | 0<br>0 | 0           | 0       | 0<br>0 | 0<br>0 | 0<br>0 | 0        | 0   | 0   | 0    | 0      | ŏ      | 0      | 0<br>0 |
|                        | 5000 ppm             | 0      | Ŏ           | Ő       | õ      | 0      | Ő      | õ        | 0   | 0   | õ    | 0      | 0      | 0      | õ      |
| OILED                  | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | ů<br>0 | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | . 0    | 0      |
|                        | 2000 ppm             | 0      | 0           | 0<br>0  | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      |        |
|                        | 2000 ррш<br>5000 ррш | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | ooo ppm              | U      | Ū           | Ū       | U      | v      | 0      | U        | U   | U   | U    | U      | U      | 0      | U      |
| 1LOERECTION            | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm             | 0      | 0           | 0       | 0      | 1      | 1      | 0        | 0   | 0   | 0    | 0      | 1      | 1      | 1      |
| ROG BELLY              | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | . 0 | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
| DILED PERI-GENITALIA   | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | 0           | 0       | 0      | Ő      | ō      | ō        | Ő   | õ   | õ    | ů      | õ      | õ      | ő      |
|                        | 2000 ppm             | Õ      | õ           | õ       | ů      | ŏ      | Õ.     | ŏ        | 0   | 0   | õ    | õ      | ů      | 0      | ő      |
|                        | 5000 ppm             | 0      | Ő           | · Õ     | Ő      | Ő      | õ      | õ        | 0   | 0   | Õ    | ů<br>0 | ů<br>0 | õ      | Ő      |
| XOPHTHALMOS            | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0        | 0   | 0   | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm              | 0      | ŏ.          | õ       | Ő      | 0      | ŏ      | .0       | 0   | 0   | Ő    | 0      | 0      | 0<br>0 | Ő      |
|                        | 2000 ppm             | 0      | 0           | ò       | 0      | 0      | 0<br>0 | 0        | 0   | 0   | 0    | 0      | · 0    | 0      | 0      |
|                        | 5000 ppm             | 0      | ŏ           | õ       | 0      | 0      | 0<br>0 | 0        | v   | 0   | 0    | 0      | 0      | 0      | 0      |

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] REPORT TYPE : A1 104

#### SEX : MALE

| Minial atax           | Channe Name | في فيساد ٨     | utration W           | <b>1 1</b>      |      |      |      |      |      |      |      |     |     |      |      |
|-----------------------|-------------|----------------|----------------------|-----------------|------|------|------|------|------|------|------|-----|-----|------|------|
| linical sign          | Group Name  | Admini<br>15⊷7 | stration We.<br>16-7 | eek-day<br>17-7 | 18-7 | 19-7 | 20-7 | 21-7 | 22-7 | 23-7 | 24-7 | 257 | 267 | 27-7 | 28-7 |
|                       |             |                |                      |                 |      |      |      |      |      |      |      |     |     | ,    |      |
| ATH                   | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | L              | 1                    | 1               | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1   | 1   | 1    | 1    |
| RIBUND SACRIFICE      | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| COMOTOR MOVEMENT DECR | Control     | 0              | . 0                  | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| RALYTIC GAIT          | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | , 0  |
|                       | 800 ppm     | . 0            | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | . 0  |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| ILED                  | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| LOERECTION            | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0 .                  | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0.   | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| DG BELLY              | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | · 0  |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| ILED PERI-GENITALIA   | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | , 0  | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
| OPIITHALMOS           | Control     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 800 ppm     | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 2000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |
|                       | 5000 ppm    | 0              | 0                    | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0    | 0    |

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

| linical sign          | Group Name           | Admini | stration W | leek-dav |        |          |        | -      |      |          |      |      |        |      |      |
|-----------------------|----------------------|--------|------------|----------|--------|----------|--------|--------|------|----------|------|------|--------|------|------|
|                       |                      | 297    | 30-7       | 31-7     | 32-7   | 33-7     | 34-7   | 35-7   | 36-7 | 37-7     | 38-7 | 39-7 | 40-7   | 41-7 | 42-7 |
| ATH                   | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| A 111                 | Control              |        | 0          | 0        | 0<br>0 | 0        | 0<br>0 | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      |            |          |        |          |        | •      |      |          |      |      |        |      |      |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 5000 ppm             | 1      | 1          | 1        | 1      | 1        | 1      | 1      | 1    | 1        | 1    | 1    | 1      | 1    | 1    |
| RIBUND SACRIFICE      | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| COMOTOR MOVEMENT DECR | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| RALYTIC GAIT          | Control              | 0      | 0          | . 0      | 0      | 0        | 0      | 0      | 0    | 0        | - 0  | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| ILED                  | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0.   | 0      | 0    | 0    |
|                       | 800 ppm              | õ      | 0<br>0     | õ        | õ      | ŏ        | 0<br>0 | 0<br>0 | õ    | ŏ        | õ    | 0    | ŏ      | Ő    | ő    |
|                       | 2000 ppm             | ů      | ŏ          | õ        | ů      | Õ        | ů<br>0 | ů<br>0 | ů    | õ        | õ    | ů    | ů      | 0    | Ő    |
|                       | 5000 ppm             | 0      | õ          | 0        | 0      | 0        | 0      | 0      | 0    | Õ        | õ    | ů    | ů      | 0    | ő    |
| LOERECTION            | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| EVENTION              | 800 ppm              | õ      | Ő          | 0        | 0      | 0<br>0   | 0      | 0      | 0    | 0        | ő    | 0    | 0      | 0    | ő    |
|                       | 2000 ppm             | 0      | Ő          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | o    | 0    | 0      | . 0  | 0    |
|                       | 2000 ppm<br>5000 ppm | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | . U<br>0 | 0    | 0    | 0      | 0    | 0    |
| C DELLY               | <b>a</b> . 1         | ^      | ^          | ^        | ~      | <u>^</u> |        | ^      | ~    |          | ~    | ^    | ^      | ^    | ^    |
| )G BELLY              | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 1      | 1          | 1        | 1      | 1        | 1      | 1      | 1    | 1        | 1    | 1    | 1      | 1    | 1    |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | . 0  | 0    |
|                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| LED PERI-GENITALIA    | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 5000 ppm             | 0      | 0          | 0        | 0      | · 0      | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
| PHITHALMOS            | Control              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | 0    |
|                       | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0      | 0      | 0    | 0        | 0    | 0    | 0      | 0    | Ō    |
|                       | 2000 ppm             | 0      | 0          | Õ        | Ő      | Ō        | 0      | 0      | õ    | õ        | Ő    | Ő    | Õ      | Ő    | Ő    |
|                       | 5000 ppm             | 0      | 0          | 0<br>0   | Õ      | 0 ·      | 0<br>0 | Õ      | õ    | õ        | Ő    | õ    | ů<br>0 | Õ    | ŏ    |

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

SEX : MALE

.

| SEX · MILLE                           |            |        |             |         |        |      |      |      |        |        |      |        |        |        | TAGE - |
|---------------------------------------|------------|--------|-------------|---------|--------|------|------|------|--------|--------|------|--------|--------|--------|--------|
| Clinical sign                         | Group Name | Admin  | istration W | eek-day |        |      |      |      |        |        |      |        |        |        |        |
|                                       |            | 43-7   | 447         | 45-7    | 46-7   | 47-7 | 48-7 | 49-7 | 50-7   | 51-7   | 52-7 | 53-7   | 547    | 55-7   | 56-7   |
|                                       |            |        |             |         |        |      |      |      |        |        |      |        |        |        |        |
| DEATH                                 | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | . 0    | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 1       | 1      | 1    | 1    | 1    | 1      | 1      | 1    | 1      | 1      | 1      | 2      |
|                                       | 2000 ррт   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | · 0    | 0    | 0      | 0      | 0      | 0      |
|                                       | 5000 ppm   | 1      | 2           | 2       | 2      | 3    | 3    | 3    | 3      | 3      | 3    | 3      | 3      | 4      | 5      |
| ORIBUND SACRIFICE                     | Control    | 0      | . 0         | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 2000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | • 0  | 0      | 0      | 0      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| LOCOMOTOR MOVEMENT DECR               | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 2000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| PARALYTIC GAIT                        | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 2000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| SOILED                                | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 1      | 0      |
|                                       | 2000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | . 0  | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| PILOERECTION                          | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 1      | 1    | 1    | 1    | 1      | 1      | 1    | 1      | 1      | 1      | Ő      |
|                                       | 2000 ppm   | 0      | Ó           | 0       | 0      | 0    | Ō    | 0    | 0      | 0      | 0    | ō      | 0      | ō      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 1      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| FROG BELLY                            | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0<br>0 | 0      | 0      |
|                                       | 2000 ppm   | 0      | 0           | 0       | 0      | 0    | Ō    | Ō    | 0      | õ      | õ    | õ      | 0      | õ      | 0      |
|                                       | 5000 ppm   | 0      | 0           | 0       | 0<br>0 | 0    | ů    | ů    | Ő      | 0<br>0 | õ    | õ      | 0<br>0 | 0<br>0 | 0      |
| SOILED PERI-GENITALIA                 | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0.     | 0      | 0      | 0      |
| · · · · · · · · · · · · · · · · · · · | 800 ppm    | ů<br>0 | 0<br>0      | õ       | 0      | ů    | Ö    | 0    | 0      | ů<br>0 | õ    | 0      | Ő      | 0      | 0      |
|                                       | 2000 ppm   | õ      | 0           | Ő       | 0      | . 0  | 0    | õ    | 0<br>0 | Ő      | 0    | 0<br>0 | 0      | 0      | 0      |
|                                       | 5000 ppm   | õ      | 0           | Ő       | Ő      | 0    | 0    | 0    | 0      | Ő      | 0    | Ő      | 1      | 0      | 0      |
| EXOPHTHALMOS                          | Control    | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 800 ppm    | 0<br>0 | 0<br>0      | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                                       | 2000       | 0      | 0           | 0       | 0      | 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |

PAGE: 4

2000 ppm

5000 ppm

•

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE : 5

•

| linical sign          | Group Name | Admini | stration W | eek-day |       |      |      |      |      |      |      |      |      |      |        |
|-----------------------|------------|--------|------------|---------|-------|------|------|------|------|------|------|------|------|------|--------|
| -                     | -          | 57-7   | 58-7       | 59-7    | 60-7  | 61-7 | 62-7 | 63-7 | 64-7 | 65-7 | 66-7 | 67-7 | 68-7 | 69-7 | 70-7   |
|                       |            |        |            |         | ····· |      |      |      |      |      |      |      |      |      |        |
| EATH                  | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 2      | 2          | 2       | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | . 0    |
|                       | 5000 ppm   | 5      | 5          | 5       | 5     | 6    | 6    | 7    | 7    | 7    | 7    | 7    | 8    | 8    | 8      |
| DRIBUND SACRIFICE     | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| COMOTOR MOVEMENT DECR | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | , 0    |
| ARALYTIC GAIT         | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0 .  | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| DILED                 | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 թթա    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | . 0  | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 թթա   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| ILOERECTION           | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| ROG BELLY             | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 1          | 1       | 1     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| DILED PERI-GENITALIA  | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
| <b>KOPHTHALMOS</b>    | Control    | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |
|                       | 800 ppm    | 0      | 0          | 0       | 0     | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1      |
|                       | 2000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | ō    | ō    | 0    | 0    | 0    | Ō    | Ō    | Ô      |
|                       | 5000 ppm   | 0      | 0          | 0       | 0     | 0    | 0    | 0    | 0    | 0    | Ō    | Ō    | 0    | 0    | 0<br>0 |

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] REPORT TYPE : A1 104

#### SEX MALE

PAGE: 6

| Clinical sign         | Group Name           | Admini | istration W | ook-day |        |        | -      |        |        |        |        |        |        |        |        |
|-----------------------|----------------------|--------|-------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                       | Group Name           | 71-7   | 72-7        | 73-7    | 74-7   | 75–7   | 76-7   | 77-7   | 78-7   | 79-7   | 80-7   | 81-7   | 82-7   | 83-7   | 84-7   |
| ATU                   | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|                       | 800 ppm              | 2      | 2           | 2       | 3      | 3      | 3      | 3      | 3      | 3      | 4      | 5      | 5      | 5      | 6      |
|                       | 2000 ppm             | 1      | L<br>L      | 1       |        | · ĭ    | Ĩ      | 2      | 3      | 4      | 5      | 5      | 5      | 5      | 6      |
|                       | 5000 ppm             | 8      | 8           | 8       | 8      | 8      | 8      | 8      | 8      | 9      | 9      | 11     | 11     | 11     | 11     |
| RIBUND SACRIFICE      | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| COMOTOR MOVEMENT DECR | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 800 ppm              | 0      | . 0         | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      |
|                       | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| RALYTIC GAIT          | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 0      | 0      | 0      | 0      |
|                       | 2000 ррт<br>5000 ррт | 0<br>0 | 0<br>0      | 0<br>0  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| DILED                 | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1000                  | 800 ppm              | ŏ      | ů.          | 0<br>0  | õ      | ů      | õ      | ů      | Ő      | ő      | ĩ      | õ      | ŏ      | ŏ      | ŏ      |
|                       | 2000 ppm             | Ő      | ů<br>0      | 0       | ŏ      | õ      | õ      | ů<br>0 | 0      | Ő      | 0      | ů      | õ      | 0      | ŏ      |
|                       | 5000 ppm             | 0      | 0           | 0       | 0      | 0<br>0 | 0<br>0 | 0      | Ő      | Ő      | Ő      | 0      | 0      | 0      | 0      |
| LOERECTION            | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1      | 2      | 2      | 2      |
|                       | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      | 0      |
|                       | 2000 ppm             | 0      | 0           | 0       | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      |
| l                     | 5000 ppm             | 0      | 0           | 0       | . 0    | 1      | 2      | 2      | 2      | 1      | 1 -    | 0      | 0      | 0      | 0      |
| OG BELLY              | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| DILED PERI-GENITALIA  | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 800 ppm              | 0      | . 0         | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0      | 0<br>0  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>1 | 0<br>1 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| OPIITIIALMOS          | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | · 0    | 0      | 0      | 0      | 0      | 0      | 0      |
| NOT ITTEREMON         | 800 ppm              | 1      | 1           | 1       | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | . 1    | 1      |
|                       | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | . 1    | 0      |
|                       | 5000 ppm             | 0<br>0 | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                       | SUUU ppm             | U      | v           | U       | U      | U      | v      | U      | U      | U      | v      | U      | v      | U      | 0      |

#### -----

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] REPORT TYPE : A1 104

Group Name

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

|                        |          | 85-7 | 86-7   | 87-7   | 887 | 89-7 | 90-7   | 91-7 | 92-7 | 93-7 | 94-7   | 95-7   | 96-7   | 97-7 | 98-7  |
|------------------------|----------|------|--------|--------|-----|------|--------|------|------|------|--------|--------|--------|------|-------|
|                        |          |      |        |        |     |      |        |      |      |      |        |        |        |      |       |
| DEATH                  | Control  | 1    | 2      | 2      | 3   | 3    | 3      | 3    | 4    | 4    | 4      | 4      | 5      | 5    | 5     |
|                        | 800 ppm  | 6    | 6      | 7      | 7   | 8    | 8      | 9    | 10   | 10   | 11     | 12     | 13     | 13   | 15    |
|                        | 2000 ppm | 7    | 7      | 7      | 7   | 8    | 8      | 8    | 8    | 8    | 8      | 9      | 9      | 9    | 9     |
|                        | 5000 ppm | 11   | 11     | 12     | 12  | 13   | 14     | 14   | 15   | 15   | 15     | 15     | 16     | 16   | 16    |
| ORIBUND SACRIFICE      | Control  | 0    | 0      | 0      | 0   | 0    | . 0    | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
| OCOMOTOR MOVEMENT DECR | Control  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
| ARALYTIC GAIT          | Control  | 0    | 0      | 0      | 0   | 0    | 0      | . 0  | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | · 0  | 0      | 0    | 0    | 0    | 0      | 0      | 1      | 1    | 0     |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
| OILED                  | Control  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
| 1LOERECTION            | Control  | 2    | 2      | 2      | 2   | 2    | 2      | 2    | 2    | 2    | 2      | 3      | 3      | 3    | 3     |
|                        | 800 ppm  | 1    | 1      | 2      | 2   | 1    | 1      | 1    | 1    | 1    | 1      | 1      | 1      | 1    | 1     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 2     |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 1      | 1    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
| ROG BELLY              | Control  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 0    | 0      | 0      | 0   | 0    | Ó      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 2000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | . 0 . |
|                        | 5000 ppm | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | Ō    | Ō      | 0      | õ      | 0    | 0     |
| OILED PERI-GENITALIA   | Control  | 0    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 800 ppm  | 1    | ò      | 0      | · 0 | õ    | Õ      | 0    | 0    | õ    | 0<br>0 | 0      | 0<br>0 | Ő    | ů     |
|                        | 2000 ppm | ō    | 0<br>0 | ů<br>0 | õ   | ů    | Ő      | 0    | Ő    | ů    | 0      | 0<br>0 | 0      | 0    | ů     |
|                        | 5000 ppm | Ō    | Õ      | Ő      | Ő   | õ    | 0<br>0 | Ő    | Ő    | Ő    | 0      | ů<br>0 | ŏ      | Ő    | Õ ·   |
| XOPIITHALMOS           | Control  | 0    | 0      | 0      | 0   | 0    | 1      | 1    | 1    | 1    | 1      | 1      | 1      | · 1  | 1     |
|                        | 800 ppm  | 1    | 1      | 1      | 1   | 1    | 1      | 1    | 1    | 1    | 1      | 1      | 1      | 1    | 1     |
|                        | 2000 ppm | Ō    | Ô      | 0      | 0   | 0    | 0      | 0    | 0    | 0    | 0      | 0      | 0      | 0    | 0     |
|                        | 5000 ppm | õ    | 0      | 0      | 0   | 0    | 0      | 0    | 0    | •    | 0      | 0      | 0      | v    | 0     |

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

·\_\_\_\_

SEX : MALE

| Clinical sign            | Group Name | Admin  | istration N | Veek-dav |       |        |      |  |                                        |      |  |
|--------------------------|------------|--------|-------------|----------|-------|--------|------|--|----------------------------------------|------|--|
|                          |            | 99-7   | 100-7       | 101-7    | 102-7 | 103-7  | 1047 |  | ······································ | <br> |  |
|                          |            |        |             |          |       |        |      |  |                                        |      |  |
| ЕЛТІІ                    | Control    | 6      | 6           | 7        | 7     | 7      | 7    |  |                                        |      |  |
| AATH                     | 800 ppm    | 15     | 15          | 16       | 16    | 17     | 19   |  |                                        |      |  |
|                          |            |        |             |          |       |        |      |  |                                        |      |  |
|                          | 2000 ppm   | 10     | 11          | 12       | 12    | 13     | 13   |  |                                        |      |  |
|                          | 5000 ppm   | 16     | 17          | 17       | 17    | 17     | 17   |  |                                        |      |  |
| ORIBUND SACRIFICE        | Control    | 0      | 0           | 1        | 1     | 1      | 2    |  |                                        |      |  |
|                          | 800 ppm    | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 2000 ppm   | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 5000 ppm   | 0      | 0           | 0        | 0     | 0      | . 0  |  |                                        |      |  |
| DCOMOTOR MOVEMENT DECR   | Control    | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
| Constant mortantart proc | 800 ppm    | Ő      | 0           | Ő        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 2000 ppm   | 0<br>0 | õ           |          | 0     | 0      | 0    |  |                                        |      |  |
|                          |            |        | 0           | 0        |       |        |      |  |                                        |      |  |
|                          | 5000 ppm   | 0      | V           | 0        | 0     | 0      | 0    |  |                                        |      |  |
| ARALYTIC GAIT            | Control    | 0 '    | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 800 ppm    | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 2000 ppm   | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 5000 թթա   | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
| OILED                    | Control    | 1      | 1           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 800 ppm    | 0      | 0           | õ        | õ     | ů      | ő    |  |                                        |      |  |
|                          | 2000 ppm   | 0<br>0 | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          |            | 0      | 0           | 0        | 0     |        |      |  |                                        |      |  |
|                          | 5000 ppm   | U      | U           | U        | U     | 1      | 1    |  |                                        |      |  |
| ILOERECTION              | Control    | 3      | 3           | 2        | 2     | 2      | 1    |  |                                        |      |  |
|                          | 800 ppm    | 1      | 2           | 2        | 2     | 2      | 2    |  |                                        |      |  |
|                          | 2000 ppm   | 3      | 2           | 1        | 2     | 1      | 1 ·  |  |                                        |      |  |
|                          | 5000 ppm   | 0      | 0           | 0        | 1     | 1      | 1    |  |                                        |      |  |
| ROG BELLY                | Control    | 0      | . 0         | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 800 ppm    | õ      | ů           | õ        | õ     | õ      | ő    |  |                                        |      |  |
|                          | 2000 ppm   | õ      | 0<br>0      | Ő        | Ő     | 0<br>0 | 0    |  |                                        |      |  |
|                          | 5000 ppm   | ŏ      | Ő           | 0        | 0     | 0      | 0    |  |                                        |      |  |
| OTI ED. DEDT. CENTRALIA  | 0          | 0      | 0           | 0        | 0     | 0      |      |  |                                        |      |  |
| OILED PERI-GENITALIA     | Control    | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 800 ppm    | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
|                          | 2000 ppm   | 1      | . 1         | 1        | 1     | 1      | 1    |  |                                        |      |  |
|                          | 5000 ppm   | 0      | 0           | 0        | 0     | 0      | 0    |  |                                        |      |  |
| KOPHTHALMOS              | Control    | 1      | 1           | 1        | 1     | 1      | 1    |  |                                        |      |  |
|                          | 800 ppm    | 1      | 1           | 1        | 1     | 0      | 0    |  |                                        |      |  |
|                          | 2000 ppm   | ō      | ō           | ō        | Ō     | Õ      | õ    |  |                                        |      |  |
|                          | 5000 ppm   | õ      | 0           | ů<br>0   | ŏ     | ů      | ů    |  |                                        |      |  |
|                          | cooo ppu   | v      | v           | Ū        | v     | v      | 5    |  |                                        |      |  |

### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

PAGE : 9

| Clinical sign                         | Group Name           | Admini | stration W | eek-dav  |        |        |     |        |        |        |        |      |        |        |        |
|---------------------------------------|----------------------|--------|------------|----------|--------|--------|-----|--------|--------|--------|--------|------|--------|--------|--------|
|                                       |                      | 1-7    | 2-7        | 3-7      | 47     | 5-7    | 6-7 | 7–7    | 8-7    | 9-7    | 10-7   | 11-7 | 12-7   | 13-7   | 14-7   |
| ORNEAL OPACITY                        | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| ONNERS OF NOT T                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ppm             | 0      | 0.         | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | . 0    |
|                                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| XTERNAL MASS                          | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| NTERNAL MASS                          | Control              | . 0    | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 1      | 2      |
|                                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | 1      | 1      | 1   | 0      | 0      | 0      | 0      | 0    | 0      | 1      | 1      |
| . PERI-MOUTH                          | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ррт             | 0      | 0          | . 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| . ABDOMEN                             | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | Ô      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| . HINDLIMB                            | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0<br>0 - | 0<br>0 | 0<br>0 | 0   | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0    | 0<br>0 | 0<br>0 | 0<br>0 |
| . ANUS                                | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0 ·    |
| · · · · · · · · · · · · · · · · · · · | 800 ppm              | Ő      | 0<br>0     | Ő        | õ      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | Ő      | 0      |
|                                       | 2000 ppm             | ů<br>0 | , 0        | 0        | õ      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0<br>0 | 0      |
|                                       | 5000 ppm             | ů      | 0<br>0     | 0        | Õ      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| . TAIL                                | Control              | 0.     | 0          | 0        | 0      | . 0    | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0.     | 0      |
|                                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
| NEMIA                                 | Control              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 800 ppm              | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 2000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0.     | 0      | 0      | 0    | 0      | 0      | 0      |
|                                       | 5000 ppm             | 0      | 0          | 0        | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0      |

SEX : MALE

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~~

SEX : MALE

linical sign	Group Name	Administration Week-day													
	·	15-7	167	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	287
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0 .	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0.	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 5000 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	ŏ	0	ő	0	0	0	0	0	0	0	0 0	0	0
	2000 ppm	ů	õ	Ő	Ő	0	ů 0	0	0	0	0	0	0 0	0	0 0
	5000 ppm	0	õ	0	o	Ő	0	ů 0	0	0	Ö	0	Ő	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	' О	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~

SEX : MALE

PAGE : 11

.

| Clinical sign   | Group Name           | Admini | stration W | /eek-day |      |      |        |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |  |  |
|-----------------|----------------------|--------|------------|----------|------|------|--------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|--|--|
|                 | -                    | 29-7   | 30-7       | 31-7     | 32-7 | 33-7 | 347    | 35-7 | 36-7   | 37-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38-7 | 39–7   | 40-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41–7   | 42-7 |  |  |
| CORNEAL OPACITY | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
|                 | 800 ppm              | ů<br>0 | 0<br>0     | 0        | Ő    | . 0  | 0<br>0 | 0    | 0      | õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0<br>0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0 | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | Ō    | 0    | 0      | 0    | 0<br>0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ō    | õ      | õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ō      | õ    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| TERNAL MASS     | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      | 1    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0       0       0       0       0       0       0         2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 |      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| VTERNAL MASS    | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 0    |  |  |
|                 | 800 ppm              | 2      | 2          | 2        | 2    | 2    | 2      | 2    | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 2    |  |  |
|                 | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 5000 ppm             | U      | U          | U        | U    | 0    | 1      | 1    | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i      | 1    |  |  |
| PERI-MOUTII     | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    |        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0      | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| ABDOMEN         | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 0    |  |  |
|                 | Mqq 008              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| HINDLIMB        | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | . 0  |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0       0         1       1         0       0         0       0         0       0         2       2         0       0         1       1         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0 |        | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| ANUS            | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | 1    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| TAIL            | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
| NEMIA           | Control              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 0    |  |  |
|                 | 800 ppm              | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
|                 | 2000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |
|                 | 5000 ppm             | 0      | 0          | 0        | 0    | 0    | 0      | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0    | 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0      | 0    |  |  |

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) - ALL ANIMALS

#### SEX : MALE

| inical sign   | Group Name | Admini | stration W | eek-day |      |        |     |      |      |      |        |      |      |      |      |
|---------------|------------|--------|------------|---------|------|--------|-----|------|------|------|--------|------|------|------|------|
| ,             |            | 43-7   | 44-7       | 45-7    | 46-7 | 477    | 487 | 49-7 | 50-7 | 51-7 | 52-7   | 53-7 | 54-7 | 55-7 | 56-7 |
|               |            |        |            |         |      |        |     |      |      |      |        |      |      |      |      |
| RNEAL OPACITY | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| TERNAL MASS   | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 ppm    | 1      | 1          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 2000 ppm   | 0      | 0          | 0 -     | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| TERNAL MASS   | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 ppm    | 2      | 2          | 2       | 2    | 2      | 2   | 2    | 2    | 3    | 3      | 3    | 4    | 4    | 3    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 1    | 1      | 1    | 1    | 1    | 1    |
|               | 5000 ppm   | 1      | 1          | 2       | 2    | 1      | 2   | 2    | 2    | 2    | 2      | 2    | 2    | 1    | 1    |
| . PERI-MOUTH  | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 2000 ppm   |        | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| ABDOMEN       | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 µµm    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | . 0  |      | 0    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | Ō      | 0    | 0    |      | 0    |
|               | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| HINDLIMB      | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 800 ppm    | õ      | õ          | Ő       | õ    | 0<br>0 | õ   | õ    | ŏ    | Ő    | õ      | õ    | õ    |      | õ    |
|               | 2000 ppm   | Ő      | Ő          | Õ       | Ő    | 0<br>0 | Ő   | ° 0  | Õ    | Õ    | õ      | õ    | õ    |      | õ    |
|               | 5000 ppm   | 0      | 0          | 0       | Õ    | Ő      | õ   | Ő    | 0    | ů    | õ      | ů    | õ    | 0    | ů    |
| ANUS          | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | n    | 0    |
|               | 800 ppm    | 1      | 1          | 0<br>0  | õ    | Ő      | õ   | ő    | Õ    | Õ    | õ      | õ    | . Õ  |      | õ    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    |      | 0    |
|               | 5000 ppm   | õ      | 0          | 0       | 0    | 0      | 0   | 0    | . 0  | 0    | 0<br>0 | 0    | õ    | 0    | 0    |
| TAIL          | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| 1010          | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | . 0  | 0    | 0    |
| EMIA          | Control    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Lan L 1       | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    |      |
|               |            | 0      | 0          | 0       | 0    | 0      | 0   | 0    |      | 0    | -      | -    | -    |      | 0    |
|               | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|               | 5000 ppm   | U      | v          | U       | U    | U      | U   | V    | U    | U    | U      | 0    | 0    | 0    | 0    |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim$ 

## SEX : MALE

| Clinical sign | Group Name           | Admini | stration W | eek-dav |        |        |        |        |      |        |        |      |        |      |        |
|---------------|----------------------|--------|------------|---------|--------|--------|--------|--------|------|--------|--------|------|--------|------|--------|
|               |                      | 57-7   | 58-7       | 59-7    | 60-7   | 61-7   | 62-7   | 63-7   | 64-7 | 65-7   | 66-7   | 67-7 | 68-7   | 69-7 | 70-7   |
|               |                      | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      |      | 0      | 0    | 0      |
| RNEAL OPACITY | Control              | 0      | 0          | 0       | 0<br>0 | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | 0      |            | 0       |        | 0      | 0      |        | 0    | 0      | 0      | 0    | 1      | 1    | 1      |
|               | 2000 ppm             | 0      | 0          | 0       | 0<br>0 | 0      | 0      | 0      | 0    | 0<br>0 | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | 0          | U       | U      | 0      | U      | U      | U    | U      | U      | U    | U      | 0    | 0      |
| KTERNAL MASS  | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
| ITERNAL MASS  | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 1      |
|               | 800 ppm              | 3      | 3          | 3       | 3      | 3      | 3      | 3      | 3    | 3      | 3      | 3    | 3      | 3    | 4      |
|               | 2000 ppm             | 1      | 1          | 1       | 1      | 1      | 1      | L      | 1    | 1      | 1      | 1    | 1      | 1    | 2      |
|               | 5000 ppm             | 1      | 1          | 1       | 1      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
| PERI-MOUTH    | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | Ō    | Ó      | 0    | 0      |
|               | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | Ō    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
| ABDOMEN       | Control              | 0      | 0          | . 0     | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | 0      | ŏ          | õ       | Ő      | 0      | ů<br>0 | ŏ      | õ    | õ      | õ      | õ    | ů      | ů    | ŏ      |
|               | 2000 ppm             | 0      | 0          | 0       | 0      | 0<br>0 | ů<br>0 | õ      | Ō    | õ      | õ      | õ    | ů<br>0 | ů    | ů      |
|               | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | ů      | Ő    | ů      | 0    | ů<br>0 |
| . HINDLIMB    | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | Õ      | Ő          | Õ       | 0      | 0      | Õ      | ŏ      | Ő    | õ      | 0<br>0 | ŏ    | ŏ      | ŏ    | ŏ      |
|               | 2000 ppm             | õ      | õ          | õ       | 0      | 0      | 0<br>0 | 0<br>0 | 0    | Ő      | Ő      | ŏ    | ŏ      | 0    | ŏ      |
|               | 5000 ppm             | Õ      | ŏ          | ŏ       | 0      | õ      | Ő      | Ő      | õ    | õ      | Ő      | ŏ    | ŏ      | 0    | 0      |
| . ANUS        | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
| 11100         | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0<br>0 | 0    | 0<br>0 |
|               | 2000 ppm<br>2000 ppm | 0      | 0          | 0       | 0      | · 0    | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | · 0  | 0      | 0    | 0      |
| . TAIL        | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | ٥    | 0      | 0    | 0      |
| . 1416        | Control              | 0      | -          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              |        | 0          |         | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 2000 ppm             | 0      | 0          | 0       | . 0    | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | Ų          | U       | 0      | . 0    | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
| VEMIA         | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0 .  | 0      | 0      | 0    | 0      | 0    | 0      |
|               | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0    | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

## SEX : MALE

|                |                      |        |           |            |        |        |      |        |      |      |        |        |      |        | 11102  |
|----------------|----------------------|--------|-----------|------------|--------|--------|------|--------|------|------|--------|--------|------|--------|--------|
| Clinical sign  | Group Name           | Admini | istration | Week-day _ |        |        |      |        |      |      |        | •      | ,    |        |        |
|                |                      | 71-7   | 72-7      | 73-7       | 74-7   | 75-7   | 76-7 | 777    | 78-7 | 79–7 | 80-7   | 81-7   | 82-7 | 83-7   | 84-7   |
|                |                      |        |           |            |        | -      |      |        | -    | _    |        | _      | _    | _      | _      |
| ORNEAL OPACITY | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | 1      | 1         | 1          | 1      | 1      | 1    | 1      | 1    | 1    | 1      | 1      | 1    | 1      | 1      |
|                | 2000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 5000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| XTERNAL MASS   | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | 0      | 0         | 0          | 0      | 0      | 0    | 1      | 1    | 1    | 1      | 0      | 0    | 0      | 0      |
|                | 2000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 5000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| NTERNAL MASS   | Control              | 1      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 3      | 3      | 4    | 4      | 4      |
|                | 800 ppm              | 4      | 5         | 5          | 6      | 6      | 5    | 5      | 6    | 6    | 7      | 7      | 6    | 6      | 5      |
|                | 2000 ppm             | 3      | 2         | 2          | 5      | 5      | 4    | 3      | 3    | 3    | 3      | 3      | 3    | 3      | 3      |
|                | 5000 ppm             | 0      | 2         | 2          | 4      | 4      | 4    | 4      | 4    | 3    | 3      | 2      | 4    | 4      | 5      |
| 1. PERI-MOUTII | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 2000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 5000 ppm             | 0      | . 0       | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| 1. ABDOMEN     | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | Ō      | 0         | 0          | Ō      | 0      | 0    | Ő      | õ    | 0    | õ      | Ő      | õ    | õ      | Õ      |
|                | 2000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | Ő    | 0    | õ      | Õ      | Ő    | õ      | õ      |
|                | 5000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0<br>0 |
| 1. HINDLIMB    | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | Ō      | ů.        | õ          | Ő      | Õ      | õ    | ĩ      | 1    | 1    | ĩ      | õ      | ő    | õ      | Ő      |
|                | 2000 ppm             | 0      | ů<br>0    | õ          | 0<br>0 | Ő      | Ő    | 0<br>0 | 0    | 0    | 0      | õ      | Ő    | 0<br>0 | ŏ      |
|                | 5000 ppm             | 0      | 0         | 0          | ů      | 0<br>0 | Ő    | õ      | 0    | 0    | õ      | õ      | ů    | 0      | Ő      |
| ANUS           | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | -0     | ů<br>0    | Ő          | 0      | 0      | ŏ    | 0      | 0    | 0    | 0      | 0      | Ő    | 0      | 0      |
|                | 2000 ppm             | ŏ      | ů         | Ő          | õ      | 0<br>0 | ŏ    | 0<br>0 | Ő    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 5000 ppm             | ŏ      | 0         | 0          | 0      | 0      | ŏ    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| TAIL           | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 800 ppm              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0<br>0 | 0<br>0 | 0    | 0<br>0 | 0<br>0 |
|                | 2000 ppm<br>2000 ppm | 0      | 0         | 0          | 0      | 0 .    | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
|                | 5000 ppm             | 0      | ŏ         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| NEMIA          | Control              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 0    | 0      | ٥      | 0    | 0      | 0      |
|                | 800 ppm              | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 1    | 0      | • 0    | 0    | 0<br>0 | 0      |
|                | 2000 ppm<br>2000 ppm | 0      | 0         | 0          | 0      | 0      | 0    | 0      | 0    | 1    | 0      | • 0    | 0    | 0      | 0      |
|                | 5000 ppm             | 0      | 0         | 0          | 0      | 0      | 0    | . 0    | 0    | 0    | 0      | 0      | 0    | 0      | 0      |
| ÷              | 5000 ppm             | v      | v         | v          | v      | v      | U    | · V    | U    | U    | U      | U      | v    | U      | U      |
|                |                      |        |           |            |        |        |      |        |      |      |        |        |      |        |        |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

| linical sign   | Group Name           | Admini | stration W | eek-day |        |        |      |        |        |        |        |        |        |        |        |
|----------------|----------------------|--------|------------|---------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|
|                |                      | 85-7   | 86-7       | 87-7    | 887    | 89-7   | 90-7 | 91-7   | 92-7   | 93-7   | 94-7   | 95-7   | 96-7   | 97-7   | 98-7   |
|                |                      |        |            |         | _      |        | _    | _      | _      | _      | _      | _      |        |        |        |
| DRNEAL OPACITY | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 1      | 1      | 1      |
|                | 800 ppm              | 1      | 1          | 1       | 1      | 1      | 1    | 1      | 1      | 1      | 1      | 1 .    | 1      | 1      | 1      |
|                | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TERNAL MASS    | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | . 0    | 0      | 0      | 0      | 0      | 0      |
|                | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 1    | 1      | 1      | 1      | 1      | 0      | 0      | 0.     | 0      |
| TERNAL MASS    | Control              | 4      | 3          | 3       | 4      | 5      | 6    | G      | 5      | 5      | 5      | 5      | 4      | 4      | 5      |
|                | 800 ppm              | 6      | 6          | 6       | 9      | 8      | 8    | 7      | 6      | 6      | 6      | 7      | 6      | 6      | 4      |
|                | 2000 ppm             | 2      | 2          | 2       | 2      | 2      | 3    | 3      | 4      | 5      | 5      | 5      | 5      | 5      | 5      |
|                | 5000 ppm             | 5      | 5          | 4       | 6      | 5      | 5    | 5      | 4      | 4      | 4      | . 4    | 4      | 4      | 4      |
| PERI-MOUTH     | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0    | Ō      | Ō      | 0      | 0<br>0 | 0      | Ō      | 0      | õ      |
|                | 2000 ppm             | õ      | ů ů        | õ       | õ      | ů<br>0 | 0    | ů      | Ő      | õ      | ů      | Ő      | ő      | 0<br>0 | ŏ      |
|                | 5000 ppm             | õ      | ő          | õ       | ů<br>0 | 0      | 1    | 1      | 1      | 1      | 1      | ů      | ŏ      | 0      | 0<br>0 |
| ABDOMEN        | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| risb (all) (   | 800 ppm              | ů<br>0 | 0<br>0     | õ       | õ      | 0      | õ    | õ      | õ      | õ      | 0      | 0<br>0 | ŏ      | Ő      | ŏ      |
|                | 2000 ppm             | 0<br>0 | ů<br>0     | õ       | õ      | 0      | 0    | 0<br>0 | 0<br>0 | õ      | 0      | 0      | ů<br>0 | 0      | 0      |
|                | 5000 ppm             | Ő      | 0          | 0       | 0      | 0      | 0    | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| HINDLIMB       | Control              | 0      | 0          | 0       | 0      | 0      | ó    | 0      | 0      | 0      | 0      | . 0    | 0      | 0      | 0      |
|                | 800 ppm              | 0      | 0<br>0     | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 2000 ppm             | 0      | 0<br>0     | 0       | 0      | 0      |      | 0      | 0      | 0      |        |        |        |        |        |
|                | 2000 ppm<br>5000 ppm | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| ANUS           | C                    | 0      | 0          | ^       | ^      | ^      | ^    | ^      | ~      | ^      | ~      | ~      | ^      | ^      | ~      |
| MIND .         | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 800 ppm              | 0      | -          |         | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0<br>0  | 0<br>0 | 0      | . 0  | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0      | 0<br>0 |
| m + T 1        |                      |        |            |         |        |        |      |        | -      |        |        |        | -      |        |        |
| TAIL           | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| EMIA           | Control              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | . 0    | 0      | 0      | 0      |
|                | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

•

PAGE: 16

| SEX · MALE     |            |      |           |       |       |       |       |  |   | PAGE -   |
|----------------|------------|------|-----------|-------|-------|-------|-------|--|---|----------|
| Clinical sign  | Group Name |      | istration |       |       |       |       |  |   |          |
|                |            | 99-7 | 100-7     | 101-7 | 102-7 | 103-7 | 104-7 |  |   |          |
|                |            |      |           |       |       |       |       |  |   |          |
| ORNEAL OPACITY | Control    | 1    | 1         | 1     | 1     | 1     | 1     |  |   |          |
|                | 800 ppm    | 1    | 1         | 1     | 1     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
| EXTERNAL MASS  | Control    | 0    | ι         | 1     | 1     | 1     | 1     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 1     | 1     |  |   |          |
|                | 2000 ppm   | 0    | L         | 1     | 1     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   | <i>.</i> |
| NTERNAL MASS   | Control    | 4    | 5         | 4     | 4     | 5     | 3     |  |   |          |
|                | 800 ppm    | 4    | 6         | 5     | 5     | 6     | 6     |  |   |          |
|                | 2000 ppm   | 5    | 4         | 3     | 3     | 4     | 7     |  |   |          |
|                | 5000 ppm   | 4    | 4         | 4     | 5     | 9     | 5     |  |   |          |
| A. PERI-MOUTH  | Control    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | • 0       | 0     | 0     | 0     | 0     |  |   |          |
| I. ABDOMEN     | Control    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 1     | 1     |  |   |          |
|                | 2000 ppm   | 0    | 1         | 1     | 1     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
| A. HINDLIMB    | Control    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
| 1. ANUS        | Control    | 0    | 0         | 0     | 0     | 0     | 0     |  | 4 |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   | -        |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
| 1. TAIL        | Control    | 0    | L         | 1     | 1     | 1     | 1     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | . 0   | 0     | 0     |  |   |          |
| NEMIA          | Control    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 800 ppm    | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 2000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |
|                | 5000 ppm   | 0    | 0         | 0     | 0     | 0     | 0     |  |   |          |

.

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

~ Clinical sign Administration Week-day Group Name 1-7 2-7 3-7 4-7 5-7 6-7 7--7 8--7 9-7 10-7 11-7 12-7 13-7 14-7 ULCER Control 800 ppm 2000 ppm 5000 ppm EROSION Control 800 ppm 2000 ppm 5000 ppm CRUSTA Control 800 ppm 2000 ppm 5000 ppm TORTICOLLIS Control 800 ppm 2000 ppm 5000 ppm PROLAPSE OF PENIS Control IRREGULAR BE 

|                     | 800 ppm  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|---------------------|----------|---|---|---|---|---|---|---|---|---|---|---|--|
|                     | 2000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 5000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| IRREGULAR BREATHING | Control  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 800 ppm  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 2000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 5000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| SMALL STOOL         | Control  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 800 ppm  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 2000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 5000 ppm | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| OLIGO-STOOL         | Control  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 800 ppm  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 2000 ppm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|                     | 5000 ppm | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |  |
|                     |          |   |   |   |   |   |   |   |   |   |   |   |  |

Control

800 ppm

2000 ppm

5000 ppm

NON REMARKABLE

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ALL ANI

SEX : MALE

| linical sign      | Group Name | Admini | stration N | eek-day |      |      |        |        |      |      |      |            |        |      |        |
|-------------------|------------|--------|------------|---------|------|------|--------|--------|------|------|------|------------|--------|------|--------|
|                   |            | 15-7   | 16-7       | 17-7    | 18-7 | 19-7 | 20-7   | 21-7   | 22-7 | 23-7 | 24-7 | 25-7       | 26-7   | 27-7 | 28-7   |
| CER               | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| ODR               | 800 ppm    | õ      | 0          | 0       | 0    | Ő    | Ő      | Ő      | 0    | 0    | 0    | 0          | Ő      | 0    | Ő      |
|                   | 2000 ppm   | Õ      | Õ          | 0       | Ő    | Ő    | ů<br>0 | õ      | 0    | 0    | 0    | õ          | ŏ      | Ő    | ŏ      |
|                   | 5000 ppm   | Õ      | 0          | Ő       | õ    | Ő    | õ      | õ      | 0    | 0    | Ő    | õ          | õ      | õ    | Ő      |
|                   | cooo ppm   | v      | Ū          | Ū       | v    | v    | v      | v      | 0    | v    | Ū    | v          | v      | Ū    | Ŷ      |
| OSION             | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | . 0  | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| USTA              | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| RTICOLLIS         | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 1    | 1          | 1      | 1    | 1      |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | Ō    | 0      |
|                   | 2000 ppm   | . 0    | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| DLAPSE OF PENIS   | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 800 թթա    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | . 2000 ppm | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| REGULAR BREATHING | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
| ALL STOOL         | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 0    | 0          | 0      | 0    | 0      |
|                   | 800 ppm    | 0      | 0          | 0       | õ    | Õ    | 0<br>0 | Õ      | Õ    | Ō    | Õ    | õ          | 0<br>0 | õ    | Õ      |
|                   | 2000 ppm   | 0      | 0          | 0       | õ    | Õ    | 0      | Ő      | Ō    | Ő    | Ő    | <b>0</b> . | ů<br>0 | õ    | ů      |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0      | õ      | õ    | 0    | Ő    | õ          | Ő      | õ    | Ů      |
| IGO-STOOL         | Control    | 0      | 0          | 0       | 0    | 0    | 0      | 0      | 0    | 0    | 1    | 0          | 1      | · 1  | 1      |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | õ    | Ő      | 0      | 0    | 0    | Ō    | ō          | 0      | 0    | 0      |
|                   | 2000 ppm   | Õ      | õ          | Ď       | ů    | Ő    | õ      | 0<br>0 | Õ    | · õ  | õ    | õ          | ů<br>0 | Ő    | 0<br>0 |
|                   | 5000 ppm   | 0      | õ          | õ       | 0    | Õ    | õ      | õ      | Ő    | Ő    | õ    | õ          | 0      | õ    | 0      |
| N REMARKABLE      | Control    | 50     | 50         | 50      | 50   | 50   | 50     | 50     | 50   | 50   | 49   | 49         | 49     | 49   | 49     |
|                   | 800 ppm    | 48     | 48         | 48      | 48   | 48   | 48     | 48     | 48   | 48   | 48   | 48         | 48     | 48   | 48     |
|                   | 2000 ppm   | 50     | 50         | 50      | 50   | 50   | 50     | 50     | 50   | 50   | 50   | 50         | 50     | 50   | 50     |
|                   | 5000 ppm   | 48     | 48         | 49      | 49   | 49   | 49     | 49     | 49   | 49   | 49   | 49         | 49     | 49   | 49     |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

| linical sign      | Group Name | Admini | stration W | eek-day              |      |      |                |      |     |          |          |           |        |      |      |
|-------------------|------------|--------|------------|----------------------|------|------|----------------|------|-----|----------|----------|-----------|--------|------|------|
|                   |            | 29-7   | 30-7       | 31-7                 | 32-7 | 33-7 | 347            | 35-7 | 367 | 37-7     | 38~7     | 39-7      | 40-7   | 41-7 | 42-7 |
|                   |            |        |            |                      |      |      |                |      |     |          |          |           |        |      |      |
| LCER              | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
| OSION             | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
| USTA              | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
| RTICOLLIS         | Control    | 1      | 1          | 1                    | 1    | 1    | 1              | 1    | 1   | 1        | 1        | 1         | 1      | 1    | 1    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | . 0      | 0        | 0         | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | Ō                    | Ő    | Õ    | Õ              | Õ    | õ   | õ        | õ        | Ő         | Õ      | õ    | Ő    |
| OLAPSE OF PENIS   | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | Ó    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | Ō        | 0         | 0<br>0 | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | õ   | Ő        | 0        | õ         | 0      | 0    | 0    |
| REGULAR BREATHING | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | Ō    |
|                   | 5000 ppm   | 0      | 0          | 0                    | õ    | 0    | 0              | 0    | õ   | Ő        | ů        | õ         | õ      | õ    | Ő    |
| ALL STOOL         | Control    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | · 0  | 0    |
|                   | 800 ppm    | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | Ō    |
|                   | 2000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | Ō    |
|                   | 5000 ppm   | 0      | 0          | 0                    | 0    | 0    | 0              | 0    | õ   | 0        | Ő        | õ         | Õ      | õ    | ů    |
| IGO-STOOL         | Control    | 1      | 1          | 0                    | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0      | 0    | 0    |
|                   | 800 ppm    | Ô      | 0          | 0                    | 0    | Ő    | 0              | ů    | Ő   | 0<br>0   | 0        | 0<br>0    | ů<br>0 | 0    | Ŏ    |
|                   | 2000 ppm   | Ő      | 0          | 0<br>0               | 0    | 0    | 0              | 0    | 0   | 0        | 0        | 0         | 0<br>0 | 0    | 0    |
|                   | 5000 ppm   | õ      | Ő          | õ                    | 0    | 0    | 0              | õ    | 0   | 0        | 0        | 0         | 0<br>0 | 0    | 0    |
| N REMARKABLE      | Control    | 49     | 49         | 49                   | 49   | 49   | 49             | 49   | 49  | 49       | 49       | 49        | 49     | 49   | 49   |
|                   | 800 ppm    | 48     | 48         | 48                   | 48   | 48   | 49             | 43   | 48  | 48       | 48       | 48        | 47     | 47   | 47   |
|                   | 2000 ppm   | 50     | 50         | <del>1</del> 0<br>50 | 50   | 50   | <del>5</del> 0 | 50   | 50  | 40<br>50 | 40<br>50 | -10<br>50 | 50     | 50   | 50   |
|                   | 5000 ppm   | 49     | 49         | 30<br>49             | ~~~  | 00   | 48             |      | 00  | 00       | 48       | 50        | 00     | 50   | 00   |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

| inical sign       | Group Name | Admini | stration W | eek-day |      |      |      |      |      |      | · . |      |        |      |      |
|-------------------|------------|--------|------------|---------|------|------|------|------|------|------|-----|------|--------|------|------|
|                   |            | 43-7   | 44-7       | 45-7    | 46-7 | 47-7 | 48-7 | 49-7 | 50-7 | 51-7 | 527 | 53-7 | 54-7   | 55-7 | 56-7 |
|                   |            | 1      |            |         |      |      |      |      |      |      |     |      |        |      |      |
| CER               | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| SION              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | • 0  | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| ISTA              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | ò    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| RTICOLLIS         | . Control  | 1      | 1          | 1       | 1    | 1    | 1    | 1    | 1    | 1    | 1   | 1    | 1      | 1    | 1    |
|                   | 800 ppm    | 0      | 0          | 0       | 1    | 1    | .1   | 1    | 1    | 1    | 1   | 1    | 1      | 1    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| LAPSE OF PENIS    | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 թթա   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| REGULAR BREATHING | Control    | 0      | 0          | 0       | 0.   | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | . 0  | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 1      | 1          | 0       | 1    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| LL STOOL          | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
| GO-STOOL          | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0      | 0    | 0    |
|                   | 800 ppm    | 0      | 0          | 0       | 2    | 1    | 1    | 1    | 1    | 1    | 1   | 1    | 1      | 1    | 0    |
|                   | 2000 ppm   | 0      | 0          | 0       | õ    | ō    | ō    | ō    | 0    | 0    | 0   | Ô    | °<br>0 | 0    | ĩ    |
|                   | 5000 ppm   | 0      | 1          | 1       | 1    | 0    | 0    | Ő    | Ō    | õ    | õ   | Ő    | 0      | õ    | 0    |
| REMARKABLE        | Control    | 49     | 49         | 49      | 49   | 49   | 49   | 49   | 49   | 49   | 49  | 49   | 49     | 49   | 49   |
|                   | 800 ppm    | 47     | 47         | 47      | 45   | 46   | 46   | 46   | 46   | 45   | 45  | 45   | 45     | 45   | 45   |
|                   | 2000 ppm   | 50     | 50         | 50      | 50   | 50   | 50   | 50   | 50   | 49   | 49  | 49   | 49     | 49   | 49   |
|                   | 5000 ppm   | 47     | 46         | 46      | 46   | 46   | 45   | 45   | 45   | 45   | 45  | 45   | 45     | 45   | 44   |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

 $\sim$ 

,

ALL ANIMA

## SEX : MALE

| Clinical sign     | Group Name           | Admini | stration N | Veek-day |      |        |        |        |        |        |        |        |        |        |        |
|-------------------|----------------------|--------|------------|----------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                   | -                    | 57-7   | 58-7       | 59-7     | 60-7 | 61-7   | 62-7   | 63-7   | 64-7   | 65-7   | 66-7   | 67-7   | 68-7   | 69-7   | 70-7   |
|                   |                      | 0      | 0          | 0        | 2    |        |        |        |        |        |        |        |        |        | _      |
| LCER              | Control              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 800 ppm              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 2000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| ROSION            | Control              | 0      | 0          | 0        | 0.   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 800 ppm              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 2000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| RUSTA             | Control              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 800 ppm              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 2000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | Ō      | 0      |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | Õ      | õ      | 0      | ů      | Ő      | 1      | Õ      | õ      | ō      | 0<br>0 |
| ORTICOLLIS        | Control              | 1      | 1          | 1        | 1    | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
|                   | 800 ppm              | õ      | Ô          | 0        | ō    | ō      | Ô      | ō      | ō      | 0      | ō      | Ô      | Ō      | ō      | ō      |
|                   | 2000 ppm             | õ      | Õ          | Õ        | ŏ    | õ      | õ      | ů      | ů      | ŏ      | ů      | ů<br>0 | ů      | ŏ      | ő      |
|                   | 5000 ppm             | 0      | Ő          | 0        | õ    | õ      | ŏ      | Ő      | Ő      | õ      | 0      | ŏ      | ŏ      | 0      | 0      |
| ROLAPSE OF PENIS  | Control              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | . 0    | 0      |
|                   | 800 ppm              | Ő      | ů          | Õ        | ů    | ŏ      | ŏ      | õ      | Õ      | ŏ      | õ      | õ      | Ő      | 0<br>0 | ő      |
|                   | 2000 ppm             | ů.     | Ů          | Õ        | ů    | õ      | ů<br>0 | ů      | ŏ      | Ő      | 0<br>0 | 0      | 0      | . 0    | 0<br>0 |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| REGULAR BREATHING | Control              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 800 ppm              | ŏ      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | . 0    | 0      | 0      | 0      | 0      |
|                   | 2000 ppm             | 0      | 0          | 0        | 0    |        |        |        |        | 0      |        | -      |        |        |        |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| ALL STOOL         | Control              | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      |        | 0      | 0      |        |        |
| 1000 JUOD         | Control<br>800 ppm   | 0      | 0          | 0        | 0    | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      |
| •                 | 2000 ppm<br>2000 ppm | 0      | 0          | 0        | 0    |        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 2000 ppm<br>5000 ppm | 0      | 0          | 0        | 0    | 0<br>0 | 0      | 0<br>0 |
| LIGO-STOOL        | Control              | 0      | 0          | 0        | 0    | 0      | 0      | ٥      | 0      | 0      | 0      | 0      | 0      |        |        |
| DT00 0100D        |                      | 0      |            |          |      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      |
|                   | 800 ppm              |        | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                   | 2000 ppm             | 1      | 1          | 1        | 0    | 0      | 0      | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      |
|                   | 5000 ppm             | 0      | 0          | 0        | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| ON REMARKABLE     | Control              | 49     | 49         | 49       | 49   | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 48     | 47     |
|                   | 800 ppm              | 45     | 45         | 45       | 45   | 45     | 44     | 44     | 44     | 44     | 44     | 44     | 44     | 44     | 43     |
|                   | 2000 ppm             | 49     | 49         | 49       | 49   | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 48     |
|                   | 5000 ppm             | 44     | 44         | 44       | 44   | 44     | 44     | 43     | 43     | 43     | 42     | 43     | 42     | 42     | 42     |

## SEX : MALE

PAGE : 22

| Clinical sign      | Group Name | Admini | stration W | leek-dav |        |        |      |        |     |            |        |        |      |        |        |
|--------------------|------------|--------|------------|----------|--------|--------|------|--------|-----|------------|--------|--------|------|--------|--------|
|                    |            | 71-7   | 72-7       | 73-7     | 74-7   | 75-7   | 76-7 | 77-7   | 787 | 79-7       | 80-7   | 81-7   | 82-7 | 83-7   | 84-7   |
|                    |            |        |            |          |        |        |      |        |     |            |        |        |      |        |        |
| LCER               | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
| ROSION             | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
| RUSTA              | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | Ó      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 1      | 1      |
| ORTICOLLIS         | Control    | 1      | 1          | 1        | 1      | 1      | 1    | 1      | 2   | 2          | 2      | 2      | 2    | 2      | 2      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0,   | 0      | 0      |
| ROLAPSE OF PENIS   | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | · 0    | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
| RREGULAR BREATHING | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 1      | 0      | 0    | 0      | 0      |
|                    | 2000 ppm   | 0      | 0          | 0        | 0      | 0      | Ó    | 0      | 0   | 1          | Ō      | 0      | 0    | Î      | õ      |
|                    | 5000 ppm   | 0      | 0          | 0        | 0      | 1      | 1    | 1      | 1   | 1          | 1      | 0      | Ő    | 0      | Õ      |
| MALL STOOL         | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 0          | 0      | 0      | 0    | 0      | 0      |
|                    | 800 ppm    | 0      | 0          | 0        | 0      | 0      | 0    | 0      | 0   | 1          | 0      | Ö      | 0    | .0     | Ő      |
|                    | 2000 ppm   | 0      | 0          | 0        | Ō      | ů<br>0 | 1    | ĩ      | Ő   | <b>0</b> . | ů      | ů      | ŏ    | 1<br>1 | Ő      |
|                    | 5000 ppm   | õ      | õ          | Q        | õ      | õ      | 0    | 0      | õ   | õ          | 0      | õ      | Ő    | 0      | 0      |
| JIG0-ST001,        | Control    | 0      | 0          | 0        | 0      | 0      | 0    | 1      |     | 1          | 1      | 1      | 1    | 1      | 1      |
|                    | 800 ppm    | 0      | 0          | 0        | Õ      | Ő      | 0    | 0<br>0 | 0   | 2          | 0      | 0      | 1    | 1      | 0<br>0 |
|                    | 2000 ppm   | õ      | Ő          | ů<br>0   | 0<br>0 | 1      | 2    | 2      | 1   | I<br>I     | 0<br>0 | 0<br>0 | 0    | 1      | 0      |
|                    | 5000 ppm   | Õ      | ő          | 0        | 0      | 1      | 1    | 2      | 2   | 1          | 1      | ő      | Ő    | 0      | ŏ      |
| ON REMARKABLE      | Control    | 48     | 49         | 49       | 49     | 49     | 49   | 48     | 47  | 47         | 44     | 44     | 43   | 43     | 43     |
|                    | 800 ppm    | 43     | 42         | 42       | 40     | 40     | 41   | 40     | 39  | 39         | 37     | 37     | 38   | 38     | 38     |
|                    | 2000 ppm   | 46     | 47         | 47       | 44     | 44     | 44   | 43     | 43  | 42         | 42     | 42     | 42   | 41     | 41     |
|                    | 5000 ppm   | 42     | 40         | 40       | 38     | 36     | 37   | 37     | 37  | 37         | 37     | 37     | 35   | 35     | 34     |

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

#### $\sim$

## STUDY NO. : 0642

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

## SEX : MALE

| linical sign      | Group Name | Admini | stration W | eek-dav |      |        |        | · ·  |        |     |          |      |          |      |          |
|-------------------|------------|--------|------------|---------|------|--------|--------|------|--------|-----|----------|------|----------|------|----------|
| · ·               | ·····      | 857    | 86-7       | 87-7    | 88-7 | 89-7   | 90-7   | 91-7 | 92-7   | 937 | 947      | 95-7 | 96-7     | 97-7 | 98-7     |
|                   |            |        |            |         |      |        |        |      |        |     |          |      |          |      |          |
| CER               | . Control  | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | . 0  | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
| DSION             | Control    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 1      | 1   | 1        | 1    | 1        | 1    | 1        |
|                   | 2000 ppm   | 0      | 0          | 0       | 1    | 1      | 1      | 1    | 1      | 2   | 2        | 2    | 2        | 2    | 2        |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
| USTA              | Control    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 1        | 1    | 1        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 5000 ppm   | 1      | ĩ          | Ő       | õ    | ů<br>0 | Û<br>Û | ů    | ő      | Ő   | 0        | ő    | õ        | ů    | ů        |
| RTICOLLIS         | Control    | 2      | 2          | 2       | 2    | 2      | 2      | 2    | 2      | 2   | 2        | 2    | 2        | 2    | 2        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | Ō        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | õ   | õ        | 0    | õ        | Ő    | õ        |
|                   | 5000 ppm   | ů      | Õ          | Õ       | õ    | Õ      | õ      | ů    | ů<br>0 | Ŏ   | ő        | õ    | õ        | Õ    | Ő        |
| OLAPSE OF PENIS   | Control    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | Ō      | 0    | Ő      | õ   | õ        | ů    | i        | ĩ    | ŏ        |
|                   | 2000 ppm   | ů      | ů          | ů<br>0  | õ    | ů      | 0<br>0 | 0    | Ő      | õ   | 0        | 0    | 0        | 0    | 0<br>0   |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0<br>0 | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   |            |        | v          | 0       | U    | U      | v      | 0    | 0      | U   | Ū        | Ū    | Ū        | 0    | U        |
| REGULAR BREATHING | Control    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 1        | 1    | 1        | 1    | 1        |
|                   | 800 ppm    | 0      | 0          | 0       | 0    | 0      | 0      | 0    | · Ó    | 0   | 0        | 0    | 1        | 1    | 0        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 1        | 1    | 1        |
|                   | 5000 ppm   | 1      | 1          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
| ALL STOOL         | Control    | 0      | 0          | 0       | 0    | 1      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 800 ppm    | 0      | 2          | 1       | 1    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 1        | 1    | 0        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | 0        |
|                   | 5000 ppm   | 0      | 0          | 1       | 1    | 0      | 0      | 0    | 0      | 0   | 0        | . 0  | 0        | 0    | -0       |
| IGO-STOOL         | Control    | 1      | 1          | 2       | 2    | 3      | 2      | 4    | 3      | 3   | 4        | 4    | 3        | 4    | 4        |
|                   | 800 ppm    | 1      | 1          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 4        | 3    | 4        | 4    | 2        |
|                   | 2000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 3        | 2    | 2        | 2    | 3        |
|                   | 5000 ppm   | 0      | 0          | 0       | 0    | 0      | 0      | 0    | 0      | 0   | 0        | 0    | 0        | 0    | Ő        |
| N REMARKABLE      | Control    | 43     | 43         | 43      | 42   | 40     | 39     | 38   | 39     | 39  | 39       | 39   | 39       | 38   | 37       |
|                   | 800 ppm    | 37     | 35         | 35      | 34   | 34     | 34     | 34   | 34     | 34  | 30       | 29   | 28       | 28   | 29       |
|                   | 2000 ppm   | 41     | 41         | 41      | 40   | 39     | 38     | 38   | 38     | 37  | 30<br>34 | 35   | 35       | 35   | 34       |
|                   | 5000 ppm   | 34     | 34         | 34      | 32   | 32     | 30     | 30   | 30     | 30  | 34       | 31   | 30<br>30 | 30   | 34<br>30 |
|                   | oooo ppii  | 01     | 91         | FC      | 34   | 56     | 50     | 50   | 50     | 50  | 50       | 51   | 50       | 30   | 50       |

# STUDY NO. : 0642 CLINICAL OBSERVATION (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104 ALL ANIMALS

## SEX : MALE

| Group Name | Admin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>Week-day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 99-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 800 ppm    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000 ppm   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2000 ppm   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5000 ppm   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Control<br>800 ppm<br>2000 ppm<br>5000 ppm<br>Control<br>800 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm<br>2000 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm<br>2000 ppm<br>5000 ppm<br>2000 ppm | 99-7<br>Control 0<br>800 ppm 0<br>2000 ppm 0<br>5000 ppm 0<br>Control 1<br>800 ppm 1<br>2000 ppm 2<br>5000 ppm 0<br>Control 1<br>800 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>Control 2<br>800 ppm 0<br>2000 ppm 0<br>2000 ppm 0<br>Control 1<br>800 ppm 0<br>2000 ppm 0<br>Control 1<br>800 ppm 0<br>Control 2<br>800 ppm 0<br>Control 2<br>800 ppm 0<br>Control 2<br>800 ppm 0<br>Control 2<br>800 ppm 3<br>5000 ppm 3<br>5000 ppm 3<br>5000 ppm 0<br>Control 2<br>800 ppm 3<br>5000 ppm 0<br>Control 2<br>800 ppm 3<br>5000 ppm 0<br>Control 38<br>800 ppm 3<br>5000 ppm 0 | 99-7         100-7           Control         0         0           800 ppm         0         0           2000 ppm         0         0           2000 ppm         0         0           5000 ppm         0         0           Control         1         1           800 ppm         1         1           2000 ppm         2         3           5000 ppm         0         0           Control         1         1           800 ppm         0         0           Control         2         2           800 ppm         0         0           2000 ppm         2         2 </td <td>99-7 <math>100-7</math> <math>101-7</math>           Control         0         0         0           <math>300</math> ppm         0         0         1           <math>5000</math> ppm         0         0         1           <math>5000</math> ppm         0         0         0           Control         1         1         1           <math>800</math> ppm         1         1         1           <math>2000</math> ppm         2         3         3           <math>5000</math> ppm         0         0         0           Control         1         1         0           <math>800</math> ppm         0         0         0           <math>2000</math> ppm         0         0         1           <math>2000</math> ppm         0         0         1           <math>2000</math> ppm         0         0         0<!--</td--><td>99-7         100-7         101-7         102-7           Control         0         0         0         0           2000 ppm         0         0         1         1           5000 ppm         0         0         1         1           5000 ppm         0         0         0         0           Control         1         1         1         1           300 ppm         1         1         1         1           2000 ppm         2         3         3         3           5000 ppm         0         0         0         0           Control         1         1         0         0           2000 ppm         0         0         0         0</td><td>99-7         100-7         101-7         102-7         103-7           Control         0         0         0         0         0           2000 ppm         0         0         1         1         1           5000 ppm         0         0         0         0         0           Control         1         1         1         1         1           800 ppm         1         1         1         1         1           2000 ppm         2         3         3         3         3           5000 ppm         0         0         0         0         0           Control         1         1         0         0         0           Control         1         1         0         0         0           2000 ppm         0         0         0</td><td>99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         0         0         0         0         0           Control         1         1         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3         3           5000 ppm         0         0         0         0         0         0         0           Control         1         1         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0</td><td>99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1           5000 ppm         0         0         1         1         1         1           5000 ppm         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3           5000 ppm         0         0         0         0         0         0           Control         1         1         0         0         0         0           Control         2         2         1         1         1         0           S000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0</td><td>S9-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           200 ppm         0         0         1         1         1         1           5000 ppm         0         0         0         0         0         0           2000 ppm         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           Control         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0</td><td>99-7         100-7         101-7         102-7         103-7         104-7           Gontrol         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           300 ppm         1         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0         0           2000 ppm         1         1         0         0         0         0         0           2000 ppm         1         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0</td></td> | 99-7 $100-7$ $101-7$ Control         0         0         0 $300$ ppm         0         0         1 $5000$ ppm         0         0         1 $5000$ ppm         0         0         0           Control         1         1         1 $800$ ppm         1         1         1 $2000$ ppm         2         3         3 $5000$ ppm         0         0         0           Control         1         1         0 $800$ ppm         0         0         0 $2000$ ppm         0         0         1 $2000$ ppm         0         0         1 $2000$ ppm         0         0         0 </td <td>99-7         100-7         101-7         102-7           Control         0         0         0         0           2000 ppm         0         0         1         1           5000 ppm         0         0         1         1           5000 ppm         0         0         0         0           Control         1         1         1         1           300 ppm         1         1         1         1           2000 ppm         2         3         3         3           5000 ppm         0         0         0         0           Control         1         1         0         0           2000 ppm         0         0         0         0</td> <td>99-7         100-7         101-7         102-7         103-7           Control         0         0         0         0         0           2000 ppm         0         0         1         1         1           5000 ppm         0         0         0         0         0           Control         1         1         1         1         1           800 ppm         1         1         1         1         1           2000 ppm         2         3         3         3         3           5000 ppm         0         0         0         0         0           Control         1         1         0         0         0           Control         1         1         0         0         0           2000 ppm         0         0         0</td> <td>99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         0         0         0         0         0           Control         1         1         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3         3           5000 ppm         0         0         0         0         0         0         0           Control         1         1         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0</td> <td>99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1           5000 ppm         0         0         1         1         1         1           5000 ppm         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3           5000 ppm         0         0         0         0         0         0           Control         1         1         0         0         0         0           Control         2         2         1         1         1         0           S000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0</td> <td>S9-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           200 ppm         0         0         1         1         1         1           5000 ppm         0         0         0         0         0         0           2000 ppm         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           Control         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0</td> <td>99-7         100-7         101-7         102-7         103-7         104-7           Gontrol         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           300 ppm         1         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0         0           2000 ppm         1         1         0         0         0         0         0           2000 ppm         1         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0</td> | 99-7         100-7         101-7         102-7           Control         0         0         0         0           2000 ppm         0         0         1         1           5000 ppm         0         0         1         1           5000 ppm         0         0         0         0           Control         1         1         1         1           300 ppm         1         1         1         1           2000 ppm         2         3         3         3           5000 ppm         0         0         0         0           Control         1         1         0         0           2000 ppm         0         0         0         0 | 99-7         100-7         101-7         102-7         103-7           Control         0         0         0         0         0           2000 ppm         0         0         1         1         1           5000 ppm         0         0         0         0         0           Control         1         1         1         1         1           800 ppm         1         1         1         1         1           2000 ppm         2         3         3         3         3           5000 ppm         0         0         0         0         0           Control         1         1         0         0         0           Control         1         1         0         0         0           2000 ppm         0         0         0 | 99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         1         1         1         1         1           5000 ppm         0         0         0         0         0         0         0           Control         1         1         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3         3           5000 ppm         0         0         0         0         0         0         0           Control         1         1         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0 | 99-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           2000 ppm         0         0         1         1         1         1           5000 ppm         0         0         1         1         1         1           5000 ppm         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1           2000 ppm         2         3         3         3         3         3           5000 ppm         0         0         0         0         0         0           Control         1         1         0         0         0         0           Control         2         2         1         1         1         0           S000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0 | S9-7         100-7         101-7         102-7         103-7         104-7           Control         0         0         0         0         0         0           200 ppm         0         0         1         1         1         1           5000 ppm         0         0         0         0         0         0           2000 ppm         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           Control         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0           2000 ppm         0         0         0         0         0 | 99-7         100-7         101-7         102-7         103-7         104-7           Gontrol         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           300 ppm         1         1         1         1         1         1         1           2000 ppm         1         1         1         1         1         1         1           2000 ppm         0         0         0         0         0         0         0           2000 ppm         1         1         0         0         0         0         0           2000 ppm         1         0         0         0         0         0         0           2000 ppm         0         0         0         0         0         0         0           2000 ppm         0         0         0         0 |

TABLE B 2

## CLINICAL OBSERVATION: FEMALE

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

S ...

HED HITEHES

## SEX : FEMALE

| Clinical sign          | Group Name | Admini | stration W | eek-day |          |     |        |          |        |        |      |        |        |        |        |
|------------------------|------------|--------|------------|---------|----------|-----|--------|----------|--------|--------|------|--------|--------|--------|--------|
|                        | · · ·      | 1-7    | 2–7        | 3-7     | 4-7      | 5-7 | 6-7    | 7-7      | 8-7    | 9–7    | 10-7 | 11-7   | 12-7   | 13-7   | 14-7   |
| 5 4 <i>0</i> 01 1      | 0 1        | 0      | 0          | 0       | 0        | 0   |        | 0        | 0      | •      |      | 0      |        | 0      |        |
| ЕАТН                   | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0<br>0 | 0      |
|                        | 800 ppm    | 0      | -          | 0       | 0        | 0   | 0      | -        | -      | 0      | 0    | -      | -      |        | 0      |
|                        | 2000 ppm   | 0      | 0<br>0     | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0<br>0 | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| ORIBUND SACRIFICE      | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| COMOTOR MOVEMENT DECR  | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| DCOMOTOR MOVEMENT INCR | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| INCHBACK POSITION      | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 թթա    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | . 0    | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| NRALYTIC GAIT          | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | Ö    | 0      | Ō      | Ō      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| DTATING                | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | Õ      | ů          | õ       | 0        | Ő   | 0      | · 0      | Õ      | ů      | õ    | õ      | õ      | õ      | ŏ      |
|                        | 2000 ppm   | ů<br>0 | Õ          | 0       | 0        | Ő   | ů      | õ        | Õ      | ů      | õ    | õ      | 0<br>0 | 0<br>0 | ů<br>0 |
|                        | 5000 ppm   | Ō      | ů          | õ       | Ő        | 0   | 0      | 0 ·      | 0      | ů      | 0    | õ      | ő      | õ      | Ő      |
| DLLING                 | Control    | 0.     | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | . 0    |
|                        | 800 ppm    | õ      | 0          | 0       | 0        | 0   | 0<br>0 | 0        | 0<br>0 | 0<br>0 | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| LOT OF COLLED FOOD     | 01         |        | •          | 0       | <u>^</u> | •   | •      | <u>^</u> |        | 0      |      |        |        |        |        |
| LOT OF SPILLED FOOD    | Control    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 800 ppm    | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 2000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
|                        | 5000 ppm   | 0      | 0          | 0       | 0        | 0   | 0      | 0        | 0      | 0      | 0    | 0      | 0      | 0      | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign          | Group Name           | Admini | stration W | eek-day |        |        |          |        |      |        |        |        |        |      |        |
|------------------------|----------------------|--------|------------|---------|--------|--------|----------|--------|------|--------|--------|--------|--------|------|--------|
|                        |                      | 15-7   | 16-7       | 17-7    | 18-7   | 19-7   | 20-7     | 21-7   | 22-7 | 23-7   | 24-7   | 25-7   | 26-7   | 27-7 | 28-7   |
| SATU                   | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | õ          | õ       | ů<br>0 | ů      | Ő        | õ      | õ    | 0      | 0      | 0      | ů<br>0 | Ő    | Ő      |
|                        | 2000 ppm             | 0      | 0          | 0       | Ō      | Ō      | 0        | 0      | Ő    | 0<br>0 | ů      | Õ      | ů      | · Õ  | ů      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | Ő      |
| RIBUND SACRIFICE       | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | • 0     | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        |                      | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | . 0  | 0      |
| COMOTOR MOVEMENT DECR  | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
| DCOMOTOR MOVEMENT INCR | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | . 0    | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0<br>0  | 0<br>0 | 0<br>0 | 0        | 0<br>0 | 0    | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0    | 0<br>0 |
| NOUDACK DOCTATION      |                      |        | 0          | •       | 0      | 0      | <u>^</u> |        |      |        |        |        |        | -    | -      |
| JNCHBACK POSITION      | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | Toor hhm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | U          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
| NRALYTIC GAIT          | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
| DTATING                | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ррт             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
| DLLTNG                 | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
| LOT OF SPILLED FOOD    | Control              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0        | 0      | 0    | 0      | 0      | 0      | 0      | 0    | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| linical sign          | Group Name           |      | istration W |      |        |        |        |        |        |        |        |        |          |        |          |
|-----------------------|----------------------|------|-------------|------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|----------|
|                       |                      | 29-7 | 30-7        | 31-7 | 32-7   | 33-7   | 34-7   | 35-7   | 36-7   | 37-7   | 38-7   | 39-7   | 40-7     | 41-7   | 42-7     |
| 1711                  | 0 ( 1                | 0    |             |      |        |        |        |        |        |        |        |        |          | •      |          |
| EATH                  | Control              | 0    | 1           | 1    | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1        | 1      | 1        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 2000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1        | 1      | 1        |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
| RIBUND SACRIFICE      | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 2000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
| COMOTOR MOVEMENT DECR | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 2000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
| COMOTOR MOVEMENT INCR | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | Ó        | 0      | Ő        |
|                       | 2000 ppm             | 0    | i           | 1    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | Ō      | 0        | õ      | 0<br>0   |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
| CHBACK POSITION       | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 µµm              | 0    | 0           | Ō    | õ      | õ      | õ      | õ      | 0      | 0      | õ      | 0      | Õ        | õ      | Ő        |
|                       | 2000 ppm             | 0    | ů<br>0      | ů.   | Ő      | 0<br>0 | õ      | õ      | Õ      | õ      | õ      | õ      | Õ        | õ      | 0        |
|                       | 5000 ppm             | Ő    | 0           | 0    | õ      | Ő      | ő      | 0      | 0      | 0      | ů<br>0 | 0      | 0<br>0   | Ő      | Ů        |
| RALYTIC GAIT          | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | õ    | ů<br>0      | ů    | õ      | 0<br>0 | õ      | ŏ      | Ő      | Ő      | ů      | õ      | õ        | õ      | ŏ        |
|                       | 2000 ppm             | õ    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0      | 0      | 0        | 0      | ő        |
|                       | 5000 ppm             | ŏ    | 0           | Õ    | õ      | 0      | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
| TATING                | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |          | 0      | •        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | •      | 0        | 0      | 0        |
|                       | 2000 ppm<br>2000 ppm | 0    | 0           | 0    |        |        | 0      |        | -      | 0      | 0      | 0      |          | 0      | 0        |
|                       | 2000 ppm<br>5000 ppm | 0    | 0           | 0    | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0<br>0   | 0<br>0 | 0<br>0   |
| I TNV                 | ·                    | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | •      | 0      | 0      | <u>^</u> | 0      | <u>^</u> |
| LLING                 | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 2000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | . 0      | 0      | 0        |
| OT OF SPILLED FOOD    | Control              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 800 ppm              | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 2000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |
|                       | 5000 ppm             | 0    | 0           | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~

SEX : FEMALE

| linical sign            | Group Name | Admini | stration W | 'eek−day |        |      |        |      |      |        |        |      |        |      |      |
|-------------------------|------------|--------|------------|----------|--------|------|--------|------|------|--------|--------|------|--------|------|------|
|                         | -          | 43-7   | 44-7       | 45-7     | 46-7   | 47-7 | 48-7   | 49-7 | 50-7 | 51-7   | 52-7   | 53-7 | 54-7   | 55-7 | 56-7 |
|                         | 0          |        |            |          |        |      |        |      |      |        |        |      |        |      |      |
| EATH                    | Control    | 1      | 1          | 1        | 1      | 1    | 1      | 1    | 1    | 1      | 1      | 1    | 1      | 1    | 1    |
|                         | 800 ppm    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 1      | 1      | 1    | 1      | 1    | 1    |
|                         | 2000 ppm   | 1      | 1          | 1        | 1      | 1    | 1      | l    | 1    | 1      | 1      | 1    | 1      | 1    | 1    |
|                         | 5000 ppm   | 0      | 1          | 1        | 1      | 1    | 1      | 1    | 1    | 1      | 1      | 1    | 1      | 1    | 1    |
| RIBUND SACRIFICE        | Contro1    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 թթա    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
| COMOTOR MOVEMENT DECR   | Control    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ppm    | 0<br>0 | ů<br>0     | ő        | ů      | 0    | 0      | ő    | Ő    | 0      | 0      | 0    | 0      | 0    | Ő    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0<br>0 | 0          | 0        | 0      | 0    | 0      | õ    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
| CONSTOR HOURIDING THESE |            | •      | <u>^</u>   | <u>^</u> |        |      | •      |      | -    |        |        |      |        |      |      |
| COMOTOR MOVEMENT INCR   | Control    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ppm    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
| VCHBACK POSITION        | Control    | 0      | 0          | 0        | 0      | 0    | 0      | . 0  | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ມູນຫ   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | Ó      | 0    | 0      | 0    | Ō    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | ů<br>0 | 0    | Ō    |
|                         | 5000 ppm   | 0      | 0          | 0        | 0      | 0    | ů<br>0 | Ő    | 0    | 0      | ů<br>0 | ů    | Ő      | 0    | Ő    |
| RALYTIC GAIT            | Control    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ppm    | 0      | Ő          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    |        | 0    |      |
|                         | ••         | 0      | 0          | 0        | -      |      | -      |      | -    |        |        | -    | 0      | -    | 0    |
|                         | 2000 ppm   |        | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0      | U          | U        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
| TATING                  | Control    | 0      | 0          | 0        | 0      | . 0  | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ppm    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | . 0  | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
| LLING                   | Control    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 800 ppm    | 0      | 0          | 0        | õ      | 0    | 0      | ŏ    | õ    | 0<br>0 | ů      | Õ    | õ      | ů    | ő    |
|                         | 2000 ppm   | ů      | Ő          | Ő        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | Ő      | ŏ          | õ        | 0<br>0 | ů    | 0<br>0 | Ő    | Ő    | Ő      | 0      | 0    | 0<br>0 | 0    | 0    |
| LOT OF SPILLED FOOD     | Control    | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | ^    | ^      | ^    | ^    |
| LOI OF STILLED LOOD     | 800 ppm    |        | 0          |          |        |      |        |      |      |        |        | 0    | 0      | 0    | 0    |
|                         |            | 0      |            | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0.     | 0    | 0    |
|                         | 2000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |
|                         | 5000 ppm   | 0      | 0          | 0        | 0      | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0    | 0    |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign          | Group Name           | Admini | stration W | eek-day |        |        |        |        |        |      |        |        |         |      |        |
|------------------------|----------------------|--------|------------|---------|--------|--------|--------|--------|--------|------|--------|--------|---------|------|--------|
|                        |                      | 57-7   | 58-7       | 59-7    | 60-7   | 61-7   | 62-7   | 63-7   | 64-7   | 65-7 | 66-7   | ·67-7  | 68-7    | 69-7 | 70-7   |
| ATII                   | Control              | 1      | 1          | 1       | 1      | 1      | 1      | 1      | 1      | 1    | 2      | 2      | 2       | 2    | 2      |
| A1111                  | 800 ppm              | 1      | 1          | 1       | 1      | 1      | 1      | 1      | 1      | 1    | 1      | 1      | 2       | 2    | 2      |
|                        | 2000 ppm             | 1      | 1          | 1       | 1      | 1      | 1      | I I    | 1      | 1    | 1      | 2      | 2       | 2    | 3      |
| ,                      | 5000 ppm             | 1 -    | 1          | 1       | 1      | 2      | 2      | 2      | 2      | 2    | 2      | 3      | 3       | 4    | 4      |
| ODIDUND CACDIFICE      | Cauta 1              | 0      | 0          | 0       | 0      | 0      | ,<br>, | 0      | 0      | 0    | 0      | 0      | 0       | 0    | •      |
| ORIBUND SACRIFICE      | Control              | 0      | 0          | 0       | 0      | 0      | . 0    | 0      | 0      | 0    | 0      | 0      | •       | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 1    | 1      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0.     | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
| OCOMOTOR MOVEMENT DECR | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 2000 ррт             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
| DCOMOTOR MOVEMENT INCR | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 1      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | Ō      | Ő      | Ő    | 0      | 0      | 0       | õ    | ō      |
|                        | 2000 ppm             | 0      | 0          | 0<br>0  | Õ      | Õ      | Õ      | 0      | Ő      | Ő    | 0<br>0 | 0<br>0 | ŏ       | õ    | õ      |
|                        | 5000 ppm             | 0      | 0          | Ő       | Õ      | Ő      | ů.     | 0      | 0      | Õ    | ů<br>0 | ů      | õ       | õ    | ŏ      |
| UNCHBACK POSITION      | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 1      |
| ononimies rootrios     | 800 ppm              | 0<br>0 | 0<br>0     | 0       | Ő      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0<br>0  | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 1      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | oooo ppii            | Ū      | Ū          | , U     | I      | U      | U      | U      | 0      | 0    | U      | 0      | v       | Ū    | U      |
| ARALYTIC GAIT          | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 1      | 1      | 1    | 1      | 1      | 1       | 1    | 1      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
| DTATING                | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 800 ppm              | Õ      | õ          | õ       | ő      | Õ      | Õ      | ů<br>0 | , o    | Ő    | 0      | õ      | Õ       | õ    | ŏ      |
|                        | 2000 ppm             | Õ      | ŏ          | õ       | ŏ      | ů      | Ő      | ů      | 0<br>0 | Ő    | ů<br>0 | 0.     | Õ       | ŏ    | ů<br>0 |
|                        | 5000 ppm             | Ő      | õ          | 0       | Ő      | 0      | 0      | 0      | 0<br>0 | õ    | 0      | 0      | ŏ       | 0    | ŏ      |
| N I TMC                | Canter-1             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
| OLLING                 | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 800 ppm              | 0      |            | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0       | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0      | 0    | 0      | 0      | 0.<br>0 | 0    | 0<br>0 |
|                        | oooo ppm             | v      | 0          | Ū       | v      | v      | v      | v      | v      | v    | U I    | U      | v       | v    | U      |
| LOT OF SPILLED FOOD    | Control              | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |
|                        | 800 ppm              | 0      | 0          | 0       | 0      | 0      | 0      | 1      | 1      | 1    | 1      | 1      | 1       | 1    | 1      |
|                        | 2000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0 ·    |
|                        | 5000 ppm             | 0      | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0    | 0      | 0      | 0       | 0    | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

## SEX : FEMALE

PAGE : 30

| Clinical sign          | Group Name | Admini | stration W | eek-dav |      |      |      |      |      |      |      |      |      |      |      |
|------------------------|------------|--------|------------|---------|------|------|------|------|------|------|------|------|------|------|------|
|                        | -          | 71-7   | 727        | 73-7    | 74–7 | 75-7 | 76-7 | 77-7 | 78-7 | 79-7 | 80-7 | 81-7 | 82-7 | 83-7 | 84-7 |
|                        |            |        |            |         |      |      |      |      |      |      |      |      |      |      |      |
| EATH                   | Control    | 2      | 2          | 2       | 2    | 3    | 4    | 5    | 5    | 6    | 6    | 6    | 6    | 6    | 6    |
|                        | 800 ppm    | 3      | 3          | 3       | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 4    | 5    |
|                        | 2000 ppm   | 3      | 3          | 3       | 3    | 4    | 4    | 5    | 6    | 6    | 6    | 7    | 7    | 7    | 7    |
|                        | 5000 ppm   | 5      | 5          | 5       | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 7    |
| ORIBUND SACRIFICE      | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 1      | 1          | 1       | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OCOMOTOR MOVEMENT DECR | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OCOMOTOR MOVEMENT INCR | Control    | 1      | L          | . 1     | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | .0   | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| UNCHBACK POSITION      | Control    | 1      | 1          | 1       | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 րրտ   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | • 0  | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 թթա   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | . 0  | 0    | 0    | 0    | 0    | 0    | 0    |
| PARALYTIC GAIT         | Control    | 1      | 1          | 1       | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 1      | i          | 1       | -1   | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OTATING                | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| OLLING                 | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| LOT OF SPILLED FOOD    | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                        | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Ō    |

.

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] REPORT TYPE : A1 104

.

## SEX : FEMALE

| SATH<br>DRIBUND SACRIFICE<br>DCOMOTOR MOVEMENT DECR<br>DCOMOTOR MOVEMENT INCR |                     | 85-7 | stration W<br>86-7 |     | 88-7   | 89-7   | 90-7 | 91-7   | 92-7   | 93~7 | 94-7   | 95-7   | 96-7   | 97-7   | 98-7   |
|-------------------------------------------------------------------------------|---------------------|------|--------------------|-----|--------|--------|------|--------|--------|------|--------|--------|--------|--------|--------|
| DRIBUND SACRIFICE<br>DCOMOTOR MOVEMENT DECR                                   |                     |      |                    |     |        |        |      |        |        |      |        |        |        |        |        |
| RIBUND SACRIFICE<br>COMOTOR MOVEMENT DECR                                     |                     |      |                    | -   |        | -      | -    | -      |        | 0    | 0      |        |        |        | 10     |
| DCOMOTOR MOVEMENT DECR                                                        | Control             | 6    | 6                  | 7   | 7      | 7      | 7    | 7      | 8      | 8    | 8      | 8      | 9      | 11     | 12     |
| DCOMOTOR MOVEMENT DECR                                                        | 800 ppm             | 6    | 6                  | 7   | 8      | 9      | 10   | 11     | 13     | 13   | 15     | 15     | 15     | 15     | 16     |
| DCOMOTOR MOVEMENT DECR                                                        | 2000 ppm            | 10   | 10                 | 10  | 10     | 10     | 10   | 12     | . 13   | 14   | 14     | 15     | 16     | 16     | 16     |
| DCOMOTOR MOVEMENT DECR                                                        | 5000 ppm            | 9    | 10                 | 10  | 11     | 11     | 11   | 13     | 14     | 15   | 15     | 15     | 16     | 16     | 18     |
|                                                                               | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 800 ppm             | 1    | 1                  | 1   | 1      | 1      | 1    | 1      | 1      | 1    | 1      | 1      | 1      | 1      | 1      |
|                                                                               | 2000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 5000 ppm            | 0    | 0                  | 0   | 1      | 2      | 2    | 2      | 2      | 2    | 2      | 2      | 2      | 2      | 2      |
| COMOTOR MOVEMENT INCR                                                         | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| DCOMOTOR MOVEMENT INCR                                                        | 800 ppm             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| COMOTOR MOVEMENT INCR                                                         | 2000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| COMOTOR MOVEMENT INCR                                                         | 5000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 800 ppm             | 0    | 0                  | . 0 | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 2000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 5000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| INCHBACK POSITION                                                             | Control             | 0    | 0                  | 0 - | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 1      | 1      | 1      | 0      |
|                                                                               | 800 ppm             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 2000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 5000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| RALYTIC GAIT                                                                  | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 800 ppm             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 2000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | Ō      | 0      | Ō    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 5000 ppm            | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| TATING                                                                        | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | . 0    |
|                                                                               | 800 ppm             | Ó    | Ó                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0<br>0 | Ō      | Ō      |
|                                                                               | 2000 ppm            | 0    | 0                  | 0   | Ő      | 0      | 0    | õ      | ŏ      | õ    | õ      | 0<br>0 | ů<br>0 | 0      | ŏ      |
|                                                                               | 5000 ppm            | 0    | 0                  | 0   | Ō      | Ō      | 0    | Ō      | Ő      | õ    | õ      | õ      | õ      | Ő      | Ő      |
| PLLING                                                                        | Control             | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               | 800 ppm             | Ő    | 0<br>0             | 0   | õ      | Õ      | Ő    | 0      | ů      | 0    | õ      | 0<br>0 | ő      | Ő      | ŏ      |
|                                                                               | 2000 ppm            | 0    | Ő                  | 0   | 0      | 0      | . 0  | 0      | 0      | 0    | 0<br>0 | 0      | 0      | 0      | ő      |
|                                                                               | 5000 ppm            | 0    | ů .                | 0   | 0      | 0      | 0    | õ      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
| LOT OF SPILLED FOOD                                                           | C 4 1               | 0    | 0                  | 0   | 0      | 0      | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      | 0      |
|                                                                               |                     |      |                    |     | v      | v      | v    | ~      | v      | 0    | v      | 0      | v      | v      | v      |
|                                                                               | Control<br>800 ppm  |      |                    |     | n      | 0      | Δ.   | Λ      | Λ      | 0    | Δ      | 0      | 0      | 0      | 0      |
|                                                                               | 800 ppm<br>2000 ppm | 0    | 0                  | 0   | 0<br>0 | 0<br>0 | 0    | 0<br>0 | 0<br>0 | 0    | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |

.

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

## SEX : FEMALE

| Clinical sign          | Group Name | Admini | stration | ∦eek-dav |       |        |        |  |
|------------------------|------------|--------|----------|----------|-------|--------|--------|--|
|                        |            | 99-7   | 100-7    | 101-7    | 102-7 | 103-7  | 104-7  |  |
|                        |            |        |          |          |       |        |        |  |
| EATH                   | Control    | 12     | 12       | 12       | 13    | 14     | 14     |  |
|                        | 800 ppm    | 16     | 16       | 17       | 17    | 19     | 20     |  |
|                        | 2000 ppm   | 18     | 20       | 21       | 24    | 26     | 27     |  |
|                        | 5000 ppm   | 18     | 19       | 20       | 21    | 22     | 23     |  |
| ORIBUND SACRIFICE      | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 1      | 1        | 1        | 1     | 1      | 1      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 2      | 2        | 2        | 3     | 3      | 3      |  |
| COMOTOR MOVEMENT DECR  | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
| OCOMOTOR MOVEMENT INCR | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
| INCHBACK POSITION      | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
| ARALYTIC GAIT          | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | Ō     | 0      | 0      |  |
|                        | 2000 ppm   | Ō      | 0        | 0        | õ     | ŏ      | ů      |  |
|                        | 5000 ppm   | õ      | ů        | Ő        | Õ     | 0<br>0 | ů<br>0 |  |
|                        | ,          |        |          |          |       |        |        |  |
| DTATING                | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
| DLLING                 | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 2000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 5000 ppm   | 0      | 0        | 0        | 0     | 0      | 0      |  |
| LOT OF SPILLED FOOD    | Control    | 0      | 0        | 0        | 0     | 0      | 0      |  |
|                        | 800 ppm    | Ō      | Ō        | 0        | õ     | Ő      | õ      |  |
|                        | 2000 ppm   | õ      | ů<br>0   | 0        | õ     | ů      | Ő      |  |
|                        | 5000 ppm   | ŏ      | Ő        | õ        | õ     | õ      | õ      |  |

## CLINICAL OBSERVATION (SUMMARY) , ALL ANIMALS

## SEX FEMALE

| Clinical sign        | Group Name | Admini | stration We | eek-day |     |        |        |        |        |        |      |      |        |        |        |
|----------------------|------------|--------|-------------|---------|-----|--------|--------|--------|--------|--------|------|------|--------|--------|--------|
|                      |            | 1-7    | 27          | 3-7     | 4-7 | 5-7    | 6-7    | 7–7    | 8-7    | 9-7    | 10-7 | 11-7 | 12-7   | 13-7   | 14-7   |
|                      |            |        |             |         |     |        |        |        |        |        |      |      |        |        |        |
| )ILED                | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
| LOERECTION           | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | 0      | 0           | 0       | .0  | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
| ROG BELLY            | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
| DILED PERI-GENITALIA | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | Õ      | 0<br>0      | õ       | Õ   | Õ      | ů<br>0 | ů      | ů<br>0 | 0<br>0 | õ    | Ő    | Ő      | 0<br>0 | Ō      |
|                      | 5000 ppm   | õ      | Ő           | Ő       | 0   | 0      | 0      | 0<br>Q | 0<br>0 | 0      | õ    | 0    | õ      | õ      | 0<br>0 |
| XOPHTHALMOS          | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | ů      | ů<br>0      | õ       | Ő   | Ő      | õ      | õ      | õ      | 0      | õ    | õ    | ů      | õ      | õ      |
|                      | 2000 ppm   | 0<br>0 | 0           | 0       | 0   | 0      | 0      | Ö      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | õ    | 0    | 0      | 0      | 0      |
|                      | oooo ppm   |        | 0           | Ū       | 0   | 0      | Ũ      | Ũ      | Ū      | Ū      | Ŭ    | Ū    | Ū      | Ŭ      | Ū      |
| JM                   | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | Ο.     |
|                      | 800 ppm    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | . 0    | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
| (TERNAL MASS         | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 2000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
| NTERNAL MASS         | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | Õ      | 0           | 0       | Ō   | Ō      | 0      | 0      | 0      | ō      | 0    | 0    | Ő      | Ő      | Ő      |
|                      | 2000 ppm   | ů      | 0           | 0       | Ő   | 0<br>0 | 0      | 0      | 0      | 0      | 0    | õ    | 0<br>0 | ů      | ő      |
|                      | 5000 ppm   | õ      | Ő           | 0       | õ   | 0      | 0      | 0      | 0      | õ      | 0    | 0    | 0      | 0      | 0      |
| NECK                 | Control    | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 800 ppm    | õ      | Ő           | 0       | õ   | õ      | 0      | õ      | 0<br>0 | õ      | õ    | Ő    | ő      | õ      | õ      |
|                      | 2000 ppm   | õ      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | õ      | . 0  | 0    | 0      | 0      | 0      |
|                      |            | 0      | 0           | 0       | 0   | 0      | 0      | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0      |
|                      | 5000 ppm   | U      | v           | U       | U   | U      | U      | U      | U      | U      | Ų    | U    | v      | U      | U      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

## SEX FEMALE

PAGE: 34

| Clinical sign        | Group Name |        | istration W |      |     |        |        |        |      |        |        |        |      |      |     |
|----------------------|------------|--------|-------------|------|-----|--------|--------|--------|------|--------|--------|--------|------|------|-----|
|                      |            | 15-7   | 16-7        | 17-7 | 187 | 19-7   | 20-7   | 21-7   | 22-7 | 23-7   | 24-7   | 25-7   | 26-7 | 27-7 | 287 |
|                      |            | _      |             | _    |     | _      |        |        |      |        |        |        |      |      |     |
| OILED                | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| ILOERECTION          | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 2000 ррт   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | 0    | 0   | 0      | . 0    | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| ROG BELLY            | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| OILED PERI-GENITALIA | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | Õ      | ů<br>0      | õ    | 0   | Ő      | ŏ      | ŏ      | ů    | Ő      | õ      | õ      | Ő    | õ    | ŏ   |
|                      | 2000 ppm   | Õ      | ů           | õ    | ů   | ů      | õ      | õ      | Õ    | ů<br>0 | ů<br>0 | õ      | Ő    | Õ    | õ   |
|                      | 5000 ppm   | Ō      | 0           | Õ    | ů   | Ő      | Õ      | õ      | 0    | 0      | 0      | 0<br>0 | 0    | 0    | ŏ   |
| XOPHTHALMOS          | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| AGI ITTREMOD         | 800 ppm    | õ      | 0           | õ    | 0   | ŏ      | . 0    | ŏ      | 0    | 0      | 0      | 0      | 0    | 0    | õ   |
|                      | 2000 ppm   | õ      | 0           | õ    | 0   | 0<br>0 | Ő      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | õ    | 0   | 0      | 0<br>0 | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| UM                   | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| UM                   | Control    | 0      | 0           | 0    | 0   | 0,     | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    |        |             |      | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | . 0  | 0    | 0   |
|                      | 2000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | -0   | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| ATERNAL MASS         | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
| NTERNAL MASS         | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | Ō      | 0    | 0      | 0      | 0      | 0    | 0    | Ő   |
|                      | 5000 ppm   | 0      | 0           | 0    | õ   | Ő      | Ō      | Ō      | 0    | õ      | õ      | õ      | Ő    | õ    | õ   |
| . NECK               | Control    | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | õ      | 0           | 0    | 0   | 0<br>0 | ŏ      | 0<br>0 | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      | . 2000 ppm | 0<br>0 | 0           | 0    | 0   | 0      | ŏ      | 0      | 0    | · 0    | 0      | 0      | 0    | 0    | 0   |
|                      |            |        |             |      |     |        |        |        |      |        |        |        |      |      |     |
|                      | 5000 ppm   | 0      | 0           | 0    | 0   | 0      | 0      | 0      | 0    | 0      | 0      | 0      | 0    | 0    | 0   |
|                      |            |        |             |      |     |        |        |        |      |        |        |        |      |      |     |

(HAN190)

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign       | Group Name | Admini | stration W | eek-day |        |        |        |      |      |        |        |      |        |        |      |
|---------------------|------------|--------|------------|---------|--------|--------|--------|------|------|--------|--------|------|--------|--------|------|
|                     |            | 29-7   | 30-7       | 31-7    | 32-7   | 33-7   | 34-7   | 35-7 | 36-7 | 37-7   | 38-7   | 39-7 | 40-7   | 41-7   | 42-7 |
|                     |            |        |            |         |        |        |        |      |      |        |        |      |        |        |      |
| DILED               | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 2000 ррт   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0.   |
| LOERECTION          | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | . 0  |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 2000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | . 0    | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
| OG BELLY            | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 2000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
| ILED PERI-GENITALIA | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | . 0  | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 2000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | Ó    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
| OPIITIIALMOS        | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | Ō    | 0    | 0      | Õ      | Ō    | ō      | Õ      | Ő    |
|                     | 2000 ppm   | 0      | 0          | 0       | Ő      | 0      | 0<br>0 | õ    | Ő    | 0      | ů ·    | Ő    | Ő      | õ      | ů    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | Ő      | 0      | 0    |
| M                   | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | Ö          | 0       | Ō      | Õ      | Õ      | ŏ    | õ    | ů      | õ      | Õ    | Ő      | 0<br>0 | ŏ    |
|                     | 2000 ppm   | 0      | Ő          | õ       | ů<br>0 | Õ      | ů<br>0 | õ    | Ő    | ů      | õ      | õ    | ů<br>0 | 0      | ŏ    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0<br>0 | ů      | Õ    | õ    | ů<br>0 | õ      | õ    | õ      | 0      | Ő    |
| TERNAL MASS         | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | Ō      | ů          | ŏ       | Ő      | Ő      | ů.     | ő    | Ő    | Ő      | 0<br>0 | õ    | ů<br>0 | 0      | Ő    |
|                     | 2000 ppm   | 0<br>0 | 0          | õ       | 0      | 0      | Ő      | ŏ    | 0    | 0      | 0      | 0    | ů<br>0 | 0      | ŏ    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | Ő    | 0    | 0      | 0      | 0    | õ      | 0      | 0    |
| TERNAL MASS         | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 2000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | . 0  | 0      | 1      | 1    |
| NECK                | Control    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    | 0      | 0      | . 0  | 0      | 0      | 0    |
|                     | 800 ppm    | 0      | 0          | 0       | 0      | 0      | 0      | 0    | 0    |        |        |      |        |        |      |
|                     | 2000 ppm   | 0      | 0          | 0       |        |        | -      | -    |      | 0      | 0      | 0    | 0      | 0      | 0    |
|                     |            | ů<br>Ú | 0          | 0       | 0      | 0<br>0 | 0<br>0 | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |
|                     | 5000 ppm   | U      | U          | U       | U      | U      | U      | U    | 0    | 0      | 0      | 0    | 0      | 0      | 0    |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 36

| Clinical sign        | Group Name | Admini | stration W | eek-dav |      |      |      |      |      |      |      |        |      |      |     |
|----------------------|------------|--------|------------|---------|------|------|------|------|------|------|------|--------|------|------|-----|
| inniour orga         |            | 43-7   | 44-7       | 45-7    | 46-7 | 47-7 | 48-7 | 49-7 | 50-7 | 51-7 | 52-7 | 53-7   | 54-7 | 55-7 | 567 |
|                      |            |        |            |         |      |      |      |      |      |      |      |        |      |      |     |
| OILED                | Control    | 0      | 0          | . 0     | 0    | 0    | 0    | 0    | . 0  | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | ů      | Õ          | Ö       | õ    | 0    | 0    | 0    | 0    | 0    | 0    | 0<br>0 | 0    | 0    | ŏ   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    |      | 0    | 0      |      |      |     |
|                      |            |        |            |         |      |      |      |      |      | 0    |      |        | 0    | 0    | 0   |
|                      | 5000 ррт   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| ILOERECTION          | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| ROG BELLY            | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | Ő      | ů          | 0       | 0    | 0    | 0    | Ő    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      |      |      | -   |
|                      |            | 0      | 0          | 0       | 0    | 0    | 0    | 0    |      |      |      |        | 0    | 0    | 0   |
|                      | 5000 ppm   | U      | U          | U       | U    | U    | U    | U    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| OILED PERI-GENITALIA | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| XOPIITIIALMOS        | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | Ő    | õ    | ō      | õ    | ŏ    | ů.  |
|                      | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | õ    | 0    | Ő    | õ    | Ő    | ŏ      | Ő    | ŏ    | 0   |
| UM                   | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| OM .                 |            |        |            | -       |      | 0    |      | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0 .        | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| XTERNAL MASS         | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | . 0    | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| NTERNAL MASS         | Control    | 0      | 0          | Ó       | 0    | 0    | 0    | 0    | 0    | 0    | · 0  | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | ŏ      | 0          | 0       | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0      | 0    |      |     |
|                      | 2000 ppm   | 0      | 0          | 0       |      |      |      |      |      |      |      |        |      | 0    | 0   |
|                      |            |        |            | -       | 0    | 0.   | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 1      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
| NECK                 | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 2000 ppm   | 0      | 0          | 0       | .0   | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |
|                      | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | . 0  | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0   |

BAIS 4

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

## SEX : FEMALE

PAGE : 37

| OILED                |          | 57-7   | stration W<br>58-7 | 59-7 | 60-7 | 61-7 | 62-7     | 63-7 | 64-7 | 65-7   | 66-7 | 67-7   | 68-7 | 69-7 | 70 7 |
|----------------------|----------|--------|--------------------|------|------|------|----------|------|------|--------|------|--------|------|------|------|
| DILED                |          |        |                    |      | ~~ · | 01 7 | 02-1     | 03-1 | 1 10 | 00 1   | 00 7 | 017    | 00 1 | 00 1 | 70-7 |
| 21000                | Control  | 0      | 0                  | 0    | . 0  | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 1    |
|                      | 800 ppm  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | . 0      | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | . 0  | 0      | 0    | 0    | ŏ    |
| TLAPPPONTAN          |          | 0      | 0                  | •    | 0    | 0    | <u>^</u> | 0    | •    |        |      |        |      |      |      |
| ILOERECTION          | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 1      | 1    | 1      | 1    | • 1  | 1    |
|                      | 800 ppm  | 0      | 0                  | 0    | 1    | 1    | 1        | 1    | 1    | 1      | 1    | 1      | 2    | 1    | 1    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| ROG BELLY            | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 800 ppm  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | · 0  | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0.   | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| DILED PERI-GENITALIA | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 1      | 1    | 1      | 1    | 1    | 1    |
|                      | 800 ppm  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| OPHTHALMOS           | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 800 ppm  | Ō      | 0                  | 0    | õ    | Ő    | 0        | Õ    | õ    | Ő      | õ    | ů<br>0 | õ    | õ    | ŏ    |
|                      | 2000 ppm | 0      | 0                  | 0    | Ő    | Ő    | 0        | 0    | . 0  | 0<br>0 | õ    | 0<br>0 | ŏ    | Ő    | õ    |
|                      | 5000 ppm | 0      | 0                  | 0    | Ő    | Ŭ ·  | 0        | ů    | õ    | ŏ      | õ    | ů      | õ    | ů    | ŏ    |
| IM                   | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| -1371                | 800 ppm  | 0      | 0                  | 0    | 0    | . 0  |          | 0    | 0    | 0      | 0    | 1      |      |      | 0    |
|                      | ••       |        |                    |      |      |      | 0        | -    | -    | -      | -    | -      | 1    | 1    | 1    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | .0   | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| (TERNAL MASS         | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 800 ppm  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 2000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
| ITERNAL MASS         | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 1      | 1    | 2      | 2    | 2    | 2    |
|                      | 800 ppm  | 0      | 0                  | 1    | 1    | 1    | 1        | 1    | 1    | 2      | 2    | 2      | 2    | 2    | 2    |
|                      | 2000 ppm | 0      | 0                  | 0    | ī    | 2    | 2        | 2    | 3    | 3      | 3    | 2      | 2    | 2    | 1    |
|                      | 5000 ppm | 0      | 0                  | 0    | ī    | 0    | 0        | 0    | Ő    | Ő      | ĩ    | 1      | 1    | Ō    | Ō    |
| NECK                 | Control  | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 800 ppm  | 0<br>0 | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |
|                      | 2000 ppm | 0      | · 0                | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | - 0  |
|                      | 5000 ppm | 0      | 0                  | 0    | 0    | 0    | 0        | 0    | 0    | 0      | 0    | 0      | 0    | 0    | 0    |

,

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 38

| Clinical sign       | Group Name           | Admini | stration W | eek−dav |      |        |          |        |      |      |      |      |        |        |      |
|---------------------|----------------------|--------|------------|---------|------|--------|----------|--------|------|------|------|------|--------|--------|------|
|                     |                      | 71-7   | 72-7       | 73-7    | 74-7 | 75-7   | 76-7     | 77-7   | 78–7 | 79-7 | 80-7 | 81-7 | 82-7   | 83-7   | 84-7 |
| ILED                | Control              | 1      | 1          | 1       | 1    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | ŏ      | 0      | 0    |
|                     | 2000 ppm             | õ      | ů<br>0     | 0       | Õ    | 0      | 0<br>0   | õ      | 0    | ŏ    | ŏ    | 0    | õ      | Ő      | 0    |
|                     | 5000 ppm             | ů      | Õ          | Ő       | õ    | õ      | õ        | Ő      | Õ    | Ő    | õ    | Ő    | Ő      | Ő      | Ŏ    |
| LOERECTION          | Control              | 1      | 1          | 1       | 1    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 1    | 1    | 0    | 0      | 0      | 0    |
|                     | 5000 ppm.            | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0 .  | 0      | 0      | 3    |
| OG BELLY            | Control              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 2000 ppm<br>5000 ppm | 0<br>0 | 0          | 0<br>0  | 0    | 0<br>0 | . O<br>O | 0<br>0 | 0    | 0    | 0    | 0    | 0<br>0 | 0<br>0 | 0    |
|                     | 5000 ppm             | U      | U          | U       | U    | U      | U        | U      | U    | 0    | U    | U    | U      | U      | 0    |
| ILED PERI-GENITALIA | Control              | 1      | 1          | 1       | 1    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 5000 ppm             | 0      | - <b>O</b> | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
| OPIITHALMOS         | Control              | · 0    | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | mqq 008              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 1      | 1    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0.     | 0      | 0    |
|                     | 5000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
| IM                  | Control              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 1      | 1          | 1       | 1    | 1      | 1        | 1      | 1    | 1    | 1    | 1    | 1      | 1      | 1    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 5000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
| TERNAL MASS         | Control              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 1    | 1    | 1    | 1      | 1      | 1    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | . 0    | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 5000 ppm             | 0      | L          | 1       | 1    | 1 .    | 1        | 0      | 0    | 0    | 1    | 1    | 1      | 1      | 0    |
| TERNAL MASS         | Control              | 2      | 2          | 2       | 2    | 2      | 1        | 1      | 1    | 1    | 1    | 1    | 1      | 1      | 1    |
|                     | 800 ppm              | 1      | 1          | 1       | 1    | 1      | 1        | 1      | 1    | 1    | . 1  | 1    | 3      | 1      | 2    |
|                     | 2000 ppm             | 1      | 2          | 3       | 3    | 2      | 2        | 3      | 3    | 2    | 2    | 2    | 3      | 3      | 5    |
|                     | 5000 ppm             | 0      | 1          | 2       | 3    | 3      | 3        | 4      | 4    | 5    | 5    | 6    | 8      | 9      | 8    |
| NECK                | Control              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 800 ppm              | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 2000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 0      | 0      | 0    |
|                     | 5000 ppm             | 0      | 0          | 0       | 0    | 0      | 0        | 0      | 0    | 0    | 0    | 0    | 1      | 1      | 0    |

(HAN190)

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| linical sign        | Group Name           | Admini | stration W | eek-dav |        |          |          |        |        |        |        |         |        |        |               |
|---------------------|----------------------|--------|------------|---------|--------|----------|----------|--------|--------|--------|--------|---------|--------|--------|---------------|
|                     | •<br>                | 85-7   | 86-7       | 87-7    | 88-7   | 89-7     | 90-7     | 91-7   | 92-7   | 93-7   | 94-7   | 95-7    | 96-7   | 97-7   | 98-7          |
| ILED                | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
| 1000                | 800 ppm              | Ő      | 0          | 0       | Ő      | 0        | 1        | t      | 1      | 1      | 0<br>0 | 0       | Ő      | 0      | 0             |
|                     | 2000 ppm             | õ      | ů          | õ       | õ      | 0        | Ô        | ò      | 0      | Ô      | ĩ      | Ő       | õ      | 0      | õ             |
|                     | 5000 ppm             | 0      | ŏ          | Õ       | õ      | õ        | Õ .      | õ      | ő      | ő      | Ô      | 0       | õ      | ő      | Ő             |
| LOERECTION          | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 0      | 0          | 0       | 0      | 2        | 2        | 2      | 1      | 1      | 1      | 1       | 1      | 1      | 0             |
|                     | 2000 ppm             | 0      | 0          | 0       | 0      | 1        | 1        | 1      | 1      | 1      | i      | 1       | 2      | 2      | 3             |
|                     | 5000 ppm             | 2      | 1          | 1       | 1      | i .      | 1        | 1      | 1      | 1      | 0      | 0       | 0      | 0      | 0             |
| IG BELLY            | Control              | 0      | 0          | 0       | 0      | 0        | . 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 2000 ppm             | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 5000 ppm             | 0      | 0          | 0       | 0      | 0        | . 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
| ILED PERI-GENITALIA | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0<br>0  | 0<br>0 | 0 ·<br>0 | · 1<br>1 | 0<br>1 | 0<br>1 | 0      | 0<br>0 | 0<br>0  | 0<br>0 | 0<br>0 | 0<br>0        |
| OPHTHALMOS          | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 1      | ľ          | 1       | 1      | i        | Î        | 1      | ĩ      | 1      | Î      | ĩ       | ĩ      | ĩ      | ĩ             |
|                     | 2000 ppm             | 0      | 0          | Ō       | 0      | Ō        | 0        | Ō      | Ō      | ō      | Ô      | 0       | Ô      | 0      | · 0           |
|                     | 5000 ppm             | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | Ō      | 0       | 0      | Ő      | 0             |
| M                   | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 1      | 1          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 2000 ppm             | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
|                     | 5000 ppm             | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0       | 0      | 0      | 0             |
| FERNAL MASS         | Control              | 1      | 1          | 1       | 1      | 1        | 1        | 1      | 1      | 1      | 1      | 2       | 2      | 1      | 1             |
|                     | 800 ppm              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 1      | 1      | 0      | 1       | 1      | 2      | 2             |
|                     | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0     | 0<br>0  | 0<br>0 | 0<br>0   | 0<br>0   | 0<br>0 | 0<br>0 | 0<br>1 | 0<br>1 | 0<br>2  | 0<br>2 | 1<br>1 | 1<br>1        |
| FERNAL MASS         | Control              | 2      | 2          | 3       | 3      | 3        | 3        | 3      | 3      | 3      | 3      | 4       | 3      | 4      | 1             |
| TIMUMU IIMUU        | 800 ppm              | 2      | 23         | 3       | 2      | 3        | 3        | 3      | 3<br>3 | 3<br>1 | 3<br>4 | 4<br>4  | 3<br>4 | 4<br>2 | $\frac{4}{2}$ |
|                     | 2000 ppm             | 3      | 3          | 3       | 3      | 3<br>4   | з<br>5   | 5<br>6 | 9<br>9 | 4      | 4      | 4<br>10 | 10     | 11     | 11            |
|                     | 5000 ppm             | 7      | 3<br>7     | 7       | 5      | 6        | 6        | 6      | 9<br>6 | 5      | 5      | 5       | 5      | 6      | 6             |
| VECK                | Control              | 0      | 0          | 0       | 0      | 0        | 0        | 0      | 0      | 0      | . 0    | 0       | 0      | 0      | 0             |
|                     | 800 ppm              | 0      | 0          | 0       | Ō      | Ő        | 0        | 0<br>0 | 0      | Ō      | 0      | Ő       | Ő      | Ő      | ŏ             |
|                     | 2000 ppm             | 0      | 0          | 0       | Ō      | 0        | 0        | 0      | 0      | Õ      | 0<br>0 | 0<br>0  | 0<br>0 | 1      | ĩ             |
|                     | 5000 ppm             | 0      | 0          | · 0     | 0<br>0 | 0<br>0   | 0        | 0<br>0 | Õ      | Õ      | Õ      | 0<br>0  | Ő      | Ô      | Ō             |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| Clinical sign        | Group Name | Admini | stration | Week-day _ |       |       |       |  |   |  |
|----------------------|------------|--------|----------|------------|-------|-------|-------|--|---|--|
|                      |            | 99-7   | 100-7    | 101-7      | 102-7 | 103-7 | 104–7 |  |   |  |
|                      |            |        |          |            |       |       |       |  |   |  |
| OILED                | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 2000 ppm   | . 0    | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 5000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
| ILOERECTION          | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 2000 ppm   | 4      | 3        | 3          | 1     | 0     | 0     |  |   |  |
|                      | 5000 ppm   | .1     | 0        | 0          | 0     | 0     | 0     |  |   |  |
| ROG BELLY            | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 1          | 1     | 0     | 0     |  |   |  |
|                      | 2000 ррт   | 0      | 0        | 2          | 2     | 1     | 0     |  |   |  |
|                      | 5000 ррт   | 0      | 0        | 3          | 2     | 2     | 2     |  | · |  |
| OILED PERI-GENITALIA | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 2000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 5000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
| XOPHTHALMOS          | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 1      | L        | 1          | 1     | 1     | 1     |  |   |  |
|                      | 2000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 5000 թթա   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
| UM                   | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 0 ·        | 0     | 0     | 0     |  |   |  |
|                      | 2000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 5000 ppm   | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
| XTERNAL MASS         | Control    | 1      | 1        | 1          | 1     | 1     | 1     |  |   |  |
|                      | 800 ppm    | 2      | 2        | 2          | 2     | 2     | 1     |  |   |  |
|                      | 2000 ppm   | 1      | 1        | 1          | 1     | 0     | 1     |  |   |  |
|                      | 5000 ppm   | 2      | 2        | 1          | 1     | 0     | 1     |  |   |  |
| VTERNAL MASS         | Control    | 5      | 5        | 5          | 6     | 7     | 7     |  |   |  |
|                      | 800 ppm    | 3      | 3        | 2          | 3     | 4     | 4     |  |   |  |
|                      | 2000 ppm   | 9      | 7        | 7          | 8     | 6     | 5     |  |   |  |
|                      | 5000 ppm   | 7      | 7        | 6          | 4     | 5     | 4     |  |   |  |
| NECK                 | Control    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 800 ppm    | 0      | 0        | 0          | 0     | 0     | 0     |  |   |  |
|                      | 2000 ppm   | 1      | L        | 1          | 1     | 0     | 0     |  |   |  |
|                      | 5000 ppm   | · 1    | 1        | 0          | 0     | 0     | 0     |  |   |  |

## SEX : FEMALE

PAGE: 41

| linical sign     | Group Name           | Admini | stration We | eek-day |        |        |        |        |        |        |        |        |        |        |        |
|------------------|----------------------|--------|-------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                  |                      | 1-7    | 2-7         | 3-7     | 4-7    | 5-7    | 6-7    | 7-7    | 8-7    | 9–7    | 10-7   | 11-7   | 12-7   | 13-7   | 14-7   |
| . BREAST         | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| DIGINOI          | 800 ppm              | 0      | 0           | 0       | 0      | 0      | Ő      | 0      | õ      | 0      | 0<br>0 | Ő      | 0      | Ő      | ŏ      |
|                  | 2000 ppm             | Ő      | Ů           | 0<br>0  | õ      | 0      | ŏ      | 0      | Ő      | 0      | ů<br>0 | Õ      | ŏ      | Ő      | ŏ      |
|                  | 5000 ppm             | 0      | ů           | õ       | õ      | õ      | ů<br>0 | õ      | õ      | õ      | õ      | õ      | õ      | 0      | Ő      |
| ABDOMEN          | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| NTERIOR. DORSUM  | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| POSTERIOR DORSUM | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm<br>5000 ppm | 0<br>0 | 0<br>0      | 0<br>0  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| HINDLIMB         | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0.          | 0       | 0      | 0      | 0      | 0      | - O    | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0           | 0       | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| GENITALIA        | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | Õ      | 0      | 0<br>0 | 0      | Ő      | õ      | Ő      | õ      | õ      | Õ      | ŏ      |
|                  | 2000 ppm             | 0      | 0           | 0       | Ō      | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0      | 0      | 0      | õ      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | · O    |
| TAIL             | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | Ő      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| EMA              | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0.     |
| MIA              | Control              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | · 2000 ppm           | 0      | 0           | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0           | . 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

BAIS 4

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

| linical sign     | Group Name | Admini | stration W | eek-dav |      |      |      |      |      |      |      |      |      |     |      |
|------------------|------------|--------|------------|---------|------|------|------|------|------|------|------|------|------|-----|------|
|                  |            | 15-7   | 16-7       | 17-7    | 18-7 | 19-7 | 20-7 | 21-7 | 22-7 | 23-7 | 24-7 | 25-7 | 26-7 | 277 | 28-7 |
|                  |            |        |            |         |      |      |      |      |      |      |      |      |      |     |      |
| BREAST           | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| ABDOMEN          | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | . 0  | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0 ·  | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| ANTERIOR. DORSUM | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| POSTERIOR DORSUM | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | . 0  | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| HINDLIMB         | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | · 0  | 0   | 0    |
|                  | MQQ 008    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 թթա   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| GENITALIA        | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| TAIL             | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0.   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| EMA              | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
| EMIA .           | Control    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 800 ppm    | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 2000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |
|                  | 5000 ppm   | 0      | 0          | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

.

| linical sign     | Group Name           | Admini | stration W | leek-day |        |          |          |      |          |        |        |        |        |        |        |
|------------------|----------------------|--------|------------|----------|--------|----------|----------|------|----------|--------|--------|--------|--------|--------|--------|
|                  |                      | 29-7   | 30-7       | 31-7     | 32-7   | 33-7     | 34-7     | 35-7 | 36-7     | 37-7   | 38-7   | 39-7   | 40-7   | 41-7   | 42-7   |
| BREAST           | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| DIGNOT           | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | . 0    |
|                  | ••                   | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | U      | U          | U        | U      | U        | U        | U    | U        | U      | U      | U      | U      | U      | U      |
| ABDOMEN          | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | . 0    |
|                  | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| ANTERIOR. DORSUM | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| POSTERIOR DORSUM | Control              | 0      | 0          | 0        | 0      | 0        | 0.       | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | Ō      | Ō      | 0      | 0<br>0 | Ō      | 0      |
|                  | 2000 ppm             | õ      | ů          | ů<br>0   | ů      | Õ        | Õ        | ů    | Õ        | Ő      | ő      | õ      | ů      | ů      | ů      |
|                  | 5000 ppm             | õ      | ů          | Ő        | ő      | 0        | 0        | Õ    | Ő        | 0      | 0      | 0      | õ      | ŏ      | 0<br>0 |
| IINDLIMB         | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | õ      | ů          | 0<br>0   | ů      | 0<br>0   | õ        | õ    | 0        | Ő      | ů<br>0 | 0      | ů<br>0 | õ      | ŏ      |
|                  | 2000 ppm             | õ      | 0          | Ő        | 0      | 0        | 0        | • 0  | 0        | 0      | 0      | 0      | ů<br>0 | 0      | 0      |
|                  | 5000 ppm             | 0      | . 0        | Ő        | 0<br>0 | 0        | 0        | 0    | 0        | 0      | 0      | 0      | õ      | 0      | 0      |
| GENITALIA        | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| OBITIMETA        | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | · 2000 ppm           | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      |        |
|                  | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0<br>0 |
| TAIL             | Contral              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| INIL             | Control<br>800 ppm   | 0      | 0          | 0        | 0      | 0        | . 0      | 0    |          |        |        | 0      | 0      | 0      | 0      |
|                  |                      | 0      | 0          | 0        | 0      | 0        |          | -    | 0        | 0      | 0      |        | -      | 0      | 0      |
|                  | 2000 ppm<br>5000 ppm | 0      | 0          | 0        | 0<br>0 | 0        | 0<br>0 · | 0    | 0<br>0   | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| 214.4            |                      | ~      | ~          | ~        | ~      | <u>^</u> | <u>^</u> | ~    | <u>^</u> | ~      | ~      | ~      | ^      |        |        |
| EMA              | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
| EMIA             | Control              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 800 ppm              | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | · 0    | 0      | 0      | 0      | 0      |
|                  | 2000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |
|                  | 5000 ppm             | 0      | 0          | 0        | 0      | 0        | 0        | 0    | 0        | 0      | 0      | 0      | 0      | 0      | 0      |

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 44

| linical sign     | Group Name | A deni ni | stration W | ook-day |        |        |      |      |        |      |      |      |        |      |      |
|------------------|------------|-----------|------------|---------|--------|--------|------|------|--------|------|------|------|--------|------|------|
| linital sign     | Group Name | 43-7      | 44-7       | 45-7    | 46-7   | 477    | 48-7 | 49-7 | 50-7   | 51-7 | 52-7 | 53-7 | 54-7   | 55-7 | 56-7 |
|                  |            |           |            |         |        |        |      |      |        |      |      |      |        |      |      |
| BREAST           | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | ~ 0    | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
| ABDOMEN          | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
| ANTERTOR. DORSUM | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | - 800 ppm  | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0.        | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
| POSTERIOR DORSUM | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
| IINDLIMB         | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | mqq 008    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
| GENITALIA        | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | Ò    |
| TAIL             | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | Ō    | Ő    | Ō      | 0    | 0    |
| EMA              | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | Ō    | 0      | 0    | 0    | 0    | 0      | 0    | Õ    |
|                  | 2000 ppm   | 0         | Ő          | õ       | 0<br>0 | 0<br>0 | Ő    | õ    | õ      | ů i  | õ    | õ    | ů<br>0 | 0    | ŏ    |
|                  | 5000 ppm   | 0         | 0          | Ō       | õ      | õ      | Ő    | õ    | õ      | Ő    | Õ    | õ    | õ      | õ    | Ő    |
| IMIA             | Control    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    |
|                  | 800 ppm    | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | Ō    | 0    | 0    | 0      | 0    | 0    |
|                  | 2000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | 0    | 0      | 0    | Ō    | õ    | 0<br>0 | 0    | õ    |
|                  | 5000 ppm   | 0         | 0          | 0       | 0      | 0      | 0    | Ō    | 0<br>0 | 0    | 0    | 0    | Ō      | õ    | õ    |

~\_\_\_\_

## CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~~

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek~day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	677	68-7	69-7	707
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DREAST	800 ppm	0	0	0	0	0	0	0	0		0	0	0		
				0						0				0	0
	2000 ppm	0	0	-	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	· 0	0	. 0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	õ	0	0	ō	0
	5000 ppm	0	0	0	Ő	Ő	0	0	Ő	Ő	ů 0	ů	0	õ	Ő
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Condition Deviced	800 ppm	õ	0 0	õ	ŏ	ů	ů	õ	0 0	õ	ů	Õ	õ	ů	õ
	2000 ppm	ů	ů	õ	õ	ů 0	ů	Ő	0	ů 0	0	0	õ	õ	Ő
	5000 ppm	ů	Õ	0	õ	Ŭ,	Õ	Ő	0	õ	õ	ů	õ	õ	ŏ
HINDLIMB	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
THULIND	800 ppm	0 0	0	0	0	0	0	ŏ	0	0 0	0	0	0	0	0
	2000 ppm	0 0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
	2000 ррш 5000 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	Ū	Ū	Ū	Ū	U	U	v	U	0		0	v	v	U
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	• 0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0 ·	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ő	õ	0 0	ŏ	ů 0	ů	ů 0	Ő	0	0 0	Ő	ŏ	0	Ő
	2000 ppm	ů 0	Ő	0	õ	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	ő	0	õ	õ	õ	õ	0	õ	0	0	. 0	0	0 0
EMIA	Control	0	0	0	0	0	0	0.	0	0	0	0	0	0	0
	800 ppm	õ	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0
	2000 ppm	0	ŏ	0	1	1	0	0	0	0	0	0	0	0	0
															0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX	:	FEMALE	
JUA	•	I LAUIDE	

JEA · FEMALE															FAGE .
Clinical sign	Group Name	Admini	istration W	eek-day											
		71-7	72-7	737	74-7	75-7	76-7	77-7	78-7	79–7	80-7	81-7	82-7	83-7	84-7
. BREAST	Control	0	0	0	0	0	0 ·	0	0	1	1	1	1	1	1
. DREAST	800 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	õ	Ő	0	0	0	0	1	1	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 5000 ppm	0 0	0 0	0 0	0 0	0	0 0								
. HINDLIMB	(0	0	0	0	0	0	0	0	0	0	0	0	0	0
. IIINDLIMB	Control	0	. 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0 0	0		0	0	0	0
	2000 ppm 5000 ppm	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0 0	0 0	0
	5000 ppm	0	0	0	0	U	U.	U	U	U	U	U	U	U	U
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	1	1	1	1	1	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	2

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
BREAST	Control	1	1	1	t	1	1	1	1	1	1	1	1	1	1
I. DREAST	800 ppm	0	0	1 0	1 0	0	0	0	0	1 0	0	0	0	1	0
		0	0	0	0	0		0	0	0	0	0	0	0	0
	2000 ppm		0	0	0	0	0	0	0	0	0	0	0	. 0	0
	5000 ppm	0	U	U	U	U	0	U.	U	U	U	U	U	. U	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1.	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0.	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ő	õ	õ	õ	Õ	0	õ	Ő	Ō	0	1	1	Ő	ů
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOSTERIOR DORSON	800 ppm	0	0 0	0	0 0	0	0 0	0 0	0	0	0	ŏ	0	0	ŏ
	2000 ppm	0	ŏ	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	C1	0	0	0	0	0	•	0	0	0	^	0	<u>^</u>	0	^
HINDLIMB	Control	0			0	-	0	0	0	0	0	-	0	0	0
	mqq 008	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	ľ	1	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	Ō	0	0	Ő	Õ	0	õ	Ō	õ	0	Ō
	2000 ppm	0	0	ů 0	Õ	0	0 0	Ő	Ő	0	ů	õ	Ő	õ	ő
	5000 ppm	0	0	0	Õ	ů	õ	õ	0 0	ů	Ő	ů	0	õ	Ő
DEMA	Control	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
	800 ppm	Ő	0	0	0	0	0 0	0	0	0	0.	0	0	0	ő
	2000 ppm	0	0	0	0	0	0 0	0	0	0	0	0	. 0	0	0
	5000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
IDIAT A	0 / 1	^	^	~	•	^	^	^	~	~	~	^	^	<u>,</u>	^
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

~~

SEX FEMALE

Clinical sign	Group Name	Admin	istration	Week-dav						
		99-7	100-7	101-7	102-7	103-7	104-7	•		
I. BREAST	Control	1	1	1	1	1	· 1			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	1			
	5000 ppm	0	0	0	0	0	0			
. ABDOMEN	Control	0	0	0	0	0	0			
	800 ppm	1	1	1	1	1	1			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	1	L	. 1	1	0	0			
A. ANTERIOR. DORSUM	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
A. POSTERIOR DORSUM	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	1			
A. HINDLIMB	Control	0	0	0	0	0	0			
	mqq 008	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
4. GENITALIA	Control	0	0	0	0	0	0			
	800 ppm	1	1	1	1	1	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
. TAIL	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
DEMA	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	0	0	0	0	0	0			
NEMIA	Control	0	0	0	0	0	0			
	800 ppm	0	0	0	0	0	0			
	2000 ppm	0	0	0	· 0	0	0 .			
	5000 ppm	Ō	0	0	Ō	0	0			

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 49

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	27	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
USTA	Control	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
001K	800 ppm	0	0	0	0	0	0	0	· 0	0	0	0	0	ő	ŏ
	2000 ppm	0 0	0	0	0	Ő	0 0	ŏ	0	0 0	0	0	õ	0	Ő
	5000 ppm	0	0	Ő	0	Ő	0	0	0	õ	0	0	Ő	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
······	800 ppm	0	0	õ	Ő	Õ	ů.	õ	Õ	õ	õ	Õ	ŏ	õ	õ
	2000 ppm	0	0	õ	õ	Õ	ů	ů ·	ů 0	ŏ	õ	ŏ	ŏ	õ	ŏ
	5000 ppm	0	0	0	0	0	0	Õ	0	Õ	õ	0.	Õ	õ	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 թրա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ррш	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50

(HAN190)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 50

Clinical sign	Group Name	Admini	stration W	′eek∽day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	õ	ñ	Ő	Ő	Ő	0 0	ŏ	0	0 0	ñ	õ	õ	Ő	0
	2000 ppm	ů 0	ů	Ő	ů	Ő	Õ	0 0	ů 0	ů 0	0	õ	Õ	Ő	Ő
	5000 ppm	0	0	õ	0	0	0	0	Ő	õ	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2000 ppm	50	50	50	50	50	50	50	50	50	50	50	49	49	49
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50

(IIAN190)

STUDY NO. : 0642 CLINICAL OBSERVATION (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] REPORT TYPE : A1 104 ALL ANIMALS

~____

SEX : FEMALE

PAGE : 51

Clinical sign	Group Name	Admin	istration N	Veek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
										•					
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0_	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	1	L	1	1	1	1	1	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	1	0	0	· 0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	ò	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	1	0	0	0	0	0	0	0	· 0	0	0	0	0	0
	800 ppm	0	0	0	0	0	Q	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	Ó	0	0	0	0	0	0	. 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	49	49
(UAN100)															

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE : 52

Clinical sign	Group Name	Admini	stration W	/eek-day										· · · · · · · · · · · · · · · · · · ·	
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A6011	800 ppm	0	Ő	Ö	0 0	0	0	0	Ő	Ő	0 0	0	0	0	0
	2000 ppm	ů	· 0	0	ů	0	0	0	0	0	Õ	Ő	Ő	õ	Ő
	5000 ppm	õ	õ	õ	ŏ	ő	ő	õ	õ	õ	õ	õ	0 0	õ	ŏ
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	1	1	1	1	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	• 0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	1	1	L	1	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	1	1	1	1	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 րթա	0	0	0	0	0	0	0	0	0	0	0	1	. 1	1
ON REMARKABLE	Control	49	49	49	49	49	49	· 49	49	49	49	49	49	49	49
	800 ppm	50	50	50	50	49	49	49	49	49	49	49	49	49	49
	2000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	5000 ppm	49	49	49	49	49	49	49	49	49	49	49	48	48	48

(HAN190)

BAIS 4

.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1,j[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 53

Clinical sign	Group Name	Admini	istration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	697	70-7
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K051N	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	Ő	Õ	0	õ	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Ő	ő	õ	0	0	ŏ	õ	0	0	0	0	0	Ő
ORTICOLLIS	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	2000 ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	0	1	0	0
	2000 ppm	0	0	0	0	0	2	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	1	1	1	0	i	1	1	1	2	1	1
	2000 ppm	0	2	0	2	2	1	0	0	0	1	0	0	0	0
	5000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	49	49	48	48	48	47	46	46	46	46
	800 ppm	49	49	48	48	48	48	48	48	47	46	46	44	44	44
	2000 ppm	49	47	49	47	46	44	47	46	46	46	46	46	46	46
	5000 ppm	49	49	49	48	48	48	48	48	48	47	46	46	46	46

(HAN190)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : Λ1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 54

Clinical sign	Group Name	Admini	stration W	/eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	800 ppm	ů	Ő	Ő	õ	õ	Ő	ů	ő	õ	õ	õ	õ	õ	Ő
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
	2000 ppm	0	0	0	1	1	1	1	1	1	2	2	2	2	2
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	I	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	2
MALL STOOL	Control	0	0	0	0	1	0	0	1	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	1	1	1	1	3	2	1
	2000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	1
	5000 ppm	0	0	0	0	0	0	0	2	2	2	1	2	2	2
LIGO-STOOL	Control	2	2	2	0	0	. 0	0	0	0	1	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	1	1	0	0	I	0	1
	2000 ppm	0	1	I	3	2	2	3	3	3	4	2	0	0	1
	5000 ppm	0	0	0	0	0	0	0	1	2	2	1	2	2	5
ION REMARKABLE	Control	46	46	46	46	45	45	44	43	42	41	42	42	42	42
	800 ppm	43	43	43	43	43 .	43	43	43	42	43	43	41	41	40
	2000 ppm	46	44	44	43	43	43	41	39	40	40	39	38	38	36
	5000 ppm	45	43	42	41	42	42	41	41	40	39	38	36	36	33

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

·.____

 \sim

.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE : 55

Clinical sign	Group Name	Admin	istration W	leek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
111 (C.T. A		0	0	0		0	<u>^</u>	0	0	0			0		0
RUSTA	Control	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm 2000 ppm	-	0	0 Ö	0	0		0	0	-	1	1	0	L	
	2000 ppm 5000 ppm	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0
	5000 ppm	Ų	U	0	U	0	U	U	U	U	U	0	U.	1	2
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	õ	Ő	ů 0	Ö	1	2	1	ů	0 0	ő	õ	Ő	0	Ő
	2000 ppm	õ	ů	ů	0	1	1	i	1	1	i	ĩ	1	1	3
	5000 ppm	1	1	1	ĩ	1	1	0	0	ô	0	Ô	Ō	ō	Ő
MALL STOOL	Control	0		0	0	0	0	0	0	0	1	1	1	1	0
MADE STOOL	800 ppm	1	1	Ő	0	3	2	1	0	0	1	0	0	0	0
	2000 ppm	0	1	0	0	0	0	0	0	0	1	0	0	0	4
	5000 ppm	2	1	1	1	1	4	1	2	1	0	0	0	0	4
LIGO-STOOL	0	0		0		•			0	<u>^</u>		0		<u>^</u>	
L100-2100F	Control	0	1	0	0	0	1	1	0	0	1	2	0	0	0
	800 ppm	1	1	0	1	2 1	1	0	0	0	•	0	0	0	0
	2000 ppm	0 3	0	1	0	1	2 0	0	1	1	2	3	3 0	3 0	4 0
	5000 ppm	ა	L	1	I	U	U	U	1	U	I	I	U	U	υ
ON REMARKABLE	Control	41	40	39	39	39	39	39	38	38	37	35	35	33	33
	800 ppm	40	39	38	38	34	34	33	30	29	28	28	28	28	28
	2000 ppm	36	35	36	36	35	34	31	27	24	24	24	23	22	21
	5000 ppm	33	32	32	31	30	28	28	27	26	26	25	25	24	21

(HAN190)

BAIS 4

.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE : 56

Clinical sign	Group Name	Admin	istration	Week-day _					 	
		99-7	100-7	101-7	102-7	103-7	104-7			
CRUSTA	Control	0	0	0	0	0	0			
	800 ppm	1	1	1	1	1	1			
	2000 ppm	0	0	0	0	0	0			
	5000 ppm	2	1	1	1	1	1			
ORTICOLLIS	Control	0	0	0	0	0	0			
	800 ppm	0	. 0	0	0	0	0			
	2000 ppm	1	1	1	0	0	0			
	5000 ppm	0	0	0	0	0	0			
RREGULAR BREATHING	Control	0	0	0	0	0	0			
	800 ppm	0	1	0	0	0	1			
	2000 ppm	3	3	3	1	0	0			
	5000 ppm	0	0	0	0	0	0			
SMALL STOOL	Control	0	0	0	0	0	0			
	800 ppm	0	1	0	0	1	1			
	2000 ppm	2	L	2 0	1	0	0			
	5000 ppm	0	0	0	0	0	0			
LIGO-STOOL	Control	0	0	0	1	1	1			
	800 ppm	0	2	1	1	1	2			
	2000 ppm	2	1	1	0	0	0			
	5000 ppm	0	· 1	· 1	1	1	3			
ION REMARKABLE	Control	32	32	32	30	28	28			
	800 ppm	28	27	26	25	24	23			
	2000 ppm	21	21	20	18	18	17			
	5000 ppm	20	19	19	19	18	18			

(HAN190)

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

~~~

 $\overline{}$ 

STUDY NO. : 0642 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

|                      |          | Control                  |                        | 800 pj                | pm               |           | 2000 p                | pm               |                        | 5000 p                | pin              |                                       |     |  |
|----------------------|----------|--------------------------|------------------------|-----------------------|------------------|-----------|-----------------------|------------------|------------------------|-----------------------|------------------|---------------------------------------|-----|--|
| leek-Day<br>on Study | Av. Wt.  | No.of<br>Surviv.<br><50> | Λv.₩t.                 | % of<br>cont.<br><50> | No.of<br>Surviv. | Λv. \t.   | % of<br>cont.<br><50> | No.of<br>Surviv. | Av. Wt.                | % of<br>cont.<br><50> | No.of<br>Surviv. | -                                     |     |  |
| 0-0                  | 23.5 (50 | ) 50/50                  | 23.5 (50)              | 100                   | 50/50            | 23.5 (50) | 100                   | 50/50            | 23.5 (50)              | 100                   | 50/50            | · · · · · · · · · · · · · · · · · · · | ··· |  |
| 1-7                  | 24.4 (50 |                          | 24.4 (50)              | 100                   | 50/50            | 24.1 (50) | 99                    | 50/50            | 24.3 (50)              | 100                   | 50/50            |                                       |     |  |
| 2-7                  | 25.2 (50 |                          | 25.3 (50)              | 100                   | 50/50            | 25.0 (50) | 99                    | 50/50            | 25.1 (50)              | 100                   | 50/50            |                                       |     |  |
| 3-7                  | 26.1 (50 |                          | 26.0 (50)              | 100                   | 50/50            | 25.7 (50) | 98                    | 50/50            | 25.8 (50)              | 99                    | 50/50            |                                       |     |  |
| 4-7                  | 26.6 (50 |                          | 26.7 (50)              | 100                   | 50/50            | 26.5 (50) | 100                   | 50/50            | 26.4 (50)              | 99                    | 50/50            |                                       |     |  |
| 5-7                  | 27.3 (50 |                          | 27.3 (50)              | 100                   | 50/50            | 27.2 (50) | 100                   | 50/50            | 27.0 (50)              | 99                    | 50/50            |                                       |     |  |
| 6-7                  | 27.9 (50 |                          | 27.9 (50)              | 100                   | 50/50            | 27.7 (50) | 99                    | 50/50            | 27.6 (50)              | 99                    | 50/50            |                                       |     |  |
| 7-7                  | 28.5 (50 |                          | 28.6 (50)              | 100                   | 50/50            | 28.3 (50) | 99                    | 50/50            | 28.4 (49)              | 100                   | 49/50            | •                                     |     |  |
| 8-7                  | 29.4 (50 |                          | 29.3 (50)              | 100                   | 50/50            | 29.0 (50) | 99                    | 50/50            | 29.2 (49)              | 99                    | 49/50            |                                       |     |  |
| 9~7                  | 29.4 (50 |                          | 29.3 (50)<br>29.4 (50) | 100                   | 50/50            | 29.0 (50) | 99<br>99              | 50/50            | 29.3 (49)              |                       | 49/50            |                                       |     |  |
|                      | 30.3 (50 |                          | 29.4 (50)<br>30.3 (50) | 100                   | 50/50            |           | 99<br>100             | 50/50            | 29.3 (49)<br>30.3 (49) | 100<br>100            | 49/50            |                                       |     |  |
| 10-7                 |          |                          |                        |                       |                  | 30.2 (50) |                       |                  |                        |                       |                  |                                       |     |  |
| 11-7                 | 31.0 (50 |                          | 31.0 (50)              | 100                   | 50/50            | 30.7 (50) | 99                    | 50/50            | 30.8 (49)              | 99                    | 49/50            |                                       |     |  |
| 12-7                 | 31.8 (50 |                          | 31.7 (50)              | 100                   | 50/50            | 31.5 (50) | 99                    | 50/50            | 31.4 (49)              | 99                    | 49/50            |                                       |     |  |
| 13-7                 | 32.3 (50 |                          | 32.4 (50)              | 100                   | 50/50            | 32.1 (50) | 99                    | 50/50            | 32.0 (49)              | 99                    | 49/50            |                                       |     |  |
| 14-7                 | 32.9 (50 |                          | 33.0 (50)              | 100                   | 50/50            | 32.6 (50) | 99                    | 50/50            | 32.6 (49)              | 99                    | 49/50            |                                       |     |  |
| 18-7                 | 35.0 (50 |                          | 35.1 (50)              | 100                   | 50/50            | 34.7 (50) | 99                    | 50/50            | 35.0 (49)              | 100                   | 49/50            |                                       |     |  |
| 22-7                 | 36.7 (50 |                          | 36.8 (50)              | 100                   | 50/50            | 36.4 (50) | 99                    | 50/50            | 36.6 (49)              | 100                   | 49/50            |                                       |     |  |
| 26-7                 | 38.8 (50 |                          | 39.1 (50)              | 101                   | 50/50            | 38.6 (50) | 99                    | 50/50            | 38.7 (49)              | 100                   | 49/50            |                                       |     |  |
| 30-7                 | 40.8 (50 |                          | 41.3 (50)              | 101                   | 50/50            | 40.6 (50) | 100                   | 50/50            | 40.8 (49)              | 100                   | 49/50            |                                       |     |  |
| 34-7                 | 42.3 (50 |                          | 42.7 (50)              | 101                   | 50/50            | 41.9 (50) | 99                    | 50/50            | 42.2 (49)              | 100                   | 49/50            |                                       |     |  |
| 38-7                 | 43.5 (50 |                          | 44.0 (50)              | 101                   | 50/50            | 44.0 (50) | 101                   | 50/50            | 43.5 (49)              | 100                   | 49/50            |                                       |     |  |
| 42-7                 | 44.7 (50 |                          | 44.9 (50)              | 100                   | 50/50            | 44.2 (50) | 99                    | 50/50            | 44.4 (49)              | 99                    | 49/50            |                                       |     |  |
| 46-7                 | 45.5 (50 |                          | 45.4 (49)              | 100                   | 49/50            | 44.9 (50) | 99                    | 50/50            | 44.9 (48)              | 99                    | 48/50            |                                       |     |  |
| 50-7                 | 46.6 (50 |                          | 46.6 (49)              | 100                   | 49/50            | 46.1 (50) | 99                    | 50/50            | 46.2 (47)              | 99                    | 47/50            |                                       |     |  |
| 54-7                 | 46.4 (50 | ) 50/50                  | 46.6 (49)              | 100                   | 49/50            | 46.1 (50) | 99                    | 50/50            | 46.3 (47)              | 100                   | 47/50            |                                       |     |  |
| 58-7                 | 47.3 (50 | ) 50/50                  | 47.8 (48)              | 101                   | 48/50            | 46.7 (50) | 99                    | 50/50            | 47.4 (45)              | 100                   | 45/50            |                                       |     |  |
| 62-7                 | 48.0 (50 | ) 50/50                  | 48.7 (48)              | 101                   | 48/50            | 47.6 (50) | 99                    | 50/50            | 47.8 (44)              | 100                   | 44/50            |                                       |     |  |
| 66-7                 | 48.5 (50 | ) 50/50                  | 49.0 (48)              | 101                   | 48/50            | 48.3 (50) | 100                   | 50/50            | 48.6 (43)              | 100                   | 43/50            |                                       |     |  |
| 70-7                 | 49.0 (50 | ) 50/50                  | 49.2 (48)              | 100                   | 48/50            | 48.5 (50) | 99                    | 50/50            | 48.7 (42)              | 99                    | 42/50            |                                       |     |  |
| 74-7                 | 48.9 (50 |                          | 49.4 (47)              | 101                   | 47/50            | 48.1 (49) | 98                    | 49/50            | 48.6 (42)              | 99                    | 42/50            |                                       |     |  |
| 78 7                 | 49.1 (49 |                          | 50.1 (47)              | 102                   | 47/50            | 49.6 (47) | 101                   | 47/50            | 48.6 (42)              | 99                    | 42/50            |                                       |     |  |
| 82-7                 | 49.8 (49 |                          | 50.2 (45)              | 101                   | 45/50            | 50.6 (45) | 102                   | 45/50            | 50.2 (39)              | 101                   | 39/50            |                                       |     |  |
| 86-7                 | 50.3 (48 |                          | 49.9 (44)              | 99                    | 44/50            | 51.3 (43) | 102                   | 43/50            | 50.9 (39)              | 101                   | 39/50            |                                       |     |  |
| 90-7                 | 50.0 (4) |                          | 50.3 (42)              | 101                   | 42/50            | 51.2 (43) | 102                   | 43/50            | 51.3 (36)              | 101                   | 36/50            |                                       |     |  |
| 90 7<br>94-7         | 49.6 (46 |                          | 48.6 (39)              | 98                    | 42/50<br>39/50   | 49.8 (42) | 102                   | 42/50            | 51.5 (35)              | 103                   | 35/50            |                                       |     |  |
| 94-7<br>98-7         | 49.0 (40 |                          | 48.0 (39)<br>49.3 (35) | 98<br>98              | 39/30            | 49.8 (42) | 100<br>98             | 42/50            | 51.5 (35)<br>51.7 (34) | 104                   | 33/50<br>34/50   |                                       |     |  |
|                      |          |                          |                        |                       |                  |           |                       |                  |                        |                       |                  |                                       |     |  |
| 102-7                | 51.3 (42 |                          | 48.9 (34)              | 95<br>05              | 34/50            | 48.9 (38) | 95                    | 38/50            | 51.1 (33)              | 100                   | 33/50            |                                       |     |  |
| 104-7                | 51.2 (4) | ) 41/50                  | 48.5 (31)              | 95                    | 31/50            | 49.0 (37) | 96                    | 37/50            | 50.3 (33)              | 98                    | 33/50            |                                       |     |  |

< >:No. of effective animals, ( ):No. of measured animals Av.

Av. Wt. : g

(BI0040)

BAIS 4

TABLE C 2

# BODY WEIGHT CHANGES AND

# SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0642 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

800 ppm 2000 µµm 5000 ppm Control No. of Λv.₩t. No. of Λv.₩t. % of No. of Av. ₩t. % of No. of Av. ₩t. % of Surviv. Week-Day Surviv. Surviv. cont. Surviv. cont. cont. on Study <50> <50> <50> <50> . 0-0 19.2 (50) 50/50 19.2 (50) 100 50/50 19.2 (50) 100 50/50 19.2 (50) 100 50/50 19.6 (50) 19.8 (50) 50/50 19.5 (50) 50/50 1 - 750/50 101 19.7 (50) 101 50/50 99 2-720.4 (50) 50/50 20.3 (50) 100 50/50 20.4 (50) 100 50/50 20.2 (50) 99 50/50 21.0 (50) 3 - 721.1 (50) 50/50 21.1 (50) 100 50/50 21.1 (50) 100 50/50 100 50/50 21.8 (50) 99 4-7 50/50 21.6 (50) 50/50 21.6 (50) 99 50/50 21.4 (50) 98 50/50 5-7 22.2 (50) 50/50 22.1 (50) 100 50/50 22.0 (50) 99 50/50 21.9 (50) 99 50/50 6-7 22.6 (50) 50/50 22.7 (50) 100 50/50 22.4 (50) 99 50/50 22.4 (50) 99 50/50 23.2 (50) 23.0 (50) 7-7 23.2 (50) 50/50 23.3 (50) 001 50/50 100 50/50 99 50/50 8-7 23.9 (50) 50/50 23.8 (50) 100 50/50 23.7 (50) 99 50/50 23.7 (50) 99 50/50 9-7 23.7 (50) 50/50 23.7 (50) 100 50/50 23.4 (50) 99 50/50 23.5 (50) 99 50/50 10-7 24.2 (50) 50/50 24.3 (50) 100 50/50 24.1 (50) 100 50/50 24.0 (50) 99 50/50 11 - 724.6 (50) 50/50 24.7 (50) 100 50/5024.4 (50) 99 50/5024.4 (50) 99 50/5012 - 725.0 (50) 50/50 25.1 (50) 100 50/50 24.8 (50) 99 50/50 24.7 (50) 99 50/50 25.2 (50) 50/50 25.0 (50) 13 - 725.4 (50) 101 50/5024.7 (50) 98 50/50 99 50/50 14 - 725.4 (50) 50/50 25.6 (50) 101 50/5025.2 (50) 99 50/50 25.2 (50) 99 50/50 18-7 26.5 (50) 50/50 26.7 (50) 101 50/50 26.2 (50) 99 50/50 26.1 (50) 98 50/50 27.9 (50) 99 22 - 727.4 (50) 50/50 102 50/50 27.1 (50) 50/50 27.4 (50) 100 50/50 26~7 28.8 (50) 50/50 29.1 (50) 101 50/50 28.6 (50) 99 50/50 28.5 (50) 99 50/50 30-7 30.1 (49) 49/50 30.7 (50) 102 50/50 29.7 (50) 99 50/50 29.7 (50) 99 50/50 31.5 (50) 30.4 (50) 30.3 (50) 34 - 730.8 (49) 49/50 102 50/50 99 50/50 98 50/50 38-7 31.4 (49) 49/50 32.3 (50) 103 50/50 31.2 (49) 99 49/50 31.2 (50) 99 50/50 42 - 732.4 (49) 49/50 32.7 (50) 101 50/50 31.9 (49) 98 49/50 31.9 (50) 98 50/50 46 - 732.7 (49) 49/50 33.3 (50) 102 50/5032.3 (49) 99 49/50 32.4 (49) 99 49/50 50 - 733.1 (49) 49/50 33.9 (50) 102 50/50 33.2 (49) 100 49/50 32.7 (49) 99 49/50 54 - 733.2 (49) 49/50 33.9 (49) 102 49/50 33.5 (49) 101 49/50 32.8 (49) 49/50 99 58-7 33.5 (49) 49/50 34.4 (49) 103 49/50 33.5 (49) 100 49/50 33.5 (49) 100 49/5062 - 733.8 (49) 49/50 35.1 (49) 104 49/50 33.7 (49) 100 49/50 34.2 (48) 101 48/50 66-7 34.5 (48) 48/50 35.1 (49) 102 49/50 34.7 (49) 101 49/50 34.5 (48) 100 48/50 70~7 34.5 (48) 48/50 35.4 (47) 103 47/50 34.4 (47) 100 47/50 35.0 (46) 101 46/50 74-7 34.6 (48) 48/50 36.1 (46) 104 46/50 34.3 (47) 99 35.3 (45) 45/50 47/50 102 78 7 35.6 (45) 45/50 35.1 (44) 35.1 (45) 36.8 (46) 103 46/50 99 44/50 99 45/50 82-7 35.5 (44) 44/50 36.9 (46) 104 46/50 35.5 (43) 100 43/50 35.2 (45) 45/50 99 86-7 36.0 (44) 44/50 37.4 (43) 104 43/50 36.3 (40) 101 40/50 35.8 (40) 99 40/50 90-7 36.3 (43) 43/50 36.9 (39) 102 39/50 36.0 (40) 99 40/50 35.7 (37) 98 37/50 94~7 35.8 (42) 42/50 37.0 (34) 103 34/50 35.4 (36) 99 36/50 36.3 (33) 101 33/50 98-7 36.0 (38) 38/50 37.1 (33) 103 33/50 34.6 (34) 96 34/50 35.9 (30) 100 30/50 36.2 (37) 37/50 102-7 38.0 (32) 105 32/50 36.2 (26) 100 26/50 35.8 (26) 99 26/50 35.7 (36) 36/50 36.1 (29) 101 104-7 29/50 36.0 (23) 101 23/5035.9 (24) 101 24/50

< >:No. of effective animals, ( ):No. of measured animals Av.

Av.₩t.∶g

(BI0040)

BAIS 4

TABLE C 3

# BODY WEIGHT CHANGES: MALE

### b02F1/Cr1j[Crj:BDF1] B0DY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

~\_\_\_\_

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

STUDY NO. : 0642

PAGE: 1

| oup Name | Administration | week-day  |           |                |           |                |           |
|----------|----------------|-----------|-----------|----------------|-----------|----------------|-----------|
|          | 0-0            | 1-7       | 2-7       | 3–7            | 4-7       | 5-7            | 6-7       |
| Control  | 23.5± 0.8      | 24.4± 1.0 | 25.2± 1.0 | 26.1± 1.1      | 26.6± 1.2 | 27.3± 1.3      | 27.9± 1.4 |
| 800 ppm  | 23.5± 0.8      | 24.4± 0.9 | 25.3± 1.0 | 26.0± 1.1      | 26.7± 1.2 | 27.3± 1.3      | 27.9± 1.4 |
| 2000 ppm | 23.5± 0.8      | 24.1± 1.0 | 25.0± 1.1 | 25.7 $\pm$ 1.2 | 26.5± 1.1 | $27.2 \pm 1.4$ | 27.7± 1.5 |
| 5000 ppm | 23.5± 0.8      | 24.3± 1.0 | 25.1± 1.1 | 25.8± 1.1      | 26.4± 1.4 | 27.0土 1.7      | 27.6± 2.3 |

Significant difference ; ★: P ≤ 0.05 ★★: P ≤ 0.01 Test of Dunnett

(HAN260)

# STUDY NO. : 0642 BODY WEIGHT ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS UNIT : g REPORT TYPE : A1 104 SEX: MALE

BODY WEIGHT CHANGES (SUMMARY)

| oup Name               | Administratio       | n week-day           |                   |                 |           |           |                                       |
|------------------------|---------------------|----------------------|-------------------|-----------------|-----------|-----------|---------------------------------------|
|                        | 7–7                 | 8-7                  | 9-7               | 10-7            | 11-7      | 127       | 13-7                                  |
| Control                | 28.5± 1.6           | 29.4± 1.6            | <b>29.4</b> ± 1.8 | 30.3± 2.0       | 31.0土 1.9 | 31.8± 2.1 | 32.3± 2.2                             |
| 800 ppm                | 28.6± 1.6           | 29.3± 1.7            | 29.4± 1.8         | 30.3± 2.0       | 31.0± 2.0 | 31.7± 2.0 | 32. 4± 2. 2                           |
| 2000 ppm               | 28.3± 1.6           | 29.0± 1.6            | 29.2± 1.7         | 30.2± 1.9       | 30.7± 2.0 | 31.5± 2.1 | 32.1± 2.0                             |
| 5000 ppm               | 28.4± 1.4           | 29.2± 1.6            | 29.3± 1.9         | 30.3± 1.9       | 30.8± 2.0 | 31.4± 2.2 | 32.0± 2.3                             |
|                        |                     |                      |                   | ι               |           |           |                                       |
| Significant difference | ; * : P $\leq$ 0.05 | <b>**</b> : P ≤ 0.01 |                   | Test of Dunnett |           |           |                                       |
| AN260)                 |                     |                      |                   |                 |           |           | · · · · · · · · · · · · · · · · · · · |

### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

### BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

 $\sim$ 

~~~~

PAGE : 3

oup Name	Administration	week-day					
	147	18-7	22-7	26-7	30-7	34-7	38–7
Control	32.9土 2.2	35.0± 2.7	36.7± 3.0	38.8± 3.6	40.8± 4.1	42.3± 4.2	43.5土 4.2
800 ppm	33.0± 2.2	35.1± 2.6	36.8± 2.9	39.1± 3.5	41.3± 3.9	42.7± 3.9	44.0± 4.0
2000 ppm	32.6± 2.1	34.7± 2.4	36.4± 2.6	38.6± 2.9	40.6± 3.1	41.9± 3.4	44.0± 4.4
5000 ppm	32.6± 2.4	35.0± 2.6	36.6± 3.0	38.7± 3.4	40.8± 3.7	42.2± 3.8	43.5± 4.0
Significant difference	ce; ∗:P≦0.05	** : P ≦ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

42-7	10 7					
	46-7	50-7	54-7	587	62-7	66-7
44. 7± 4. 3	45.5± 4.6	46. 6± 4. 6	46.4 ± 4.6	47.3± 4.8	48.0± 5.2	48.5± 5.3
44.9± 4.0	45.4± 4.5	46.6± 4.7	46.6± 4.6	47.8± 3.8	48.7± 3.8	49.0± 4.0
44.2± 3.6	44.9± 3.8	46.1± 3.5	46.1± 3.6	46.7± 4.2	47.6± 4.8	48.3± 4.2
44.4± 4.2	44.9± 4.4	46.2± 4.1	46.3± 4.7	47.4± 4.0	47.8± 4.3	48.6± 3.8
-	44.9± 4.0 44.2± 3.6	44. 9 ± 4.0 45. 4 ± 4.5 44. 2 ± 3.6 44. 9 ± 3.8	44.9± 4.0 45.4± 4.5 46.6± 4.7 44.2± 3.6 44.9± 3.8 46.1± 3.5	44. 9± 4.0 45. 4± 4.5 46. 6± 4.7 46. 6± 4.6 44. 2± 3.6 44. 9± 3.8 46. 1± 3.5 46. 1± 3.6 44. 4± 4.2 44. 9± 4.4 46. 2± 4.1 46. 3± 4.7	44.9± 4.0 45.4± 4.5 46.6± 4.7 46.6± 4.6 47.8± 3.8 44.2± 3.6 44.9± 3.8 46.1± 3.5 46.1± 3.6 46.7± 4.2 44.4± 4.2 44.9± 4.4 46.2± 4.1 46.3± 4.7 47.4± 4.0	44.9± 4.0 45.4± 4.5 46.6± 4.7 46.6± 4.6 47.8± 3.8 48.7± 3.8 44.2± 3.6 44.9± 3.8 46.1± 3.5 46.1± 3.6 46.7± 4.2 47.6± 4.8 44.4± 4.2 44.9± 4.4 46.2± 4.1 46.3± 4.7 47.4± 4.0 47.8± 4.3

(SUMMARY)

BODY WEIGHT CHANGES

ALL ANIMALS

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

~____

BAIS 4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

Significant difference ; $*: P \leq 0.05$

** : P ≦ 0.01

oup Name	Administration week-day							
	70–7	747	78-7	82-7	86-7	90-7	94-7	
Control	49.0 \pm 5.5	48.9± 5.8	49. 1± 6. 5	49.8± 7.3	50.3± 7.5	50.0± 7.9	49.6± 8.4	
800 ppm	49.2± 4.0	49.4± 4.5	50. l± 4. 6	50. 2± 5. 5	49.9 ± 5.7	50.3± 6.2	48.6± 8.2	
2000 ppm	48.5± 4.8	48.1± 5.4	49.6 ± 5.6	50.6± 5.1	51.3± 4.2	51.2± 5.1	49.8± 6.5	
5000 ppm	48.7± 3.8	48.6± 4.3	48.6 ± 6.4	50.2± 4.7	50.9± 4.7	51.3± 5.1	51.5± 5.0	

Test of Dunnett

(HAN260)

BAIS 4

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]			BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)	(SUMMARY)	
UNIT : g	r/orrj(orj-nn 1j		NED INTERES			
REPORT TYPE : A1 104						
SEX : MALE						
Group Name	Administration	week-day				
	98-7	102-7	104-7			
			······································			

50.2± 8.4 51.2 ± 5.6 Control 51.3 ± 6.2 49.3± 8.5 800 ppm 48.9± 9.0 48.5± 8.9 49.0± 8.1 2000 ppm 48.9± 8.3 $49.0{\pm7.7}$ 51.7± 5.1 50.3± 7.3 5000 ppm 51.1± 6.2

Significant difference ; $*: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett

(HAN260)

BAIS 4

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

up Name	Administration week-day						
·	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	19.2± 0.8	19.6土 0.7	20.4± 0.8	21.1± 0.8	21.8土 0.7	22.2± 0.9	22.6土 0.8
800 ppm	19.2± 0.8	19.8± 1.0	20.3± 0.9	21.1± 1.0	21.6± 1.0	22.1± 0.9	22.7± 1.0
2000 ppm	19.2± 0.8	19.7± 0.8	20.4± 0.8	21.1± 0.9	21.6± 1.0	22.0 \pm 0.9	22.4± 0.9
5000 ppm	19.2± 0.8	19.5 ± 0.8	20.2 ± 0.9	21.0± 0.8	21.4± 0.9	21.9± 1.0	22.4± 0.9

(SUMMARY)

BODY WEIGHT CHANGES

ALL ANIMALS

Significant difference ; ★: P ≤ 0.05 ★★: P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

PAGE : 8

Group Name	Administration	n week-day						
	7-7	8-7	9–7	10-7	11-7	12-7	13-7	
Control	23.2± 1.1	23.9 ± 1.1	23.7± 1.2	24.2± 1.2	24.6± 1.2	25.0 ± 1.4	25.2± 1.5	
800 ppm	23.3± 1.2	23.8± 1.3	23.7± 1.2	24. 3 ± 1. 5	24.7± 1.4	25.1± 1.5	25.4± 1.7	
2000 ppm	23.2 ± 1.1	23.7± 1.0	23.4± 1.2	24.1± 1.2	24.4± 1.4	24.8± 1.4	24.7± 1.4	
5000 ppm	23.0± 1.2	23.7± 1.3	23.5± 1.1	24.0± 1.1	24.4± 1.4	24.7± 1.4	25.0 ± 1.4	
Significant differend	ce; *:P≦ 0.05	** : P ≦ 0.01		Test of Dunnett		-	18 - F / 15 / 17	

(HAN260)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

BODY	WEIGHT	CHANGES	(SUMMARY)
ALL A	NIMALS		

PAGE : 9

oup Name	Administration week-day							
	14-7	18-7	22-7	26-7	30-7	34-7	38-7	
Control	25.4± 1.6	26.5 生 1.7	27.4 ± 2.2	28.8± 2.5	30. 1± 3. 2	30.8± 3.0	31.4± 3.4	
800 ppm	25.6± 1.6	26.7± 2.1	27.9± 2.4	29.1± 2.9	30.7± 3.4	31.5± 3.6	32.3± 3.5	
2000 ppm	25.2± 1.6	26.2± 2.0	27.1± 2.1	28.6± 3.1	29.7 \pm 3.2	30.4± 3.2	31.2± 3.1	
5000 ppm	25.2± 1.4	26.1± 1.7	27.4± 1.7	28.5 ± 2.3	29.7± 2.6	30.3± 2.8	31.2± 3.0	

(HAN260)

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

Test of Dunnett

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)	
UNIT : g REPORT TYPE : A1 104				
SEX : FEMALE				

PAGE	:	10
------	---	----

roup Name	Administration week-day							
-	42-7	46-7	50-7	547	58-7	62-7	66-7	
Control	32.4± 3.6	32.7± 3.4	33.1± 3.6	33.2± 3.7	33.5 ± 3.6	33.8± 3.9	34.5土 4.6	
800 ppm	32.7± 3.7	33.3± 3.8	33.9± 3.9	33.9± 4.1	34. 4± 4. 3	35.1± 4.6	35.1± 4.6	
2000 ppm	31.9± 3.6	32.3± 3.3	33.2± 3.6	33.5 ± 3.5	33.5 ± 3.3	33.7 ± 3.4	34.7± 3.6	
5000 ppm	31.9± 3.0	32.4± 3.1	32.7± 3.6	32.8 ± 3.5	33.5± 3.7	34.2± 3.7	34.5± 3.7	
	<i>,</i>	1						

Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01	Test of Dunnett	
(HAN260)				BAIS 4

ĩ.

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

> Name	Administration week-day								
	70–7	74-7	78-7	82-7	867	90-7	94-7		
Control	34.5± 4.7	34.6± 4.9	35.6± 4.6	35.5± 4.4	36.0± 5.1	36.3土 5.0	35.8± 5.2		
800 ppm	35.4± 4.8	36.1± 4.9	36.8± 4.8	36.9± 4.7	37.4± 4.6	36.9 \pm 4.5	37.0± 4.4		
2000 ppm	34.4± 3.9	34.3± 4.5	35.1± 4.6	35.5± 3.9	36.3± 4.2	36.0 ± 3.8	35.4 ± 3.9		
5000 ppm	35.0 ± 3.8	35.3± 4.1	35.1± 4.0	35.2± 4.0	35.8± 4.1	35.7 ± 5.0	36.3 ± 4.1		

Test of Dunnett

(HAN260)

BAIS 4

BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS

	98-7	102-7	104~7		
Control	36.0± 4.7	36.2± 5.2	35.7± 5.2		
800 ppm	37.1± 3.8	38.0± 6.4	36.1± 4.2		
2000 ppm	34.6 \pm 5.2	36.2± 3.8	36.0± 3.7		
5000 ppm	35.9± 4.1	35.8± 5.1	35.9± 6.7		
			35. 9± 6. 7		

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$

(HAN260)

Test of Dunnett

BAIS 4

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0642 : MOUSE B6D2F1/Cr1j[Crj:BDF1] ANIMAL UNIT : g REPORT TYPE : A1 104 : MALE

SEX

	Control		800 ppm 2		2000 p	2000 ppm 5000 ppm								
eek-Day n Study	Av. FC.	No.of Surviv. <50>	Λν. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.			
1-7	4.2 (5	0) 50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.2 (50)	100	50/50	· · ·		
2-7	4.0 (5		3.9 (50)	98	50/50	3.9 (50)	98	50/50	4.0 (50)	100	50/50			
3-7	4.0 (5	0) 50/50	4.0 (50)	100	50/50	4.0 (50)	100	50/50	4.0 (50)	100	50/50			
4-7	4.1 (5		4.1 (50)	100	50/50	4.0 (50)	98	50/50	4.0 (50)	98	50/50			
5-7	4.1 (8	0) 50/50	4.1 (50)	100	50/50	4.1 (50)	100	50/50	4.1 (50)	100	50/50			
6-7	4.2 (8		4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50			
7-7	4.2 (8	0) 50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.1 (48)	98	49/50			
8-7	4.2 (8		4.1 (50)	98	50/50	4.2 (50)	100	50/50	4.2 (49)	100	49/50			
9-7	4.1 (8		4.1 (50)	100	50/50	4.0 (50)	98	50/50	4.1 (49)	100	49/50			
10-7	4.0 (8		4.0 (50)	100	50/50	4.0 (50)	100	50/50	4.1 (49)	103	49/50			
11-7	4.1 (5		4.1 (50)	100	50/50	4.1 (50)	100	50/50	4.1 (49)	100	49/50			
12-7	4.2 (5		4.2 (50)	100	50/50	4.1 (50)	98	50/50	4.1 (49)	98	49/50			
13-7	4.2 (8		4.2 (50)	100	50/50	4.1 (50)	98	50/50	4.1 (49)	98	49/50			
14-7	4.1 (5		4.1 (50)	100	50/50	4.1 (50)	100	50/50	4.1 (49)	100	49/50			
18-7	4.3 (8	0) 50/50	4.2 (50)	98	50/50	4.2 (50)	98	50/50	4.3 (49)	100	49/50			
22-7	4.2 (5	6) 50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.2 (49)	100	49/50			
26-7	4.1 (8	0) 50/50	4.1 (50)	100	50/50	4.1 (50)	100	50/50	4.1 (49)	100	49/50			
30-7	4.2 (5	0) 50/50	4.1 (50)	98	50/50	4.1 (50)	98	50/50	4.1 (49)	98	49/50			
34-7	4.2 (5	0) 50/50	4.2 (50)	100	50/50	4.2 (50)	100	50/50	4.2 (49)	100	49/50			
38-7	4.2 (5	0) 50/50	4.2 (50)	100	50/50	4.2 (50)	100	50/50	4.2 (49)	100	49/50			
42-7	4.4 (5	6) 50/50	4.4 (50)	100	50/50	4.5 (50)	102	50/50	4.5 (49)	102	49/50			
46-7	4.5 (8	60) 50/50	4.5 (49)	100	49/50	4.5 (50)	100	50/50	4.4 (48)	98	48/50			
50-7	4.5 (5	60) 50/50	4.4 (49)	98	49/50	4.5 (50)	100	50/50	4.4 (47)	98	47/50			
54-7	4.4 (5	60) 50/50	4.4 (49)	100	49/50	4.3 (50)	98	50/50	4.3 (47)	98	47/50			
58-7	4.5 (8	60) 50/50	4.5 (48)	100	48/50	4.5 (50)	100	50/50	4.5 (45)	100	45/50			
62-7	4.6 (8	60) 50/50	4.6 (48)	100	48/50	4.5 (50)	98	50/50	4.5 (44)	98	44/50			
66-7	4.6 (8	50/50	4.6 (48)	100	48/50	4.6 (50)	100	50/50	4.7 (43)	102	43/50			
70-7	4.8 (5	60) 50/50	4.7 (48)	98	48/50	4.6 (50)	96	50/50	4.7 (42)	98	42/50			
74-7	4.8 (5	50/50	4.8 (47)	100	47/50	4.7 (49)	98	49/50	4.7 (42)	98	42/50			
78-7	4.7 (4	9) 49/50	4.7 (47)	100	47/50	4.6 (47)	98	47/50	4.6 (42)	98	42/50			
82 7	4.7 (4	9) 49/50	4.6 (45)	98	45/50	4.6 (45)	98	45/50	4.5 (39)	96	39/50	•		
86-7	4.7 (4	8) 48/50	4.5 (44)	96	44/50	4.6 (43)	98	43/50	4.7 (39)	100	39/50			
90-7	4.7 (4		4.7 (42)	100	42/50	4.6 (42)	98	42/50	4.8 (36)	102	36/50			
94-7	4.7 (4	6) 46/50	4.7 (39)	100	39/50	4.6 (42)	98	42/50	4.8 (35)	102	35/50			
98-7	4.9 (4	(5) 45/50	4.8 (35)	98	35/50	4.6 (41)	94	41/50	4.7 (34)	96	34/50			
102-7	4.8 (4	12) 42/50	4.7 (34)	98	34/50	4.7 (38)	98	38/50	4.7 (33)	98	33/50			
104-7	4.8 (4	1) 41/50	4.6 (31)	96	31/50	4.7 (37)	98	37/50	4.8 (33)	100	33/50			

Av. FC. ; g

< >:No. of effective animals, ():No. of measured animals

(BI0040)

BAIS 4 ø

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION(FC) AND SURVIVAL

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

~~

		Control		900 y	րո		2000 pi	JID		5000 p	hw	
Week-Day on Study	Av. FC.	No.of Surviv. <50>	Λν. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	Av. FC.	% of cont. <50>	No.of Surviv.	
	9 (9 <i>C</i> (FO)	100	50/50	9.7 (50)	109	E0 /E0	3.5 (50)	07	50/50	
1-7	3.6 (50		3.6 (50)	100		3.7 (50)	103	50/50		97 100	50/50 50/50	
2-7	3.5 (50		3.5 (50) 3.5 (50)	100	50/50	3.5 (50) 3.6 (50)	100	50/50 50/50	3.5 (50) 3.6 (50)		50/50	
3-7	3.6 (50			97	50/50		100	50/50		100	50/50	
4-7	3.6 (50		3.6 (50)	100	50/50	3.7 (50)	103	. 50/50	3.6 (50)	100		
5-7	3.7 (50		3.6 (50)	97	50/50	3.7 (50)	100	50/50	3.7 (50)	100	50/50	
6-7	3.8 (50		3.7 (50)	97	50/50	3.8 (50)	100	50/50	3.8 (50)	100	50/50	
7-7	3.8 (50		3.8 (50)	100	50/50	3.9 (50)	103	50/50	3.8 (50)	100	50/50	
8-7	3.9 (49		3.9 (50)	100	50/50	4.0 (50)	103	50/50	3.9 (50)	100	50/50	
9-7	3.9 (50		3.8 (50)	97	50/50	3.8 (50)	97	50/50	3.9 (50)	100	50/50	
10-7	3.7 (50		3.7 (50)	100	50/50	3.8 (50)	103	50/50	3.7 (50)	100	50/50	
11-7	3.7 (50		3.7 (50)	100	50/50	3.8 (50)	103	50/50	3.8 (50)	103	50/50	
12-7	3.8 (49		3.7 (50)	97	50/50	3.8 (50)	100	50/50	3.9 (50)	103	50/50	
13-7	3.8 (49		3.7 (50)	97	50/50	3.8 (50)	100	50/50	3.8 (50)	100	50/50	
14-7	3.7 (50		3.7 (50)	100	50/50	3.8 (50)	103	50/50	3.8 (50)	103	50/50	
18-7	3.8 (50		3.8 (50)	100	50/50	3.8 (50)	100	50/50	3.9 (50)	103	50/50	
22-7	3.8 (50		3.8 (50)	100	50/50	3.8 (50)	100	50/50	3.9 (50)	103	50/50	
26-7	3.8 (50		3.8 (50)	100	50/50	3.8 (50)	100	50/50	3.9 (50)	103	50/50	
30-7	3.8 (49		3.9 (50)	103	50/50	3.8 (50)	100	50/50	3.8 (50)	100	50/50	
34-7	3.9 (49		3.9 (50)	100	50/50	3.9 (50)	100	50/50	3.9 (50)	100	50/50	
38-7	3.9 (49		3.9 (50)	100	50/50	4.0 (49)	103	49/50	3.9 (50)	100	50/50	
42-7	4.1 (49		3.9 (50)	95	50/50	4.0 (49)	98	49/50	4.1 (50)	100	50/50	
46-7	4.0 (49		3.9 (50)	98	50/50	4.0 (49)	100	49/50	4.0 (49)	100	49/50	
50-7	3.8 (49		3.8 (50)	100	50/50	3.9 (49)	103	49/50	3.9 (49)	103	49/50	
54-7	3.9 (49		3.9 (49)	100	49/50	4.0 (49)	103	49/50	3.9 (49)	100	49/50	
58-7	4.0 (49		4.1 (49)	103	49/50	4.1 (49)	103	49/50	4.1 (49)	103	49/50	
62-7	4.1 (49		4.3 (49)	105	49/50	4.2 (49)	102	49/50	4.3 (48)	105	48/50	
66-7	4.2 (48		4.2 (49)	100	49/50	4.3 (49)	102	49/50	4.2 (48)	100	48/50	
70-7	4.1 (47		4.0 (47)	98	47/50	4.1 (47)	100	47/50	4.1 (46)	100	46/50	
74-7	4 1 (48		4.1 (46)	100	46/50	4.1 (47)	100	47/50	4.3 (45)	105	45/50	
78-7	4.3 (45		4.3 (45)	100	46/50	4.2 (44)	98	44/50	4.2 (45)	98	45/50	
82 7	4.1 (44		3.9 (46)	95	46/50	4.0 (43)	98	43/50	4.1 (45)	100	45/50	
86-7	4.0 (44		4.0 (43)	100	43/50	4.1 (40)	103	40/50	4.1 (40)	103	40/50	
90-7	4.2 (43		4.0 (39)	95	39/50	4.1 (40)	98	40/50	4.2 (37)	100	37/50	
94-7	4.2 (42		4.3 (34)	102	34/50	4.3 (36)	102	36/50	4.5 (33)	107	33/50	
98-7	4.2 (38		4.4 (33)	105	33/50	4.1 (34)	98	34/50	4.4 (30)	105	30/50	
102-7	4.5 (37		4.6 (32)	102	32/50	4.6 (26)	102	26/50	4.4 (26)	98	26/50	
104-7	4.4 (36) 36/50	4.1 (29)	93	29/50	4.4 (23)	100	23/50	4.6 (24)	105	24/50	

BAIS 4

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 1

o Name		week-day(effective) 2-7(7)		4-7 (7)	5-7(7)	6-7(7)	7-7(7)
	1-7(7)	2-1(1)	3-1(1)	4-7(7)	D-7(7)	0-7(7)	(-(())
Control	4.2± 0.4	4.0± 0.3	4.0 \pm 0.3	4.1± 0.3	4.1± 0.3	4. 2± 0.3	4. 2± 0.3
800 ppm	4.1± 0.3	3.9± 0.3	4.0± 0.3	4.1± 0.3	4.1± 0.4	4.1± 0.3	4.1± 0.3
2000 ppm	4.1± 0.3	3.9 ± 0.4	4.0± 0.3	4.0± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3
5000 ppm	4.2± 0.3	4.0± 0.3	4.0± 0.3	4.0± 0.3	4.1± 0.4	4.1± 0.5	4.1± 0.3
					· · · ·		
Significant difference	$* : P \leq 0.05 *$	* : P ≦ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 2

up Name	Administration 8-7(7)	week-day(effective) 9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	14-7(7)
Control	4.2± 0.3	4.1± 0.3	4.0± 0.3	4.1± 0.3	4.2± 0.3	4.2± 0.3	4.1± 0.3
800 ppm	4.1± 0.3	4.1± 0.2	4.0± 0.3	4.1± 0.3	4.2± 0.3	4.2± 0.3	4.1± 0.3
2000 ppm	4.2± 0.3	4.0± 0.3	4.0± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3
5000 µµm	4.2± 0.3	4.1 ± 0.3	4. l± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3
Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01		Test of Dunnett			
260)]

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

~ ~

PAGE : 3

roup Name	Administrati	on week-day(effective)					
	18-7(7)	22-7(7)	26-7 (7)	30-7(7)	34-7(7)	38-7(7)	42-7(7)
Control	4.3 生 0.3	4.2± 0.3	4.1± 0.3	4.2± 0.3	4.2± 0.2	4.2± 0.3	4.4土 0.3
800 ppm	4.2± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3	4.2± 0.3	4.2± 0.3	4.4± 0.3
2000 ppm	4.2± 0.3	4.1± 0.3	4.1± 0.3	4.1± 0.3	4.2± 0.3	4.2± 0.3	4.5± 0.3
5000 ppm	4.3± 0.3	4.2± 0.3	4.1± 0.3	4.1± 0.3	4.2± 0.2	4.2± 0.3	4.5± 0.3
Significant difference ;	* : P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			
AN260)						·················	BA

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

oup Name	Administration 46-7(7)	n week-day(effective) 50-7(7)	54-7(7)	58-7 (7)	62-7 (7)	66-7(7)	70-7(7)
Control	4.5± 0.3	4.5± 0.3	4.4± 0.4	4.5± 0.3	4.6土 0.3	4.6土 0.3	4.8± 0.3
800 ppm	4.5± 0.5	4.4± 0.3	4.4± 0.3	4.5± 0.3	4.6± 0.3	4.6± 0.3	4.7± 0.3
2000 ppm	4.5± 0.3	4.5± 0.3	4.3± 0.4	4.5± 0.3	4.5± 0.3	4.6± 0.3	4.6± 0.5
5000 ppm	4.4± 0.5	4.4± 0.3	4.3± 0.5	4.5± 0.3	4.5± 0.4	4.7± 0.3	4.7± 0.4
			·				
Significant difference ;	* : P ≦ 0.05	** : P ≦ 0.01		Test of Dunnett			
N260)					· · ·		ŀ

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 5

roup Name	Administration 74-7(7)	week-day(effective) 78-7(7)	82-7(7)	86-7(7)	90-7(7)	94-7 (7)	98-7 (7)	
Control	4.8± 0.4	4.7± 0.5	4.7± 0.5	4.7± 0.4	4.7± 0.7	4.7± 0.4	4.9土 0.6	
800 ppm	4.8± 0.3	4.7± 0.7	4.6± 0.7	4.5± 0.7	4.7± 0.4	4.7± 0.7	4.8± 0.4	
2000 ppm	4.7± 0.4	4.6 \pm 0.6	4.6± 0.4	4.6± 0.3	4.6± 0.4	4.6± 0.6	4.6± 0.8	
5000 ppm	4.7± 0.6	4.6± 0.5	4.5± 0.5	4.7± 0.5	4.8± 0.4	4.8± 0.4	4.7± 0.4	
Significant differenc	e; *:P≦0.05 **	*:P≦ 0.01		Test of Dunnett				

.

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 6

Group Name	Administration 102-7(7)	week-day(effective) 104-7(7)			 	
Control	4.8± 0.5	• 4.8土 0.4				
800 ppm	4.7± 0.4	4.6± 0.5				
2000 ppm	4.7± 0.5	4.7± 0.5				
5000 ppm	4.7± 0.5	4.8± 0.4	~			

Significant difference ; ★: P ≤ 0.05 ★★ : P ≤ 0.01 Test of Dunnett

(HAN260)

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 7

Group Name	Administration	week-day(effective)					
	1-7 (7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7 (7)
							-
Control	3.6 ± 0.4	3.5 ± 0.3	3.6 ± 0.2	3.6上 0.2	3.7土 0.3	3.8 ± 0.2	3.8± 0.3
800 ppm	3.6 ± 0.3	3.5± 0.2	3.5± 0.2	3.6 ± 0.2	3.6± 0.2	3.7± 0.2	3.8± 0.2
2000 ppm	3.7 ± 0.3	3.5± 0.2	3.6± 0.2	3.7± 0.2	3.7± 0.2	3.8± 0.2	3.9 ± 0.2
2000 ppm	3.5 ± 0.4	3.5 ± 0.3	3.6 ± 0.2	3.6 ± 0.2	3.7± 0.2	3.8 ± 0.2	3.8 ± 0.3

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 8

ıp Name	Administration w 8-7(7)	eek-day(effective) 9-7(7)	10-7(7)	11-7 (7)	12-7(7)	13-7(7)	14-7(7)
Control	3.9± 0.3	3.9± 0.3	3.7 ± 0.2	3.7± 0.2	3.8土 0.2	3.8土 0.3	3.7生 0.3
800 ppm	3.9± 0.3	3.8± 0.2	3.7± 0.3	3.7 ± 0.3	3.7± 0.3	3.7 ± 0.3	3.7± 0.3
2000 ppm	4.0± 0.4	3.8± 0.2	3.8± 0.2	3.8± 0.3	3.8 ± 0.3	3.8± 0.3	3.8± 0.3
5000 ppm	3.9± 0.4	3.9± 0.3	3.7± 0.3	3.8± 0.3	3.9± 0.3	3.8± 0.3	3.8± 0.3
		·					
Significant difference	e; *:P≦0.05 **	: : P ≦ 0.01		Test of Dunnett			

(HAN260)

.

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 9

1

roup Name	Administration 18-7(7)	week-day(effective) 22-7(7)	26-7 (7)	30-7 (7)	34-7 (7)	38-7(7)	42-7 (7)
Control	3.8± 0.3	3.8± 0.3	3.8± 0.3	3.8± 0.4	3.9± 0.3	3.9± 0.4	4.1± 0.3
800 ppm	3.8± 0.3	3.8± 0.4	3.8± 0.3	3.9± 0.4	3.9± 0.4	3.9± 0.4	3.9± 0.4*
2000 ppm	3.8 ± 0.4	3.8± 0.4	3.8± 0.4	3.8± 0.4	$3.9\pm$ 0.3	4.0± 0.4	4.0± 0.4
5000 ppm	3.9± 0.3	3.9± 0.4	3.9± 0.3	3.8± 0.3	3.9± 0.4	$3.9\pm$ 0.4	4.1± 0.4
Significant difference ;	* · P < 0.05 *			Test of Dunnett			

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 10

Group Name		week-day(effective)					
	46-7(7)	50-7(7)	54-7(7)	58-7(7)	62-7(7)	66-7 (7)	70-7(7)
Control	4.0± 0.3	3.8± 0.4	3.9± 0.4	4.0± 0.4	4.1± 0.5	4.2土 0.5	4.1± 0.4
800 ppm	3.9 ± 0.4	3.8± 0.4	3.9 ± 0.5	4.1± 0.5	4.3± 0.5	4.2± 0.5	4.0 \pm 0.5
2000 ppm	4.0± 0.4	3.9± 0.3	4.0± 0.4	4.1± 0.3	4.2± 0.4	4.3± 0.5	4.1± 0.4
5000 ppm	4.0± 0.4	3.9 ± 0.5	3.9± 0.4	4.1± 0.4	4.3± 0.4	4.2± 0.4	4.1± 0.5

Significant difference ; $* : P \leq 0.05$ $** : P \leq 0.01$

Test of Dunnett

(HAN260)

Significant difference ; $*: P \leq 0.05$

** : P ≦ 0.01

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 11

roup Name	Administration 74-7(7)	reek-day(effective) 78-7(7)	82-7 (7)	86-7(7)	90-7(7)	94-7 (7)	98–7 (7)
Control	4.1± 0.5	4.3± 0.5	4.1± 0.4	4.0± 0.6	4.2± 0.4	4.2± 0.6	4.2土 0.5
800 ppm	4.1± 0.4	4.3 ± 0.5	3.9± 0.6	4.0± 0.6	4.0± 0.8	4.3± 0.6	4.4± 0.6
2000 ppm	4.1± 0.5	4.2± 0.5	4.0± 0.6	4.1± 0.4	4.1± 0.6	4.3± 0.9	4.1± 0.8
5000 ppm	4.3± 0.5	4.2± 0.6	4.1± 0.8	4.1± 0.7	4.2± 0.6	4.5± 0.5	4.4± 0.5

Test of Dunnett

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 12

Group Name	Administration v 102-7(7)	week-day(effective) 104-7(7)				
Control	4.5± 0.7	4.4± 0.8				
800 ppm	4.6± 0.9	4.1± 0.8		• •		
2000 ppm	4.6± 0.8	4.4± 0.5				
5000 שעע	4.4± 0.8	4.6± 1.0				

Significant difference ; ★ : P ≦ 0.05 ★★★ : P ≦ 0.01 Test

Test of Dunnett

(HAN260)

TABLE E 1

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

		Control		800 p	pm		2000 p	hm.		5000 p	hm	
Week-Day on Study	Av. WC.	No.of Surviv. <50>	Λν. ₩C.	% of cont. <50>	No. of Surviv.	Av. WC.	% of cont. <50>	No.of Surviv.	Av. WC.	% of cont. <50>	No.of Surviv.	
1.7	A A (40)		A () (A())	05	F0 (F0	4 1 (50)	00		A 9 (AQ)	00	50/50	
1-7 9-7	4.4 (49		4.2 (49)	95	50/50	4.1 (50)	93 02	50/50 50/50	4.3 (49)	98	50/50 50/50	
2-7 3-7	4.3 (48 4.3 (48		4.2 (50)	98	50/50 50/50	4.0 (50) 3.9 (49)	93 91	50/50 50/50	4.3 (49)	100 95	50/50 50/50	
3-7 4-7	4.3 (40		4.3 (50) 4.2 (50)	100 98	50/50	3.9 (49)	91 91	50/50	4.1 (47) 4.1 (49)	95 95	50/50	
4-7 5-7	4.3 (50		4.2 (50)		50/50	3.9 (49) 3.9 (49)	93	50/50	4.1 (49)	95 95	50/50	
5-7 6-7	4.2 (50		4.2 (50)	100	50/50	3.8 (50)	93 93	50/50	4.0 (49) 3.7 (49)	90 90	50/50	
0-7 7-7	4.1 (50		4.0 (50) 3.9 (50)	98 95	50/50	3.9 (50)	93 95	50/50 50/50	3.8 (49)	90 93	49/50	
8-7	4. 1 (50		4.0 (50)	95	50/50	3.9 (50)	95 98	50/50 50/50	3.9 (49)	93 98	49/50	
8−7 9−7	4.0 (50		4.0 (50) 3.9 (50)	100 100	50/50	3.9 (50)	98 100	50/50	3.9 (48) 3.8 (49)	90 97	49/50	
9-7 10-7	3.9 (50		3.8 (50)		50/50	3. 9 (50)	95	50/50	3.6 (49)	92	49/50	
11-7	3.8 (50		3.8 (50)	97 100	50/50	3.6 (50)	95 95	50/50	3.6 (49) 3.6 (49)	92 95	49/50	
11-7	3.8 (50		3.8 (50)	100	50/50	3.7 (50)	95 97	50/50	3.7 (49)	95 97	49/50	
13-7	3.8 (50		3.9 (50)		50/50	3.7 (50)	97	50/50 50/50	3.7 (49)	97 97	49/50	
13-7	3. 7 (50		3. 9 (50)	103 100	50/50	3.6 (50)	97	50/50 50/50	3.6 (49)	97 97	49/50	
14-7	3.6 (50		3.7 (50)	100	50/50	3.6 (50)	100	50/50 50/50	3.5 (49)	97 97	49/50	
22-7	3.5 (50		3. 5 (50)	103	50/50	3.4 (50)	97	50/50	3.3(49) 3.4(49)	97 97	49/50	
26-7	3.4 (50		3.4 (50)	100	50/50	3.4 (50)	100	50/50	3.4 (49)	100	49/50	
20-7 30-7	3.3 (50		3.4 (50)	100	50/50 50/50	3.4 (50)	100	50/50 50/50	3.4 (49)	100	49/50	
30-7 34-7	3.5 (50		3.4 (50)	105	50/50	3.6 (50)	103	50/50	3.5(49) 3.6(49)	100	49/50	
34-7	3.5 (50		3.6 (50)	103	50/50	3.5 (50)	103	50/50	3.0(49) 3.4(49)	97	49/50	
42-7	3.6 (46		3.8 (50)	105	50/50	3.7 (50)	100	50/50	3.4 (49) 3.6 (49)	100	49/50	
46-7	3.6 (50		3.3 (30) 3.7 (49)	100	49/50	3.6 (50)	103	50/50	3.5(49) 3.5(48)	97	49/50	
40 7 50-7	3.8 (50		3.7 (49)	97	49/50	3.7 (50)	97	50/50	3.6(40)	95	43/50	
54-7	3.8 (50		4.0 (49)	105	49/50	3.8 (50)	100	50/50	3.7 (47)	95 97	47/50	
58-7	3.9 (50		3.9 (48)	100	48/50	3.9 (50)	100	50/50	3.7 (44)	95	45/50	
62-7	4.0 (50		4.0 (48)	100	48/50	3.9 (30)	98	50/50 50/50	3.8 (44)	95 95	43/50	
66-7	4.0 (50		4.0 (48)	100	48/50	4.1 (50)	100	50/50	3.9 (44)	95 95	44/50	
70-7	4.2 (49		4.3 (48)	100	48/50	3.9 (48)	93	50/50	4.0 (42)	95 95	43/50	
74-7	4.4 (50		4.5 (40)	102	48/50	4.2 (48)	95 95	49/50	4.0 (42)	93 93	42/50	
78-7	4.4 (30		4.3 (47)	102	47/50	4.2 (46)	93 93	49/50 47/50	4.1(42) 3.9(41)	93 91	42/50	
82 7	4.3 (49		4.3 (47) 4.4 (45)	100	45/50	4.0 (40) 3.9 (44)	93 91	47/50	3.9(41) 3.9(39)	91 91	42/50 39/50	
86-7	4.3 (48		4.4 (43)	102	45/50	4.2 (44)	91	43/50 43/50	4.1 (38)	91	39/50 39/50	
90-7	4.4 (40		4.5 (42) 4.6 (40)	102	44/50	4.2 (42) 4.2 (41)	95	43/50 42/50	4.1 (38) 4.2 (35)	93 98	39/50 36/50	
90-7 94-7	4.5 (40		4.6 (40)	98	42/50 39/50	4.2 (41) 4.4 (41)	98 96	42/50 42/50	4.2 (35) 4.2 (35)	98 91	35/50	
94-1 98-7	4.0 (42		4. 5 (35)		39/50 35/50	4.4 (41) 4.4 (38)	90 94	42/50 41/50	4.2 (33) 4.2 (34)	89	35/50 34/50	
98-7 102-7	4.7 (42 5.2 (40		4.8 (32)	102 94	35/50 34/50	4.4 (38) 4.8 (35)	94 92	41/50 38/50	4.2 (34) 4.4 (33)	89 85	34/50 33/50	
102-7 104-7) 42/50	4.9 (32) 4.9 (29)	94 104	34/50 31/50	4.8 (35)	92 100	38/50 37/50	4.4 (33) 4.5 (32)	85 96	33/50 33/50	

< >:No. of effective animals, ():No. of measured animals Av.₩C.∶g

(BI0040)

BAIS 4

PAGE: 1

TABLE E 2

WATER CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN WATER CONSUMPTION (WC) AND SURVIVAL

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

Control 800 ppm 2000 ppm 5000 թթա Av. WC. Av. WC. % of No. of Av. WC. % of No. of Av. WC. % of No. of No. of Week-Day Surviv. Surviv. Surviv. Surviv. cont. cont. cont. on Study <50> <50> <50> <50> 1 - 74.3 (50) 50/50 4.2 (50) 98 50/504.2 (50) 98 50/50 3.9 (50) 91 50/504.2 (50) 3.9 (50) 3.9 (50) 2-750/50 93 50/50 4.1 (50) 98 50/50 93 50/50 4.2 (50) 4.0 (50) 3-7 50/50 4.0 (50) 95 50/50 4.2 (50) 100 50/50 95 50/50 4.1 (50) 50/50 3.9 (50) 4.1 (50) 3.9 (50) 4-7 95 50/50 100 50/50 95 50/50 5-7 4.1 (50) 50/50 4.0 (50) 98 4.1 (50) 3.9 (50) 95 50/50 100 50/50 50/50 6-7 4.0 (50) 50/50 4.0 (50) 100 50/50 4.0 (50) 100 50/50 3.9 (50) 98 50/50 7-7 4.1 (50) 50/50 4.0 (50) 98 50/50 4.0 (50) 98 50/50 3.8 (50) 93 50/50 8-7 4.2 (50) 50/50 4.0 (50) 3.9 (50) 95 50/50 4.0 (50) 95 50/50 93 50/50 4.1 (50) 50/50 9-7 4.0 (50) 98 50/50 4.1 (50) 100 50/50 3.9 (50) 95 50/50 10 - 74.0 (50) 50/50 3.8 (50) 95 50/50 3.9 (50) 98 50/50 3.6 (50) 90 50/50 4.0 (50) 50/50 3.9 (50) 98 3.8 (50) 50/50 3.6 (50) 11 - 750/50 95 90 50/50 12-7 4.1 (50) 50/50 3.9 (50) 95 50/50 4.0 (50) 98 50/50 3.7 (50) 90 50/50 3.9 (50) 50/50 97 13 - 73.8 (50) 50/503.7 (50) 95 50/50 3.6 (50) 92 50/50 14-7 3.8 (50) 50/503.6 (50) 95 50/503.7 (50) 97 50/50 3.5 (50) 92 50/50 4.0 (50) 50/50 18-7 3.8 (50) 95 50/50 3.9 (50) 98 50/50 3.5 (50) 88 50/50 50/50 22 - 73.8 (50) 3.7 (50) 97 3.6 (50) 95 3.4 (50) 50/5050/50 89 50/50 26 - 73.8 (50) 50/50 3.7 (50) 97 50/50 3.6 (50) 95 50/50 3.2 (50) 84 50/50 97 30 - 73.8 (49) 49/50 3.7 (50) 50/50 3.5 (50) 92 50/50 3.2 (50) 84 50/50 3.8 (49) 97 34-7 49/50 3.7 (50) 50/50 3.6 (48) 95 50/50 3.3 (50) 87 50/50 3.6 (50) 38 - 73.9 (49) 49/50 92 50/50 3.6 (49) 92 49/50 3.3 (50) 85 50/50 42-7 4.0 (49) 49/50 3.8 (50) 95 50/50 3.8 (49) 95 49/50 3.3 (49) 83 50/50 46 - 73.9 (49) 49/50 3.7 (50) 95 50/50 - (-) 49/50 3.0 (49) 77 49/50 -50 - 74.0 (49) 49/50 3.7 (50) 3.4 (49) 93 50/50 3.7 (49) 93 49/50 85 49/50 54-7 4.0 (49) 49/50 3.7 (49) 93 49/50 3.7 (49) 93 49/50 3.4 (49) 85 49/50 4.1 (49) 49/50 58 - 74.0 (49) 98 49/50 3.9 (49) 95 49/50 3.4 (49) 83 49/50 4.0 (49) 49/50 62 - 73.7 (48) 93 49/50 3.7 (49) 93 49/50 3.4 (48) 85 48/50 66-7 4.3 (48) 48/50 3.8 (48) 88 49/50 3.8 (49) 88 49/50 3.3 (48) 77 48/50 4.0 (47) 48/50 70-7 3.7 (46) 93 47/50 3.7 (47) 93 47/50 3.4 (46) 85 46/50 74-7 4.2 (47) 48/50 3.8 (46) 90 46/50 3.8 (46) 90 47/50 3.6 (45) 86 45/50 78-7 4.4 (45) 45/50 3.9 (46) 89 46/504.0 (43) 91 44/50 3.4 (45) 77 45/50 82 7 4.1 (44) 44/50 3.6 (46) 88 46/503.7 (43) 90 43/50 3.4 (45) 83 45/50 86-7 4.1 (44) 44/50 3.8 (43) 93 43/503.6 (40) 88 40/50 3.4 (39) 83 40/50 4.3 (43) 90-7 43/50 3.8 (39) 88 39/50 3.7 (40) 86 40/50 3.6 (37) 84 37/50 94-7 4.5 (42) 42/50 4.0 (33) 89 34/50 3.8 (36) 84 36/50 3.6 (33) 80 33/50 98-7 4.2 (38) 38/50 4.3 (33) 102 33/50 4.0 (34) 95 34/50 3.7 (30) 88 30/50 102-7 4.4 (37) 37/50 4.2 (32) 95 32/50 91 4.0 (26) 26/503.8 (26) 86 26/50 104-7 4.4 (35) 36/50 4.1 (29) 93 29/504.0 (22) 91 23/50 3.9 (24) 89 24/50

< >:No. of effective animals, ():No. of measured animals Av. WC. : g

(BI0040)

BAIS 4

PAGE : 2

TABLE E 3

WATER CONSUMPTION CHANGES: MALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 1

roup Name	Administration 1-7(3)	veek-day(effective) 2-7(3)	3-7 (3)	4-7 (3)	5-7(3)	6-7 (3)	7-7(3)
Control	4.4± 1.1	4.3± 0.9	4.3± 0.8	4.3± 0.9	4.2± 0.9	4. 1± 0. 9	4.1± 0.7
800 ppm	4.2± 0.7	4.2± 0.8	4.3± 0.7	4.2± 0.7	4.2± 0.7	4.0± 0.7	3.9± 0.6
2000 ppm	4.1± 0.8	4.0± 0.9	3.9± 0.6*	3.9± 0.6	3.9± 0.6	3.8± 0.8	3.9± 0.8
2000 µµm	4.3± 0.8	4.3± 1.1	4.1± 0.7	4.1± 0.9	4.0± 0.7	3.7± 0.7*	3.8± 0.8
Significant differenc	e; *:P≦0.05 *	* : P ≦ 0.01		Test of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 2

oup Name	Administration 8-7(3)	week-day(effective) 9-7(3)	10-7(3)	11-7 (3)	12-7(3)	13-7 (3)	14-7 (3)
Control	4.0± 0.7	3.9土 0.6	3.9± 0.6	3.8± 0.7	3.8± 0.5	3.8± 0.5	3.7± 0.6
800 ppm	4.0± 0.6	3.9 ± 0.6	3.8± 0.6	3.8± 0.6	3.8± 0.6	3.9± 0.6	3.7± 0.5
2000 ppm	3.9 ± 0.8	$3.9\pm$ 0.7	3.7± 0.7	3.6± 0.6	3.7 \pm 0.5	3.7± 0.5	3.6± 0.6
5000 ppm	3.9 ± 0.6	3.8± 0.9	3.6± 0.7	3.6± 0.7	3.7± 0.7	3.7± 0.6	3.6± 0.7

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 3

Name	Administration	week-day(effective)						
	18-7 (3)	22-7 (3)	26-7 (3)	30-7 (3)	34-7 (3)	38-7 (3)	42-7 (3)	
Control	3.6土 0.5	3.5± 0.4	3.4± 0.4	3.3± 0.3	3.5± 0.3	3.5± 0.4	3.6± 0.6	
800 ppm	3.7± 0.4	3.5± 0.4	3.4 ± 0.4	3.4± 0.3	3.7± 0.3	3.6± 0.3	3.8± 0.3	
2000 ppm	3.6 ± 0.5	3.4± 0.4	3.4± 0.4	3.3± 0.5	3.6± 0.4	3.5± 0.6	3.7± 0.5	
5000 ppm	3.5 ± 0.6	3.4 ± 0.5	$3.4\pm$ 0.5	3.3± 0.4	3.6± 0.5	3.4± 0.4	3.6± 0.4	

Significant difference ; $* : P \leq 0.05$ $** : P \leq 0.01$

Test of Dunnett

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 4

up Name	Administration w 46-7(3)	reek-day(effective) 50-7(3)	54-7 (3)	58-7 (3)	62-7(3)	66-7 (3)	70-7 (3)
Control	3.6± 0.3	3.8土 0.4	3.8± 0.4	3.9土 0.5	4.0土 0.5	4.1± 0.6	4.2 ± 0.5
800 ppm	3.7± 0.5	3.7± 0.4	4.0± 0.7	3.9± 0.4	4.0± 0.4	4.1± 0.5	4.3± 0.4
2000 ppm	3.6± 0.4	3.7± 0.5	3.8± 0.5	3.9± 0.6	3.9± 0.5	4.1± 0.8	3.9± 0.5*
5000 ppm	3.5± 0.6	3.6± 0.4	3.7± 0.5	3.7± 0.6*	3.8± 0.6	3.9± 0.6	4.0± 0.6
Significant difference	ce; *:P≦0.05 **	* : P ≦ 0.01		Test of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 5

					, <u>, , , , , , , , , , , , , , , ,</u>	* *
4.4± 0.7	4.3 ± 0.7	4.3± 0.9	4.4± 0.8	4.3± 0.8	4.6± 0.7	4.7± 0.9
4:5± 0.5	4.3± 0.9	4.4± 1.0	4.5± 0.9	4.6± 0.8	4.5± 0.7	4.8± 0.8
4.2± 0.7	4.0± 0.6	3.9± 0.4	4.2± 0.6	4.2± 0.7	4.4± 0.8	4.4± 1.3
4.1± 0.8*	3.9± 0.7*	3.9± 0.9*	4.1± 0.6 ≭	4.2± 0.6	4.2± 0.6	4.2± 0.6*
* : P ≦ 0.05 *	•* : P ≦ 0.01	x	Test of Dunnett			
-	4:5± 0.5 4.2± 0.7 4.1± 0.8*	4: 5± 0.5 4. 3± 0.9 4. 2± 0.7 4. 0± 0.6 4. 1± 0.8* 3.9± 0.7*	$4:5\pm$ 0.5 $4.3\pm$ 0.9 $4.4\pm$ 1.0 $4.2\pm$ 0.7 $4.0\pm$ 0.6 $3.9\pm$ 0.4 $4.1\pm$ $0.8*$ $3.9\pm$ $0.7*$ $3.9\pm$ $0.9*$	4:5± 0.5 4.3± 0.9 4.4± 1.0 4.5± 0.9 4.2± 0.7 4.0± 0.6 3.9± 0.4 4.2± 0.6 4.1± 0.8* 3.9± 0.7* 3.9± 0.9* 4.1± 0.6*	4:5± 0.5 4.3± 0.9 4.4± 1.0 4.5± 0.9 4.6± 0.8 4.2± 0.7 4.0± 0.6 3.9± 0.4 4.2± 0.6 4.2± 0.7 4.1± 0.8* 3.9± 0.7* 3.9± 0.9* 4.1± 0.6* 4.2± 0.6	4:5± 0.5 4.3± 0.9 4.4± 1.0 4.5± 0.9 4.6± 0.8 4.5± 0.7 4.2± 0.7 4.0± 0.6 3.9± 0.4 4.2± 0.6 4.2± 0.7 4.4± 0.8 4.1± 0.8* 3.9± 0.7* 3.9± 0.9* 4.1± 0.6* 4.2± 0.6 4.2± 0.6

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 6

Group Name	Administration w 102-7(3)	reek-day(effective) 104-7(3)			
Control	5.2 ± 1.1	4.7± 0.8			
800 ppm	4.9± 0.9	4.9± 1.0			
2000 ppm	4.8± 0.9	4.7± 0.8			
5000 ppm	4.4± 0.7**	4.5± 0.7			

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01

Test of Dunnett

(HAN260)

TABLE E 4

WATER CONSUMPTION CHANGES: FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 7

oup Name	Administration 1-7(3)	week-day(effective) 2-7(3)	3-7(3)	4-7 (3)	5-7(3)	6-7(3)	7-7(3)
Control	4. 3 ± 0. 4	4.2± 0.4	4.2 \pm 0.4	4.1 0.4	4.1± 0.4	4.0± 0.4	4.1± 0.4
800 ppm	· 4.2± 0.5	3.9± 0.5**	4.0± 0.5*	3.9± 0.4	4.0± 0.4	4.0± 0.5	4.0± 0.5
2000 ppm	4.2± 0.4	4.1± 0.4	4.2± 0.4	4.1± 0.4	4.1± 0.4	4.0± 0.4	4.0 ± 0.4
5000 µµm	3.9± 0.4**	3.9± 0.4**	4.0± 0.4*	3.9± 0.4	3.9± 0.4	3.9± 0.4	3.8± 0.4**

(HAN260)

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

Test of Dunnett

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 8

oup Name	Administration 8-7(3)	week-day(effective) 9-7(3)	10-7 (3)	11-7 (3)	12-7 (3)	13-7 (3)	14-7 (3)
Control	4.2± 0.4	4.1 · 0.4	4.0± 0.4	4.0± 0.4	4.1± 0.4	3.9± 0.5	3.8土 0.4
800 ppm	4.0± 0.5	4.0± 0.4	3.8	3.9± 0.4	3.9± 0.4*	3.8± 0.4	3.6± 0.4
2000 ppm	4.0± 0.4	4.1± 0.5	3.9± 0.4	3.8± 0.4	4.0± 0.6	3.7± 0.4*	3.7± 0.5
5000 ppm	3.9± 0.4**	3.9± 0.3*	3.6± 0.4**	3.6± 0.4**	3.7± 0.4 * *	3.6± 0.4**	3.5± 0.5**

.

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

A

1

PAGE: 9

roup Name	Administration 18-7(3)	week-day(effective) 22-7(3)	26-7 (3)	30-7 (3)	34-7 (3)	38-7(3)	42-7 (3)
Control	4.0± 0.5	3.8± 0.5	3.8± 0.5	3.8土 0.8	3.8土 0.7	3.9± 0.6	4.0土 0.7
800 ppm	3.8± 0.5	3.7± 0.6	3.7± 0.5	3.7± 0.6	3.7± 0.5	3.6± 0.5*	3.8± 0.5
2000 ppm	$3.9\pm$ 0.5	3.6± 0.5	3.6± 0.5	3.5± 0.5*	3.6± 0.5	3.6± 0.4*	$3.8\pm$ 0.5
5000 ppm	3.5± 0.6**	3.4± 0.5**	3.2± 0.4 * *	3.2± 0.5**	3.3± 0.4**	3.3± 0.4 ≭ ∗	3.3± 0.4 * ≉
							1
Significant differenc	e; *:P≦0.05 *	* : P ≦ 0.01		Test of Dunnett			

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 10

roup Name	Administration	week-day(effective)					
	46-7(3)	50-7(3)	54-7(3)	58-7(3)	627(3)	66-7 (3)	70-7(3)
						·	
Control	3.9± 0.6	4.0± 0.5	4.0± 0.7	4.1± 0.7	4.0土 0.8	4.3± 0.9	4.0± 0.7
800 ppm	3.7± 0.5*	3.7± 0.5 ∗	3.7± 0.6*	4.0± 0.8	3.7± 0.7	3.8± 0.6**	3.7± 0.7*
2000 ppm	-	3.7± 0.6**	3.7± 0.5*	3.9± 0.7	3.7± 0.6	3.8± 0.5**	3.7± 0.6
5000 ррт	3.0± 0.5**	3.4± 0.4**	3.4± 0.5**	3.4土 1.0**	3.4± 0.4**	3.3± 0.5**	3.4± 0.5*∗

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 11

up Name		week-day(effective)					
	74-7(3)	78–7 (3)	82-7(3)	86-7 (3)	90-7(3)	94-7(3)	98-7 (3)
Control	4.2± 0.8	4.4± 0.9	4.1± 0.9	4.1± 1.0	4.3± 0.9	4.5土 1.0	4.2± 0.7
800 ppm	3.8± 0.7	3.9± 0.6*	3.6± 0.8*	3.8± 0.8	3.8± 1.0	4.0± 0.7*	4.3± 1.0
2000 ppm	3.8± 0.7	4.0± 0.6	3.7± 0.7	3.6± 0.7*	3.7± 0.6₩*	3.8± 0.7**	4.0± 1.2
5000 թթո	3.6± 0.5**	3.4± 0.6**	3.4± 0.8**	3.4土 0.7**	3.6± 0.7**	3.6± 0.6**	3.7± 0.9**

Significant difference ; * : P \leq 0.05

(HAN260)

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE : 12

Group Name	Administration 102-7(3)	eek-day(effective) 104-7(3)	
Control	4.4± 1.0	4.4± 0.9	
800 ppm	4.2± 0.9	4.1± 0.9	
2000 ppm	4.0± 1.0	4.0± 0.8	
5000 ppm	3.8± 1.1	3.9± 1.0	

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

(HAN260)

TABLE F 1

CHEMICAL INTAKE CHANGES: MALE

.

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 1

oup Name	Adminis	stration	(Week-Day)											
	1–7		2-7		3–7		4-7		5-7		6-7		7–7	
Control	0土	0	0土	0	0- <u>+</u> -	0	0±	0	0土	0	0 - <u> -</u>	0	0±	0
800 ppm	139±	21	134土	26	133±	23	125±	20	123±	21	114±	19	110±	17
2000 ppm	338±	61	319±	68	$306\pm$	43	$298\pm$	44	290±	51	277±	61	276±	58
5000 ppm	$879\pm$	170	848±	204	786±	117	778±	173	746±	134	$676 \pm$	114	$673\pm$	150

(HAN300)

~

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 2

Group Name	Adminis 8-7	stration	(Week-Day) 9-7		10-7		11-7		12-7		13-7		14-7	
			51				11-7		12-7				14-1	
Control	0土	0	0±	0	0 <u>-+</u> -	0	0±	0	0±	0	0土	0	0±	0
800 ppm	110±	18	107土	18	100±	15	99±	16	97±	16	97±	17	90±	15
2000 ppm	272±	59	$266\pm$	52	$249\pm$	50	237±	43	$236\pm$	38	231±	39	220±	39
5000 ppm	$664\pm$	116	$653\pm$	166	604±	127	589土	120	587±	127	$579\pm$	121	$552\pm$	127

(HAN300)

BAIS 4

.

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 3

Group Name	Adminis	stration	(Week-Day)											
	18-7		22-7		26-7		30-7		34-7		38-7		42-7	
Control	0土	0	0±	0	0±	0	0土	0	0±	0	0土	0	0土	0
Control	0-	V,	0.1	U	01	0	01	U	0	U	0±	U	01	0
800 ppm	84±	12	77±	10	71±	11	67±	10	69±	9	66±	9	$68\pm$	10
2000 ppm	•207±	32	$189\pm$	29	178±	27	$165\pm$	27	1 7 1±	27	160±	31	170±	31
5000 ppm	$509\pm$	100	471±	91	448±	81	403±	71	426±	77	400±	66	405±	65

.

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

coup Name														
	46-7		50-7		54-7		58-7		62-7		66-7		70-7	
Control	0 -!·	0	0±	0	0- <u> -</u>	0	0±	0	0±	0	0土	0	0±	0
800 ppm	65土	10	$65\pm$	10	71±	24	66±	11	66±	10	69±	13	70±	10
2000 ppm	$163\pm$	26	$162\pm$	28	$167\pm$	30	168±	46	163±	28	172±	52	$162\pm$	26
5000 ppm	$387\pm$	72	$390\pm$	65	410±	98	$389\pm$	63	, ^{402±}	68	$409\pm$	80	416±	68

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 5

Group Name	Administration												
	74-7	78-7		82-7		86-7		90-7		94-7		98-7	
Control	0 ± 0	0±	0	0 -!-	0	0 ±	0	0±	0	0±	0	0 ±	0
800 ppm	73± 13	70±	17	72±	20	71±	17	74±	21	7 3 ±	16	79±	24
2000 ppm	174± 32	161±	29	156土	22	$165\pm$	31	$166\pm$	46	177±	38	$179\pm$	67
5000 ppm	422± 93	401±	90	395±	108	403±	64	$408\pm$	69	415±	71	408±	70

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 6

Group Name	Administr 102-7	ation	(Week-Day) 104-7	
	102 1		104 1	
Control	0±	0	0±	0
800 ppm	82±	27	81±	30
2000 ppm	207±	82	190±	50
5000 ppm	440±	122	$445\pm$	108

(HAN300)

.

TABLE F 2

CHEMICAL INTAKE CHANGES: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 7

oup Name	Administration (1-7		(Week-Day)											
			2-7		3-7		4-7		5-7		6-7		7–7	
											-			
Control	0±	0	0±	0	0	0	0±	0	0±	0	0±	0	0±	0
800 ppm	172±	20	154±	20	152土	17	146±	15	143±	14	141±	16	$137\pm$	17
2000 ppm	426±	42	403±	35	401±	44	$381\pm$	37	$369\pm$	39	358±	38	346±	35
5000 µpm	1014±	88	969±	85	951±	91	920±	81	889±	81	$861\pm$	82	832±	81

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 8

roup Name	Adminis	tration	(Week-Day)											
	8-7		9–7		10-7		11-7		12-7		13-7		14-7	
Control	0±	0	0土	0	0±	0	0±	0	0 1 -	0	0土	0	0±	0
800 ppm	135±	14	134±	15	127±	16	125±	. 14	123±	12	120±	13	113±	13
2000 ppm	335±	38	349±	48	$323\pm$	35	$313\pm$	38	320±	57	302±	38	298±	37
5000 ppm	$825\pm$	83	831±	78	758±	80	746±	74	$757\pm$	81	728±	91	$693\pm$	112

(HAN300)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 9

roup Name	Administration 18-7	(Week-Day) 22-7		26-7		30-7		34-7		387		42-7	
	10 1	46 1		20 1				54 1				42-1	
Control	0 ± 0	0±	0	0 ±	0	0土	0	0 ±	0	0±	0	0 ±-	0
800 ppm	113± 18	106±	21	103±	19	97±	21	94±	19	91±	16	$93\pm$	17
2000 ppm	298± 44	$269\pm$	41	$252\pm$	44	$235\pm$	40	240±	43	$235\pm$	41	$242\pm$	41
5000 ppm	676± 121	$623\pm$	91	$569\pm$	89	$544\pm$	102	$555\pm$	95	$528\pm$	86	$526\pm$	83

(HAN300)

F1/Cr1j[Crj:BDF1] a y

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

 $\sim \sim$

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

PAGE : 10

Group Name	Administ	ration	(Week-Day)												
	46-7		50-7		54-7		58-7		62-7		66-7		70-7		
Control	0	0	0±	0	0 <u>-</u>	0	0土	0	0±	0	0±	0	0±	0	
800 ppm	$89\pm$	18	90±	16	89±	18	$95\pm$	29	86±	22	88±	17	85±	22	
2000 ppm	-		$224\pm$	46	224土	44	$236\pm$	44	219 ±	41	$222\pm$	37	219±	42	
5000 թթա	$468\pm$	94	522±	76	520±	104	$517\pm$	164	501±	83	489±	94	487±	91	

(HAN300)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj;BDF1] UNIT : mg∕kg∕day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 11

Froup Name	Administ 74-7	ration	(Week-Day) 78-7		82-7		86-7		90-7		947		98-7	
									50 1					
Control	0 -1-	0	0±	0	0 ±-	0	0±	0	0±	0	0土	0	0土	0
800 ppm	85±	22	87±	21	80±	21	82±	23	84±	26	87±	18	93±	22
2000 ppm	219±	49	$225\pm$	39	213±	48	200±	46	$206\pm$	39	216±	47	237±	85
5000 ppm	$509\pm$	88	488±	103	482±	122	479±	127	510±	135	503±	104	$520\pm$	150

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE : 12

Group Name	Administ 102-7	tration	(Week-Day) 104-7	
Control	0±	0	0土	0
800 ppm	90±	23	91±	25
2000 ppm	$223\pm$	59	224±	54
2000 ppm	$538\pm$	151	546±	121

×

(HAN300)

TABLE G 1

HEMATOLOGY: MALE

	[Crj:BDF1]		ALL ANIMALS (105W)		
REPORT T	YPE : Al				
NO. of Animals	RED BLOOD CELL 1 0 ⁵ ∕µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f L	MCII pg
	REPORT 1 NO. of	REPORT TYPE : A1 NO. of RED BLOOD CELL Animals 10 ⁵ /µl	REPORT TYPE : A1 NO. of RED BLOOD CELL HEMOGLOBIN Animals 10 ⁵ /µl g/dl	REPORT TYPE : A1 NO. of RED BLOOD CELL HEMOGLOBIN HEMATOCRIT Animals 10 ⁶ /µl g/dl %	REPORT TYPE : A1 NO. of RED BLOOD CELL HEMOGLOBIN HEMATOCRIT MCV Animals 10 ⁵ /µl g/dl % fl

Control 9.45± 0.70 13.8土 0.9 43.4土 2.9 46.0± 1.6 14.6土 0.5 31.9± 0.7 1654土 336 41 800 ppm 30 9.44± 0.60 13.8± 0.9 43.4± 2.3 46.0 \pm 1.5 14.7± 0.5 31.9± 0.6 1676± 387 13.4± 1.8 42.5± 2000 ppm 37 9.22 ± 1.23 1834± 4.9 46.3 \pm 1.9 $14.6 \pm$ 0.6 31.5± 0.9 301 5000 ppm 33 9.50± 1.51 13.7± 2.0 43.4± 5.8 45.8± 2.0 14.4± 0.5 31.5± 0.9 1703± 242

Significant difference ; * : $P \leq 0.05$ ** : $P \leq 0.01$

Test of Dunnett

(HCL070)

BAIS 4

PAGE : 1

PLATELET 1 0³/µl

MCHC g∕dl

	NIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] EASURE. TIME : 1			HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)		
SEX : MALE		TYPE : A1				PAGE : 2
Group Name	NO. of Animals	RETICULO %	CYTE			
Control	41	2.6±	1.0			
800 ppm	30	2.8±	1. 9			
2000 ppm	37	3.5±	2. 7			
5000 ppm	33	3.0±	2. 5			

Test of Dunnett

~~~

.

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01

(HCL070)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SE

HEMATOLOGY (SUMMARY)

ALL ANIMALS (105W)

| oup Name | NO. of<br>Animals | WBC<br>1 Oª∕µl | Dif<br>NEUTRO | ferentia | 1 WBC (9<br>LYMPHO | 6) | MONO   |   | EOSINO |   | BASO |   | OTHER |   |  |
|----------|-------------------|----------------|---------------|----------|--------------------|----|--------|---|--------|---|------|---|-------|---|--|
| Control  | 41                | 3.49± 2.50     | 27土           | 13       | 66 <u>+</u>        | 13 | 4土     | 2 | 3土     | 1 | 0土   | 0 | 0:土   | 0 |  |
| 800 ppm  | 30                | 3.29± 2.21     | 27土           | 12       | 66±                | 12 | 3±     | 2 | 3±     | 2 | 0±   | 0 | 0±    | l |  |
| 2000 ppm | 37                | 3.22± 1.91     | 30±           | 14       | 62±                | 14 | 4±     | 2 | 3±     | 1 | 0±   | 0 | 0±    | 0 |  |
| 5000 ppm | 33                | 2.87± 1.49     | 26±           | 11       | 65±                | 13 | $3\pm$ | 2 | 4±     | 3 | 0±   | 0 | ±1    | 3 |  |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P ≦ 0.0l Test of Dunnett

(HCL070)

BAIS 4

### TABLE G 2

# HEMATOLOGY: FEMALE

| up Name  | NO. of<br>Animals | RED BL     | 00D CELL<br>µl | liEMOGLO<br>g∕dl | BIN | HEMATOC<br>%      | RIT  | MCV<br>f L |     | MCH<br>pg |     | MCHC<br>g∕dl |      | PLATELE<br>1 0 <sup>3</sup> /µ |     |
|----------|-------------------|------------|----------------|------------------|-----|-------------------|------|------------|-----|-----------|-----|--------------|------|--------------------------------|-----|
| Control  | 35                | .<br>9.24土 | 1.63           | 13.7土            | 2.2 | 42. 9 <u>-1</u> - | 6.2  | 46. 9±     | 3.5 | 14.9±     | 0.8 | 31.7±        | 1. 2 | 982土                           | 402 |
| 800 ppm  | 28                | 9.45±      | 1.06           | 13.8±            | 1.8 | 43.3±             | 4. 1 | 46.0±      | 1.7 | 14.5±     | 0.8 | 31.7土        | 2.0  | 114 <b>3</b> ±                 | 242 |
| 2000 ppm | 23                | 9.62±      | 0.83           | 13.9±            | 1.3 | 43.9±             | 3.5  | 45.7±      | 1.9 | 14.5±     | 0.6 | 31.7±        | 0.8  | 1106±                          | 277 |
| 5000 ppm | 24                | 8.95 $\pm$ | 1.59           | 13.0±            | 2.7 | 41. i±            | 6. 9 | 46.2±      | 2.8 | 14.5±     | 0.7 | $31.4\pm$    | 2.1  | 1123土                          | 314 |

(HCL070)

00.00

| STUDY NO. : 0642<br>ANIMAL : MOUSE<br>MEASURE. TIME : 1<br>SEX : FEMALE |                   |                   | HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W) | PAGE : 5  |
|-------------------------------------------------------------------------|-------------------|-------------------|--------------------------------------------|-----------|
| Group Name                                                              | NO. of<br>Animals | RETICULOCYTE<br>% |                                            | · · · · · |
| Control                                                                 | 35                | 3.8± 3.5          |                                            |           |
| 800 ppm                                                                 | 28                | 2.7± 2.5          |                                            |           |
| 2000 ppm                                                                | 23                | 2.7± 1.7          |                                            |           |
| 5000 ppm                                                                | 24                | 3.9± 4.7          |                                            |           |

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HCL070)

| ASURE. TIME : :<br>X : FEMALE |                   | Г ТҮРЕ : АІ    |                  |           |                    |     |      |   |        |   |      |   |        |     | PAGE : |
|-------------------------------|-------------------|----------------|------------------|-----------|--------------------|-----|------|---|--------|---|------|---|--------|-----|--------|
| roup Name                     | NO. of<br>Animals | ₩ВС<br>1 0³/µℓ | Di:<br>NEUTRO    | fferentia | 1 WBC (%<br>LYMPHO | 'n) | MONO |   | EOSINO |   | BASO |   | OTHER  |     |        |
| Control                       | 35                | 7. 32 ± 15. 44 | 25 <del>1'</del> | 15        | 67±                | 16  | 3±   | 2 | 3土     | 2 | . 0± | 0 | 1±     | · 1 |        |
| 800 ppm                       | 28                | 29.15± 142.95  | 23±              | 10        | 69±                | 11  | 3±   | 1 | × 4±   | 2 | 0±   | 0 | 2±     | 5   |        |
| 2000 ppm                      | 23                | 2.74± 1.66     | 25±              | 10        | 67±                | 13  | 3±   | 2 | 4土     | 2 | 0±   | 0 | 1±     | 1   |        |
| 5000 ppm                      | 24                | 40.54± 185.52  | 26±              | 15        | 62±                | 20  | 3±   | 2 | 4±     | 2 | 0±   | 0 | $5\pm$ | 19  |        |

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HCL070)

# TABLE H 1

# BIOCHEMISTRY: MALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : AL BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

•

.

| Group Name | NO. of<br>Animals | TOTAL PROTEIN<br>g∕dl | ALBUMIN<br>g∕dl | A/G RATIO | T-BILIRUBIN<br>mg∕dℓ | GLUCOSE<br>mg/dl | T-CHOLESTEROL<br>mg∕dl | TRIGLYCERIDE<br>mg∕d£ |
|------------|-------------------|-----------------------|-----------------|-----------|----------------------|------------------|------------------------|-----------------------|
| Control    | 41                | 5.1± 0.5              | 2.5± 0.2        | 0.9± 0.1  | 0.13± 0.03           | 195± 24          | 116± 54                | 52 <u>+</u> 28        |
| 800 ppm    | 30                | 5.2± 0.6              | 2.5± 0.3        | 0.9± 0.1  | 0.13± 0.02           | 179± 38          | 103± 32                | 44± 20                |
| 2000 ppm   | 37                | 5.3± 0.6              | $2.5 \pm 0.3$   | 0.9± 0.1  | 0.13± 0.02           | 181± 45          | 108± 29                | 46± 20                |
| 5000 ppm   | 33                | 5.0± 0.5              | $2.4\pm$ 0.3    | 1.0± 0.1  | 0.14± 0.03           | 173± 49          | 102± 26                | 44± 20                |

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

· \_ --

(HCL074)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : AL

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

| roup Name | NO. of<br>Animals | PHOSPHOI<br>mg∕dl | LIPID | AST<br>IU∕J | 2 . | ALT<br>IU/J | e   | LDH<br>IU/J | e   | ALP<br>IU∕J | 2   | G-GTP<br>IU∕ℓ | 2 | CK<br>IU∕J | 2     |
|-----------|-------------------|-------------------|-------|-------------|-----|-------------|-----|-------------|-----|-------------|-----|---------------|---|------------|-------|
| Control   | 41                | 205土              | 75    | 74±         | 74  | 47土         | 77  | 407土        | 196 | 165士        | 122 | 1-1:          | 0 | 52土        | 49    |
| ngq 008   | 30                | $183\pm$          | 52    | 81±         | 69  | 45±         | 48  | 433±        | 193 | 139±        | 37  | 1±            | 1 | $63\pm$    | 72    |
| 2000 ppm  | 37                | 185±              | 48    | 77±         | 71  | 49±         | 60  | 432±        | 177 | 126±        | 34* | 1±            | 0 | 58±        | 34    |
| 5000 ppm  | 33                | 178土              | 45    | 151±        | 325 | 76±         | 162 | 583±        | 646 | 142±        | 46  | 1±            | 1 | 102±       | 150** |

.

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HCL074)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : 41

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

| roup Name | NO. of<br>Animals | UREA NITROGEN<br>mg∕dℓ | SODIUM<br>mEq∕£ |   | POTASS I<br>mEq⁄ |     | CHLORIDE<br>mEq∕£ |   | CALCIUM<br>mg∕dl | 4    | INORGAN<br>mg∕dl | NIC PHOSPHORUS |  |
|-----------|-------------------|------------------------|-----------------|---|------------------|-----|-------------------|---|------------------|------|------------------|----------------|--|
| Control   | 41                | 23.6± 4.8              | 153土            | 2 | 4.2土             | 0.3 | 122±              | 2 | 8.8±             | 0. 4 | 6.1±             | 0.6            |  |
| 800 ppm   | 30                | 24.3± 8.0              | 153±            | 3 | 4.3±             | 0.4 | 122±              | 4 | 8.8±             | 0.4  | 6.1±             | 0.9            |  |
| 2000 ppm  | 37                | 24.4± 11.5             | 152±            | 2 | 4.2±             | 0.3 | 121±              | 2 | 8.9±             | 0.4  | 6.1±             | 0.8            |  |
| 5000 ppm  | 33                | 26.1± 19.4             | $153\pm$        | 5 | 4.5±             | 1.1 | 123±              | 6 | 8.8±             | 0.5  | 6.4±             | 1.2            |  |

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

.

Test of Dunnett

(HCL074)

### TABLE H 2

# BIOCHEMISTRY: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : AI

### BIOCHEMISTRY (SUMMARY)

,

### ALL ANIMALS (105W)

| roup Name | NO. of<br>Animals | TOTAL F<br>g∕dl | PROTEIN | ALBUMIN<br>g⁄dl | !   | A/G RAT | 010  | T-BILI<br>mg∕dℓ | RUBIN | GLUCOSE<br>mg∕dl |    | T-CHOLE<br>mg∕dl | STEROL | TRIGLYC<br>mg∕dℓ | ERIDE |
|-----------|-------------------|-----------------|---------|-----------------|-----|---------|------|-----------------|-------|------------------|----|------------------|--------|------------------|-------|
| Control   | 35                | 5.0止            | 0.6     | 2.5上            | 0.3 | 1.0±    | 0.2  | 0.24±           | 0.56  | 141土             | 32 | 78±              | 24     | 43±              | 32    |
| 800 ppm   | 28                | 5.1±            | 0.4     | 2.5±            | 0.2 | 1.0±    | 0.2  | 0.14±           | 0.04  | 147±             | 31 | 70±              | 14     | 37±              | 17    |
| 2000 ppm  | 23                | 5.1±            | 0.7     | 2.5±            | 0.3 | 1.0±    | 0.2  | 0.14±           | 0.02  | 148土             | 25 | 76±              | 28     | 47±              | 52    |
| 5000 ppm  | 24                | 5.0±            | 0.6     | 2.5±            | 0.4 | 1.0±    | 0. 1 | 0.15±           | 0.05  | 137±             | 37 | 78±              | 30     | 33±              | 16    |

(HCL074)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] MEASURE. TIME : 1 SEX : ENALE : DEPORT TYPE : A1

#### BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

| oup Name | NO. of<br>Animals | PHOSPHOLI<br>mg⁄dl | IPID | AST<br>IU/J | e    | ALT<br>IU/J | 2   | LDII<br>IU/ | ٤    | ALP<br>IU/J | e   | G-GTP<br>IU∕£ | 2  |      | 2   |
|----------|-------------------|--------------------|------|-------------|------|-------------|-----|-------------|------|-------------|-----|---------------|----|------|-----|
| Control  | 35                | 142土               | 41   | 363土        | 1335 | 137土        | 523 | 1174土       | 3682 | 245±        | 130 | 1土            | 1  | 90土  | 84  |
| 800 ppm  | 28                | 125±               | 24   | 107土        | 111  | 40±         | 35  | $556\pm$    | 894  | 243±        | 65  | 13±           | 66 | 60±  | 49  |
| 2000 ppm | 23                | $131\pm$           | 41   | 113±        | 95   | 40土         | 23  | 510±        | 576  | 223±        | 84  | 1±            | 1  | 61±  | 21  |
| 5000 ppm | 24                | $135\pm$           | 55   | 127±        | 171  | 48±         | 70  | 674±        | 1060 | 348±        | 576 | 1±            | 1  | 101± | 151 |

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

(HCL074)

Test of Dunnett

STUDY NO. : 0642 BIOCHEMISTRY (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (105W) MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1 PAGE : 6 Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg∕dℓ mEq∕ℓ mEq∕ℓ mEq∕ℓ mg∕dℓ mg∕dl Control 35 17.4± 7.4  $152\pm$ 2 4.1± 0.5  $122\pm$ 2 9.2± 0.6  $6.2 \pm 1.1$ 800 ppm 28 17.3± 5.5  $152\pm$ 1 4.3± 0.7  $122\pm$ 2 8.8± 0.3\*\* 6.0± 1.2 23 2000 ppm 17.5± 4.8  $152\pm$ 2 4.0± 0.4  $122\pm$ 2 8.9± 0.7\* 5.7± 1.2 22.7± 17.7 5000 ppm 24  $151\pm$ 3 0.7  $121\pm$  $4.2\pm$ 3 9.0± 0.6 6.2± 1.3

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HCL074)

# TABLE I 1

# URINALYSIS: MALE

| X : MALE | REPORT            | TYPE :     | A1  |     |     |     |     |     |     |   |           |    |      |      |       |    |            |     |      |        |    |               |     |       |     |    |                |               | PAG |
|----------|-------------------|------------|-----|-----|-----|-----|-----|-----|-----|---|-----------|----|------|------|-------|----|------------|-----|------|--------|----|---------------|-----|-------|-----|----|----------------|---------------|-----|
| oup Name | NO. of<br>Animals | pH<br>5. 0 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | CHI |   | rote<br>± |    | 24 : | 3+ 4 | + CHI |    | ucose<br>± |     | + 3+ | 4+ CHI |    | tone h<br>± + |     | 3+ 4+ | CHI |    | ult bl<br>± +. | .00d<br>2+ 3+ | CHI |
| Control  | 41                | 0          | 2   | 9   | 11  | 13  | 6   | 0   |     | ( | ) 5       | 27 | 6    | 3    | 0     | 41 | 0          | 0 ( | 0 0  | 0      | 16 | 13 9          | 3   | 0 0   |     | 38 | 0 0            | 03            |     |
| 800 ppm  | 32                | 0          | 2   | 5   | 9   | 8   | 2   | 6   |     | ( | ) 6       | 18 | 8    | 0    | 0     | 32 | 0          | 0 0 | 0 0  | 0      | 15 | 7 10          | 0 0 | 0 0   |     | 29 | 0 0            | 03            |     |
| 2000 ppm | 36                | 0          | 1   | 10  | 12  | 7   | 5   | 1   |     | ( | ) 5       | 25 | 3    | 3    | 0     | 36 | 0          | 0 ( | 0 0  | 0      | 10 | 16 10         | 0 ( | 0 0   |     | 31 | 01             | 04            |     |
| 5000 ppm | 33                | 0          | 3   | 6   | 9   | 9   | 5   | 1   |     | ( | ) 5       | 17 | 10   | 1    | 0     | 33 | 0          | 0 ( | 0 0  | 0      | 8  | 14 13         | 0   | 0 0   |     | 31 | 0 0            | 02            |     |

(HCL101)

| -        | of<br>imals | Urobilinogen<br>± + 2+3+4+ CHI |  |
|----------|-------------|--------------------------------|--|
|          |             |                                |  |
| Control  | 41          | 41 0 0 0 0                     |  |
| 800 ppm  | 32          | 32 0 0 0 0                     |  |
| 2000 ppm | 36          | 36 0 0 0 0                     |  |
| 5000 ppm | 33          | 33 0 0 0 0                     |  |

(HCL101)

# TABLE I 2

# URINALYSIS: FEMALE

| roup Name | NO. of  | llu |     |     |     |     |     |     |     | Prot |      |      |    |        | c1.  |     |      |      |         | V + . | 1 1-            |       |     | ······ |         | 1 1   |     |
|-----------|---------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----|--------|------|-----|------|------|---------|-------|-----------------|-------|-----|--------|---------|-------|-----|
| out wane  | Animals |     | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | CHI |      |      | 2+   | 3+ | 4+ CHI |      | ± - | + 2+ | 3+ 4 | 4+ CIII |       | e body<br>-+ 2+ | 3+ 4+ | CHI |        | $\pm +$ | 2+ 3+ | CHI |
| r         |         |     |     |     |     |     |     |     |     |      |      |      |    |        |      |     |      |      |         |       |                 |       |     |        |         |       |     |
| Control   | 36      | 0   | 1   | 5   | 2   | 4   | 19  | 5   |     | 0    | 2 1  | 3 19 | 2  | 0      | 36   | 0   | 0 0  | 0    | 0       | 3 26  | 25              | 0 0   |     | 28     | 0 0     | 26    |     |
| 800 ppm   | 29      | 0   | 0   | 3   | 2   | 7   | 16  | ı   |     | 0    | 3 9  | ) 15 | 2  | 0      | . 29 | 0   | 0 0  | 0    | 0       | 2 23  | 3 1             | 0 0   |     | 22     | 1 1     | 23    |     |
| 2000 ppm  | 23      | 0   | 0   | 2   | 5   | 7   | 7   | 2   |     | 0    | 0 10 | 0 10 | 3  | 0      | 23   | 0   | 0 0  | 0    | 0       | 2 14  | 70              | 0 0   | *   | 18     | 01      | 1 3   |     |
| 5000 ppm  | 23      | 0   | 2   | 2   | 3   | 5   | 10  | 1   |     | 0    | 0 (  | 6 13 | 3  | 1      | 23   | 0   | 0 0  | 0    | 0       | 1 16  | 6 0             | 0 0   | *   | 14     | 14      | 1 3   |     |

(HCL101)

| SEX : FEMALE | REPORT            | түре : Аі                        |        | PAGE : |
|--------------|-------------------|----------------------------------|--------|--------|
| Group Name   | NO. of<br>Animals | Urobilinogen<br>± + 2+ 3+ 4+ CHI | · ·    |        |
|              |                   |                                  |        |        |
| Control      | 36                | 36 0 0 0 0                       |        |        |
| 800 ppm      | 29                | 29 0 0 0 0                       |        |        |
| 2000 ppm     | 23                | 23 0 0 0 0                       |        |        |
| 5000 ppm     | 23                | 23 0 0 0 0                       | 、<br>、 |        |

(HCL101)

TABLE J 1

# GROSS FINDINGS: MALE: ALL ANIMALS

# STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE

| rgan       | Findings                   | Group Name<br>NO. of Animals | Control<br>50 (%) | 800 ppm<br>50 (%) | 2000 ppm<br>50 (%) | 5000 ppm<br>50 (%) |
|------------|----------------------------|------------------------------|-------------------|-------------------|--------------------|--------------------|
| kin/app    | ulcer                      |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
|            | erosion                    |                              | 1 (2)             | 1 ( 2)            | 3 (6)              | 0 ( 0)             |
|            | thick                      |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (2)              |
|            | scab                       |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 1 ( 2)             |
| ubcutis    | mass                       |                              | 1 (2)             | 1 (2)             | 2 ( 4)             | 0 ( 0)             |
| Ing        | white zone                 |                              | 0 ( 0)            | 1 (2)             | 1 (2)              | 1 (2)              |
|            | red zone                   |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 1 (2)              |
|            | nodule                     |                              | 10 (20)           | 7 (14)            | 11 (22)            | 7 (14)             |
| ymph node  | enlarged                   |                              | 4 ( 8)            | 6 (12)            | 6 (12)             | 3 (6)              |
|            | nodule                     |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| leen       | enlarged                   |                              | 1 (2)             | 4 ( 8)            | 2 ( 4)             | 1 (2)              |
|            | white zone                 |                              | 1 (2)             | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
|            | black zone                 |                              | 1 (2)             | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
|            | nodule                     |                              | 1 (2)             | 4 ( 8)            | 3 ( 6)             | 0 ( 0)             |
|            | deformed                   |                              | 2 ( 4)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
|            | accentuation of white pulp |                              | 0 ( 0)            | 0 ( 0)            | 1 ( 2)             | 1 (2)              |
| eart       | white zone                 |                              | 0 ( 0)            | 0 ( 0)            | 1 ( 2)             | 0 ( 0)             |
|            | adhesion                   |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
| alivary gl | nodule                     |                              | 2 ( 4)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
| omach      | forestomach:nodule         |                              | 1 (2)             | . 0 ( 0)          | 0 ( 0)             | 0 ( 0)             |
|            | glandular stomach:erosion  |                              | 2 ( 4)            | 3 ( 6)            | 2 ( 4)             | 2 (4)              |
|            | glandular stomach:nodule   |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (2)              |

#### GROSS FINDINGS (SUMMARY) STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] ALL ANIMALS (0-105W) REPORT TYPE : A1 SEX : MALE

| rgan       | Findings                | Group Name<br>NO. of Animals | 50  | Control<br>(%) | 50 | 800 ppm<br>(%) | 50 | 2000 ppm<br>(%) | 50 | 5000 ppm<br>(%) |
|------------|-------------------------|------------------------------|-----|----------------|----|----------------|----|-----------------|----|-----------------|
| tomach     | glandular stomach:thick |                              | 16  | (32)           | 12 | (24)           | 16 | ( 32)           | 12 | (24)            |
| mall intes | nodule                  |                              | 0   | ( 0)           | 0  | ( 0)           | 0  | ( 0)            | 1  | (2)             |
|            | invagination            |                              | 0   | ( 0)           | 0  | ( 0)           | 1  | (2)             | 0  | ( 0)            |
| ver        | enlarged                |                              | 1   | (2)            | 1  | (2)            | 0  | ( 0)            | 0  | ( 0)            |
|            | white zone              |                              | 3   | (6)            | 6  | (12)           | 2  | ( 4)            | 3  | (6)             |
|            | red zone                |                              | 1   | (2)            | 1  | (2)            | 0  | ( 0)            | 0  | ( 0)            |
|            | nodule                  |                              | 20  | (40)           | 20 | (40)           | 17 | ( 34)           | 16 | (32)            |
|            | cyst                    |                              | 1   | (2)            | 0  | ( 0)           | 1  | (2)             | 1  | ( 2)            |
|            | deformed                |                              | 0   | ( 0)           | 1  | (2)            | 0  | ( 0)            | 0  | (0)             |
| ncreas     | nodule                  |                              | 2   | ( 4)           | 0  | ( 0)           | 0  | ( 0)            | 0  | ( 0)            |
| dney       | atrophic                |                              | 0   | ( 0)           | 0  | ( 0)           | 2  | (4)             | 0  | ( 0)            |
|            | white zone              |                              | 1   | (2)            | 0  | ( 0)           | 0  | ( 0)            | 0  | ( 0)            |
|            | yellow zone             |                              | . 0 | ( 0)           | 0  | ( 0)           | 0  | ( 0)            | 1  | (2)             |
|            | cyst                    |                              | 1   | (2)            | 0  | ( 0)           | 0  | ( 0)            | 0  | ( 0)            |
|            | hydronephrosis          |                              | 1   | (2)            | 2  | ( 4)           | 5  | (10)            | 2  | ( 4)            |
|            | dilated pelvis          |                              | 0   | ( · · 0)       | 0  | ( 0)           | 0  | ( 0)            | 1  | (2)             |
| in bladd   | calculus                |                              | 0   | ( 0)           | 0  | ( 0)           | 1  | (2)             | 0  | ( 0)            |
|            | urine:marked retention  |                              | 2   | (4)            | 5  | ( 10)          | 1  | (2)             | 4  | (8)             |
| tuitary    | enlarged                |                              | 1   | (2)            | 0  | ( 0)           | 0  | ( 0)            | 0  | ( 0)            |
|            | nodule                  |                              | 0   | ( 0)           | 1  | (2)            | 0  | ( 0)            | 0  | ( 0)            |
|            | cyst                    |                              | 0   | ( 0)           | 1  | (2)            | 0  | ( 0)            | 0  | ( 0)            |
| renal      | enlarged                |                              | 1   | (2)            | 0  | ( 0)           | 0  | ( 0)            | 0  | ( 0)            |

~~

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : AI SEX : MALE

### GROSS FINDINGS (SUMMARY)

### ALL ANIMALS (0-105W)

SEX

\_

•

| Organ       | Findings      | Group Name<br>NO. of Animals | Control<br>50 (%) | 800 ppm<br>50 (%) | 2000 ppm<br>50 (%) | 5000 ppm<br>50 (%) |
|-------------|---------------|------------------------------|-------------------|-------------------|--------------------|--------------------|
| testis      | nodule        |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
| epididymis  | nodule        |                              | 0 ( 0)            | 2 ( 4)            | 0 ( 0)             | 0 ( 0)             |
| prep/cli gl | nodule        |                              | 0 (0)             | 1 ( 2)            | 0 ( 0)             | 0 ( 0)             |
| periph nerv | nodule        |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
| еуе         | turbid        |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| llarder gl  | enlarged      |                              | 1 (2)             | 1 (2)             | 1 (2)              | 1 (2)              |
|             | nodule        |                              | 0 ( 0)            | 1 (2)             | 1 (2)              | 1 (2)              |
| muscle      | nodule        |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
| bone        | nodule        |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
| pleura      | nodule        |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
| mediastinum | mass          |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (2)              |
| peritoneum  | white zone    |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
|             | adhesion      |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
| abdominal c | hemorrhage    |                              | 0 ( 0)            | 0 ( 0)            | 2 ( 4)             | 0 ( 0)             |
|             | ascites       |                              | 0 ( 0)            | 2 ( 4)            | 1 (2)              | 3 (6)              |
| thoracic ca | pleural fluid |                              | 1 (2)             | 2 ( 4)            | 1 (2)              | 3 (6)              |
| other       | tail:nodule   |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| whole body  | anemic        |                              | 0 ( 0)            | 0 ( 0)            | 3 (6)              | 0 ( 0)             |

(HPT080)

BAIS 4

### TABLE J 2

# GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

-

| Organ      | Findings                 | Group Name<br>NO. of Animals | Control<br>9 (%) | 800 maga 808<br>19 (%) | 2000 ppm<br>13 (%) | 5000 ppn<br>17 (%) |
|------------|--------------------------|------------------------------|------------------|------------------------|--------------------|--------------------|
| skin/app   | thick                    |                              | 0 ( 0)           | 0 ( 0)                 | 0 ( 0)             | 1 (6)              |
|            | scab                     |                              | 1 (11)           | 0 ( 0)                 | 0 ( 0)             | 1 (6)              |
| subcutis   | mass                     |                              | 1 (11)           | 1 (5)                  | 2 (15)             | 0 ( 0)             |
| ung        | white zone               |                              | 0 ( 0)           | 1 (5)                  | 0 ( 0) •           | 0 ( 0)             |
|            | red zone                 |                              | 1 (11)           | 0 ( 0)                 | 0 ( 0)             | 1 (6)              |
|            | nodule                   |                              | 1 (11)           | 0 ( 0)                 | 3 (23)             | 3 (18)             |
| ymph node  | enlarged                 |                              | 1 (11)           | 4 (21)                 | 1 ( 8)             | 1 (6)              |
|            | nodule                   |                              | 1 (11)           | 0 ( 0)                 | 0 ( 0)             | 0 ( 0)             |
| pleen      | enlarged                 |                              | 1 (11)           | 3 (16)                 | 2 (15)             | 1 (6)              |
|            | white zone               |                              | 0 ( 0)           | 1 ( 5)                 | 0 ( 0)             | 0 ( 0)             |
|            | nodule                   |                              | 0 ( 0)           | 4 (21)                 | 1 ( 8)             | 0 ( 0)             |
| eart       | white zone               |                              | 0 ( 0)           | 0 ( 0)                 | 1 ( 8)             | 0 ( 0)             |
|            | adhesion                 |                              | 0 ( 0)           | 0 ( 0)                 | 1 ( 8)             | 0 ( 0)             |
| alivary gl | nodule                   |                              | 0 ( 0)           | 1 ( 5)                 | 0 ( 0)             | 0 (0)              |
| tomach     | glandular stomach:nodule |                              | 0 ( 0)           | 0 ( 0)                 | 0 ( 0)             | 1 (6)              |
| mall intes | nodule                   |                              | 0 ( 0)           | 0 ( 0)                 | 0 ( 0)             | 1 (6)              |
|            | invagination             |                              | 0 ( 0)           | 0 ( 0)                 | 1 ( 8)             | 0 ( 0)             |
| iver       | eแไหrged                 |                              | 1 (11)           | 1 (5)                  | 0 ( 0)             | 0 ( 0)             |
|            | white zone               |                              | 2 (22)           | 4 (21)                 | 1 ( 8)             | 2 (12)             |
|            | red zone                 |                              | 1 (11)           | 1 (5)                  | 0 ( 0)             | 0 ( 0)             |
|            | nodule                   |                              | 5 (56)           | 9 (47)                 | 3 (23)             | 5 (29)             |
|            | cyst                     |                              | 0 ( 0)           | 0 ( 0)                 | i (8)              | 0 ( 0)             |

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

#### GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

| Organ       | Findings               | Group Name<br>NO. of Animals | Control<br>9 (%) | 800 ppm<br>19 (%) | 2000 ppm<br>13 (%) | 5000 ppm<br>17 (%) |
|-------------|------------------------|------------------------------|------------------|-------------------|--------------------|--------------------|
|             |                        |                              |                  |                   |                    |                    |
| liver       | deformed               |                              | 0 ( 0)           | 1 (5)             | 0 ( 0)             | 0 ( 0)             |
| pancreas    | nodule                 |                              | 1 (11)           | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| kidney      | white zone             |                              | 1 (11)           | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
|             | yellow zone            |                              | 0 ( 0)           | 0 ( 0)            | 0 ( 0)             | 1 (6)              |
|             | hydronephrosis         |                              | 1 (11)           | 2 (11)            | 2 (15)             | 2 (12)             |
|             | dilated pelvis         |                              | 0 ( 0)           | 0 ( 0)            | 0 ( 0)             | 1 ( 6)             |
| urin bladd  | urine:marked retention |                              | 1 (11)           | 3 (16)            | 1 ( 8)             | 3 (18)             |
| pituitary   | nodule                 |                              | 0 ( 0)           | 1 ( 5)            | 0 ( 0)             | 0 ( 0)             |
| drenal      | enlarged               |                              | 1 (11)           | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| estis       | nodule                 |                              | 0 ( 0)           | 0 ( 0)            | 1 ( 8)             | 0 ( 0)             |
| periph nerv | nodule                 |                              | 0 ( 0)           | 0 ( 0)            | 1 (8)              | 0 ( 0)             |
| Harder gl   | cularged               |                              | 0 ( 0)           | 1 (5)             | 0 ( 0)             | 0 ( 0)             |
|             | nodule                 |                              | 0 ( 0)           | 1 (5)             | 0 ( 0)             | 1 (6)              |
| nuscle      | nodule                 |                              | 0 ( 0)           | 1 (5)             | 0 ( 0)             | 0 ( 0)             |
| one         | nodule                 |                              | 0 ( 0)           | 0 ( 0)            | 1 ( 8)             | 0 ( 0)             |
| nediastinum | mass                   |                              | 0 ( 0)           | 0 ( 0)            | 0 ( 0)             | 1 (6)              |
| eritoneum   | white zone             |                              | 1 (11)           | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
|             | adlesion               |                              | 0 ( 0)           | 0 ( 0)            | 1 ( 8)             | 0 ( 0)             |
| abdominal c | hemorrhage             |                              | 0 ( 0)           | 0 ( 0)            | 2 (15)             | 0 ( 0)             |
|             | ascites                |                              | 0 ( 0)           | 2 (11)            | 1 ( 8)             | 2 (12)             |
| horacic ca  | pleural fluid          |                              | 1 (11)           | 1 (5)             | 0 ( 0)             | 2 (12)             |
| nhole body  | anemic                 |                              | 0 ( 0)           | 0 ( 0)            | 3 - ( 23)          | 0 ( 0)             |

TABLE J 3

# GROSS FINDINGS: MALE: SACRIFICED ANIMALS

### GROSS FINDINGS (SUMMARY)

### SACRIFICED ANIMALS (105W)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

SEX : MALE

\_

| rgan       | Findings                   | Group Name<br>NO. of Animals 41 (% | Control<br>%) 31 ( | 800 ppm<br>(%) 37 | 2000 ppm<br>(%) 33 | 5000 ppm<br>(%) |
|------------|----------------------------|------------------------------------|--------------------|-------------------|--------------------|-----------------|
| skin/app   | ulcer                      | 0 (                                | 0) 0               | (0) 1             | (3) 0              | (0)             |
|            | erosion                    | 1 (                                | 2) 1               | (3) 3             | (8) 0              | ( 0)            |
| lung       | white zone                 | 0 (                                | 0) 0               | ( 0) 1            | (3) 1              | (3)             |
|            | nodule                     | 9 (                                | 22) 7              | (23) 8            | (22) 4             | (12)            |
| ymph node  | enlarged                   | 3 (                                | 7) 2               | (6) 5             | (14) 2             | (6)             |
| spleen     | enlarged                   | 0 (                                | 0) 1               | (3) 0             | ( 0) 0             | ( 0)            |
|            | white zone                 | 1 (                                | 2) 0               | ( 0) 0            | ( 0) 0             | ( 0)            |
|            | black zone                 | • 1 (                              | 2) 0               | ( 0) 1            | (3) 0              | ( 0)            |
|            | nodule                     | 1 (                                | 2) 0               | ( 0) 2            | (5) 0              | ( 0)            |
|            | deformed                   | 2 (                                | 5) 0 (             | ( 0) 1            | (3) 0              | ( 0)            |
|            | accentuation of white pulp | 0 (                                | 0) 0               | ( 0) 1            | (3) 1              | (3)             |
| alivary gl | nodule                     | 2 (                                | 5) 0               | ( 0) 0            | ( 0) 0             | ( 0)            |
| tomach     | forestomach:nodule         | 1 (                                | 2) 0               | ( 0) 0            | ( 0) 0             | ( 0)            |
|            | glandular stomach:erosion  | 2 (                                | 5) 3 (             | (10) 2            | (5) 2              | (6)             |
|            | glandular stomach:thick    | 16 (                               | 39) 12             | (39) 16           | (43) 12            | (36)            |
| liver      | white zone                 | 1 (                                | 2) 2               | (6) 1             | (3) 1              | (3)             |
|            | nodule                     | 15 (                               | 37) 11             | (35) 14           | (38) 11            | ( 33)           |
|            | cyst                       | 1 (                                | 2) 0               | ( 0) 0            | ( 0) 1             | (3)             |
| mereas     | nodule                     | 1 (                                | 2) 0               | ( 0) 0            | ( 0) 0             | ( 0)            |
| idney      | ətrophic                   | 0 (                                | 0) 0               | ( 0) 2            | (5) 0              | ( 0)            |
|            | cyst                       | 1 (                                | 2) 0               | ( 0) 0            | ( 0) 0             | ( 0)            |
|            | hydronephrosis             | 0 (                                | 0) 0               | ( 0) 3            | (8) 0              | ( 0)            |

PAGE : 1

~

### GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

# ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

STUDY NO. : 0642

| gan       | Findings               | Group Name<br>NO. of Animals | Control<br>41 (%) | 800 ppm<br>31 (%) | 2000 ppm<br>37 (%) | 5000 p<br>33 (%) |
|-----------|------------------------|------------------------------|-------------------|-------------------|--------------------|------------------|
| in bladd  | calculus               |                              | 0 ( 0)            | 0 ( 0)            | 1 (3)              | 0 ( 0)           |
|           | urine:marked retention |                              | 1 (2)             | 2 (6)             | 0 ( 0)             | 1 (3)            |
| tuitary   | enlarged               |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)           |
|           | cyst                   |                              | 0 ( 0)            | 1 (3)             | 0 ( 0)             | 0 ( 0)           |
| ididymis  | nodule                 |                              | 0 ( 0)            | 2 (6)             | 0 ( 0)             | 0 ( 0)           |
| eµ∕cli gl | nodu]e                 |                              | 0 ( 0)            | 1 (3)             | 0 ( 0)             | 0 ( 0)           |
|           | turbid                 |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)           |
| der gl    | enlarged               |                              | 1 (2)             | 0 ( 0)            | 1 ( 3)             | 1 (3)            |
|           | nodule                 |                              | 0 ( 0)            | 0 ( 0)            | 1 (3)              | 0 ( 0)           |
| eura      | nodule                 |                              | 0 ( 0)            | 1 ( 3)            | 0 ( 0)             | 0 ( 0)           |
| lominal c | ascites                |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 ( 3)           |
| oracic ca | ploural fluid          |                              | 0 ( 0)            | 1 ( 3)            | 1 ( 3)             | 1 (3)            |
| lier      | tail:nodule            |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)           |

(HPT080)

BAIS 4

PAGE : 2

TABLE J 4

### GROSS FINDINGS: FEMALE: ALL ANIMALS

### GROSS FINDINGS (SUMMARY)

#### ALL ANIMALS (0-105W)

| Organ       | Findings                  | Group Name<br>NO. of Animals | Control<br>50 (%) | 800 ppm<br>50 (%) | 2000 ррт<br>50 (%) | 50  | 5000 ppm<br>(%) |
|-------------|---------------------------|------------------------------|-------------------|-------------------|--------------------|-----|-----------------|
|             |                           |                              | <i>.</i> .        |                   |                    |     |                 |
| skin/app    | scab                      |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 2   | (4)             |
| subcutis    | edema                     |                              | 0 ( 0)            | 1 (2)             | 4 (8)              | 1   | (2)             |
|             | mass                      |                              | 2 (4)             | 1 (2)             | 2 ( 4)             | 0   | ( 0)            |
| lung        | white zone                |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0   | ( 0)            |
|             | red zone                  |                              | 0 ( 0)            | 0 ( 0)            | i (2)              | 0   | ( 0)            |
|             | nodule                    |                              | 5 (10)            | 6 (12)            | 2 ( 4)             | 1   | (2)             |
| lymph node  | enlarged                  |                              | 3 (6)             | 9 (18)            | 10 (20)            | 8   | (16)            |
| spleen      | enlarged                  |                              | 9 (18)            | 7 (14)            | 14 (28)            | . 7 | (14)            |
|             | white zone                |                              | 0 ( 0)            | .1 ( 2)           | 0 ( 0)             | 1   | (2)             |
|             | nodule                    |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0   | ( 0)            |
|             | deformed                  |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1   | (2)             |
|             | nodular                   |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0   | ( 0)            |
| stomach     | forestomach:nodule        |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1   | (2)             |
|             | glandular stomach:erosion |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0   | ( 0)            |
|             | glandular stomach:thick   |                              | 1 (2)             | 2 ( 4)            | 1 ( 2)             | 2   | (4)             |
| small intes | nodule                    |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 2   | (4)             |
| liver       | enlarged                  |                              | 1 (2)             | 0 ( 0)            | 3 (6)              | 3   | (6)             |
|             | white zone                |                              | 2 (4)             | 4 ( 8)            | 7 (14)             | 9   | (18)            |
|             | red zone                  |                              | 1 (2)             | 2 ( 4)            | 0 ( 0)             | 0   | ( 0)            |
|             | nodule                    |                              | 8 (16)            | 7 (14)            | 10 (20)            | 10  | (20)            |
|             | cyst                      |                              | 0 ( 0)            | 2 ( 4)            | 0 ( 0)             | 0   | ( 0)            |
| pancreas    | nodule                    |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 2   | ( 4)            |
|             |                           |                              |                   |                   |                    |     |                 |

PAGE: 4

SEX : FEMALE

### GROSS FINDINGS (SUMMARY)

ALL ANIMALS (0-105W)

| )rgan      | Findings       | Group Name<br>NO. of Animals | Control<br>50 (%) | 800 ppm<br>50 (%) | 2000 ppm<br>50 (%) | 5000 ppm<br>50 (%) |
|------------|----------------|------------------------------|-------------------|-------------------|--------------------|--------------------|
| sidney     | enlarged       |                              | 0 ( 0)            | 1 ( 2)            | 1 (2)              | 3 (6)              |
|            | atrophic       |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (2)              |
|            | white          |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
|            | white zone     |                              | 0 ( 0)            | 0 ( 0)            | 2 ( 4)             | 2 ( 4)             |
|            | deformed       |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | £ (2)              |
|            | lydronephrosis |                              | 3 (6)             | 3 (6)             | 2 ( 4)             | 4 (8)              |
| oituitary  | enlarged       |                              | 4 ( 8)            | 0 ( 0)            | 5 (10)             | 5 (10)             |
|            | red zone       |                              | 0 ( 0)            | 3 (6)             | 5 (10)             | 2 (4)              |
|            | nodule         |                              | 2 ( 4)            | 0 ( 0)            | 0 ( 0)             | 3 (6)              |
| vary       | enlarged       |                              | 1 (2)             | 3 ( 6)            | 5 (10)             | 5 (10)             |
|            | cyst           |                              | 3 (6)             | 8 (16)            | 2 ( 4)             | 4 (8)              |
| terus      | red zone       |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (2)              |
|            | nodule         |                              | 9 (18)            | 8 (16)            | 8 (16)             | 7 (14)             |
| rain       | enlarged       |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 ( 0)             |
|            | red zone       |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 1 (2)              |
|            | hemorrhage     |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
|            | nodule         |                              | 0 ( 0)            | 1 (2)             | 0 (0)              | 0 ( 0)             |
| pinal cord | yellow zone    |                              | 1 (2)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
| arder gl   | enlarged       |                              | 0 ( 0)            | 3 (6)             | 0 ( 0)             | 0 ( 0)             |
|            | nodule ·       |                              | 0 ( 0)            | 0 ( 0)            | 1 ( 2)             | 0 ( 0)             |
| uscle      | nodule         |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |
| one        | nodule         |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 ( 0)             |

PAGE : 5

### GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

| REPORT | 111.0 | • | A1     |
|--------|-------|---|--------|
| SEX    |       | : | FEMALE |

| gan        | Findings      | Group Name<br>NO. of Animals | Control<br>50 (%) | 800 ppm<br>50 (%) | 2000 ppm<br>50 (%) | 50 ( | 5000 ppm<br>(%) |
|------------|---------------|------------------------------|-------------------|-------------------|--------------------|------|-----------------|
| eura       | nodule        |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 (  | (0)             |
| ediastinum | mass          |                              | 3 (6)             | 5 (10)            | 2 ( 4)             | 4 (  | (8)             |
| ritoneum   | nodule        |                              | 3 (6)             | 1 (2)             | 0 ( 0)             | 2 (  | (4)             |
| ,          | thick         |                              | 2 ( 4)            | 1 ( 2)            | 1 ( 2)             | 0 (  | (0)             |
| troperit   | mass          |                              | 0 ( 0)            | 0 ( 0)            | 1 (2)              | 0 (  | (0)             |
| dominal c  | hemorrhage    |                              | 0 ( 0)            | 0 ( 0)            | 2 (4)              | 0 (  | (0)             |
|            | mass          |                              | 0 ( 0)            | 1 (2)             | 0 ( 0)             | 0 (  | (0)             |
|            | ascites       |                              | 5 (10)            | 6 (12)            | 7 (14)             | 8 (  | (16)            |
| oracic ca  | pleural fluid |                              | 7 (14)            | 11 (22)           | 6 (12)             | 10 ( | (20)            |

(IIPT080)

BAIS 4

PAGE: 6

### TABLE J 5

### GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

#### GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

| SEX :      | FEMALE         |                              |                   |                   |                    | PAGE :             |
|------------|----------------|------------------------------|-------------------|-------------------|--------------------|--------------------|
| Organ      | Findings       | Group Name<br>NO. of Animals | Control<br>14 (%) | 800 ppm<br>21 (%) | 2000 ppm<br>27 (%) | 5000 ppm<br>26 (%) |
| skin/app   | scab           |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (4)              |
| subcutis   | edema          |                              | 0 ( 0)            | 1 (5)             | 4 (15)             | 1 (4)              |
|            | mass           |                              | 1 (7)             | 1 (5)             | 1 ( 4)             | 0 ( 0)             |
| lung       | white zone     |                              | 1 (7)             | 0 ( 0)            | 0 ( 0)             | 0 ( 0)             |
|            | red zone       |                              | 0 ( 0)            | 0 ( 0)            | 1 (4)              | 0 ( 0)             |
|            | nodule         |                              | 2 (14)            | 5 (24)            | 2 (7)              | 0 ( 0)             |
| lymph node | enlarged       |                              | 0 ( 0)            | 6 (29)            | 6 (22)             | 7 (27)             |
| spleen     | enlarged       |                              | 3 (21)            | 5 (24)            | 13 (48)            | 5 (19)             |
| mall intes | nodule         |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 2 ( 8)             |
| iver       | enlarged       |                              | 0 ( 0)            | 0 ( 0)            | 3 (11)             | 3 (12)             |
|            | white zone     |                              | 2 (14)            | 3 (14)            | 7 (26)             | 7 (27)             |
|            | rod zone       |                              | 1 (7)             | 2 (10)            | 0 ( 0)             | 0 ( 0)             |
|            | nodule         |                              | 2 (14)            | 4 (19)            | 4 (15)             | 4 (15)             |
|            | cyst           |                              | 0 ( 0)            | 1 (5)             | 0 ( 0)             | 0 ( 0)             |
| pancreas   | nodule         |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 (4)              |
| idney      | enlarged       |                              | 0 ( 0)            | 1 (5)             | 0 ( 0)             | 3 (12)             |
|            | white          |                              | 0 ( 0)            | 0 ( 0)            | 1 (4)              | 0 ( 0)             |
|            | white zone     |                              | 0 ( 0)            | 0 ( 0)            | 2 (7)              | 2 (8)              |
|            | deformed       |                              | 0 ( 0)            | 0 ( 0)            | 0 ( 0)             | 1 ( 4)             |
|            | hydronephrosis |                              | 1 (7)             | 2 (10)            | 2 (7)              | 4 (15)             |
| ituitary   | enlarged       |                              | 2 (14)            | 0 ( 0)            | 4 (15)             | 2 (8)              |
|            | red zone       |                              | 0 ( 0)            | 2 (10)            | 3 (11)             | 0 ( 0)             |

| STUDY NO.   | : | 0642  |                       |
|-------------|---|-------|-----------------------|
| ANIMAL      | : | MOUSE | B6D2F1/Cr1j[Crj:BDF1] |
| REPORT TYPE | : | Λ1    |                       |

SEX : FEMALE

#### GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0~105W)

| rgan      | Findings    | Group Name<br>NO. of Animals | Control<br>14 (%) | · 800 ppm<br>21 (%) | 2000 ppm<br>27 (%) | 5000 ppm<br>26 (%) |
|-----------|-------------|------------------------------|-------------------|---------------------|--------------------|--------------------|
| ituitary  | nodule      |                              | 0 ( 0)            | 0 ( 0)              | 0 ( 0)             | 1 (4)              |
| /ary      | enlarged    |                              | 0 ( 0)            | 2 (10)              | 4 (15)             | 5 (19)             |
|           | cyst        |                              | 0 ( 0)            | 3 (14)              | 1 ( 4)             | 1 (4)              |
| erus      | red zone    |                              | 0 ( 0) -          | 0 ( 0)              | 0 ( 0)             | 1 ( 4)             |
|           | nodule      |                              | 3 (21)            | 4 (19)              | 5 (19)             | 5 (19)             |
| ain       | enlarged    |                              | 0 ( 0)            | 0 (0)               | 1 ( 4)             | 0 ( 0)             |
|           | red zone    |                              | 0 ( 0)            | 0 ( 0)              | 1 ( 4)             | 1 (4)              |
|           | hemorrhage  |                              | 0 ( 0)            | 1 (5)               | 0 ( 0)             | 0 ( 0)             |
|           | nodule      |                              | 0 ( 0)            | 1 ( 5)              | 0 ( 0)             | 0 ( 0)             |
| inal cord | yellow zone |                              | 1 (7)             | 0 ( 0)              | 0 ( 0)             | 0 ( 0)             |
| rder gl   | enlarged    |                              | 0 ( 0)            | . 1 ( 5)            | 0 ( 0)             | 0 ( 0)             |
|           | nodule      |                              | 0 ( 0)            | 0 ( 0)              | 1 ( 1)             | 0 ( 0)             |
| scle      | nodule      |                              | 0 ( 0)            | 1 (5)               | 0 ( 0)             | 0 ( 0)             |
| ne        | nodule      |                              | 0 ( 0)            | 1 (5)               | 0 ( 0)             | 0 ( 0)             |
| eura      | nodule      |                              | 0 ( 0)            | 1 (5)               | 0 ( 0)             | 0 ( 0)             |
| diastinum | mass .      |                              | 3 (21)            | 5 (24)              | 2 (7)              | 3 (12)             |
| ritoneum  | nodule      |                              | 1 (7)             | 1 (5)               | 0 ( 0)             | 1 (4)              |
|           | thick       |                              | 2 (14)            | 1 (5)               | 1 ( 4)             | 0 ( 0)             |
| troperit  | mass        |                              | 0 ( 0)            | 0 ( 0)              | 1 ( 4)             | 0 ( 0)             |
| dominal c | hemorrhage  |                              | 0 ( 0)            | 0 ( 0)              | 2 (7)              | . 0 ( 0)           |

0 ( 0)

2 (14)

1 (5)

5 (24)

0 ( 0)

6 (22)

PAGE: 4

mass

ascites

0 ( 0)

6 (23)

| STUDY NO. : 0642<br>ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]<br>REPORT TYPE : A1 | GROSS FINDINGS (SUMMARY)<br>DEAD AND MORIBUND ANIMALS (0-105W)             |                    |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|
| SEX : FEMALE                                                                 |                                                                            | PAGE :             |
| Organ Findings                                                               | Group Name Control 800 ppm 2000 ppm<br>NO. of Animals 14 (%) 21 (%) 27 (%) | 5000 ppm<br>26 (%) |
| thoracic ca pleural fluid                                                    | 6 (43) 11 (52) 6 (22)                                                      | 10 (38)            |

(HPT080)

BAIS 4

5

TABLE J 6

### GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

#### STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

### GROSS FINDINGS (SUMMARY)

5

#### SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE

|            |                           | Group Name        | Control | 800 ppm | 2000 ppm | 5000 ppr |
|------------|---------------------------|-------------------|---------|---------|----------|----------|
| brgan      | Findings                  | NO. of Animals 36 | ; (%)   | 29 (%)  | 23 (%)   | 24 (%).  |
| kin/app    | scab                      |                   | ) ( 0)  | 1 (3)   | 0 ( 0)   | 1 ( )    |
| subcutis   |                           |                   |         |         |          | 1 (4)    |
|            | mass                      |                   | (3)     | 0 ( 0)  | 1 (4)    | 0 ( 0)   |
| ung        | nodule                    |                   | (8)     | 1 (3)   | 0 ( 0)   | 1 (4)    |
| ymph node  | enlarged                  |                   | (8)     | 3 (10)  | 4 (17)   | 1 (4)    |
| pleen      | enlarged                  | 6                 | 5 (17)  | 2 (7)   | 1 (4)    | 2 (8)    |
|            | white zone                | C                 | ) ( 0)  | 1 ( 3)  | 0 ( 0)   | 1 (4)    |
|            | nodule                    | C                 | ) ( 0)  | 0 ( 0)  | i (4)    | 0 ( 0)   |
|            | deformed                  | C                 | ( 0)    | 0 ( 0)  | 0 ( 0)   | 1 (4)    |
|            | nodular                   | C                 | ( 0)    | 0 ( 0)  | 1 (4)    | 0 ( 0)   |
| tomach     | forestomach:nodule        | (                 | ( 0)    | 0 ( 0)  | 0 ( 0)   | 1 (4)    |
|            | glandular stomach:erosion | 1                 | (3)     | 0 ( 0)  | 0 ( 0)   | 0 (0)    |
|            | glandular stomach:thick   | 1                 | (3)     | 2 (7)   | 1 (4)    | 2 (8)    |
| mall intes | nodule                    | C                 | ( 0)    | 0 ( 0)  | 1 (4)    | 0 ( 0)   |
| iver       | enlarged                  | 1                 | (3)     | 0 ( 0)  | 0 ( 0)   | 0 ( 0)   |
|            | white zone                | C                 | ( 0)    | 1 ( 3)  | 0 ( 0)   | 2 (8)    |
|            | nodule                    | 6                 | i (17)  | 3 (10)  | 6 (26)   | 6 (25)   |
|            | cyst                      | C                 | ( 0)    | 1 ( 3)  | 0 ( 0)   | 0 ( 0)   |
| ancreas    | nodule                    | C                 | ( 0)    | 1 ( 3)  | 0 ( 0)   | 1 (4)    |
| idney      | enlarged                  | C                 | ) ( 0)  | 0 ( 0)  | 1 (4)    | 0 ( 0)   |
|            | atrophic                  | C                 | ( 0)    | 0 ( 0)  | 0 ( 0)   | 1 (4)    |
|            | hydronephrosis            | 2                 | : (6)   | 1 ( 3)  | 0 ( 0)   | 0 ( 0)   |
| tuitary    | enlarged                  | 2                 | : (6)   | 0 ( 0)  | 1 (4)    | 3 (13)   |

PAGE : 3

#### STUDY NO. : 0642 GROSS FINDINGS (SUMMARY) ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W) REPORT TYPE : A1 . .

SEX : FEMALE

| gan       | Findings      | Group Name<br>NO. of Animals | 36 | Control<br>(%) | 29  | 800 ppm<br>(%) | 23 | 2000 ppm<br>(%) | 24 | 5000 ppm<br>(%) |
|-----------|---------------|------------------------------|----|----------------|-----|----------------|----|-----------------|----|-----------------|
| ituitary  | red zone      |                              | 0  | (0)            | 1   | (3)            | 2  | (9)             | 2  | (8)             |
|           | nodule        |                              | 2  | (6)            |     | (0)            | 0  | ( 0)            | 2  | (8)             |
| /ary      | enlarged      |                              | 1  | (3)            | 1   | (3)            | 1  | ( 4)            | 0  | (0)             |
|           | cyst          |                              | 3  | (8)            | 5   | (17)           | 1  | ( 4)            | 3  | (13)            |
| erus      | nodule        |                              | 6  | (17)           | . 4 | (14)           | 3  | (13)            | 2  | (8)             |
| rder gl   | enlarged      |                              | 0  | ( 0)           | 2   | (7)            | 0  | ( 0)            | 0  | ( 0)            |
| diastinum | mass          |                              | 0  | ( 0)           | 0   | ( 0)           | 0  | ( 0)            | 1  | (4)             |
| ritoneum  | nodule        |                              | 2  | (6)            | 0   | ( 0)           | 0  | ( 0)            | 1  | (4)             |
| dominal c | ascites       |                              | 3  | (8)            | 1   | (3)            | 1  | ( 4)            | 2  | (8)             |
| oracic ca | pleural fluid |                              | 1  | (3)            | . 0 | (0)            | 0  | ( 0)            | 0  | (0)             |

(HPT080)

BAIS 4

PAGE: 4

### TABLE K 1

## ORGAN WEIGHT, ABSOLUTE: MALE

#### ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

| oup Name | NO. of<br>Animals | Body Weight | ADRENALS      | TESTES       | IIEART       | LUNGS        | KIDNEYS      |  |
|----------|-------------------|-------------|---------------|--------------|--------------|--------------|--------------|--|
| Control  | 41                | 47.7± 5.7   | 0.010 ± 0.002 | 0.218± 0.038 | 0.224± 0.023 | 0.213土 0.088 | 0.646土 0.064 |  |
| 800 ppm  | 30                | 45.9± 7.8   | 0.011± 0.002  | 0.220± 0.040 | 0.219± 0.027 | 0.222± 0.081 | 0.637± 0.075 |  |
| 2000 ppm | 37                | 45.5± 7.9   | 0.010± 0.002  | 0.234± 0.040 | 0.221± 0.017 | 0.206± 0.062 | 0.970± 1.600 |  |
| 5000 ppm | 33                | 46.7± 7.2   | 0.010± 0.002  | 0.210± 0.048 | 0.225± 0.020 | 0.194± 0.016 | 0.633± 0.051 |  |

(HCL040)

2

BAIS 4

PAGE: 1

| STUDY NO. : 06<br>ANIMAL : MO<br>REPORT TYPE :<br>SEX : MALE<br>UNIT: g | MAL : MOUSE B6D2F1/Cr1,j[Cr,j:BDF1]<br>WAT TYPE : A1<br>( : MALE<br>T: g<br>WUP Name NO. of SPLEEN |  |       | N WEIGHT:ABSOLUTE (SUMMARY)<br>IVAL ANIMALS (105W) |      |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|-------|----------------------------------------------------|------|
| Group Name                                                              |                                                                                                    |  | LIVER | BRAIN                                              | <br> |

0.451± 0.020

0.451± 0.016

0.460± 0.015

0.458± 0.013

Test of Dunnett

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

0.103± 0.105

 $0.099 \pm 0.130$ 

0.105± 0.051

0.082± 0.038

1.717 土 0.650

1.714± 0.556

1.733± 0.389

 $1.665 \pm 0.308$ 

30

37

33

Control 41

800 ppm

2000 ppm

5000 թթա

(IICL040)

BAIS 4

PAGE : 2

TABLE K 2

## ORGAN WEIGHT, ABSOLUTE: FEMALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE : 3

| oup Name | NO. of<br>Animals | Body Weight | ADRENALS     | OVARIES        | HEART        | LUNGS        | KIDNEYS      |
|----------|-------------------|-------------|--------------|----------------|--------------|--------------|--------------|
| Control  | 35                | 32.8± 5.1   | 0.014± 0.002 | 0.299± 1.263   | 0.177± 0.025 | 0.231± 0.199 | 0.482± 0.185 |
| 800 ppm  | 28                | 33.0± 4.0   | 0.015± 0.004 | 0. 103± 0. 167 | 0.166± 0.017 | 0.189± 0.024 | 0.548± 0.634 |
| 2000 ppm | 23                | 32.7± 3.6   | 0.015± 0.002 | 0.076± 0.094   | 0.173± 0.027 | 0.189± 0.020 | 0.525± 0.423 |
| 5000 ppm | 24                | 33.2± 7.2   | 0.014± 0.004 | 0.053± 0.026   | 0.180± 0.024 | 0.209± 0.104 | 0.458± 0.046 |

(HCL040)

BAIS 4

| roup Name         | NO. of  | SPLEEN         | LIVER         | BRAIN         | PAGE : |
|-------------------|---------|----------------|---------------|---------------|--------|
|                   | Animals |                |               |               |        |
| 0 1               | 95      | 0.000 L (0.101 | 1 707 1 1 100 | 0.426 - 0.014 |        |
| Control           | 35      | 0.202± 0.191   | 1.727± 1.190  | 0.476± 0.014  |        |
| 800 ppm           | 28      | 0.272± 0.549   | 1.441± 0.400  | 0.479± 0.017  |        |
| 2000 ppm          | 23      | 0.245± 0.382   | 1.478± 0.397  | 0.477± 0.015  |        |
| 50 <b>0</b> 0 ppm | 24      | 0.171± 0.169   | 1.463± 0.226  | 0.478± 0.023  |        |

(IICL040)

BAIS 4

### TABLE L 1

## ORGAN WEIGHT, RELATIVE: MALE

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W) PAGE : 1

| roup Name | NO. of<br>Animals | Body Weight<br>(g) | ADRENALS     | TESTES        | HEART        | LUNGS        | KIDNEYS      |
|-----------|-------------------|--------------------|--------------|---------------|--------------|--------------|--------------|
| Control   | 41                | 47.7± 5.7          | 0.021± 0.006 | 0.464± 0.099  | 0.476± 0.080 | 0.455± 0.209 | 1.375± 0.233 |
| 800 ppm   | 30                | 45.9± 7.8          | 0.024± 0.007 | 0.487± 0.083  | 0.485± 0.067 | 0.522± 0.367 | 1.417± 0.221 |
| 2000 ppm  | 37                | 45.5± 7.9          | 0.023± 0.008 | 0.530± 0.123* | 0.503± 0.109 | 0.470± 0.174 | 2.212± 3.493 |
| 5000 ppm  | 33                | 46.7± 7.2          | 0.023± 0.007 | 0.454± 0.106  | 0.495± 0.103 | 0.427± 0.084 | 1.384± 0.223 |

(IICL042)

BAIS 4

.

| STUDY NO. : 0642<br>ANIMAL : MOUS<br>REPORT TYPE : AJ<br>SEX : MALE<br>UNIT: % | SE B6D2F1/Cr1j[C  | crj:BDF1]    |              | WEIGHT:RELATIVE (SUMMARY)<br>AL ANIMALS (105W) |  | PAGE : 2 |
|--------------------------------------------------------------------------------|-------------------|--------------|--------------|------------------------------------------------|--|----------|
| Group Name                                                                     | NO. of<br>Animals | SPLEEN       | LIVER        | BRAIN                                          |  |          |
| Control                                                                        | 41                | 0.222土 0.254 | 3.706土 1.969 | 0.961± 0.134                                   |  |          |
| 800 ppm                                                                        | 30                | 0.227± 0.310 | 3.815± 1.340 | 1.019± 0.238                                   |  |          |

 $1.051 \pm 0.236$ 

1.008± 0.197

Test of Dunnett

 $3.969 \pm 1.341$ 

 $3.674 \pm 1.061$ 

**\*\*** : P ≦ 0.01

(IICL042)

2000 ppm

5000 ppm

37

33

Significant difference ;  $*: P \leq 0.05$ 

 $0.250 \pm 0.156$ 

0.186± 0.111

BAIS 4

TABLE L 2

## ORGAN WEIGHT, RELATIVE: FEMALE

| STUDY NO. : 0642<br>ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] | ORGAN WEIGH<br>SURVIVAL AN |
|----------------------------------------------------------|----------------------------|
| REPORT TYPE : A1                                         |                            |
| SEX : FEMALE                                             |                            |
| UNIT: %                                                  |                            |

HT:RELATIVE (SUMMARY) NIMALS (105W)

| PAGE | : | 3 |
|------|---|---|
|------|---|---|

| roup Name | NO. of<br>Animals | Body Weight<br>(g) | ADRENALS          | OVARIES      | HEART        | LUNGS        | KIDNEYS      |
|-----------|-------------------|--------------------|-------------------|--------------|--------------|--------------|--------------|
| Control   | 35                | 32.8± 5.1          | 0.044± 0.007      | 0.863± 3.615 | 0.555± 0.127 | 0.768± 0.928 | 1.554± 0.908 |
| 800 ppm   | 28                | 33.0± 4.0          | 0.048± 0.013      | 0.302± 0.448 | 0.507± 0.063 | 0.581± 0.099 | 1.707± 2.136 |
| 2000 ppm  | 23                | $32.7 \pm 3.6$     | 0.045± 0.008      | 0.229± 0.262 | 0.538± 0.113 | 0.584± 0.082 | 1.626± 1.333 |
| 5000 թթո  | 24                | 33.2± 7.2          | $0.045 \pm 0.014$ | 0.170± 0.089 | 0.561± 0.121 | 0.682± 0.510 | 1.428± 0.266 |

(HCL042)

BAIS 4

#### ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

SOLVIVAL ANIMALS (1050)

PAGE: 4

| Froup Name    | NO. of<br>Animals | SPLEEN            | LIVER         | BRAIN        |        |      |
|---------------|-------------------|-------------------|---------------|--------------|--------|------|
|               |                   |                   |               |              |        | <br> |
| Control       | 35                | 0.627± 0.588      | 5.269± 3.148  | 1.489± 0.260 |        |      |
| 800 ppm       | 28                | 0.802± 1.568      | 4.389± 1.166  | 1.469± 0.173 |        |      |
| 2000 ppm      | 23                | 0.751± 1.186      | 4.540± 1.199  | 1.473± 0.175 |        |      |
| 5000 չրտ      | 24                | 0.548± 0.669      | 4.582± 1.147  | 1.503± 0.315 |        |      |
|               |                   |                   |               |              |        | <br> |
| Significant o | lifference ;      | * : P ≦ 0.05 ** : | $P \leq 0.01$ | Test of Du   | Jnnett |      |

(IICL042)

BAIS 4

### TABLE M 1

### HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)

~~

ALL ANTRALS (0 1050)

| rgan          | Findings                             | Group Name<br>No. of Animals on Study<br>Grade | l <u>2</u><br>6) (% | 50<br>2 3              | trol<br>4<br>) (% | :   | 50<br>2 3             | ) ppm<br><u>4</u><br>5) (% | 2 (%)     | 2000 p<br>50<br><u>3</u><br>(%) | pm<br><u>4</u><br>(%) | <u> </u>  | 5(<br>             | 5000 µ<br>)<br><u>3</u><br>(%) | pm<br><u>4</u><br>(%) |  |
|---------------|--------------------------------------|------------------------------------------------|---------------------|------------------------|-------------------|-----|-----------------------|----------------------------|-----------|---------------------------------|-----------------------|-----------|--------------------|--------------------------------|-----------------------|--|
| Integumentary | y system/appandage}                  |                                                |                     |                        |                   |     |                       |                            |           |                                 |                       |           |                    |                                |                       |  |
| kin/app       | ulcer                                | (                                              | ) (                 | <50><br>) 0<br>)) ( 0) |                   |     | <50><br>) 0<br>)) ( 0 |                            | 3         | 50><br>0<br>(0)                 | 0<br>( 0)             | 0         | <50<br>0<br>( 0) ( | 0                              | 0<br>(0)              |  |
|               | erosion                              |                                                | )) ( (              | ) 0<br>))(0)           |                   | ( : | . 0<br>2)(0           |                            | 1<br>(2)  | 0<br>( 0)                       | 0<br>( 0)             | 0<br>( 0) |                    | .0<br>(0)                      | 0<br>( 0)             |  |
|               | squamous cell hyperplasia            |                                                | ) 1<br>))(2         | L 0<br>2) ( 0)         |                   | ( ( | ) (<br>))(0           |                            | 0<br>( 0) | 0<br>( 0)                       | 0<br>( 0)             | 0<br>( 0) | 1<br>(2)           | 0<br>(0)                       | 0<br>( 0)             |  |
|               | scab                                 | (                                              |                     | ) 0<br>))(0)           |                   | ( ( | ) (<br>))(0           |                            | 0<br>( 0) | 0<br>( 0)                       | 0<br>( 0)             | 0(0)      | 0                  | 0<br>(0)                       | 0<br>( 0)             |  |
| Respiratory : | system)                              |                                                |                     |                        |                   |     |                       |                            |           |                                 |                       |           |                    |                                |                       |  |
| asal cavit    | cosinophilic change:olfactory epitho |                                                |                     | <50><br>_ 0<br>2) ( 0) |                   |     | <50><br>0<br>2) ( 0   |                            | 0         | 50><br>0<br>( 0)                | 0<br>( 0)             | 8<br>(16) | <50<br>0<br>( 0) ( | 0                              | 0<br>(0)              |  |
|               | eosinophilic change:respiratory epit |                                                |                     | ) 0<br>)) ( 0)         |                   | ( ( | ) 1<br>)) ( 2         |                            | 0<br>( 0) | 0<br>( 0)                       | 0<br>( 0)             | 8<br>(16) | 0                  | 1<br>(2)                       | 0<br>( 0)             |  |
|               | respiratory metaplasia:olfactory epi |                                                | 5 C<br>)) ( C       | ) 0<br>)) ( 0)         |                   | (   | ) ( 0                 |                            | 0<br>( 0) | 0<br>( 0)                       | 0<br>( 0)             | 6<br>(12) | 0                  | 0<br>(0)                       | 0<br>( 0)             |  |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

· \_\_\_\_

|              |                                       | Group Name<br>No. of Animals on Study<br>Grade 1 | 50                      | ntrol<br>3 4   | 1         | 800 ppm<br>50<br>2 3 4           | 2000 ppm<br>50<br>1 2 3 4              | 5000 ppm<br>50<br>1 2 3 4              |
|--------------|---------------------------------------|--------------------------------------------------|-------------------------|----------------|-----------|----------------------------------|----------------------------------------|----------------------------------------|
| gan          | Findings                              | (%)                                              | (%). (9                 |                | (%)       | (%) (%) (%)                      | (%) (%) (%) (%)                        | (%) (%) (%) (%)                        |
| espiratory : | system)                               |                                                  |                         |                |           |                                  |                                        |                                        |
| asal cavit   | respiratory metaplasia gland          | 4<br>( 8)                                        | <50><br>0 (<br>( 0) ( ( | 0 0<br>0)(0)   | 4<br>( 8) | <50><br>L 0 0<br>( 2) ( 0) ( 0)  | <50><br>5 3 0 0<br>(10) (6) (0) (0)    | <50><br>6 1 0 0<br>(12) (2) (0) (0)    |
| achea        | eosinophilic change                   | 0<br>( 0)                                        | <50><br>0 (<br>( 0) ( ( | 00<br>) (0)    | 0<br>( 0) | <50><br>0 0 0<br>( 0), ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0) |
| ng           | congestion                            | 0<br>( 0)                                        | <50><br>0 (<br>( 0) ( ( | 0 0<br>0) ( 0) | 0<br>( 0) | <50><br>1 0 0<br>( 2) ( 0) ( 0)  | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |
|              | inflammation                          | 0<br>( 0)                                        | 0 (<br>( 0) ( (         | 0 0<br>0)(0)   | 0<br>( 0) | 0 0 0<br>( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)         |
|              | inflammatory infiltration             | 0<br>( 0)                                        | 1 ( 2) ( (              | 0 0<br>0)(0)   | 2<br>( 4) | 0 0 0<br>( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         |
|              | bronchiolar-alveolar cell hyperplasia |                                                  | 0 (<br>( 0) ( (         | 000)<br>0)(0)  | 0<br>( 0) | 0 0 0<br>( 0) ( 0) ( 0)          | 1 0 0 0<br>(2)(0)(0)(0)                | 1 0 0 0<br>(2)(0)(0)(0)                |
|              | accumulation:macrophage               | 0<br>( 0)                                        | 0 (<br>( 0) ( (         | 0 0<br>D)(0)   | 0<br>( 0) | 0 0 0<br>( 0) ( 0) ( 0)          | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)         | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)         |

(c) c: b / a \* 100 Significant difference; \*: P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| SEX :         | MALE                         | ( •                                            |                                 |                                                                                                      |                                                                                                                   | PAGE :                                                                                  |
|---------------|------------------------------|------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Organ         | Findings                     | No. of Animals on Study 50<br>Grade <u>1 2</u> | ontrol<br><u>3 4</u><br>(%) (%) | $ \begin{array}{c} 800 \\ 50 \\ \underline{1  2  3  4} \\ (\%)  (\%)  (\%)  (\%)  (\%) \end{array} $ | $ \begin{array}{c} 2000 \text{ ppm} \\ 50 \\ \underline{1} & 2 & 3 & 4 \\ (\%) & (\%) & (\%) & (\%) \end{array} $ | $5000 \text{ ppm} \\ 50 \\ \frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$ |
| {Hematopoieti | c system)                    |                                                |                                 |                                                                                                      |                                                                                                                   |                                                                                         |
| bone marrow   | increased hematopoiesis      | <50><br>2 0<br>( 4) ( 0) (                     | 0 0                             | <50><br>4 0 0 0<br>(* 8) ( 0) ( 0) ( 0)                                                              | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                                                            | <50><br>3 0 0 0<br>(6) (0) (0) (0)                                                      |
|               | granulopoiesis:increased     | 3 0<br>(6)(0)(                                 | 0 0<br>0) ( 0)                  | 1 0 0 0<br>(2)(0)(0)(0)                                                                              | 3 0 0 0<br>(6)(0)(0)(0)                                                                                           | 0 0 0 0<br>(0)(0)(0)(0) <sub>,</sub>                                                    |
| Lymph node    | lymphadenitis                | <50><br>0 0<br>( 0) ( 0) (                     | 0 0<br>0) ( 0)                  | <50><br>0 I 0 0<br>( 0) ( 2) ( 0) ( 0)                                                               | <50><br>0 4 0 0<br>( 0) ( 8) ( 0) ( 0)                                                                            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                  |
| pleen         | deposit of melanin           | <50><br>2 0<br>( 4) ( 0) (                     | 0 0<br>0) ( 0)                  | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                               | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                  |
|               | extramedullary hematopoiesis | 5 2<br>(10) (4) (                              | 0 0<br>0) ( 0)                  | 6     2     1     0       (12)     (4)     (2)     (0)                                               | 5 5 0 0<br>(10) (10) (0) (0)                                                                                      | 9 1 0 0<br>(18) (2) (0) (0)                                                             |
|               | follicular hyperplasia       | 3 0<br>(6)(0)(                                 | 0 0<br>0) ( 0)                  | 2 1 0 0<br>(4)(2)(0)(0)                                                                              | 4 0 0 0<br>(8)(0)(0)(0)                                                                                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                          |
| {Circulatory  | system)                      |                                                |                                 |                                                                                                      |                                                                                                                   |                                                                                         |
| heart         | thrombus                     | <50><br>0 0<br>( )) ( (                        | 0 0                             | <50><br>0 1 0 0                                                                                      | <50><br>0 0 0 0                                                                                                   | <50><br>2 0 0 0                                                                         |

( 0) ( 0) ( 0) ( 0)

(0)(2)(0)(0)

( 0) ( 0) ( 0) ( 0)

 Grade
 1 : Slight
 2 : Moderate
 3 : Marked
 4 : Severe

 < a >
 a : Number of animals examined at the site

 b
 b : Number of animals with lesion

 (c)
 c : b / a \* 100

 Significant difference ;
 \* : P ≤ 0.05
 \*\* : P ≤ 0.01

(HPT150)

(4)(0)(0)(0)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|              |                           | Group Name<br>No. of Animals on Study | Control<br>50                                | 800 אותע<br>50                         | 2000 ppm<br>50                         | 5000 ррш<br>50                         |  |  |  |  |
|--------------|---------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|
| gan          | Findings                  | Grade <u>1</u><br>(%)                 | <u>2 3 4</u><br>(%) (%) (%)                  | <u>1 2 3 4</u><br>(%) (%) (%) (%)      | <u>1 2 3 4</u><br>(%) (%) (%) (%)      | <u>1 2 3 4</u><br>(%) (%) (%) (%)      |  |  |  |  |
| rculatory :  | system}                   |                                       |                                              |                                        |                                        |                                        |  |  |  |  |
| art          | mineralization            | 0<br>( 0)                             | <50><br>0 0 0<br>( 0) ( 0) ( 0)              | <50><br>3 0 0 0<br>( 6) ( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <50><br>1 1 0 0<br>( 2) ( 2) ( 0) ( 0) |  |  |  |  |
|              | arteritis                 | 0<br>( 0)                             | 0 0 0<br>( 0) ( 0) ( 0)                      | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)         | 0 0 0 0<br>(0)(0)(0)(0)(0)             | 0 0 0 0<br>(0)(0)(0)(0)                |  |  |  |  |
| igestive sys | stem)                     |                                       |                                              |                                        |                                        |                                        |  |  |  |  |
| ngue         | arteritis                 | 0<br>( 0)                             | <50><br>0 0 0<br>( 0) ( 0) ( 0) <sup>.</sup> | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0  |  |  |  |  |
| omach        | erosion:forestomach       | 0<br>( 0)                             | <50><br>0 0 0<br>( 0) ( 0) ( 0)              | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <50><br>1 0 0 0<br>(2) (0) (0) (0      |  |  |  |  |
|              | hyperplasia:forestomach   | 0<br>( 0)                             | 0 0 0<br>( 0) ( 0) ( 0)                      | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0          |  |  |  |  |
|              | erosion:glandular stomach | 1<br>( 2)                             | 0 0 0<br>( 0) ( 0) ( 0)                      | 2 0 0 0<br>( 4) ( 0) ( 0) ( 0)         | 3 0 0 0<br>(6)(0)(0)(0)                | 1 0 0 0<br>(2)(0)(0)(0)                |  |  |  |  |

Significant difference : \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE: 4

.

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| )rgan       | Findings                      | Group Name<br>No. of Animals on Study<br>Grade <u>1</u><br>(%) | 50<br>2             | ontrol<br><u>3</u><br>(%) | <u>4</u><br>(%) | <u> </u>   | ( | 50<br>2           | 00 pp<br>3<br>(%) | m<br><u>4</u><br>(%) | (       | 1<br>%)   | 5(<br>2<br>(%) | 2000 I<br>C<br><u>3</u><br>(%) | opm<br><u>4</u><br>(%) |   | 1 (%)     | 2<br>(%)       | 50 | 00 pp<br><u>3</u><br>(%) | بین<br>4<br>(% |
|-------------|-------------------------------|----------------------------------------------------------------|---------------------|---------------------------|-----------------|------------|---|-------------------|-------------------|----------------------|---------|-----------|----------------|--------------------------------|------------------------|---|-----------|----------------|----|--------------------------|----------------|
| igestive sy | stem)                         |                                                                |                     |                           |                 |            |   |                   |                   |                      |         |           |                |                                |                        |   |           |                |    |                          |                |
| tomach      | lyperplasia:glandular stomach | 33<br>(66)                                                     | <50><br>0<br>( 0) ( | 0                         | 0<br>0)         | 27<br>(54) |   | <50><br>0<br>0) ( | 0<br>0) (         | 0<br>0)              | 3<br>(6 |           | <50<br>0<br>0) | 0                              | 0<br>( 0)              |   | 27<br>54) | 0              |    | 0<br>0) (                | 0              |
| mall intes  | invagination                  | 0(0)                                                           | <50><br>0<br>( 0) ( | 0                         | 0<br>0)         | 0<br>( 0)  |   | <50><br>0<br>0) ( | ,<br>0<br>0) (    | 0<br>0)              |         | 1<br>2) ( | <50<br>0<br>0) | 0                              | 0<br>( 0)              | ( | 0<br>0)   | <<br>0<br>( 0) |    | 0<br>0) (                | 0              |
| Ver         | angiectasis                   | 2<br>( 4)                                                      | <50><br>0<br>( 0) ( | 0                         | 0<br>0)         | 0<br>( 0)  |   | <50><br>1<br>2) ( | 0<br>0) (         | 0<br>0)              |         | 0<br>0) ( | <50<br>0<br>0) | 0                              | 0<br>( 0)              | ( | 0<br>0)   | (<br>1<br>(2)  |    | 0<br>0) (                | 0              |
|             | hemorrhage                    | 0<br>( 0)                                                      | 0<br>( 0) (         | 0<br>0) (                 | 0<br>0)         | 0<br>( 0)  | ( | 0<br>ọ) (         | 0<br>0) (         | 0<br>0)              | (       | 0<br>0) ( | 0<br>0)        | 0<br>( 0)                      | 0<br>( 0)              | ( | 0<br>0)   | 1<br>(2)       |    | 0<br>0) (                | 0              |
|             | necrosis:focal                | 1<br>(2)                                                       | 0<br>( 0) (         | 0<br>0) (                 | 0<br>0)         | 0<br>( 0)  | ( | 1<br>2) (         | 0<br>0) (         | 0<br>0)              |         | 1<br>2) ( | 0<br>0)        | 0<br>( 0)                      | 0<br>( 0)              | ( | 1<br>2)   | 0<br>( 0)      |    | 0<br>0) (                | 0<br>( 0       |
|             | fatty change                  | 0<br>( 0)                                                      | 0<br>( 0) (         | 0<br>0) (                 | 0<br>0)         | 0<br>( 0)  |   | 0<br>0) (         | 0<br>0) (         | 0<br>0)              |         | 0<br>0) ( | 0<br>0)        | 0<br>( 0)                      | 0<br>(0)               | ( | 1<br>2)   | 0<br>( 0)      |    | 0<br>0) (                | 0              |
|             | inflammatory cell nest        | 0<br>( 0)                                                      | 0<br>( 0) (         | 0<br>0) (                 | 0<br>0)         | 0<br>( 0)  |   | 0<br>0) (         | 0<br>0) (         | 0<br>0)              |         | 2<br>4) ( | 0<br>0)        | 0<br>( 0)                      | 0<br>( 0)              | ( | 1<br>2)   | 0<br>( 0)      |    | 0<br>0) (                | 0              |

b (c) c∶b⁄a \* 100

Significant difference :  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(IIPT150)

BAIS4

PAGE: 5

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

.

----

PAGE : 6

|                 |                                                                                                                                                          | Group Name<br>No. of Animals on Study | Control<br>50                   | 800 ррт<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 2000 ppm<br>50                  | 5000 ppm<br>50                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|------------------------------------------------------------------|
| lrgan           | Findings                                                                                                                                                 | Grade <u>1</u><br>(%)                 | 2 <u>34</u><br>(%) (%) (%)      | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}  \frac{4}$ | <u>    (%)</u> | 2 <u>34</u><br>(%)(%)(%)        | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}$ |
| )igestive sys   | tem)                                                                                                                                                     |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                 |                                                                  |
| iver            | clear cell focus                                                                                                                                         | 0<br>( 0)                             | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>( 4) (    | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                           |
|                 | basophilic cell focus                                                                                                                                    | 1<br>( 2)                             | 2 0 0<br>(4)(0)(0)              | 1 2 0 0<br>(2)(4)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>( 0) (    | 2 0 0<br>(4)(0)(0)              | 1 1 0 0<br>(2)(2)(0)(0)                                          |
|                 | biliary cyst                                                                                                                                             | 1<br>( 2)                             | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>( 0) (    | 0 0 0<br>(0)(0)(0)              | 0 2 0 0<br>( 0) ( 4) ( 0) ( 0)                                   |
|                 | intestinal metaplasia:bile duct                                                                                                                          | 0<br>( 0)                             | 0 0 0<br>( 0) ( 0) ( 0)         | 1 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>( 0) (    | 0 0 0                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   |
| pancreas        | fibrosis:focal                                                                                                                                           | 0<br>( 0)                             | <50><br>1 0 0<br>( 2) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>( 0) (    | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           |
|                 | islet cell hyperplasia                                                                                                                                   | 0<br>( 0)                             | 0 0 0<br>( 0) ( 0) ( 0)         | 1 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>( 0) (    | 0 0 0<br>(0)(0)(0)              | 0 0 0 0<br>(0)(0)(0)(0)(0)                                       |
| Urinary syste   | m)                                                                                                                                                       |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                 |                                                                  |
| tidnøy          | cyst                                                                                                                                                     | 1<br>(2)                              | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>( 0) (    | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           |
| (a)<br>b<br>(c) | 1: Slight 2: Moderate<br>a: Number of animals examined at the<br>b: Number of animals with lesion<br>c: b / a * 100<br>fference; *: $P \leq 0.05$ ***: P |                                       |                                 | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                 |                                                                  |

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|            |                              | Group Name<br>No. of Animals on Study |          | Cont<br>50       | rol             |                     | Į                               | 800<br>50              | րիա             |     |           | 2<br>50  | น 0002<br>เ     | ա               |          |           | 50             | 5000<br>0       | ppm      |
|------------|------------------------------|---------------------------------------|----------|------------------|-----------------|---------------------|---------------------------------|------------------------|-----------------|-----|-----------|----------|-----------------|-----------------|----------|-----------|----------------|-----------------|----------|
| rgan       | Findings                     | Grade <u>1</u><br>(%)                 | 2<br>(%) | 3 (%)            | <u>4</u><br>(%) | <u>    1</u><br>(%) | 2<br>(%)                        | 3<br>(%)               | <u>4</u><br>(%) | ī   | 1<br>%)   | 2<br>(%) | 3<br>(%)        | <u>4</u><br>(%) | (9       | 6)<br>    | 2<br>(%)       | 3<br>(%)        | 4<br>(%  |
| Jrinary sy | rstem)                       |                                       |          |                  |                 |                     |                                 |                        |                 |     |           |          |                 |                 |          |           |                |                 |          |
| idney      | hyaline droplet              | 2<br>( 4)                             | 0        | (50><br>0<br>(0) | 0<br>( 0)       | 0<br>( 0)           | 0                               |                        | 0<br>( 0)       |     | 0<br>0) ( |          | 0><br>0<br>( 0) |                 |          | 2<br>4) ( | <50<br>0<br>0) | 0><br>0<br>( 0) | 0<br>( 0 |
|            | hyaline cast                 | 1                                     |          |                  | 0<br>( 0)       | 0<br>( 0)           | 1<br>(2)                        | 0 <sup>.</sup><br>( 0) | 0<br>( 0)       | (   | 0<br>0) ( | 0<br>0)  | 0<br>(0)        | 0<br>( 0)       | ( (      | 0<br>0) ( | 0<br>0)        | 0<br>( 0)       | 0<br>( 0 |
|            | inflammatory infiltration    | 0<br>( 0)                             |          |                  | 0<br>( 0)       | 0<br>( 0)           | 0<br>( 0)                       | 0<br>( 0)              | 0<br>( 0)       |     |           | 1<br>2)  | 0<br>(0)        | 0<br>( 0)       |          | D<br>D) ( | 0<br>0)        | 0<br>( 0)       | 0<br>( 0 |
|            | osseous metaplasia           | 1 ( 2)                                |          | 0<br>( 0)        | 0<br>( 0)       | 0<br>( 0)           | 0<br>( 0)                       | 0<br>( 0)              | 0<br>( 0)       | . ( | 0<br>0) ( | 0<br>0)  | 0<br>(0)        | 0<br>( 0)       |          | D<br>D) ( |                | 0<br>( 0)       | 0<br>( 0 |
|            | inflammatory polyp           | 0<br>( 0)                             |          |                  | 0<br>( 0)       | 0<br>( 0)           | 1<br>(2)                        | 0<br>( 0)              | 0<br>( 0)       |     | 0<br>0) ( |          | 0<br>( 0)       |                 |          | 1<br>2) ( |                | 0<br>( 0)       | 0<br>( 0 |
|            | hydronephrosis<br>•          |                                       | 1<br>(2) |                  | 0<br>( 0)       | 0<br>( 0)           | ( <sup>2</sup> / <sub>4</sub> ) | 0<br>( 0)              | 0<br>( 0)       | (   | 0<br>0) ( | 5<br>10) | 2<br>(4)        | 0<br>(0)        | )<br>( ( | )<br>)) ( | 1<br>2)        | 2<br>( 4)       | 0<br>( 0 |
|            | mineralization:pelvis        | 0<br>( 0)                             |          |                  | 0<br>( 0)       | 0<br>( 0)           |                                 |                        | 0<br>( 0)       |     | 1<br>2) ( | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       |          | 1<br>2) ( |                | 0<br>( 0)       | 0<br>( 0 |
|            | regeneration proximal tubule |                                       | 1<br>(2) |                  | 0<br>( 0)       | 0<br>( 0)           |                                 | 0<br>( 0)              | 0<br>( 0)       |     |           | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       |          | 1<br>2) ( |                | 0<br>( 0)       | 0        |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle \, a \, \rangle \qquad a$  : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(IIPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 8

| •             |                                        | Group Name                                       |                    | Contro    | 1               |           |           | 800 µ           | ppm             |                  |     |                | 2000 1               | pm              |   |          |           |                  | ) ppm | a        |
|---------------|----------------------------------------|--------------------------------------------------|--------------------|-----------|-----------------|-----------|-----------|-----------------|-----------------|------------------|-----|----------------|----------------------|-----------------|---|----------|-----------|------------------|-------|----------|
| gan           |                                        | No. of Animals on Study<br>Grade <u>1</u><br>(%) | 50<br>2<br>(%)     | 3<br>(%)  | <u>4</u><br>(%) | <u> </u>  | 2<br>(%)  | i0<br>3<br>(%)  | <u>4</u><br>(%) | _ <u>1</u><br>(% | )   | 5<br>2<br>(%)  | )<br><u>3</u><br>(%) | <u>4</u><br>(%) |   | <u> </u> | 2<br>(%)  | 50<br>3<br>(%    |       | 4<br>(%) |
| Urinary syste | em)                                    |                                                  |                    |           |                 |           |           |                 |                 |                  |     |                |                      |                 |   |          |           |                  |       |          |
| rin bladd     | dilatation                             | 0<br>( 0)                                        | <49<br>2<br>( 4) ( | 0         | 0<br>0)         | 0<br>( 0) | 5         | 0><br>0<br>(0)  | 0<br>( 0)       | 0<br>( 0         |     | <5)<br>1<br>2) | 0                    | 0<br>( 0)       | ( | 0<br>0)  | 4         | ( C              |       | 0<br>0)  |
|               | inflammation                           | 0<br>( 0)                                        | 0<br>( 0) (        | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | 0<br>( 0) | 0<br>( 0)       | 0<br>( 0)       | 0<br>( 0         | ) ( | 1<br>2)        | 0<br>( 0)            | 0<br>( 0)       | ( | 0<br>0)  | 0<br>( 0) | ( (              |       | 0<br>0)  |
|               | simple hyperplasia:transitional epithe |                                                  | 0<br>( 0) (        | 0<br>0) ( | 0<br>0)         | 2<br>( 4) | 0<br>( 0) | 0<br>( 0)       | 0<br>( 0)       | 0<br>( 0         |     | 0<br>0)        | 0<br>( 0)            | 0<br>( 0)       | ( | 0<br>0)  | 0<br>( 0) | 0<br>( 0         |       | 0<br>0)  |
|               | xanthogranuloma                        | 0<br>( 0)                                        | 1<br>(2)(          | 0<br>0) ( | 0<br>0)         | 0<br>( 0) | 1<br>(2)  | 0<br>( 0)       | 0<br>( 0)       | 1<br>( 2         |     | 0<br>0)        | 0<br>( 0)            | 0<br>( 0)       | ( | 1<br>2)  | 0<br>( 0) | 0<br>( 0         |       | 0<br>0)  |
| Endocrine sys | stem)                                  |                                                  |                    |           |                 |           |           |                 |                 |                  |     |                |                      |                 |   |          |           |                  |       |          |
| ituitary      | hyperplasia                            | 1<br>( 2)                                        | <50<br>0<br>( 0) ( | 0         | 0<br>0)         | 0<br>( 0) | 0         | 0><br>0<br>( 0) | 0<br>( 0)       | 0<br>( 0         |     | <50<br>0<br>0) | 0                    | 0<br>( 0)       | ( | 1<br>2)  | 0         | :50><br>0<br>( 0 |       | 0<br>0)  |
|               | Rathke pouch                           | 1<br>( 2)                                        | 0<br>( 0) (        | 0<br>0) ( | 0<br>0)         | 1<br>(2)  | 0<br>( 0) | 0<br>( 0)       | 0<br>( 0)       | 0<br>( 0         |     | 0<br>0)        | 0<br>( 0)            | 0<br>( 0)       | ( | 0<br>0)  | 0<br>( 0) | 0<br>( 0         |       | 0<br>0)  |
| Reproductive  | system)                                |                                                  |                    |           |                 |           |           |                 |                 |                  |     |                |                      |                 |   |          |           |                  |       |          |
| estis         | mineralization                         | 1<br>( 2)                                        | <50<br>0<br>( 0) ( | 0         | 0<br>0)         | 3<br>(6)  | 0         | 0><br>0<br>( 0) | 0<br>( 0)       | 0                |     | <50<br>0<br>0) | 0                    | 0               | ( | 1<br>2)  | 0         | .50><br>0<br>( 0 |       | 0<br>0)  |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

<a> a : Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

#### STUDY NO. : ANIMAL : REPORT TYPE : SEX :

| ANIMAL :<br>REPORT TYPE : | 0642<br>MOUSE B6D2F1/Cr1j[Crj:BDF1]<br>A1<br>MALE | HISTOPATHOLOGICAL FINDINGS<br>ALL ANIMALS (0-105W)                                                     | :NON-NEOPLASTIC LESIONS (SUMMAR                                                                                  | Υ)                                                  | PAGE : 9                                                                                                                 |
|---------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Organ                     | Findings                                          | Group NameControlNo. of Animals on Study $50$ Grade $\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$ | 800 μpm           50           1         2         3         4           (%)         (%)         (%)         (%) | 2000 ppm<br>50<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | $ \begin{array}{c} 5000 \text{ ppm} \\ 50 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ |
| {Keproductive             | system)                                           |                                                                                                        |                                                                                                                  |                                                     |                                                                                                                          |
| epididymis                | spermatogenic granuloma                           | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                                                 | <50><br>3 0 0 0<br>( 6) ( 0) ( 0) ( 0)                                                                           | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)              | <50><br>3 0 0 0<br>( 6) ( 0) ( 0) ( 0)                                                                                   |
| prep/cli gl               | duct ectasia                                      | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                 | <50><br>0 l 0 0<br>( 0) ( 2) ( 0) ( 0)                                                                           | <50><br>0 2 0 0<br>( 0) ( 4) ( 0) ( 0)              | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                   |
| {Nervous syst             | em}                                               |                                                                                                        |                                                                                                                  |                                                     |                                                                                                                          |
| brain                     | hemorrhage                                        | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                 | <pre></pre>                                                                                                      | <50><br>1 0 0 0<br>(2) (0) (0) (0)                  | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                   |
|                           | mineralization                                    | 29 0 0 0<br>(58) (0) (0) (0)                                                                           | 26 0 0 0<br>(52)(0)(0)(0)                                                                                        | 23 0 0 0<br>(46)(0)(0)(0)                           | 27 <sup>'</sup> 0 0 0<br>(54) (0) (0) (0)                                                                                |
| spinal cord               | hemorrhage                                        |                                                                                                        | <50><br>0 0 0 0                                                                                                  | <50><br>1 0 0 0                                     | <50><br>0 0 0 0                                                                                                          |

( 0) ( 0) ( 0) ( 0)

(2) (0) (0) (0)

| {Special | sense  | organs/appendage)   |
|----------|--------|---------------------|
| (opeciai | 901100 | or gano, appendage) |

| еуе       | <50>         | <50>                | <50>                | <50>                |
|-----------|--------------|---------------------|---------------------|---------------------|
| keratitis | 1 0 0 0      | 0 1 0 0             | 0 0 0 0             | 0 0 0 0             |
|           | (2)(0)(0)(0) | ( 0) ( 2) ( 0) ( 0) | ( 0) ( 0) ( 0) ( 0) | ( 0) ( 0) ( 0) ( 0) |

( 0) ( 0) ( 0) ( 0)

2 : Moderate Grade 1 : Slight 3 : Marked 4 : Severe <a>> a : Number of animals examined at the site b b : Number of animals with lesion c:b/a\*100 (c)

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

#### (HPT150)

BAIS4

( 0) ( 0) ( 0) ( 0)

### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

| Organ          | Findings                                                                                                                       | Group Name<br>No. of Animals on Study<br>Grade <u>1</u><br>(%) | Control<br>50<br><u>2 3 4</u><br>(%) (%) (%) | 800 ppm<br>50<br><u>i 2 3 4</u><br>(%) (%) (%) (%) | $ \begin{array}{c} 2000 \text{ ppm} \\ 50 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ | 5000 ypm<br>50<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| {Special sense | e organs/appendage)                                                                                                            |                                                                |                                              |                                                    |                                                                                                                   |                                                     |
| larder gl      | hyperplasia                                                                                                                    | 0<br>( 0)                                                      | <50><br>1 0 0<br>( 2) ( 0) ( 0)              | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| {Musculoskelet | tal system)                                                                                                                    |                                                                |                                              |                                                    |                                                                                                                   |                                                     |
| uscle          | mineralization                                                                                                                 | 0<br>( 0)                                                      | <50><br>0 0 0<br>( 0) ( 0) ( 0)              | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                            | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)              |
| one            | osteosclerosis                                                                                                                 | 0<br>( 0)                                                      | <50><br>0 0 0<br>( 0) ( 0) ( 0)              | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)             | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| Body cavities  | s <b>)</b>                                                                                                                     |                                                                |                                              |                                                    |                                                                                                                   |                                                     |
| eritoneum      | inflammation                                                                                                                   | 0<br>( 0)                                                      | <50><br>0 0 0 .<br>( 0) ( 0) ( 0)            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <50><br>0 2 0 0<br>( 0) ( 4) ( 0) ( 0)                                                                            | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| <a>b</a>       | inflammation<br>1 : Slight 2 : Moderate<br>a : Number of animals examined<br>b : Number of animals with les<br>c : b / a * 100 | ( 0)<br>3 : Marked 4 : Severe<br>at the site                   | 0 0 0 .                                      | 0 0 0 0                                            |                                                                                                                   | 0 0 0                                               |

(HPT150)

BAIS4

PAGE : 10

TABLE M 2

# HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:

### MALE: DEAD AND MORIBUND ANIMALS

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

.

PAGE : 1

|                                               |                                                                                                    | oup Name<br>. of Animals on Study | (<br>9               | Contro    | 1               |                 |          | 800<br>19          | րիա        |         |           | 20<br>13         | 14 00C       | 000             |    |           | 5<br>17          | 5000 p<br>7    | pm       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----------|-----------------|-----------------|----------|--------------------|------------|---------|-----------|------------------|--------------|-----------------|----|-----------|------------------|----------------|----------|
| rgan                                          |                                                                                                    | ade (%)                           | 2                    | 3 (%)     | <u>4</u><br>(%) | <u>1</u><br>(%) | 2<br>(%  | 3                  |            |         | <u> </u>  | 2<br>%)          | 3<br>(%)     | <u>4</u><br>(%) | (9 | 1<br>%)   | 2<br>(%)         | 3 (%)          | 4 (%     |
| Integumentar                                  | y system/appandage)                                                                                |                                   |                      |           |                 |                 |          |                    |            |         |           |                  |              |                 |    |           |                  |                |          |
| kin/app                                       | erosion                                                                                            | 0<br>( 0)                         | < 9)<br>0<br>( 0) (  | 0         | 0<br>0)         | 0<br>( 0)       | 0        | (19)<br>(<br>) ( ( | ) ( 0)     |         | 0<br>( 0) | <13<br>0<br>0) ( | ><br>0<br>0) | 0               |    | )<br>) (  | <17<br>1<br>6) ( | 7><br>0<br>(0) | 0        |
|                                               | squamous cell hyperplasia                                                                          | 0<br>( 0)                         | 0<br>( 0) (          | 0<br>0) ( | 0<br>0)         | 0<br>( 0)       | 0<br>( 0 | )<br>) ( ) (       | ) ( 0)     | )       | 0<br>( 0) | 0<br>0) (        | 0<br>0)      | 0<br>( 0)       |    | 0<br>0) ( | 1<br>6) (        | 0<br>( 0)      | 0<br>( 0 |
|                                               | scab                                                                                               | l<br>(11)                         | 0<br>( 0) (          | 0<br>0) ( | 0<br>0)         | 0<br>( 0)       | 0        | (<br>) ( (         | ) ( 0)     |         | 0<br>( 0) | 0<br>0) (        | 0<br>0)      | 0<br>( 0)       |    | D<br>D) ( | 0<br>0) (        | 0<br>( 0)      | 0        |
| Respiratory                                   | system}                                                                                            |                                   |                      |           |                 |                 |          |                    |            |         |           |                  |              |                 |    |           |                  |                |          |
| asal cavit                                    | eosinophilic change:olfactory epithelium                                                           |                                   | < 92<br>1<br>( 11) ( | 0         | 0<br>0)         | 5<br>(26)       | 0        | <19><br>(<br>( ( ( | ) ( 0)     |         | 1<br>(8)  | <13<br>0<br>0) ( | ><br>0<br>0) | 0<br>( 0)       |    | 2<br>2) ( | <17<br>0<br>0) ( | 7><br>0<br>(0) | 0        |
|                                               | eosinophilic change:rospiratory epitheli                                                           |                                   | 0<br>( 0) (          | 0<br>0) ( | 0<br>0)         | 0<br>( 0)       | 0<br>( 0 |                    | 0<br>() () | **<br>) | 1<br>(8)  | 0<br>0) (        | 0<br>0)      | 0<br>(0).       |    | 3<br>5) ( | 0<br>0) (        | 1<br>(6)       | 0<br>( 0 |
|                                               | respiratory metaplasia:olfactory epithel                                                           |                                   | 0<br>(0)(            | 0<br>0) ( | 0<br>0)         | 0<br>( 0)       | 0<br>( 0 | (<br>) ( (         | ) ( 0)     |         | 1<br>(8)  | 0<br>0) (        | 0<br>0)      | 0<br>( 0)       |    | )<br>) (  | 0<br>0) (        | 0<br>( 0)      | 0<br>( 0 |
|                                               | respiratory metaplasia:gland                                                                       | 0<br>( 0)                         | 0<br>( 0) (          | 0<br>0) ( | 0<br>0)         | 2<br>(11)       |          | (<br>) ( (         | ) ( 0)     |         | 1<br>(8)  | 1<br>8) (        | 0<br>0)      | 0<br>( 0)       |    | 1<br>6) ( | 0<br>0) (        | 0<br>( 0)      | 0<br>( 0 |
| Grade<br>( a )<br>b<br>( c )<br>Significant d | a : Number of animals examined at the site b : Number of animals with lesion c : b / a $\star$ 100 |                                   |                      |           |                 |                 |          |                    |            |         |           |                  |              |                 |    |           |                  |                |          |

1

(IIPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

.

·----

| Organ                                         | No.                                                                                                     | Soup Name         Control           of Animals on Study         9           ade         1         2         3         4           (%)         (%)         (%)         (%) | 800 ppm<br>19<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | $ \begin{array}{c} 2000 \text{ ppm} \\ 13 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $ | 5000 ppm<br>17<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| {Kespiratory                                  | system)                                                                                                 |                                                                                                                                                                           |                                                    |                                                                                                                          |                                                     |
| trachea                                       | eosinophilic change                                                                                     | <pre>&lt; 9&gt; 0 0 0 0 ( 0) ( 0) ( 0) ( 0)</pre>                                                                                                                         | <19><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <13><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                   | <17><br>0 1 0 0<br>( 0) ( 6) ( 0) ( 0)              |
| lung                                          | congestion                                                                                              | <pre></pre>                                                                                                                                                               | <19><br>0 1 0 0<br>( 0) ( 5) ( 0) ( 0)             | <13><br>1 0 0 0<br>( 8) ( 0) ( 0) ( 0)                                                                                   | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
|                                               | inflammation                                                                                            | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                            | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                           | 0 1 0 0<br>(0) (6) (0) (0)                          |
|                                               | inflammatory infiltration                                                                               | 0 1 0 0<br>( 0) ( 11) ( 0) ( 0)                                                                                                                                           | 2 0 0 0<br>(11) ( 0) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|                                               | accumulation:macrophage                                                                                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                            | 0 0 0 0<br>(0)(0)(0)(0)(0)                         | 0 L 0 0<br>( 0) ( 8) ( 0) ( 0)                                                                                           | 0 1 0 0<br>( 0) ( 6) ( 0) ( 0)                      |
| {Hematopoieti                                 | ic system)                                                                                              |                                                                                                                                                                           |                                                    |                                                                                                                          | •                                                   |
| bone marrow                                   | increased hematopoiesis                                                                                 | < 9><br>2 0 0 0<br>( 22) ( 0) ( 0) ( 0)                                                                                                                                   | <19><br>3 0 0 0<br>(16) (0) (0) (0)                | <13><br>2 0 0 0<br>(15) (0) (0) (0)                                                                                      | <17><br>3 0 0 0<br>(18) (0) (0) (0)                 |
| Grade<br>く a ><br>b<br>( c )<br>Significant d | a : Number of animals examined at the site b : Number of animals with lesion c : b / a $\star$ 100 $$ . | Marked 4 : Severe<br>01 Test of Chi Square                                                                                                                                | ,                                                  |                                                                                                                          |                                                     |

(HPT150)

BAIS4

## HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

| Organ                                  |                                                                                                                                                                                  | roup Name Control<br>o. of Animals on Study 9<br>rade <u>1 2 3 4</u><br>(%) (%) (%) (%) | 800 پريس<br>19<br><u>ا 2 3 4</u><br>(%) (%) (%) (%)    | 2000 2000<br>13<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | $\begin{array}{c} 5000 \text{ ppm} \\ 17 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array}$ |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Hematopoieti                           | ic system)                                                                                                                                                                       |                                                                                         |                                                        |                                                      |                                                                                                                        |
| one marrow                             | granulopoiesis:increased                                                                                                                                                         | <pre></pre>                                                                             | <19><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 | <13><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                 |
| pleen                                  | extramedullary hematopoiesis                                                                                                                                                     | <pre></pre>                                                                             | <19><br>5 l l 0<br>( 26) ( 5) ( 5) ( 0)                | <13><br>2 3 0 0<br>(15) (23) (0) (0)                 | <17><br>6 1 0 0<br>(35) (6) (0) (0)                                                                                    |
|                                        | follicular hyperplasia                                                                                                                                                           | 1 0 0 0<br>(11) (0) (0) (0)                                                             | 0 1 0 0<br>( 0) ( 5) ( 0) ( 0)                         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                         |
| Circulatory                            | system)                                                                                                                                                                          |                                                                                         |                                                        |                                                      |                                                                                                                        |
| eart                                   | thrombus                                                                                                                                                                         | <pre></pre>                                                                             | $\langle 19 \rangle$<br>0 1 0 0<br>( 0) ( 5) ( 0) ( 0) | <13><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)               | <17><br>2 0 0 0<br>(12) (0) (0) (0)                                                                                    |
|                                        | mineralization                                                                                                                                                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                          | 3 0 0 0<br>(16) (0) (0) (0)                            | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 1 1 0 0<br>(6)(6)(0)(0)                                                                                                |
|                                        | arteritis                                                                                                                                                                        | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                          | 0 1 0 0<br>( 0) ( 5) ( 0) ( 0)                         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                       | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                         |
| rade<br>a ><br>b<br>c)<br>ignificant d | l : Slight 2 : Moderate 3 :<br>a : Number of animals examined at the sit<br>b : Number of animals with lesion<br>c : b / a * 100<br>difference ; * : $P \leq 0.05$ ** : $P \leq$ |                                                                                         | ·                                                      |                                                      |                                                                                                                        |

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105%)

~

PAGE: 4

|               |                                 | Group Name<br>No. of Animals on Study<br>Grade <u>1</u> | Control<br>9<br>2 3 4          |                                         | 2000 ppm<br>13<br><u>1 2 3 4</u>        | 5000 ppm<br>17<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|---------------|---------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------|
| rgan          | Findings                        | (%)                                                     | (%) (%) (%                     | (%) (%) (%)                             | (%) (%) (%)                             | (%) (%) (%) (%)                                     |
| Digestive sys | stem}.                          |                                                         |                                |                                         |                                         |                                                     |
| ongue         | arteritis                       | 0<br>( 0)                                               | < 9><br>0 0 0<br>( 0) ( 0) ( 0 | <19><br>1 0 0 0<br>( 5) ( 0) ( 0) ( 0)  | <13><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)  | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| omach         | hyperplasia:glandular stomach   | . ( 0)                                                  | < 9><br>0 0 0<br>(`0) ( 0) ( 0 | <19><br>2 0 0 0<br>( 11) ( 0) ( 0) ( 0) | <13><br>1 0 0 0<br>( 8) ( 0) ( 0) ( 0)  | <17><br>1 0 0 0<br>( 6) ( 0) ( 0) ( 0)              |
| all intes     | invagination                    | 0<br>( 0)                                               | < 9><br>0 0 0<br>( 0) ( 0) ( 0 | <19><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)  | <13><br>1 0 0 0<br>( 8) ( 0) ( 0) ( 0)  | <17><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| ver           | angiectasis                     | 1<br>( 11)                                              | < 9><br>0 0 0<br>( 0) ( 0) ( 0 | <19><br>0 1 0 0<br>( 0) ( 5) ( 0) ( 0)  | <13>.<br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <17><br>0 1 0 0<br>( 0) ( 6) ( 0) ( 0)              |
|               | hemorrhage                      | 0<br>( 0)                                               | 0 0 0<br>( 0) ( 0) ( 0         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          | 0 1 0 0<br>( 0) ( 6) ( 0) ( 0)                      |
|               | basophilic cell focus           | 0<br>( 0)                                               | 1 0 0<br>(11)(0)(0             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|               | intestinal metaplasia:bile duct | 0<br>( 0)                                               | 0 0 0<br>( 0) ( 0) ( 0         | 1 0 0 0<br>(5)(0)(0)(0)                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |

(c) c: b/a \* 100 Significant difference; \*: P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

.

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

DEND MUN MONIDOND MUTHINES (0 1004)

|               |                              | Group Name                                       |                     | Contro    | 51        |           |          |                   | ) բրա                |   |           |           | 2000             | ppm             |     |            |                | 5000             | րիա             |
|---------------|------------------------------|--------------------------------------------------|---------------------|-----------|-----------|-----------|----------|-------------------|----------------------|---|-----------|-----------|------------------|-----------------|-----|------------|----------------|------------------|-----------------|
| rgan          | Findings                     | No. of Animals on Study<br>Grade <u>1</u><br>(%) | 9<br>               | 3<br>(%)  | 4 (%)     | <u> </u>  | 2        |                   | <u>3 4</u><br>6) (%) |   | <u> </u>  | 2<br>(%)  | 3<br>3<br>(%)    | <u>4</u><br>(%) |     | <u> </u>   | 1<br><br>(%)   | .7<br>3<br>(%)   | <u>4</u><br>(%) |
| Digestive sys | stem)                        |                                                  |                     |           |           |           |          |                   |                      |   |           |           |                  |                 |     |            |                |                  |                 |
| increas       | fibrosis:focal               | 0<br>( 0)                                        | ( 9<br>1<br>( 11) ( | 0         | 0<br>(0)  | 0<br>( 0) | 0        | <19><br>)<br>)) ( | ) 0<br>))(0)         | ( | 0<br>0)   | 0         | .3><br>0<br>(0)  | 0<br>( 0)       | • ( | 0<br>0) (  | 0              | (7><br>0<br>(0)  | 0<br>( 0)       |
| rinary syste  | m) .                         |                                                  |                     |           |           |           |          |                   |                      |   |           |           |                  |                 |     | `          |                |                  |                 |
| dney          | hyaline droplet              | 2<br>( 22)                                       | < 9<br>0<br>( 0) (  | 0         | 0<br>( 0) | 0<br>( 0) | 0        | <19><br>)<br>)) ( | ) 0<br>))(0)         | ( | 0<br>0) ( | 0         | .3><br>0<br>(0)  | 0<br>( 0)       | (   | 2<br>12) ( | <1<br>0<br>0)  | .7><br>0<br>( 0) | 0<br>( 0)       |
|               | inflammatory polyp           | 0<br>( 0)                                        | 0<br>( 0) (         | 0<br>0)   | 0<br>(0)  | 0         | 1        | ;) ( i            | ) 0<br>))(0)         | ( | 0<br>0) ( | 0<br>( 0) | 0<br>( 0)        | 0<br>( 0)       | (   | 1<br>6) (  | 1<br>6)        | 0<br>( 0)        | 0<br>( 0)       |
|               | hydronephrosis               | 0<br>( 0)                                        | 1<br>(11) (         | 0<br>0) ( | 0<br>( 0) | 0<br>( 0) | 2<br>(11 | ;<br>.) ( )       | ) 0<br>))(0)         | ( | 0<br>0) ( | 1<br>(8)  | 1<br>( 8)        | 0<br>( 0)       | (   | 0<br>0) (  | 1<br>6)        | 2<br>(12)        | 0<br>( 0)       |
|               | regeneration:proximal tubule | 0<br>( 0)                                        | 1<br>(11) (         | 0<br>0) ( | 0<br>(0)  | 0<br>( 0) | 0        |                   | ) 0<br>))(0)         | ( | 0         | 0<br>( 0) | 0<br>( 0)        | 0<br>( 0)       | (   | 0<br>0) (  | 1<br>6)        | 0<br>( 0).       | 0<br>( 0)       |
| in bladd      | dilatation                   | 0<br>( 0)                                        | < 8<br>1<br>( 13) ( | 0         | 0<br>( 0) | 0<br>( 0) | 3        | <19>              | ) 0<br>))(0)         | ( | 0<br>0) ( | 1         | .3><br>0<br>( 0) | 0<br>( 0)       | (   | 0<br>0) (  | <1<br>3<br>18) | .7><br>0<br>( 0) | 0<br>( 0)       |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01  $\,$  Test of Chi Square

.

(HPT150)

BAIS4

| REPORT TYPE :<br>SEX : | MALE                                 |                                              |            |                  |                           |                       |           |                |                                |                        |           |          |                    |                               |   |           |   |                               | PAGE       |
|------------------------|--------------------------------------|----------------------------------------------|------------|------------------|---------------------------|-----------------------|-----------|----------------|--------------------------------|------------------------|-----------|----------|--------------------|-------------------------------|---|-----------|---|-------------------------------|------------|
| Organ                  | Findings                             | Group Name<br>No. of Animals on Stu<br>Grade | dy<br>     | 9<br>            | Contro<br><u>3</u><br>(%) | ul<br><u>4</u><br>(%) | <u> </u>  | 2<br>(%)       | 800 1<br>19<br><u>3</u><br>(%) | opm<br><u>4</u><br>(%) | <u> </u>  | 2<br>(%  | 13                 | ) ppm<br><u>3 4</u><br>5) (%) | ī | 1<br>%)   |   | 5000<br>17<br><u>3</u><br>(%) | 4          |
| {Urinary syste         | em)                                  |                                              |            |                  |                           |                       |           |                |                                |                        |           |          |                    |                               |   |           |   |                               |            |
| urin bladd             | simple hyperplasia∶transitional epit | nelium (                                     | 1<br>13) ( | < 8<br>0<br>0) ( | 0                         | 0<br>( 0)             | 1<br>(5)  | <<br>0<br>( 0) | 19><br>0<br>( 0)               | 0<br>( 0)              | 0<br>( 0) | 0<br>( 0 | <13><br>(<br>) (   | ) 0<br>))(0)                  | ( | 0<br>0) ( | 0 | 17><br>0<br>(0)               | 0<br>(- 0) |
| {Reproductive          | system)                              |                                              |            |                  |                           |                       |           |                |                                |                        |           |          |                    |                               |   |           |   |                               |            |
| epididymis             | spermalogenic granuloma              | (                                            | 1<br>11) ( | < 9<br>0<br>0) ( | 0                         | 0<br>( 0)             | 1<br>(5)  | 0              | 19><br>0<br>( 0)               | 0<br>( 0)              | 0<br>( 0) | 0        | <13><br>()<br>()   | ) 0<br>))(0)                  |   | 1<br>6) ( | 0 | 17><br>0<br>( 0)              | 0<br>( 0)  |
| prep/cli gl            | duct ectasia                         | (                                            | 1<br>11) ( | < 9<br>0<br>0) ( | 0                         | 0<br>( 0)             | 0<br>( 0) | 0              | 19><br>0<br>( 0)               | 0<br>( 0)              | 0<br>( 0) | 2        | <13><br>(<br>) ( ( | ) 0<br>))(0)                  |   | 0<br>0) ( | 0 | 17><br>0<br>( 0)              | 0<br>( 0)  |
| {Nervous syste         | 9m}                                  |                                              |            |                  |                           |                       |           |                |                                |                        |           |          |                    |                               |   |           |   |                               |            |
| brain                  | hemorrhage                           |                                              | 0<br>0) (  | < 9<br>0         | 0                         | 0                     | 0         | 0              | 19><br>0<br>( 0)               | 0                      | 1         | 0        |                    | ) 0<br>))(0)                  |   | 1         | 0 | 17><br>0                      | 0          |

4 0 0 0

(44) (0) (0) (0)

11 0

(58) (0) (0) (0)

0 0

8

0 0 0

(62) (0) (0) (0)

4

0 0 0

(24) (0) (0) (0)

**S**....

 Grade
 1 : Slight
 2 : Moderate
 3 : Marked
 4 : Severe

 < a >
 a : Number of animals examined at the site

 b
 b : Number of animals with lesion

 (c)
 c : b / a \* 100

 Significant difference ;
 \* : P ≤ 0.05
 \*\* : P ≤ 0.01

mineralization

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

|                          |                                                                                                                                                                               | Group Name<br>No. of Animals on Study<br>Grade 1 | Con<br>9<br>2 3         | trol        |             | 800<br>19                |                 |              | 2000<br>13             |                 |           | 5000 ענ<br>17              |                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|-------------|-------------|--------------------------|-----------------|--------------|------------------------|-----------------|-----------|----------------------------|-----------------|
| Organ                    | Findings                                                                                                                                                                      | Grade <u>1</u><br>(%)                            | <u> </u>                |             | (%)         | 23<br>(%) (%)            | <u>4</u><br>(%) | <u> </u>     | 23<br>(%) (%)          | <u>4</u><br>(%) | (%)       | <u>2</u> 3<br>(%) (%)      | <u>4</u><br>(%) |
| {Nervous syst            | tem}                                                                                                                                                                          |                                                  |                         |             |             |                          |                 |              |                        |                 |           |                            |                 |
| spinal cord              | hemorrhage                                                                                                                                                                    | 0<br>( 0)                                        | < 9><br>0 0<br>( 0) ( 0 | 0<br>) ( 0) | 0<br>( 0) ( | <19><br>0 0<br>( 0) ( 0) | 0<br>( 0)       | 1<br>(* 8) ( | <13><br>0 0<br>0) ( 0) | 0<br>( 0)       | 0<br>( 0) | <17><br>0 0<br>( 0) ( 0) ( | 0<br>( 0)       |
| {Special sem             | se organs/appendage)                                                                                                                                                          |                                                  |                         |             |             |                          |                 |              |                        |                 |           |                            |                 |
| еуе                      | keratitis                                                                                                                                                                     | 0<br>( 0)                                        | < 9><br>0 0<br>( 0) ( 0 | 0<br>) ( 0) | 0<br>( 0) ( | <19><br>1 0<br>5) ( 0)   | 0<br>( 0)       | 0<br>( 0) (  | <13><br>0 0<br>0) ( 0) | 0<br>( 0)       | 0<br>( 0) | <17><br>0 0<br>( 0) ( 0) ( | 0<br>( 0)       |
| {Musculoskele            | etal system}                                                                                                                                                                  |                                                  |                         |             |             |                          |                 |              |                        |                 |           |                            |                 |
| nuscle                   | mineralization                                                                                                                                                                | 0<br>( 0)                                        | < 9><br>0 0<br>( 0) ( 0 | 0<br>) ( 0) | 0<br>(0)(   | <19><br>0 0<br>[ 0) ( 0) | 0<br>( 0) -     | 0<br>( 0) (  | <13><br>0 0<br>0) ( 0) | 0<br>( 0)       | 1<br>( 6) | <17><br>0 0<br>( 0) ( 0) ( | 0<br>(0)        |
| {Body cavitie            | es]                                                                                                                                                                           |                                                  |                         |             |             |                          |                 |              |                        |                 |           |                            |                 |
| peritoneum               | inflammation                                                                                                                                                                  | 0<br>( 0)                                        | < 9><br>0 0<br>( 0) ( 0 |             | 0<br>( 0) ( | <19><br>0 0<br>0) ( 0)   | 0<br>( 0)       | 0<br>( 0) (  | <13><br>1 0<br>8) ( 0) | 0<br>( 0)       | 0<br>( 0) | <17><br>0 0<br>( 0) ( 0) ( | 0<br>( 0)       |
| Grade<br>(a)<br>b<br>(c) | 1 : Slight 2 : Moderate 3<br>a : Number of animals examined at the si<br>b : Number of animals with lesion<br>c : b / a * 100<br>difference ; * : P $\leq 0.05$ ** : P $\leq$ |                                                  | -                       |             |             |                          |                 |              |                        |                 |           |                            |                 |

(HPT150)

.

BAIS4

TABLE M 3

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: SACRIFICED ANIMALS

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 $\sim$ 

·····

|             |                                                                               | hroup Name<br>Mo. of Animals on Stu | łv          | (<br>41      | Contro  | 01        |           | ć         | 800 µ<br>31 | pm              |                  | 31       | 2000 pi   | )<br>TH         |                 |            | 5000<br>33      | ) ppm |         |
|-------------|-------------------------------------------------------------------------------|-------------------------------------|-------------|--------------|---------|-----------|-----------|-----------|-------------|-----------------|------------------|----------|-----------|-----------------|-----------------|------------|-----------------|-------|---------|
|             | (                                                                             | rade                                | 1           | 2            | 3       | 4         | <u> </u>  | 2         | 3           | <u>4</u><br>(%) | <u>·1</u><br>(%) | 2        | 3         | <u>4</u><br>(%) | <u>_1</u><br>(% | 2          | : :             |       | 4(%)    |
| gan         | Findings                                                                      |                                     | (%)         | (%)          | (%)     | (%)       | (%)       | (%)       | (%)         | (%)             | (%)              | (%)      | (%)       | (%)             |                 | ) (9       | 5) (9           |       | 、%)     |
|             |                                                                               |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| ntegumentar | ry system/appandage}                                                          |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| kin/app     | ulcer                                                                         |                                     | 0           | <412<br>0    | ><br>0  | 0         | 0         | . <3<br>0 | 81><br>0    | 0               | 0                | <31<br>3 | 7><br>0   | 0               | 0               | (          | <33>            |       | 0       |
|             |                                                                               | (                                   | 0) (        |              |         |           |           | ( 0)      | ( 0)        | ( 0)            | ( 0) (           |          |           |                 |                 |            | ))((            |       |         |
|             |                                                                               |                                     | 0           | 0            | 0       | 0         | 0         |           | 0           | 0               | ٥                |          | 0         | 0               | •               |            | . ,             |       | ^       |
|             | erosion                                                                       | (                                   | 0<br>0) (   | 0<br>0) (    | 0<br>0) | 0         | 0<br>( 0) | 1<br>(3)  | 0<br>( 0)   | 0<br>( 0)       | 0<br>( 0) (      | 3)       | 0<br>( 0) | 0<br>( 0)       | 0<br>( 0        |            | ) ( (           |       | 0<br>0  |
|             |                                                                               |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
|             | squamous cell hyperplasia                                                     | (                                   | 0<br>0) (   | 1<br>2) (    | 0<br>0) | 0<br>( 0) | 0<br>( 0) | 0<br>( 0) | 0<br>( 0)   | 0<br>( 0)       | 0                | 0<br>0)  | 0<br>(0)  | 0<br>( 0)       | 0<br>( 0        | (<br>) ( ( | ) (<br>))((     |       | 0       |
|             |                                                                               |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| lespiratory | system)                                                                       |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| asal cavit  |                                                                               |                                     |             | <413         |         |           |           |           | 81>         |                 |                  | <37      |           |                 |                 |            | <33>            |       |         |
|             | eosinophilic change:olfactory epitheliu                                       |                                     | 11<br>27) ( | 0<br>0) (    | 0<br>0) | 0<br>( 0) | 2<br>(6)  | 1<br>(3)  | 0<br>( 0)   | 0*              | 4<br>(11) (      | 0<br>0)  | 0<br>(0)  | 0<br>( 0)       | 6<br>(18        |            | ) (<br>))((     |       | 0       |
|             |                                                                               |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
|             | eosinophilic change:respiratory epithe.                                       |                                     | 6<br>15) (  | 0<br>0) (    | 0<br>0) | 0<br>(0)  | 8<br>(26) | 0         | 0           | 0<br>( 0)       | 10<br>(27) (     | 0<br>0)  | 0         | 0<br>(0)        | 5<br>(15        |            | ) (<br>)) ( (   |       | 0<br>0) |
|             |                                                                               |                                     |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
|             | respiratory metaplasia:olfactory epithe                                       | lium<br>(                           | 5<br>12) (  | 0<br>0) (    | 0<br>0) | 0         | 4<br>(13) | 1<br>(3)  | 0           | 0               | 5<br>(14) (      | 0        | 0         | 0               | 6<br>(18        |            | ) (<br>))((     |       | 0       |
|             |                                                                               | ,                                   | 10/ (       | <b>o</b> / ( | 0,      | ( ))      | ( 10)     | ( 0)      | ( )         | ( )/            |                  | ,        |           | ,               | ( 10            | , , ,      | ·/ 、 、          |       | 0       |
|             | respiratory metaplasia:gland                                                  | ,                                   | 4<br>10) (  | 0            | 0       | 0         | 2<br>(6)  | 1         | 0           | 0               | 4<br>(11) (      | 2        | 0         | 0               | 5               |            | . · (<br>)) ( ( |       | 0       |
|             |                                                                               | (                                   | 10) (       | 0) (         | 0)      | ( 0)      | ( 0)      | ( 3)      | ( 0)        | ( 0)            | (11) (           | 5)       | ( 0)      | . 0)            | (15             | )(;        |                 | ,, (  | U       |
| rade        |                                                                               | Marked 4:S                          | evere       |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| a><br>b     | a : Number of animals examined at the si<br>b : Number of animals with lesion | Je.                                 |             |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |
| с)<br>::::: | c : b / a * 100<br>lifference ;                                               | 0.01 Test of Chi                    | Sauana      |              |         |           |           |           |             |                 |                  |          |           |                 |                 |            |                 |       |         |

(HPT150)

BAIS4

.

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SUCKTLICED MAIMUES (109#)

|               |                                       | Group Name<br>No. of Animals on Study |           | C<br>41           | ontro     | 1       |                |              | 800<br>31          | իիա         |     |                 | 3                 | 2000 µ            | pm              |     |           | 5<br>. 33        | ооо р    | pm        |
|---------------|---------------------------------------|---------------------------------------|-----------|-------------------|-----------|---------|----------------|--------------|--------------------|-------------|-----|-----------------|-------------------|-------------------|-----------------|-----|-----------|------------------|----------|-----------|
| rgan          | Findings                              | Grade                                 | 1         | 2                 | 3<br>(%)  | 4 (%)   | <u>    (%)</u> | 2            | 3                  | 4) (%)      |     | <u>1</u><br>(%) | 2<br>(%)          | ( <u>3</u><br>(%) | <u>4</u><br>(%) |     | 1<br>(%)  | 2<br>(%)         | 3<br>(%) | 4<br>(%)  |
| Respiratory : | system)                               |                                       |           |                   |           |         |                |              |                    |             |     |                 |                   |                   |                 |     |           |                  |          |           |
| ung           | bronchiolar-alveolar cell hyperplasia |                                       | 0<br>0) ( | <41><br>0<br>0) ( | 0<br>0) ( | 0<br>0) | 0<br>( 0)      | 0            | <31><br>0<br>) ( 0 | 0<br>) ( 0) | (   | 1<br>3) (       | <31<br>0<br>( 0)  | 0                 | 0<br>( 0)       | (   | 1<br>3) ( | <33<br>0<br>0) ( | 0        | 0<br>( 0) |
| Hematopoieti  | c system)                             |                                       |           |                   |           |         |                |              |                    |             |     |                 |                   |                   |                 |     |           |                  |          |           |
| oone marrow   | increased hematopoiesis               |                                       | 0<br>0) ( | <41><br>0<br>0) ( | 0         | 0<br>0) | 1<br>(3)       | 0            |                    | 0<br>) ( 0) | (   | 0<br>0) (       | <37<br>0<br>( 0)  | 0                 | 0<br>( 0)       | (   | 0<br>0) ( | <33<br>0<br>0) ( | 0        | 0<br>( 0) |
|               | granulopoiesis:increased              |                                       | 2<br>5) ( | 0<br>0) (         | 0<br>0) ( | 0<br>0) | 1<br>(3)       | . 0<br>. ( 0 | 0<br>) ( 0         | 0<br>) ( 0) | (   | 3<br>8) (       | 0<br>( 0)         | 0<br>( 0)         | 0<br>( 0)       | · ( | 0<br>0) ( | 0<br>0) (        | 0<br>0)  | 0<br>( 0) |
| ymph node     | lymphadenitis                         |                                       | 0<br>0) ( | <41><br>0<br>0) ( | 0         | 0<br>0) | 0<br>( 0)      | 1            | <31><br>0<br>) ( 0 | 0<br>) ( 0) | (   | 0<br>0) (       | <31<br>4<br>( 11) | 0                 | 0<br>( 0)       | (   | 0<br>0) ( | <33<br>0<br>0) ( | 0        | 0<br>( 0) |
| pleen         | deposit of melanin                    |                                       | 2<br>5) ( | <41><br>0<br>0) ( | 0         | 0<br>0) | 0<br>( 0)      | 0            |                    | 0<br>) ( 0) | . ( | 1<br>3) (       | <3'<br>0<br>( 0)  | 0                 | 0<br>( 0)       | (   | 0<br>0) ( | <33<br>0<br>0) ( | 0        | 0<br>( 0) |
|               | extramedullary hematopoiesis          |                                       | 2<br>5) ( | 0<br>0) (         | 0<br>0) ( | 0<br>0) | 1<br>( 3)      |              |                    | 0<br>) ( 0) | (   | 3<br>8) (       | 2<br>(5)          | 0<br>( 0)         | 0<br>( 0)       | (   | 3<br>9) ( | 0<br>0) (        | 0<br>0)  | 0<br>( 0) |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| Drgan       | Findings                      | Group Name<br>No. of Animals on Study<br>Grade <u>1 2</u><br>(%) (%) | Control<br>41<br><u>3 4</u><br>(%) (%) | 800 ppm<br>31<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 2000 אועט 37<br>37<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 5000 ppm<br>33<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|-------------|-------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| (Hematopoie | tic system)                   |                                                                      |                                        |                                                    |                                                         |                                                     |
| pleen       | follicular hyperplasia        | 2 0                                                                  | 41><br>0 0<br>( 0) ( 0)                | <31><br>2 0 0 0<br>( 6) ( 0) ( 0) ( 0)             | <37><br>4 0 0 0<br>( 11) ( 0) ( 0) ( 0)                 | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| Digestive : | system)                       |                                                                      |                                        |                                                    |                                                         |                                                     |
| tomach      | erosion:forestomach           | 0 0                                                                  | 11><br>0 0<br>( 0) ( 0)                | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                  | <33><br>1 0 0 0<br>(3) (0) (0) (0)                  |
|             | hyperplasia:forestomach       | 0 0<br>( 0) ( 0)                                                     | 0 0<br>( 0) ( 0)                       | 0 1 0 0<br>( 0) ( 3) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                          | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|             | erosion:glandular stomach     | 1 0<br>(2)(0)                                                        | 0 0<br>( 0) ( 0)                       | 2 0 0 0<br>(6)(0)(0)(0)                            | 3 0 0 0<br>(8)(0)(0)(0)                                 | 1 0 0 0<br>(3)(0)(0)(0)                             |
|             | hyperplasia:glandular stomach | 33 0<br>(80)(0)                                                      | 0 0<br>( 0) ( 0)                       | 25 0 0 0<br>(81) (0) (0) (0)                       | 31 0 0 0<br>(84) ( 0) ( 0) ( 0)                         | 26 0 0 0<br>(79) (0) (0) (0)                        |
| iver        | angiectasis                   | <.<br>1 0<br>( 2) ( 0)                                               | 41><br>0 0<br>( 0) ( 0)                | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                  | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |

b : Number of animals with lesion b

(c) с: b / а \* 100

Significant difference : \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

 $\sim -$ 

PAGE: 4

|               |                        | Group Name<br>No. of Animals on Study<br>Grade <u>1</u> | Control<br>41<br><u>2 3 4</u>   | 800 ppm<br>31<br><u>1 2 3 4</u>        | 2000 ррш<br>37<br><u>1 2 3 4</u>       | 5000 µpm<br>33<br><u>1 2 3 4</u>       |
|---------------|------------------------|---------------------------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Organ         | Findings               | (%)                                                     | (%) (%) (%)                     | (%) (%) (%) (%)                        | (%) (%) (%) (%)                        | (%) (%) (%) (%)                        |
|               |                        |                                                         |                                 |                                        |                                        |                                        |
| {Digestive sy | ystem)                 |                                                         |                                 |                                        |                                        |                                        |
| liver         | necrosis:focal         | 1<br>( 2)                                               | <41><br>0 0 0<br>( 0) ( 0) ( 0) | <31><br>0 1 0 0<br>( 0) ( 3) ( 0) ( 0) | <37> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)       | <33><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0) |
|               | fatty change           | . 0<br>( 0)                                             | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 1 0 0 0<br>(3)(0)(0)(0)                |
|               | inflammatory cell nest | 0<br>( 0)                                               | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 2 0 0 0<br>(5)(0)(0)(0)                | 1 0 0 0<br>(3)(0)(0)(0)                |
|               | clear cell focus       | 0<br>( 0)                                               | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 2 0 0 0<br>(5)(0)(0)(0)                | 1 0 0 0<br>(3)(0)(0)(0)                |
|               | basophilic cell focus  | 1 ( 2)                                                  | I 0 0<br>(2)(0)(0)              | 1 2 0 0<br>(3)(6)(0)(0)                | 0 2 0 0<br>( 0) ( 5) ( 0) ( 0)         | 1 1 0 0<br>(3)(3)(0)(0)                |
|               | biliary cyst           | 1<br>( 2)                                               | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)         | 0 2 0 0<br>(0)(6)(0)(0)                |
| oancreas      | islet cell hyperplasia | 0<br>( 0)                                               | <41><br>0 0 0<br>( 0) ( 0) ( 0) | <31><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0) | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |
| 6             |                        |                                                         |                                 |                                        |                                        |                                        |
| {Urinary syst | tem)                   |                                                         |                                 |                                        |                                        |                                        |
| kidney        | cyst                   | 1<br>( 2)                                               | <41><br>0 0 0<br>( 0) ( 0) ( 0) | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

 $\langle \, a \, \rangle \qquad \quad a$  : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05  $\,$  \*\* : P  $\leq$  0.01  $\,$  Test of Chi Square

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

.

.

| Organ         | Findings                     | Group Name<br>No. of Animals on Study<br>Grade <u>1</u><br>(%) | Control<br>41<br>2 3 4<br>0 (%) (%) (%) | 800 ppm<br>31<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 2000 µµm<br>37<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 5000 ppm<br>33<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
|---------------|------------------------------|----------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| {Urinary syst | cem)                         |                                                                |                                         |                                                    |                                                     |                                                     |
| kidney        | hyaline cast                 | 1<br>( 2)                                                      | <41><br>0 0 0<br>0 ( 0) ( 0) ( 0)       | <31><br>0 l 0 0<br>( 0) ( 3) ( 0) ( 0)             | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
|               | inflammatory infiltration    | 0<br>( 0)                                                      | 0 0 0<br>) ( 0) ( 0) ( 0)               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 i 0 0<br>( 0) ( 3) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|               | osseous metaplasia           | 1<br>( 2)                                                      | 0 0 0 0                                 | 0 0 0 0<br>(0)(0)(0)(0)(0)                         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|               | inflammatory polyp           | 0<br>( 0)                                                      | 0 0 0<br>( 0) ( 0) ( 0)                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 1 0 0<br>( 0) ( 3) ( 0) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|               | hydronephrosis               | 0<br>( 0)                                                      | 0 0 0<br>0 ( 0) ( 0) ( 0)               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 0 4 1 0<br>( 0) (11) ( 3) ( 0)                      | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      |
|               | mineralization:pelvis        | 0<br>( 0)                                                      | 0 0 0<br>( 0) ( 0) ( 0)                 | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                     | 1 0 0 0<br>(3)(0)(0)(0)                             | 1 0 0 0<br>(3)(0)(0)(0)                             |
|               | regeneration proximal tubule | 4<br>( 10)                                                     | 0 0 0<br>) ( 0) ( 0) ( 0)               | 0 2 0 0<br>( 0) ( 6) ( 0) ( 0)                     | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                      | 1 0 0 0<br>(3)(0)(0)(0)                             |
| urin bladd    | dilatation                   | . ( 0)                                                         | <41><br>1 0 0<br>1 (2) (0) (0)          | <31><br>0 2 0 0<br>( 0) ( 6) ( 0) ( 0)             | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <33><br>0 L 0 0<br>( 0) ( 3) ( 0) ( 0)              |

1 : Slight 3 : Marked Grade 2 : Moderate 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a \* 100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| Organ         | Findings                              | Group Name<br>No. of Animals on Study<br>Grade <u>1</u><br>(%) | 2<br>(%)  | 41 | 3<br>(%)  | -1<br>- <u>4</u><br>(%) |   | 1<br>(%) | 2<br>(% | 31                | 300 ]<br>3<br>(%) | 990m<br><u>4</u><br>(%) |   | <u>1</u><br>(%) |   | 2<br>37<br><u>2</u><br>(%) | 2000<br>7<br>3<br>(%) |   | 1<br><br>(%) |   | <u> </u> |   | 3<br><u>2</u><br>(%) | . 3            | 0 թ<br>3<br>%) | րա<br>4<br>(%) |
|---------------|---------------------------------------|----------------------------------------------------------------|-----------|----|-----------|-------------------------|---|----------|---------|-------------------|-------------------|-------------------------|---|-----------------|---|----------------------------|-----------------------|---|--------------|---|----------|---|----------------------|----------------|----------------|----------------|
| {Urinary syst | em)                                   |                                                                |           |    |           |                         |   |          |         |                   |                   |                         |   |                 |   |                            |                       |   |              |   |          |   |                      |                |                |                |
| urin bladd    | inflammation                          | 0<br>( 0)                                                      |           | (  |           | 0<br>( 0)               | ( | 0<br>0)  | ( (     | <31)<br>)<br>)) ( | 0<br>0)           | 0<br>( 0)               | ( | 0<br>0)         | ( | <37<br>1<br>3) (           | 7><br>0<br>( 0)       | ( | 0<br>0)      | ( | 0<br>0)  | ( | <3<br>0<br>0)        | 3><br>(<br>( ( | 0<br>0)        | 0<br>( 0)      |
|               | simple hyperplasia:transitional epith |                                                                | 0<br>( 0) | (  | 0<br>0) ( | 0<br>( 0)               | ( | 1<br>3)  | ( (     | )<br>)) (         | 0<br>0)           | 0<br>( 0)               | ( | 0<br>0)         | ( | 0<br>0)                    | 0<br>( 0)             | ( | 0<br>0)      | ( | 0<br>0)  | ( | 0<br>0)              | (<br>( (       | 0<br>0)        | 0<br>( 0)      |
|               | xanthogranuloma                       | 0<br>( 0)                                                      | 1<br>(2)  |    | 0<br>0) ( | 0<br>( 0)               | ( | 0<br>0)  | 1       | 5) (              | 0<br>0)           | 0<br>( 0)               | ( | 1<br>3)         | ( | 0<br>0)                    | 0<br>( 0)             | ( | 0<br>0)      | ( | 1<br>3)  | ( | 0<br>0)              | ( (            | 0<br>0)        | 0<br>( 0)      |
| {Endocrine sy | rstem)                                |                                                                |           |    |           |                         |   |          |         |                   |                   |                         |   |                 |   |                            |                       |   |              |   |          |   |                      |                |                |                |
| pituitary     | hyperplasia                           | 1<br>( 2)                                                      | 0         |    | 0<br>0) ( | 0<br>( 0)               | ( | 0<br>0)  |         | <31)<br>)<br>)) ( |                   | 0<br>( 0)               | ( | 0<br>0)         | ( | <37<br>0<br>0) (           | 7><br>0<br>(0)        | ( | 0<br>0)      | ( | 1<br>3)  | ( | <3<br>0<br>0)        | 3><br>(        | 0<br>0)        | 0<br>( 0)      |

1 0 0 0

| testis         | <41>         | <31>             | <37>         | <33>         |
|----------------|--------------|------------------|--------------|--------------|
| mineralization | 1 0 0 0      | 3 0 0 0          | 0 0 0 0      | 1 0 0 0      |
|                | (2)(0)(0)(0) | (10) (0) (0) (0) | (0)(0)(0)(0) | (3)(0)(0)(0) |
|                |              |                  |              |              |

1 0 0 0

0 0 0 0

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$  a : Number of animals examined at the site

b b : Number of animals with lesion

Rathke pouch

(c) c∶b/a\*100

Significant difference ; \* :  $P \leq 0.05$  \*\* :  $P \leq 0.01$  Test of Chi Square

(HPT150)

BAIS4

0 0 0 0

( 0) ( 0) ( 0) ( 0)

.

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE : 7

| $31 \\ 1 2 3 4 \\ (\%) (\%) (\%) (\%) (\%) (\%)$ $(31) \\ 2 0 0 0 \\ (6) (0) (0) (0) (0) \\ (31) \\ 0 1 0 \\ (0) (3) (0) (0) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\ (31) \\$ | 37 $1 2 3 4$ $(%) (%) (%) (%) (%)$ $(%)$ $(5) (0) (0) (0)$ $(37)$ $(5) (0) (0) (0)$ $(37)$ $(0) (0) (0)$ $(37)$ $(0) (0) (0)$ $(37)$ $(37)$ $(37)$ $(37)$ $(37)$ $(37)$ $(0) (0) (0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 5) ( 0) ( 0) ( 0)<br><37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)<br><37>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 5) ( 0) ( 0) ( 0)<br><37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)<br><37>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 5) ( 0) ( 0) ( 0)<br><37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)<br><37>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| 0 1 0 0<br>( 0) ( 3) ( 0) ( 0)<br><31><br>15 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( 0) ( 0) ( 0) ( 0)<br><37>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)<br><33>                |
| 15 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| 15 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| (48) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (41) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (70) (0) (0) (0)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |
| <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)<br><31><br>0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |

(HPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

| SEX                                         | : MALE                                                                                                                                         |                                                               |                                       |                                                    |                                                     | PAGE :                                              |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Organ                                       | Findings                                                                                                                                       | Group Name<br>No. of Animals on Study<br>Grade <u>1</u> (%)   | Control<br>41<br>2 3 4<br>(%) (%) (%) | 800 ppm<br>31<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 2000 ppm<br>37<br><u>1 2 3 4</u><br>(%) (%) (%) (%) | 5000 ppm<br>33<br><u>1 2 3 4</u><br>(%) (%) (%) (%) |
| {Musculoske                                 | eletal system}                                                                                                                                 |                                                               |                                       |                                                    |                                                     |                                                     |
| bone                                        | osteosclerosis                                                                                                                                 | 0 ( 0)                                                        |                                       | <31><br>1 0 0 0<br>( 3) ( 0) ( 0) ( 0)             | <37><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              | <33><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)              |
| {Body cavit                                 | ies}                                                                                                                                           |                                                               |                                       |                                                    |                                                     |                                                     |
| peritoneum                                  | inflammation                                                                                                                                   | 0<br>( 0)                                                     | <41><br>0 0 0<br>( 0) ( 0) ( 0)       | <31><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             | <pre></pre>                                         | <333><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)             |
| Grade<br>< a ><br>b<br>( c )<br>Significant | 1 : Slight2 : Moderatea : Number of animals examined at tb : Number of animals with lesionc : b / a * 100c difference ; * : $P \leq 0.05$ ** : | 3 : Marked 4 : Sever<br>he site<br>P ≦ 0.01 Test of Chi Squa: |                                       |                                                    |                                                     |                                                     |

(HPT150)

TABLE M 4

# HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|               |                                        | Group Name<br>No. of Animals on Study | Со<br>50            | ntrol                |             | 50                 | 800 pp      | n               |              | 2<br>50          | uu 000    | ш               |             |           | 5000 p<br>i0    | pm       |
|---------------|----------------------------------------|---------------------------------------|---------------------|----------------------|-------------|--------------------|-------------|-----------------|--------------|------------------|-----------|-----------------|-------------|-----------|-----------------|----------|
| .gan          |                                        | Grade <u>1</u><br>(%)                 | 2                   | <u>3 4</u><br>%) (%) | <u> </u>    | 2 (%)              | 3<br>(%)    | <u>4</u><br>(%) | <u> </u>     | 2 (%)            | 3<br>(%)  | <u>4</u><br>(%) | <u> </u>    | 2<br>(%)  | 3<br>(%)        | (9       |
| ntegumentar   | y system/appandage)                    |                                       |                     |                      |             |                    |             |                 |              |                  |           |                 |             |           |                 |          |
| in/app        | squamous cell hyperplasia              | 0<br>( 0)                             | <50><br>0<br>( 0) ( | 0 0<br>0) ( 0)       | 0<br>( 0)   | <50<br>1<br>( 2) ( | 0           | 0<br>0)         | 0<br>( 0) (  | <50<br>0<br>0) ( | 0         | 0<br>0)         | 0<br>( 0)   | 1         | i0><br>0<br>(0) | 0<br>( 0 |
|               | scab                                   | 0<br>( 0)                             | 0<br>( 0) (         | 00<br>) (0)          | 0<br>( 0) ( | 0<br>( 0) (        | 0<br>( 0) ( | 0<br>0)         | 0<br>( 0) (  | 0<br>0) (        | 0<br>0) ( | 0<br>0)         | 0<br>( 0)   | 1<br>(2)  | 0<br>( 0)       | (        |
| lespiratory : | system)                                |                                       |                     |                      |             |                    |             |                 |              |                  |           |                 |             |           |                 |          |
| sal cavit     | eosinophilic change:olfactory epitheli |                                       | <50><br>0<br>( 0) ( | 00<br>0)(0)          | 3<br>(6)    | <50<br>0<br>( 0) ( | 0           | 0<br>0)         | 2<br>( 4) (  | <50<br>2<br>4) ( | 0         | 0<br>0)         | 4<br>( 8)   | 2         | i0><br>0<br>(0) | (        |
|               | eosinophilic change:respiratory epithe |                                       | 2<br>( 4) (         | 000)<br>0)(0)        | 18<br>(36)  | 2<br>( 4) (        | 0<br>0) (   | 0<br>0)         | 14<br>(28) ( | 5<br>10) (       | 1<br>2) ( | 0<br>0)         | 21<br>( 42) | 1<br>(2)  | 0<br>( 0)       | (        |
|               | inflammation:foreign body              | 0<br>( 0)                             | 0<br>( 0) (         | 0 0<br>0) ( 0)       | 0           | 0<br>( 0) (        | 0<br>( 0) ( |                 | 0<br>( 0) (  | 1<br>2) (        | 0<br>0) ( | 0<br>0)         | 0           | 0<br>( 0) | 0<br>( 0)       | ( (      |
|               | respiratory metaplasia:olfactory epith | elium 6<br>· (12)                     |                     | 000)<br>0)(0)        | 8<br>(16)   | 0<br>( 0) (        | 0<br>0) (   | 0<br>0)         | 6<br>(12) (  | 0<br>0) (        | 0<br>0) ( | 0<br>0)         | 6<br>(12)   | 0<br>( 0) | 0<br>( 0)       | (        |
|               | respiratory metaplasia gland           | 4 ( 8)                                | 0<br>( 0) (         | 0 0<br>0) ( 0)       | 1<br>(2)    | 0<br>( 0) (        | 0<br>0) (   | 0<br>0)         | 3<br>(6)(    | 0<br>0) (        | 0<br>0) ( | 0<br>0)         | 4<br>(8)    | 0<br>( 0) | 0<br>( 0)       | (        |

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|               |                           | Group Name<br>No. of Animals on Study | Control<br>50                                                          | 800 ppm<br>50                                                    | 2000 ענע<br>50                                         | 5000 ppm<br>50                                         |
|---------------|---------------------------|---------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| brgan         | Findings                  | Grade <u>1</u><br>(%)                 | 2         3         4           6)         (%)         (%)         (%) | $\frac{1}{(\%)}  \frac{2}{(\%)}  \frac{3}{(\%)}  \frac{4}{(\%)}$ | <u>1</u> <u>2</u> <u>3</u> <u>4</u><br>(%) (%) (%) (%) | <u>1</u> <u>2</u> <u>3</u> <u>4</u><br>(%) (%) (%) (%) |
| Kespiratory s | system}                   |                                       |                                                                        |                                                                  |                                                        |                                                        |
| ung           | congestion                | 0<br>( 0)                             | <50><br>) 0 0 0<br>)) ( 0) ( 0) ( 0)                                   | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                           | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                 |
|               | inflammatory infiltration | 0<br>( 0)                             | ) 0 0 0<br>)) ( 0) ( 0) ( 0)                                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                         | 1 0 0 0<br>(2)(0)(0)(0)                                |
| lematopoietic | e system}                 |                                       |                                                                        |                                                                  |                                                        | •                                                      |
| one marrow    | increased hematopoiesis   | 1<br>( 2)                             | <50><br>L O O O<br>2) ( O) ( O) ( O)                                   | <50><br>3 0 0 0<br>( 6) ( 0) ( 0) ( 0)                           | <50)<br>5 0 0 0<br>( 10) ( 0) ( 0) ( 0)                | <50><br>4 0 0 0<br>( 8) ( 0) ( 0) ( 0)                 |
|               | granulopoiesis:increased  | 1<br>( 2)                             | L 0 0 0<br>2) ( 0) ( 0) ( 0)                                           | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                   | 1 0 0 0<br>(2)(0)(0)(0)                                | 1 0 0 0<br>(2)(0)(0)(0)                                |
| ymph node     | lymphadenitis             | ( 0)                                  | <50><br>) 0 0 0<br>)) ( 0) ( 0) ( 0)                                   | <50><br>0 2 0 0<br>( 0) ( 4) ( 0) ( 0)                           | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                 | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |
| pleen         | deposit of melanin        | 0<br>( 0)                             | <50><br>) 0 0 0<br>)) ( 0) ( 0) ( 0)                                   | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                           | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                 |

b b: Number of animals with lesion

(c) c:b/a\*100

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(HPT150)

BAIS4

## HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

.

|              |                              | Group Name<br>No. of Animals on Study | Con<br>50              | trol  |                     | 5               | 800 j     | ինա             |          |     | 2<br>50          | 2000 µ    | pm              |     |            | 50<br>50       | 5000 j          | րրա |
|--------------|------------------------------|---------------------------------------|------------------------|-------|---------------------|-----------------|-----------|-----------------|----------|-----|------------------|-----------|-----------------|-----|------------|----------------|-----------------|-----|
| rgan         | Findings                     | Grade <u>1</u> (%)                    | 30<br>3<br>(%) (%)     | 4 (%) | <u>    1    (%)</u> | 2 (%)           | 3<br>(%)  | <u>4</u><br>(%) | <br>(%   | )   | 2 (%)            | 3<br>(%)  | <u>4</u><br>(%) | Ī   | 1<br>(%)   | 2<br>(%)       | 3<br>(%)        | (   |
| Hematopoieti | ic system)                   |                                       |                        |       |                     |                 |           |                 | <u>.</u> |     |                  |           |                 |     |            |                |                 |     |
| pleen        | extramedullary hematopoiesis | 4<br>( 8) (                           | <50><br>3 0<br>6) ( 0) |       | 2<br>( 4)           | <5<br>2<br>( 4) | 0         | 0<br>( 0)       | 4<br>( 8 |     | <50<br>4<br>8) ( | 0         | 0<br>( 0)       |     | 7<br>(4) ( | <50<br>2<br>4) | 0><br>0<br>( 0) | (   |
|              | follicular hyperplasia       | 3<br>( 6) (                           | 000<br>0)(0)           |       | 3<br>(6)            | 1<br>(2)        | 0<br>( 0) | 0<br>( 0)       | 1<br>( 2 | ) ( | 1<br>2) (        | 0<br>( 0) | 0<br>( 0)       |     | 0<br>0) (  | 2<br>4)        | 0<br>( 0)       | (   |
| {Circulatory | system}                      |                                       |                        |       |                     |                 |           |                 |          |     |                  |           |                 |     |            |                |                 |     |
| leart        | necrosis:focal               | 0 ( 0) (                              | <50><br>0 0<br>0) ( 0) |       | 0<br>( 0)           | <5<br>0<br>( 0) | 0         | 0<br>( 0)       | 0<br>( 0 |     | <50<br>1<br>2》(  | 0         | 0<br>( 0)       |     | 0<br>0) (  | <50<br>0<br>0) | 0><br>0<br>( 0) | (   |
|              | mineralization               | 0                                     | 0 0<br>0) ( 0)         |       | 1<br>(2)            | 0<br>(0)        | 0<br>( 0) | 0<br>( 0)       | 2<br>( 4 | ) ( | 0<br>0) (        | 0<br>( 0) | 0<br>( 0)       | . ( | 2<br>4) (  | 0<br>0)        | 0<br>( 0)       | (   |
|              | arteritis                    | 0<br>( 0) (                           | 0 0<br>0) ( 0)         |       | 0<br>( 0)           | 0<br>(0)        | 0<br>( 0) | 0<br>( 0)       | 0<br>( 0 | ) ( | 1<br>2) (        | 0<br>( 0) | 0<br>( 0)       |     | 0<br>0) (  | 0<br>0)        | 0<br>( 0)       | (   |
| Digestive sy | ystem)                       |                                       |                        |       |                     |                 |           |                 |          |     |                  |           |                 |     |            |                |                 |     |
| tongue       | arteritis                    | 0<br>( 0) (                           | <50><br>0 0<br>0) ( 0) |       | 0<br>( 0)           | <5<br>0<br>( 0) | 0         | 0<br>( 0)       | 1        |     | <50<br>1<br>2) ( | 0         | 0<br>( 0)       |     | 0<br>0) (  | <50<br>0<br>0) | 0><br>0<br>( 0) | (   |

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

 $\mathbf{i}$ 

BAIS4

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 14

|                               |                                                                                                                                                                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5000 yym<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Findings                      | Grade <u>1</u><br>(%)                                                                                                                                                                     | <u>2 3 4</u><br>(%) (%) (%)     | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1  2  3  4}{(\%)  (\%)  (\%)  (\%)  (\%)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ystem)                        |                                                                                                                                                                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| hyperplasia:forestomach       | 0<br>( 0)                                                                                                                                                                                 | <50><br>0 0 0<br>( 0) ( 0) ( 0) | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50> 1<br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erosion:glandular stomach     | 1<br>( 2)                                                                                                                                                                                 | 0 0 0<br>( 0) ( 0) ( 0)         | i 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hyperplasia glandular stomach | 11<br>( 22)                                                                                                                                                                               | 0 0 0<br>( 0) ( 0) ( 0)         | 7 0 0 0<br>(14) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 0 0 0<br>(14) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 0 0 0<br>(18) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| angiectasis                   | 2<br>( 4)                                                                                                                                                                                 | <50><br>1 0 0<br>( 2) ( 0) ( 0) | <50>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <50><br>i i 0 0<br>(2)(2)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| necrosis:focal                | 0<br>( 0)                                                                                                                                                                                 | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| inflammatory infiltration     | 0<br>( 0)                                                                                                                                                                                 | 0 0 0<br>( 0) ( 0) ( 0)         | 1 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 <sup>-</sup> 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lymphocytic infiltration      | 1<br>( 2)                                                                                                                                                                                 | 0 0 0<br>( 0) ( 0) ( 0)         | 0 0 0 0<br>(0)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inflammatory cell nest        | 2<br>( 4)                                                                                                                                                                                 | 0 0 0<br>( 0) ( 0) ( 0)         | 1 0 0 0<br>(2)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 0 0 0<br>(4) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 0 0 0<br>(6)(0)(0)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               | ystem)<br>hyperplasia:forestomach<br>erosion:glandular stomach<br>hyperplasia:glandular stomach<br>angiectasis<br>necrosis:focal<br>inflammatory infiltration<br>lymphocytic infiltration | Findings                        | No. of Animals on Study       50         Grade $1 - 2 - 3 - 4$ Findings       (%)         hyperplasia: forestomach $0 - 0 - 0$ (0) $0 - 0 - 0$ (1) $0 - 0 - 0$ (2) $0 - 0 - 0$ (3) $0 - 0 - 0$ (4) $0 - 0 - 0$ (50) $0 - 0 - 0$ (2) $0 - 0 - 0$ (3) $0 - 0 - 0$ (4) $0 - 0 - 0$ (4) $0 - 0 - 0$ (50) $0 - 0 - 0$ (4) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) $0 - 0 - 0$ (50) | No. of Animals on Study         50         50           Findings         1         2         3         4           (%)         (%)         (%)         (%)         (%)         (%)         1         2         3         4           prindings         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%) <td< td=""><td>No. of failais on Study       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       60       50       60       50       60       50       60       50       60       50       60       50       60       50       60       60       60       60       60       60       60       60       60       60</td></td<> | No. of failais on Study       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       60       50       60       50       60       50       60       50       60       50       60       50       60       50       60       60       60       60       60       60       60       60       60       60 |

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a\*100

Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

|             |                          | Group Name<br>No. of Animals on Study | 5                 |           | vl              |   |           | 50               | 800 p    | mu              |   |           |          | 2000<br>0       | ինա             |   |           |               | 5000<br>i0       | րթա |                 |
|-------------|--------------------------|---------------------------------------|-------------------|-----------|-----------------|---|-----------|------------------|----------|-----------------|---|-----------|----------|-----------------|-----------------|---|-----------|---------------|------------------|-----|-----------------|
| rgan        | Findings                 | Grade <u>1</u><br>(%)                 | 2) (%)            | 3<br>(%)  | <u>4</u><br>(%) | ( | 1<br>%)   | 2<br>(%)         | 3<br>(%) | <u>4</u><br>(%) | - | 1<br>(%)  | 2<br>(%) | 3 (%)           | <u>4</u><br>(%) | ( | 1<br>%)   | 2<br>(%)      | 3<br>(%)         |     | <u>4</u><br>(%) |
| Digestive s | system)                  |                                       |                   |           |                 |   |           |                  |          |                 |   |           |          |                 |                 |   |           |               |                  |     |                 |
| iver        | clear cell focus         | 0<br>( 0)                             | <5<br>0<br>) ( 0) | 0         | 0<br>( 0)       | ( | 0<br>0) ( | <50<br>4<br>8) ( | 0        | 0<br>( 0)       | ( | 0<br>0) ( | 2        | 0><br>0<br>( 0) | 0<br>( 0)       | ( | 0<br>0) ( | 1             | i0><br>0<br>( 0) |     | 0<br>0)         |
|             | basophilic cell focus    | 0<br>( 0)                             | 0<br>) ( 0)       | 0<br>( 0) | 0<br>( 0)       | ( | D<br>D) ( | l<br>2) (        | 0<br>0)  | 0<br>( 0)       | ( | 0<br>0) ( | 1<br>2)  | 0<br>(0)        | 0<br>( 0)       | ( | 0<br>0) ( | 2<br>4)       | 0<br>( 0)        |     | 0<br>0)         |
|             | biliary cyst             | 0<br>( 0)                             | 0<br>) ( 0)       | 0<br>( 0) | 0<br>( 0)       |   | 1<br>2) ( | 2<br>4) (        | 0<br>0)  | 0<br>( 0)       |   | 0<br>0) ( | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       |   | 2<br>4) ( | 0<br>0)       | 0<br>( 0)        |     | 0<br>0)         |
| Urinary sys | :tem}                    |                                       |                   |           |                 |   |           |                  |          |                 |   |           |          |                 |                 |   |           |               |                  |     |                 |
| idney       | hyaline droplet          | 3<br>( 6)                             | <5<br>0<br>) ( 0) | 0         | 0<br>( 0)       |   | 3<br>3) ( | <50<br>0<br>0) ( | 0        | 0<br>( 0)       |   | 5<br>0) ( | 0        | 0><br>0<br>( 0) | 0<br>( 0)       |   | 6<br>2) ( | <5<br>0<br>0) | i0><br>0<br>( 0) |     | 0<br>0)         |
|             | lymphocytic infiltration | 4<br>( 8)                             | 0<br>) ( 0)       | 0<br>( 0) | 0<br>( 0)       | ( | 3<br>5) ( | 0<br>0) (        | 0<br>0)  | 0<br>( 0)       | ( | 4<br>8) ( | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       | ( | 0<br>0) ( | 0<br>0)       | 0<br>( 0)        |     | 0<br>0)         |
|             | osseous metaplasia       | 0<br>( 0)                             | 0<br>) ( 0)       | 0<br>( 0) | 0<br>( 0)       | ( | 1<br>2) ( | 0<br>0) (        | 0<br>0)  | 0<br>( 0)       | ( | 0<br>0) ( | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       |   | 0<br>0) ( | 0<br>0)       | 0<br>( 0)        |     | 0<br>0)         |
|             | inflammatory polyp       | 1<br>( 2)                             | 0<br>) ( 0)       | 0<br>( 0) | 0<br>( 0)       |   | )<br>)) ( | 1<br>2) (        | 0<br>0)  | 0<br>( 0)       |   | 0<br>0) ( | 0<br>0)  | 0<br>( 0)       | 0<br>( 0)       |   | 1<br>2) ( | 0<br>0)       | 0<br>( 0)        |     | 0<br>0)         |

<a> a : Number of animals examined at the site

b b : Number of animals with lesion

с:b/а\*100 (c)

Significant difference ;  $*: P \leq 0.05$   $**: P \leq 0.01$  Test of Chi Square

(IIPT150)

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~~~

Grade sis n:proximal tubule n:pelvis	0 (0) (1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n:proximal tubule	(0) (1	1 3 0 2) (6) (0) 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 2 0 (0) (0) (4) (0) 0 0 0 0 0	1 2 3 0 (2)(4)(6)(0) 0 0 0 0
n:proximal tubule	(0) (1	1 3 0 2) (6) (0) 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 2 0 (0) (0) (4) (0) 0 0 0 0 0	1 2 3 0 (2)(4)(6)(0) 0 0 0 0
n:pelvis					(0) (0) (0) (0)
		0 0 0 0)(0)(0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
rplasia:transitional epithelium			<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (-0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
loma			0 0 0 0 (0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
			<50> 2 0 0 0 (4) (0) (0) (0)	<50> 3 1 0 0 (6) (2) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	rplasia:transitional epithelium loma 2 : Moderate 3 : Marked animals examined at the site animals with lesion 00	(0) (loma 1 (2) (0 (0) (2: Moderate 3: Marked 4: Severe animals examined at the site animals with lesion	rplasia:transitional epithelium 0 0 0 0 (0) (0) (0) (0) (0) lomma 1 0 0 0 (2) (0) (0) (0) (0) (2) (0) (0) (0) (0) 0 0 0 (1) (0) (0) (0) (2) (0) (0) (0) (1) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0)	0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 \searrow

~____

		roup Name o. of Animals on Study	Contr 50	01		800 թթա 50		2000 50	ppm		5000 50	ppm
rgan		rade <u>1</u> (%)	23 (%) (%)	<u>4</u> (%)	<u> </u>	2 3 4 (%) (%) (%)	<u> </u>	23 (%) (%)	<u>4</u> (%)	<u> </u>	_23 (%) (%)	
Endocrine s	ystem)											
ituitary	cyst	0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 0 0 0 0) (0) (0)	0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 1 0 2) (0)	
	hyperplasia	2 (4) (30 6)(0)	0 (0)	2 (4)(3 0 0 6) (0) (0)	3 (6)(0 0 0) (0)	0 (0)	3 (6)(2 0 4) (0)	0) (0)
drenal	fatty change	0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 1 0 0 2) (0) (0)	0 (0) (<50> 1 0 2) (0)	0 (0)	0 (0) (<50> 1 0 2) (0)	0) (0)
	spindle-cell hyperplasia	6 (12) (0 0 0) (0)	0 (0)	3 (6)(0 0 0 0)(0)(0)	6 (12) (00 0)(0)	0 (0)	2 (4) (00 0)(0)	0.) (0)
	hyperplasia medulla	1 (2) (0 0 0) (0)	0 (0)	0 (0) (0 0 0 0)(0)(0)	0 (0) (0 0 0) (0)	0 (0)	0 (0) (0 0 0) (0)	0) (0)
eproductive	e system}											
ary	hemorrhage	0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 1 0 0 2) (0) (0)	0 (0) (<50> 0 0 0) (0)	0 (0)	0 (0) (<50> 0 0 0) (0)	0) (0)
cade a > b c)	1 : Slight2 : Moderate3 :a : Number of animals examined at the sitb : Number of animals with lesionc : b / a * 100difference ;* : P \leq 0.05											

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

~---

PAGE	:	18

		Group Name No. of Animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50			
rgan	Findings	Grade <u>1</u> (%)	<u>2 3 4</u> (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)			
Keproductive	e system)								
vary	thrombus	0 (0)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)			
	cyst	1 (2)	2 0 0 (4) (0) (0)	2 4 0 0 (4) (8) (0) (0)	1 1 0 0 (2)(2)(0)(0)	3 1 0 0 (6)(2)(0)(0)			
	xanthogranuloma	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 I 0 0 (0) (2) (0) (0)	0 0 0 0 (0) (0) (0) (0)			
terus	hyperplasia:gland	2 (4)	<50> 0 0 0 (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)			
	cystic endometrial hyperplasia	16 (32)	1 0 0 (2)(0)(0)	20 I 0 0 (40)(2)(0)(0)	16 2 0 0 (32) (4) (0) (0)	13 1 0 0 (26)(2)(0)(0)			
Vervous syst	tem}								
rain	hemorrhage	0 (0)	<50> 0 0 0 (0) (0) (0)	<pre> <50> 0 0 0 0 (0) (0) (0) (0)</pre>	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)			
rade a> b c)	1 : Slight 2 : Moderate a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100 difference ; * : $P \leq 0.05$ ** :								

(HPT150)

•

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name	(50	Control			800 ppm 2000 ppm 50 50						5000 pi	ptn		
rgan	Findings	No. of Animals on Study Grade <u>1</u> (%)	2	3 (%)	<u>4</u> (%)	<u> </u>		<u>34</u> (%) (%)	<u> </u>	2	3	<u>4</u> (%)	<u> </u>	5 (%)	50 <u>3</u> (%)	<u>4</u> (%)
													•			
lervous syste	em)															
ain	mineralization	24 (48)	<50) 0 (0) (0	0 0)	16 (32)	<50 0 (0)	0> 0 0 (0) (0)	18 (36)	0	(50> 0 0 (0)	0 (0)	19 (38)	0	50> 0 (0)+	0 (0)
pecial sense	e organs/appendage}															
0	keratitis	0 (0)	<50> 0 (0) (0	0 0)	2 (4)	<5(0 (0)	0) 000 0) 0) 0)	1 (2)	0	(50> 0 (0)	0 (0)	1 (2)	0	50> 0 (0)	0 (0)
rder gl	hyperplasia	1 (2)	<50> 0 (0) (0	0 0)	0 (0)	<50 0 (0))> 0 0 (0) (0)	0 (0)	0		0 (0)	0 (0)	0	50> 0 (0) (0 (0)
usculoskelet	cal system)															
scle	mineralization	0 (0)	<50> 0 (0) (0	0 0)	0 (0)	<5(0 (0))> 0 0 (0)(0)	0 (0)	0	(50> 0 (0)	0 (0)	2 (4)	0	50> 0 (0) (0 (0)
IG	osteosclerosis	1 (2)	<50> 1 (2) (0	0 0)	0 (0)	<5(0 (0))> 0 0 (0) (0)	0 (0)	0	(50> 0 • (0)	0 (0)	1 (2)	0	50> 0 (0)	0 (0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

Body cavities}		Grade	<u> </u>	<u>2</u> (%)	3 (%)	<u>4</u> (%)	<u> </u>	2 (%)	3 (%)	<u>4</u> (%)	$\frac{1}{(\%)}$	2 (%)	3 (%)	<u>4</u> (%)	1	2		3
Body cavities}									(10)	(/0/	(10)	(70)	(76)	(76)	(%)	(9	5)	(%)
lody cavities				ì														
ouy cavitics)																		
ritoneum				<50	>			<50	1>			<50	0>				<50>	
inflamm	mation		0	1 (2) (0 0) (0 (0)	0 (0)	0 0) (0 (0) (0 (0)	0 (0)	0 (0) (0 (0) (0 (0)	0 (0)	((0 0) (

(HPT150)

BAIS4

TABLE M 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX :	FEMALE					PAGE : 8
Organ	N	roup Name o. of Animals on Study rade <u>1</u> (%)	Control 14 2 3 4 (%) (%) (%)	800 yym 21 <u>1 2 3 4</u> (%) (%) (%) (%)	2000 ypm 27 <u>1 2 3 4</u> (%) (%) (%) (%)	5000 рын 26 <u>1 2 3 4</u> (%) (%) (%) (%)
{Integumentar	y system/appandage}					
skin/app	scab	0 (0)	<14> 0 0 0 (0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 0 0 0 . (0) (0) (0) (0)	<26> 0 1 0 0 (0) (4) (0) (0)
{Respiratory	system}					
nasal cavit	eosinophilic change:olfactory epitheliu		<14> 0 0 0 (0) (0) (0)	<21> 1 0 0 0 (5) (0) (0) (0)	<27> 2 2 0 0 (7) (7) (0) (0)	<26> 1 2 0 0 (4) (8) (0) (0)
	eosinophilic change:respiratory epithel		1 0 0 (7)(0)(0)	8 0 0 0 (38)(0)(0)(0)	7 5 0 0 (26) (19) (0) (0)	7 1 0 0 (27)(4)(0)(0)
	inflammation:foreign body	0 (0)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 i 0 0 (0)(4)(0)(0)	0 0 0 0 (0)(0)(0)(0)
	respiratory metaplasia:olfactory epithe		0 0 0 (0) (0) (0)	3 0 0 0 (14) (0) (0) (0)	3 0 0 0 (11) (0) (0) (0)	3 0 0 0 (12) (0) (0) (0)
	respiratory metaplasia:gland	0 (0)	0 0 0 (0) (0) (0)	1 0 0 0 (5)(0)(0)(0)	1 0 0 0 (4) (0) (0) (0)	3 0 0 0 (12) (0) (0) (0)
lung	congestion	0	<14> 0 0 0	<21> 0 0 0 0	<27> 0 0 0 0	<26> 0 1 0 0

(0) (0) (0) (0)

(0) (0) (0) (0)

(0) (0) (0) (0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe

<a> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Chi Square

(IIPT150)

BAIS4

(0) (4) (0) (0)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name No: of Animals on Study Grade <u>1</u> (%)	Control 14 12 3 4 6) (%) (%) (%)	800 ppm 21 <u>1 2 3 4</u> (%) (%) (%) (%)	$ \begin{array}{c} 2000 \text{ ppm} \\ 27 \\ \underline{1 2 3 4} \\ (\%) (\%) (\%) (\%) \end{array} $	5000 ppm 26 <u>1 2 3 4</u> (%) (%) (%) (%)
(Hematopoietic	system)					
bone marrow	increased hematopoiesis	0 (0)	<14>) 0 0 0)) (0) (0) (0)	<21> 2 0 0 0 (10) (0) (0) (0)	<27> 4 0 0 0 (15) (0) (0) (0)	<26> 3 0 0 0 (12) (0) (0) (0)
	granulopoiesis:increased	9 (0)) 0 0 0))(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (4)(0)(0)(0)	1 0 0 0 (4) (0) (0) (0)
lymph node	lymphadenitis	0 (0)	<14>) 0 0 0)) (0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 I 0 0 (0) (4) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
spleen	extramedullary hematopoiesis	. 1 (7)	<14> 2 0 0 7) (14) (0) (0)	<21> 2 1 0 0 (10) (5) (0) (0)	<27> 3 4 0 0 (11) (15) (0) (0)	<26> 6 2 0 0 (23) (8) (0) (0)
{Circulatory s	ystem)					
heart	necrosis:focal	0 (0)	<14>) 0 0 0)) (0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 1 0 0 (0) (4) (0) (0)	<pre></pre>
	mineralization	0 (0)) 0 0 0))(0)(0)(0)	1 0 0 0 (5)(0)(0)(0)	1 0 0 0 (4)(0)(0)(0)	2 0 0 0 (8)(0)(0)(0)

1 : Slight 2 : Moderate 3 : Marked a : Number of animals examined at the site

<a>> ь b : Number of animals with lesion

(c) c∶b⁄a * 100

Significant difference ; *: $P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

(IIPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

Drgan			Control 14 2 3 4 (%) (%) (%)	800 ppm 21 (%) (%) (%) (%)	2000 ppm 27 - <u>1 2 3 4</u> (%) (%) (%) (%)	5000 µpm 26 <u>1 2 3 4</u> (%) (%) (%) (%)
{Circulator	y system)					
eart	arteritis	0 (0) (<14> 0 0 0 0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 1 0 0 (0) (4) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
Digestive	system)					
ongue	arteritis	0 (0) (<14> 0 0 0 0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 1 0 0 (0) (4) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
omach	hyperplasia:forestomach	0 (0) (<14> 0 0 0 0) (0) (0)	<21> 1 0 0 0 (5) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
	erosion:glandular stomach	0 (0) (0 0 0 0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (4) (0) (0) (0)
	hyperplasia:glandular stomach	0 (0) (0 0 0 0) (0) (0)	1 0 0 0 (5)(0)(0)(.0)	1 0 0 0 (4) (0) (0) (0)	3 0 0 0 (12) (0) (0) (0)
iver	angiectasis	0 (0) (<14> 1 0 0 7) (0) (0)	<21> 0 1 0 0 (0) (5) (0) (0)	<27> 1 0 0 0 (4) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
∵ade a> b c)	l : Slight 2 : Moderate 3 : M a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100	arked 4 : Severe				

(HPT150)

BAIS4

.

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105%)

.

-

PAGE : 11

		roup Name		Control 800 ppm 14 21				2000 урт 5000 27 26				5000 ı	nbm				
)rgan		o. of Animals on Study rade <u>1</u> (%)		<u>3 4</u> %) (%)	<u> </u>	21 	3 (%)	4 (%)	<u> </u>		27 <u>3</u> (%)	<u>4</u> (%)	(1 %)	20 2 (%)	6 3 (%)	<u>4</u> (%)
(1) · · · ·	.)																
(Digestive sy	stem)																
liver	necrosis:focal	0 (0)	<14> 0 (0) (0 0 0)(0)	0 (0) (<21 0 0) (0	0 (0)	0 (0)	1	27> 0 (0)	0 (0)		0 0) (<26 0 0) (6> 0 (0)	0 (0)
	inflammatory infiltration	0 (0)	0 (0) (0 0 0) (0)	1 (5)(0 0) (0 0) (0 (0)	0 (0)	0 (0)	0	0 (0)	(1 4) (0	0 (0)	0 (0)
	basophilic cell focus	0 (0)	0	00 0)(0)	0 (0) (0 (0) (0 0) (0 (0)	0 (0)	1 (4)	0 (0)	0 (0)		0 0) (0 (0)	0 (0)
	biliary cyst	0 (0)	0	00) 0)(0)	0 (0) (1 5) (0 0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)
(Urinary syst	em)																
i dney	hyaline droplet	1 (7)	<14> 0 (0) (000) 0)(0)	2 (10) (<21 0 0) (0	0 (0)		· 0	27> 0 (0)	0 (0)		5 9) (<26 0 0) (6> 0 (0)	0 (0)
	inflammatory polyp	0 (0)	0	0 0 0) (0)	0 (0) (0 0) (0 0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(1 4) (0 0) (0 (0)	0 (0)
	hydronephrosis	0 (0)	0 (0) (⁻	1 0 7) (0)	1 (5)(0 0) (1 5) (0 (0)	0 (0)	0 (0)	2 (7)	0 (0)	(1 4) (1 4)	3 (12)	0 (0)
Grade (a > b (c)	1 : Slight 2 : Moderate 3 : a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 bifference ; * : $P \le 0.05$ ** : $P \le 0$																

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

	Group Na No. of A	me Control nimals on Study 14	800 אַנָע 21	2000 yym 27	5000 ppm 26
rgan	Grade	$\underbrace{1 2 3 4}_{(\%) (\%) (\%) (\%) (\%)}$	<u>1 2 3 4</u> (%) (%) (%) (%)	<u>1 2 3 4</u> (%) (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$
Urinary sys	tem)				
idney	desquamation:pelvis	<14> 0 0 0 0 (0) (0) (0) (0)	<21> 1 0 0 0 (5) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
Endocrine s	ystem)				
oi tui tary	angieclasis	. <14> 0 0 0 0 (0) (0) (0) (0)	<21> 2 0 0 0 (10) (0) (0) (0)	<27> 2 0 0 0 (7) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
	hyperplasia	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (7)(0)(0)(0)	1 0 0 0 (4)(0)(0)(0)
drenal	spindle-cell hyperplasia	<14> 0 0 0 0 (0) (0) (0) (0)	<21> 1 0 0 0 (5) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
Reproductiv	e system)				
vary	hemorrhage	<14> 0 0 0 0 (0) (0) (0) (0)	<21> 0 1 0 0 (0) (5) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
rade а> b (с)	 1: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 	4 : Severe			

.

(HPT150)

PAGE : 12

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105%)

Organ	, Findings	Group Name Control No. of Animals on Study 14 Grade 1 2 3 4 (%) (%) (%) (%) (%)	$ \begin{array}{c} 800 \text{ ppm} \\ 21 \\ \frac{1}{(\%)} (\%) (\%) (\%) (\%) \end{array} $	$ \begin{array}{c} 2000 \\ 27 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $	$ \begin{array}{c} 5000 \text{ ppm} \\ 26 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array} $
{Keproductive	e system)				
ovary	thrombus	<14> 0 0 0 0 0 (0) (0) (0) (0		<pre><27> 0 i 0 0 (0) (4) (0) (0)</pre>	<26> 0 1 0 0 (0) (4) (0) (0)
	cyst	0 0 0 0 (0)(0)(0)(0)) 1 0 0 0)) (5) (0) (0) (0)	.1 0 0 0 (4) (0) (0) (0)	1 0 0 0 (4) (0) (0) (0)
uterus	cystic endometrial hyperplasia	<14> 1 0 0 0 (7) (0) (0) (0		<27> 4 0 0 0 (15) (0) (0) (0)	<26> 4 0 0 0 (15) (0) (0) (0)
{Nervous syst	tem)				
brain	hemorrhage	<14> 0 0 0 0 (0) (0) (0) (0		<27> i 0 0 0 (4) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)
	mineralization	4 0 0 0 (29)(0)(0)(0)		7 0 0 0 (26) (0) (0) (0)	9 0 0 0 (35)(0)(0)(0)
{Special sens	se organs/appendage)				
еуе	keratitis	<14> 0 0 0 0 (0) (0) (0) (0		<27> 1 0 0 0 (4) (0) (0) (0)	<26> 0 0 0 0 (0) (0) (0) (0)

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe < a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(IIPT150)

BAIS4

1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

	2000	FOO

		Group Name No. of Animals on Study	Control 14	800 ppm 21	2000 ppm 27	5000 թրա 26
Organ		Grade <u>1</u> (%)	2 3 4 (%) (%) (%)	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)} (\%)$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$	$\frac{1}{(\%)} \frac{2}{(\%)} \frac{3}{(\%)} \frac{4}{(\%)}$
{Musculoskele	etal system}					
muscle	mineralization	0 (0) (<14> 0 0 0 0) (0) (0)	<21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<26> 2 0 0 0 (8) (0) (0) (0)
{Body cavitie	es}					
peritoneum	inflammation	0 (0) (<14> 1 0 0 7) (0) (0)	· <21> 0 0 0 0 (0) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	<pre> <26> 0 0 0 0 (0) (0) (0) (0)</pre>
Grade < a > b (c) Significant o	1 : Slight 2 : Moderate 3 a : Number of animals examined at the si b : Number of animals with lesion c : b / a * 100 difference ; * : P ≤ 0.05 ** : P ≤					
(HPT150)						BA

PAGE: 14 _____

TABLE M 6

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		lame Animals on Study	Cont 36	rol	800 29	րիա		2000 g 23	n) mai		5000 ppm 24
gan	Gradə Findings	<u> </u>	23 (%) (%)	<u>4</u> (%)	<u>1 2 3</u> (%) (%) (%)	4 (%)	<u> </u>	23 (%) (%)	<u>4</u> (%)	<u> </u>	2 3 4 (%) (%) (%)
ntegumentary	y system/appandage}										
kin/app	squamous cell hyperplasia	0 (0)	<36> 0 0 (0) (0)	0 (0)	<29> 0 1 0 (0) (3) (0)		0 (0) (<23> 0 0 0) (0)	0 (0)		<24> 1 0 0 4) (0) (0)
lespiratory :	system)										
sal cavit	eosinophilic change:olfactory epithelium	3 (8)	<36> 0 0 (0) (0)	0	<29> 2 0 0 (7) (0) (0)		0 (0) (<23> 0 0 0) (0)	0 (0)		<24> 0 0 0 0) (0) (0)
	eosinophilic change:respiratory epithelium	16 (44)	1 0 (3)(0)	0 (0)	10 2 0 (34) (7) (0)		7 (30) (0 1 0) (4)	0 (0)		0 0 0 0)(0)(0)
	respiratory metaplasia:olfactory epithelium	4 (11)	0 0 (0) (0)	0 (0)	500 (17)(0)(0)	0 (0)	3 (13) (0 0 0) (0)	0 (0)		0 0 0 0)(0)(0)
	respiratory metaplasia:gland	4 (11)	00 (0)(0)	0 (0)	0 0 0 (0) (0) (0)		2 (9) (0 0 0) (0)	0 (0)		0 0 0 0)(0)(0)
Ing	inflammatory infiltration	0	<36> 0 0 (0) (0)	0 (0)	<29> 0 0 0 (0) (0) (0)		0 (0)(<23> 0 0 0) (0)	0 (0)	1 (4) (<24> 0 0 0 0) (0) (0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe

 $\langle a \rangle$ a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference ; ★ : P ≤ 0.05 ★★ : P ≤ 0.01 Test of Chi Square

.

(HPT150)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

		Group Name			Contr	vl			800 p	ulta			200	0 բրտ			5	i000 p	
Organ	Findings	No. of Animals on Study Grade	/ 1	36 2 (%)		4 (%)	<u> </u>	2 (%)	29 3	4 (%)	(1 %)	$23 \\ 2$	3 <u>4</u> %) (%)	(6	<u>1</u> %)	24 2 (%)		<u>4</u> (%)
{Hematopoieti	c system)																		
bone marrow	increased hematopoiesis		1 3) (<36 0 0) (0	0 (0)	1 (3)	0	29> 0 (0)	0 (0)	(.	1 4) (<23> 0 0) (0 0 0) (0)	(1 4) (<24 0 0) (0 (0)
	granulopoiesis:increased		1 3) (0 0) (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	()) (0 0) (00 0)(0)		0 0) (0 0) (0 0)	0 (0)
lymph node	lymphadenitis		0 0) (<36 0 0) (0	0 (0)	0 (0)	< 2 (7)	29> 0 (0)	0 (0)	(D D) (<23> 0 0) (0 0 0) (0)		0 0) (<24 0 0) (0	0 (0)
spleen	deposit of melanin		0 0) (<36 0 0) (0	0 (0)	1 (3)	0	29> 0 (0)	0 (0)	(0 0) (<23> 0 0) (00 0)(0)	((0 0) (<24 0 0) (0	0 (0)
	extramedullary hematopoiesis		3 8) (1 3) (0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	· (1 4) (0 0) (0 0 0) (0)	(1 4) (0 0) (0 (0)	0 (0)
	follicular hyperplasia		3 8) (0 0) (0 (0)	0 (0)	3 (10)	1 (3)	0 (0)	0 (0)		1 4) (00 0)(0)		0 0) (2 8) (0 (0)	0 (0)
{Circulatory	system)																		
heart	mineralization		0 0) (<36 0 0) (0	0 (0)	0 (0)	0	29> 0 (0)	0 (0)		1 1) (00 0)(0)		0 0) (<24 0 0) (0	0 (0)

1 : Slight Grade 2 : Moderate 3 : Marked 4 : Severe

<a>≻ a : Number of animals examined at the site

b b : Number of animals with lesion

c:b/a*100 (c) .

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

STUDY NO. : 0642 ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

lrgan	Findings	Group Name No. of Animals on Study Grade <u>1 2</u> (%) (%)	Control 36 <u>34</u> (%) (%)	800 µµm 29 <u>i 2 3 4</u> (%) (%) (%) (%)	$\begin{array}{c} 2000 \text{ ppm} \\ 23 \\ \hline 1 & 2 & 3 & 4 \\ \hline (\%) & (\%) & (\%) & (\%) \end{array}$	5000 µµm 24 <u>i 2 3 4</u> (%) (%) (%) (%)
)igestive s	ystem)					
ngue	arteritis	0 0	(36> · 0 0 • (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	$\begin{array}{cccc} & <23 \\ 1 & 0 & 0 & 0 \\ (\ 4) & (\ 0) & (\ 0) & (\ 0) \end{array}$	<24> 0 0 0 0 (0) (0) (0) (0)
omach	hyperplasia:forestomach	0 0	<36> 0 0 0 (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	<23> 1 0 0 0 (4) (0) (0) (0)	<24> 0 0 0 0 (0) (0) (0) (0)
	erosion:glandular stomach	1 0 (3) (0)	0 0 (0) (0)	1 0 0 0 (3)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	hyperplasia:glandular stomach	11 0 (31) (0)	0 0 (0) (0)	6 0 0 0 (21) (0) (0) (0)	6 0 0 0 (26)(0)(0)(0)	6 0 0 0 (25)(0)(0)(0)
er.	angiectasis	2 0	(36> 0 0 (0)(0)	<29> 1 0 0 0 (3) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<24> i i 0 0 (4) (4) (0) (0)
	lymphocytic infiltration	1 0 (3)(0)	0 0 (0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (4) (0) (0) (0)
	inflammatory cell nest	2 0 (6)(0)	00	1 0 0 0 (3)(0)(0)(0)	2 0 0 0 (9)(0)(0)(0)	3 0 0 0 (13) (0) (0) (0)

(c) c: b/a * 100 Significant difference; *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE : 11

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 : FEMALE SEX

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

		Group Name No. of Animals on Study Grade 1	Control 36 2 3 4	800 ppm 29 1 2 3 4	2000 ppm 23 1 2 3 4	5000 ppm 24 _1 2 3 4_
Organ	Findings	(%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)
{Digestive s	system)					
liver	clear cell focus	0 (0)	<36> 0 0 0 (0) (0) (0)	<29> 0 4 0 0 (0) (14) (0) (0)	<23> 0 2 0 0 (0) (9) (0) (0)	<24> 0 1 0 0 (0) (4) (0) (0)
	basophilic cell focus	0 (0)	0 0 0 (0) (0) (0)	0 L 0 0 (0) (3) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (4) (0) (0)
	biliary cyst	0 (0)	0 0 0 (0) (0) (0)	1 1 0 0 (3)(3)(0)(0)	0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (8)(0)(0)(0)
{Urinary sys						
kidney	hyaline droplet	2 (6)	<36> 0 0 0 (0) (0) (0)	<29> 1 0 0 0 (3) (0) (0) (0)	<pre></pre>	<24>. 1 0 0 0 (4) (0) (0) (0)
	lymphocytic infiltration	4 (11)	0 0 0 (0) (0) (0)	3 0 0 0 (10) (0) (0) (0)	4 0 0 0 (17) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	osseous metaplasia	0 (0)	0 0 0 (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	inflammatory polyp	i (3)	0 0 0 (0) (0) (0)	0 I 0 0 (0) (3) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)

Grade l : Slight 2 : Moderate 3 : Marked 4 : Severe

<a>> a : Number of animals examined at the site

b b : Number of animals with lesion

(c) с: b / а * 100

. Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS4

PAGE : 12

EX :	FEMALE				PAGE
rgan	Group Nam No. of An Grade	e Control imals on Study 36 (%) (%) (%) (%)	800 µµm 29 <u>1 2 3 4</u> (%) (%) (%) (%)	$\begin{array}{c} 2000 \text{ ppm} \\ 23 \\ \underline{1 \ 2 \ 3 \ 4} \\ (\%) \ (\%) \ (\%) \ (\%) \ (\%) \end{array}$	5000 ppm 24 <u>i 2 3 4</u> (%) (%) (%) (%)
1 gan		(70) (70) (70) (70)			
Urinary syst	em)				
i dney	hydronephrosis	<36> 0 1 2 0 (0) (3) (6) (0)	<29> 0 1 0 0 (0) (3) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (4) (0) (0)
	regeneration:proximal tubule	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
	desquamation:pelvis	0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (3)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
rin bladd	simple hyperplasia:transitional epithelium	<36> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<23> 0 0 0 0 (0) (0) (0) (0)	<24> 1 0 0 0 (4) (0) (0) (0)
	xanthogranuloma	1 0 0 0 (3)(0)(0)(0)	0 0 0 0 (0)(0)(0)(0)(0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
Endocrine sy	stem)				
ituitary	angiectasis	<36> 0 0 0 0 (0) (0) (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	<23> 1 1 0 0 (4) (4) (0) (0)	<24> 1 0 0 0 (4) (0) (0) (0)
rade a > b c)	1 : Slight2 : Moderate3 : Markeda : Number of animals examined at the siteb : Number of animals with lesionc : $b / a * 100$ ifference ; $* : P \leq 0.05$	4 : Severe Test of Chi Square	,		

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SACRIFICED ANIMALS (105W) : FEMALE

		Group Name	Control	800 ppm	2000 ppm	5000 ppm
gan	Findings	No. of Animals on Study Grade <u>1</u> (%)	36 <u>2 3 4</u> (%) (%) (%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ndocrine sy						
tuitary	cyst	0 (0)	<36> 0 0 0 (0) (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<24> 0 1 0 0 (0) (4) (0) (0)
	hyperplasia	2 (6)	3 0 0 (8)(0)(0)	2 3 0 0 (7)(10)(0)(0)	1 0 0 0 (4)(0)(0)(0)	2 2 0 0 (8) (8) (0) (0)
renal	fatty change	0 (0)	<36> 0 0 0 (0) (0) (0)	<29> 0 1 0 0 (0) (3) (0) (0)	<223> 0 1 0 0 (0) (4) (0) (0)	<24> 0 1 0 0 (0) (4) (0) (0)
	spindle-cell hyperplasia	6 (17)	0 0 0 (0) (0) (0)	2 0 0 0 (7)(0)(0)(0)	6 0 0 0 (26)(0)(0)(0)	2 0 0 0 (8)(0)(0)(0)
	hyperplasia:medulla	1 (3)	0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	'0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0)(0)(0)(0)
eproductive	e system)				x	
ary	cyst	1 (3)	<36> 2 0 0 (6) (0) (0)	$\begin{array}{c} <29 \\ 1 & 4 & 0 & 0 \\ (3) & (14) & (0) & (0) \end{array}$	<23> 0 1 0 0 (0) (4) (0) (0)	<24> 2 1 0 0 (8) (4) (0) (0)

(c) c:b/a*100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

.

SEX

BAIS4

PAGE: 14

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACR

STOPATHOLOGICAL FINDINGS	INON-NEOPLASTIC LESIONS	(SUMMARY)	
RIFICED ANIMALS (105W)			

PAGE : 15

Organ	Findings	Group Name No. of Animals on Study Grade <u>1</u> (%)	Control 36 <u>2 3 4</u> (%) (%) (%)	800 ppm 29 <u>1 2 3 4</u> (%) (%) (%) (%)	$ \begin{array}{c} 2000 \text{ ppm} \\ 23 \\ \underline{1 2 3 4} \\ (\%) (\%) (\%) (\%) (\%) \end{array} $	$ \begin{array}{c} 5000 \text{ ppm} \\ 24 \\ \underline{1 2 3 4} \\ (\%) (\%) (\%) (\%) (\%) \end{array} $
(1)						
{Reproducti	ve system)					
ovary	xanthogranuloma	0 (0)	<36> 0 0 0 (0) (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	<23> 0 1 0 0 (0) (4) (0) (0)	<24> 0 0 0 0 (0) (0) (0) (0)
uterus	hyperplasia:gland	2 (6)	<36> 0 0 0 (0) (0) (0)	<29> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<24> 0 0 0 0 (0) (0) (0) (0)
	cystic endometrial hyperplasia	15 (42)	1 0 0 (3)(0)(0)	18 1 0 0 (62) (3) (0) (0)	12 2 0 0 (52) (9) (0) (0)	9 1 0 0 (38) (4) (0) (0)
{Nervous sy	vstem}					
brain	mineralization	20 (56)	<36> 0 0 0 (0) (0) (0)	<29> 12 0 0 0 (41) (0) (0) (0)	<23> 11 0 0 0 (48) (0) (0) (0) -	<24> 10 0 0 0 (42) (0) (0) (0)
{Special se	ense organs/appendage)					,
eye	keratitis	0 (0)	<36> 0 0 0 (0) (0) (0)	<29> 2 0 0 0 (7) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<24> 1 0 0 0 (4) (0) (0) (0)
Grade < a > b (c) Significant	 1: Slight 2: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b / a * 100 c. difference; *: P ≤ 0.05 **: 	3 : Marked 4 : Severe ne site P ≤ 0.01 Test of Chi Squar				

\$

(HPT150)

٠

STUDY NO. : 0642 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1] SACRIFICED ANIMALS (105W) REPORT TYPE : A1 PAGE: 16 SEX : FEMALE 800 ppm 2000 ppm' 5000 ppm Group Name Control No. of Animals on Study 36 29 23 24 3 Grade 2 3 2 3 2 4 3 4 1 4 4 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Findings_ Organ_ {Special sense organs/appendage} Harder gl <36> <29> <23> <24> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 hyperplasia 0 1 (0) (0) (0) (0) (3)(0)(0)(0) (0) (0) (0) (0) (0) (0) (0) (0) {Musculoskeletal system} <36> <29> <23> <24> bone 1 0 0 0 0 0 0 0 0 0 0 0 osteosclerosis 1 0 0 1 (3) (3) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) (4) (0) (0) (0) Grada 2 : Moderate 3 : Marked 4 : Severe 1 · Slight

Grade	1 Slight 2 Moderate 3 Marked	4 · Severe
< a >	a : Number of animals examined at the site	
b	b : Number of animals with lesion	
(c)	с: b / а * 100	
Significan	t difference; $*: P \leq 0.05$ $**: P \leq 0.01$	Test of Chi Square

(HPT150)

BAIS4

S. --

TABLE N 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

Time-related Weeks	Items	Group Name	Control	800 ppm	2000 ppm	5000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	1	. 0	3	
	NO. OF ANIMALS WITH TUMORS		0	1	0	2	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	1	0	2	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		0	0	0	0	
	NO. OF BENIGN TUMORS		0	0	0	0	
	NO. OF MALIGNANT TUMORS		0	1	0	2	
	NO. OF TOTAL TUMORS		0	1	0	2	
53 - 78	NO. OF EXAMINED ANIMALS		1	2	3	5	
	NO. OF ANIMALS WITH TUMORS		1	I	2	1	
	NO. OF ANIMALS WITH SINGLE TUMORS		0	1	2	1	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		1	0	0	0	
	NO. OF BENIGN TUMORS		1	0	0	0	
	NO. OF MALIGNANT TUMORS		1	1	2	1	
	NO. OF TOTAL TUMORS		2	1	2	1	
79 - 104	NO. OF EXAMINED ANIMALS		8	16	10	9	
	NO. OF ANIMALS WITH TUMORS		c	14	9	7	
	NO. OF ANIMALS WITH TOWORS		0	14 9	9 6	7 5	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		2	5	3	2	
	NO. OF BENIGN TUMORS		1	8	6	4	
	NO. OF MALIGNANT TUMORS		7	14	9	5	
	NO. OF TOTAL TUMORS		8	22	15	9	
105 - 105	NO. OF EXAMINED ANIMALS		41	31	37	33	
	NO. OF ANIMALS WITH TUMORS		25	21	24	17	
	NO. OF ANIMALS WITH SINGLE TUMORS		10	13	16	13	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		15	8	8	4	
	NO. OF BENIGN TUMORS		25	12	19	12	
	NO. OF MALIGNANT TUMORS		18	18	15	10	
	NO. OF TOTAL TUMORS		43	30	34	22	

BAIS4

•

PAGE: 1

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

PAGE : 2

Time-related Weeks	Items	Group Name	Control	800 ppm	2000 ppm	5000 ppm	<u></u>
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		32	37	35	27	
	NO. OF ANIMALS WITH SINGLE TUMORS		14	24	24	21	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		18	13	11	6	
	NO. OF BENIGN TUMORS		27	20	25	16	
	NO. OF MALIGNANT TUMORS		26	34	26	18	
	NO. OF TOTAL TUMORS		53	54	51	34	
(HPT070)							BAIS4

.

TABLE N 2

NUMBER OF ANIMALS WITH TUMORS AND

NUMBER OF TUMORS-TIME RELATED: FEMALE

STUDY NO. : 0642 : MOUSE B6D2F1/Cr1j[Crj:BDF1] ANIMAL REPORT TYPE : A1 SEX : FEMALE

____₩eeks_

0 - 52

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

Time-related Items___ Group Name Control 800 ppm 2000 ppm NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 53 - 78 NO. OF EXAMINED ANIMALS

NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS . 79 - 104 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS 105 - 105 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS

PAGE : 3

5000 ppm

F

 $\mathbf{24}$

(IIPT070)

NO. OF BENIGN TUMORS

NO. OF TOTAL TUMORS

NO. OF MALIGNANT TUMORS

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

.

Time-related Weeks	Items	Group Name	Control	800 ppm	2000 ppm	5000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		37	36	34	42	
	NO. OF ANIMALS WITH SINGLE TUMORS		22	26	21	34	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		15	10	13	8	
	NO. OF BENIGN TUMORS		24	16	21	24	
	NO. OF MALIGNANT TUMORS		30	34	31	30	
	NO. OF TOTAL TUMORS		54	50	52	54	
(HPT070)						Annua (an annua 1	

(HPT070)

_

BAIS4

PAGE: 4

TABLE O 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

REPORT TYPE :	MOUSE B6D2F1/Cr1j[Crj:BDF1] A1 MALE	ALL ANIMALS (0-105W)				•				PAGE : 1
Organ	Findings	Group Name No. of animals on Study		Control 50		800 ppm 50		2000 ppm 50		5000 ppm 50
{Integumentary	/ system/appandage)									
subcutis	hemangioma			<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
	fibrosarcoma		0	(0%)	1	(2%)	0	(0%)		(0%)
{Respiratory s	system)									
Ղայց	bronchiolar-alveolar adenoma			<50> (4%)	1	<50> (2%)	4	<50> (8%)	6	<50> (12%)
	bronchiolar-alveolar carcinoma		9	(18%)	7	(14%)	9	(18%)	6	(12%)
{Hematopoietic	: system)									
bone marrow	hemangioma			<50> (0%)	1	<50> (2%)	0	<50> (0%)	0	<50> (0%)
lymph node	malignant lymphoma			<50> (10%)	5	<50> (10%)	5	<50> (10%)	5	<50> (10%)
spleen	hemangioma			<50> (2%)	3	<50> (6%)	1	<50> (2%)	0	<50> (0%)
	mastcytomaimalignant		0	(0%)	1	(2%)	0	(0%)	0	(0%)
	hemangiosarcoma		0	(0%)	0	(0%)	1	(2%)	0	(0%)
{Digestive sys	stem}									
salivary gl	xanthoma			<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0642

BAIS4

b (c) (HPT085)

<a>

a : Number of animals examined at the site

с:b/а*100

b : Number of animals with neoplasm

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : Λ1 SEX : MALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

. سیر ۲۰۰

Organ	Findings	Group Name No. of animals on Study		Control 50		800 ppm 50		2000 ppm 50		5000 ppm 50
	· · · · · · · · · · · · · · · · · · ·									
{Digestive sys	tem)									
salivary gl	histiocytic sarcoma	1		<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
stomach	squamous cell papilloma			<50> (2%)	0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
	carcinoid tumor	I	1	(2%)	1	(2%)	1	(2%)	0	(0%)
liver	hemangioma	:		<50> (4%)	1	<50> (2%)	4	<50> (8%)	2	<50> (4%)
	hepatoceilular adenoma	15	5	(30%)	10	(20%)	10	(20%)	5	(10%)
	histiocytic sarcoma	1	1	(2%)	4	(8%)	1	(2%)	2	(4%)
	hemangiosarcoma	(0	(0%)	1	(2%)	2	(4%)	0	(0%)
	hepatocellular carcinoma	٤	8	(16%)	11	(22%)	7	(14%)	5	(10%)
gall bladd	papillary adenoma	(<50> (0%)	0	<50> (0%)	1	<50> (2%)	0	<50> (0%)
{Endocrine sys	tem}									
pituitary	adenoma	(<50> (0%)	1	<50> (2%)	1	<50> (2%)	0	<50> (0%)
	adenocarcinoma	(0	(0%)	1	(2%)	0	(0%)	0	(0%)

<50>

0 (0%)

(a) a : Number of animals examined at the site

follicular adenoma

b (c) b: Number of animals with neoplasm c: b / a * 100

(HPT085)

thyroid

BAIS4

<50>

0 (0%)

<50>

1 (2%)

<50>

0 (0%)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

Organ	Findings.	Group Name _ No. of animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50
{Endocrine sys	stem)					
adrenal	pheochromocytoma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
[Reproductive	system)					
testis	sertoli cell tumor		<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
epididymis	histiocytic sarcoma		<50> 0 (0%)	<50> 2 (1%)	<50> 0 (0%)	<50> 0 (0%)
{Nervous syste	em)					
periph nerv	histiocytic sarcoma		<50> 1 (2%)	<50> O (0%)	<50> 1 (2%)	<50> 0 (0%)
{Special sense	e organs/appendage)					
llarder gl	adenoma		<50> 2 (4%)	<50> 2 (4%)	<50> 2 (4%)	<50> 2 (4%)
{Musculoskelet	tal system)					
muscle	hemangiosarcoma		<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
{Body cavities	s}					
peritoneum	histiocytic sarcoma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)

<a>> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c∶b⁄a * 100

(HPT085)

BAIS4

PAGE : 3

TABLE O 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1,j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX :	FEMALE						P	AGE: 4
Organ	Group N Findings No. of	ame animals on Study	Control 50	800 50	מקק	2000 ppm 50	5000 ppm 50	
{Integumentar	y system/appandage)							
subcutis	hemangioma		<50> (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	
	fibrosarcoma	1	(2%)	0 (0%))	1 (2%)	0 (0%)	
{Respiratory	system)							
lung	bronchiolar-alveolar adenoma		<50> (6%)	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)	
	bronchiolar-alveolar carcinoma	2	(4%)	4 (8%) :	2 (4%)	0 (0%)	
{Hematopoieti	c system)							
lymph node	histiocytic sarcoma		<50> (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	
	malignant lymphoma	14	(28%)	19 (38%) 1	7 (34%)	15 (30%)	
spleen	mastcytoma:benign	0	<50> (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	
	hemangioma	0	(0%)	0 (0%) .	1 (2%)	0 (0%)	
	malignant lymphoma	2	(4%)	0 (0%)	0 (0%)	0 (0%)	
	mastcytoma:malignant	0	(0%)	0 (0%)	0 (0%)	1 (2%)	
{Digestive sy	stem)					,		
stomach	squamous cell papilloma		<50> (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b/a*100

(HPT085)

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

٠

STUDY NO. : 0G42 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

lrgan	Findings	Group Name No. of animals on Study	Contro 50	L 80 50	00 maga)	2000 ppm 50	5000 ppm 50
Digestive sy	stem)						
mall intes	adenoma		<50> 0 (0%)	<50 0 (<50> L (2%)	<50> 0 (0%)
ver	hemangioma		<50> 3 (6%)	<50 0 (<50> 2 (4%)	<50> 1 (2%)
	hepatocellular adenoma		2 (4%)	1 (2%)	5 (10%)	3 (6%)
	histiocytic sarcoma		1 (2%)	0 (0%)	(2%)	1 (2%)
	hepatocellular carcinoma		0 (0%)	1 (2%)	L (2%)	1 (2%)
ll bladd	papillary adenoma	·	<50> 1 (2%)	<50 0 (<50>) (0%)	<50> 0 (0%)
ndocrine sy	stem)						
tuitary	adenoma		<50> 11 (22%)	<50 4 (<50> 5 (12%)	<50> 9 (18%)
yroid	C-cell adenoma		<50> 0 (0%)	<50 0 (<50>) (0%)	<50> 1 (2%)
irenal	pheochromocytoma		<50> 1 (2%)	<50 0 (<50>) (0%)	<50> 0 (0%)
leproductive	system)						
ary	cystadenoma		<50> 1 (2%)	<50 1 (<50> (2%)	<50> 0 (0%)
	hemangioma		0 (0%)	1 (2%) 2	2 (4%)	0 (0%)

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm c: b/a * 100

(IIPT085)

BAIS4

1

PAGE : 5

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 : FEMALE SEX

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

 $\sim \sim$

51.7	1 LANU KEL					
Organ		roup Name o. of animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50
{Reproductive	system)					
ovary	granulosa cell tumor:benign	0	<50> (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
	granulosa-theca cell tumor:malignant	0	(0%)	0 (0%)	0 (0%)	1 (2%)
uterus	hemangioma	. 0	<50> (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 2 (4%)
	endometrial stromal polyp	1	(2%)	1 (2%)	1 (2%)	3 (6%)
	squamous cell carcinoma	1	(2%)	0 (0%)	0 (0%)	0 (0%)
	leiomyosarcoma	0	(0%)	1 (2%)	0 (0%)	0 (0%)
	histiocytic sarcoma	7	(14%)	6 (12%)	8 (16%)	8 (16%)
mammary gl	adenoma	0	<50> (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	adenocarcinoma	1	(2%)	1 (2%)	0 (0%)	0 (0%)
{Special sens	e organs/appendage)					
llarder gl	adenoma	0	<50> (0%)	<50> 5 (10%)	<50> 0 (0%)	<50> 2 (4%)
{Musculoskele	tal system)					
bone	osteosarcoma	1	<50> (2%)	<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)

<a>> a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c : b / a * 100

(HPT085)

BAIS4

PAGE: 6

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 7

Organ	Findings	Group Name No. of animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50	
{Body cavities]						
peritoneum	hemangioma		<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	
	fibrosarcoma		0 (0%)	0 (0%)	0 (0%)	1 (2%)	
	leiomyosarcoma		0 (0%)	1 (2%)	0 (0%)	0 (0%)	
retroperit	hemangiosarcoma		<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	

b (c) (HPT085)

<a>>

a : Number of animals examined at the site b : Number of animals with neoplasm

c : b / a * 100

TABLE P 1

NEOPLASTIC LESIONS-INCIDENCE AND

STATISTICAL ANALYSIS: MALE

STUDY No. : 0642

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

			<u> </u>	······································	
Group Name	Control	800 may	2000 muu	5000 ppm	
	SITE : lung TUMOR : bronchiolar-alveolam	r adenoma			
mor rate					
verall rates(a)	2/50(4.0)	1/50 (2.0)	4/50(8.0)	6/50(12.0)	
djusted rates(b)	4.88	3. 23	9.76	15. 38	
erminal rates(c) atistical analysis	2/41 (4.9)	1/31 (3. 2)	3/37(8.1)	3/33 (9.1)	
eto test	_				
Standard method(d)	P =				
Prevalence method(d)	P = 0.0132*				
Combined analysis(d)	P =				
ochran-Armitage test(e)	P = 0.0422*				
isher Exact test(e)		P = 0.5000	P = 0.3389	P = 0. 1343	
	SITE : lung TUMOR : bronchiolar-alveolar	c carcinoma			
mor rate	0(50(10.0)				
verall rates(a)	9/50(18.0)	7/50 (14. 0)	9/50(18.0)	6/50(12.0)	
ljusted rates(b)	19.51	22. 58	18.92	15.15	
erminal rates(c)	8/41(19.5)	7/31(22.6)	7/37(18.9)	5/33(15.2)	
atistical analysis					
eto test	D 0 0070				
Standard method(d)	P = 0.3073				
Prevalence method(d)	P = 0.7307				
Combined analysis(d)	P = 0.6492				
ochran-Armitage test(e)	P = 0.4810				
sher Exact test(e)	- 1 <u>0</u> -111	P = 0.3929	P = 0.6024	P = 0. 2883	
	SITE : lung TUMOR : bronchiolar-alveolar	r adenoma, bronchiolar-alveolar carcinoma			
юr rate					
verall rates(a)	11/50(22.0)	8/50(16.0)	12/50(24.0)	11/50(22.0)	
ljusted rates(b)	24. 39	25. 81	25.00	25.64	
erminal rates(c)	10/41 (24.4)	8/31 (25.8)	9/37 (24.3)	7/33(21.2)	
atistical analysis			\tilde{c}		
eto test					
Standard method(d)	P = 0.3073				
Prevalence method(d)	P = 0.2560				
Combined analysis(d)	P = 0.2196				
ochran-Armitage test(e)	P = 0.7490				

(HPT360A)

BAIS4

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

 $\overline{}$

PAGE: 1

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

PAGE: 2

Group Name	Control	800 muu	2000 yum	5000 µµm
	SITE : lymph node			
Tumor rate	TUMOR : malignant lymphoma			
Overall rates(a)	5/50(10.0)	5/50(10.0)	5/50(10.0)	5/50(10.0)
Adjusted rates (b)	9.76	6. 45	5. 41	6.06
Terminal rates(c)	4/41 (9.8)	2/31 (6, 5)	2/37(5.4)	2/33(6.1)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.1929			
Prevalence method(d)	P = 0.6837			,
Combined analysis(d)	P = 0.3886			
Cochran-Armitage test(e)	P = 1.0000	D 0 0007	D 0 0007	D 0 0007
Fisher Exact test(e)		P = 0.6297	P = 0.6297	P = 0.6297
	SITE : spleen			
Tumor rate	TUMOR : hemangioma			
Overall rates(a)	1/50(2.0)	3/50 (6.0)	1/50 (2.0)	0/50(0.0)
Adjusted rates (b)	2. 44	6, 52	2.70	0.0
Terminal rates(c)	1/41 (2. 4)	0/31(0.0)	1/37 (2.7)	0/33(0.0)
Statistical analysis		0,01(0.0)	1,01(2.1)	0,000
Peto test				
Standard method(d)	P =	•		
Prevalence method(d)	P = 0.8782			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.2020			
Fisher Exact test(e)		P = 0.3087	P = 0.7525	P = 0.5000
			7-1100 v	
	SITE : spleen			
Tumor rate	TUMOR : hemangioma, hemangiosarcoma			
Overall rates(a)	1/50 (2.0)	3/50 (6.0)	2/50(4.0)	0/50(0.0)
Adjusted rates(b)	2.44	6.52	2750(4.0) 5.41	0.0
Terminal rates(c)	1/41 (2.4)	0/31(0.0)	2/37(5.4)	0/33(0.0)
Statistical analysis		-,		0,00(0.0)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.8429			·
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.2474			
Fisher Exact test(e)		P = 0.3087	P = 0.5000	P = 0.5000

(HPT360A)

STUDY No. : 0642

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

PAGE : 3

Group Name	Control	800 muqu	2000 ppm	5000 ppm
	SITE : liver			
	TUMOR : hemangioma			
Tumor rate				
Overall rates(a)	2/50 (4.0)	1/50(2.0)	4/50(8.0)	2/50(4.0)
Adjusted rates(b) Terminal rates(c)	4. 88 2/41 (4. 9)	2.94 0/31(0.0)	5.13	3.03
Statistical analysis	2/41(4.9)	0/31(0.0)	1/37 (2.7)	1/33(3.0)
Peto test				
Standard method(d)	P = 0.1480			
Prevalence method(d)	P = 0.5600			
Combined analysis(d)	P = 0.3086			
Cochran-Armitage test(e)	P = 0.8224			
Fisher Exact test(e)		P = 0.5000	P = 0.3389	P = 0.6913
	SITE : liver TUMOR : hepatocellular adenoma	· · · · · · · · · · · · · · · · · · ·		
Tumor rate				
Overall rates(a)	15/50(30.0)	10/50 (20.0)	10/50(20.0)	5/50(10.0)
Adjusted rates(b)	34. 15	32. 26	27.03	15. 15
Terminal rates(c)	14/41 (34. 1)	10/31(32.3)	10/37 (27. 0)	5/33(15.2)
Statistical analysis				
Peto test				
Standard method(d)	P = 1.0000 ?			
Prevalence method(d)	P = 0.9757			
Combined analysis(d)	P = 0.9833			
Cochran-Armitage test(e)	P = 0.0200*			
Fisher Exact test(e)		$\mathbf{P} = 0.1779$	$\mathbf{P} = 0.1779$	P = 0.0114*
	SITE : liver			
	TUMOR : histiocytic sarcoma			
Tumor rate	rement i histioojtio surooma			
Overall rates(a)	1/50(2.0)	4/50(8.0)	1/50 (2.0)	2/50(4.0)
Adjusted rates (b)	0.0	0.0	0.0	0.0
Terminal rates(c)	0/41(0.0)	0/31(0.0)	0/37(0,0)	0/33(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.4427			
Prevalence method(d)	P =			
Combined analysis(d)	P = 0.4427			
Cochran-Armitage test(e)	P = 0.9394			
Fisher Exact test(e)		P = 0.1811	P = 0.7525	P = 0.5000

(HPT360A)

.

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SEX : MALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 4

Group Name	Control	800 maya	2000 ppm	5000 ppm	
	SITE : liver				
	TUMOR : hepatocellular carc	inoma			
Tumor rate					
Overall rates(a)	8/50(16.0)	11/50 (22. 0)	7/50(14.0)	5/50(10.0)	
Adjusted rates(b)	11.90	16. 13	16.67	9.09	
Terminal rates(c)	4/41 (9.8)	5/31(16.1)	5/37(13.5)	3/33(9.1)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.7488				
Prevalence method(d)	P = 0.7171				
Combined analysis(d)	P = 0.8133				
Cochran-Armitage test(e)	P = 0.1932				
Fisher Exact test(e)		P = 0.3055	P = 0.5000	P = 0.2768	
	SITE : liver				
•	TUMOR : hemangioma, hemangio	sarcoma			
Tumor rate					
Overall rates(a)	2/50(4.0)	2/50(4.0)	5/50(10.0)	2/50(4.0)	
Adjusted rates(b)	4.88	2.94	2. 70	3. 03	
Terminal rates(c)	2/41 (4.9)	0/31(0.0)	1/37(2.7)	1/33(3.0)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.2492				
Prevalence method(d)	P = 0.5967				
Combined analysis(d)	P = 0.3787				
Cochran-Armitage test(e)	P = 0.9805				
Fisher Exact test(e)		P = 0.6913	P = 0.2180	P = 0.6913	
(HPT360A)		the start of the s			DATE

(HPT360A)

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : MALE

Group Name	Control	מעט 800	2000 ppm	5000 µpm
	SITE : liver			
	TUMOR : hepatocellular adem	ma, hepatocellular carcinoma		
Jmor rate				
Overall rates(a)	21/50(42.0)	20/50(40.0)	16/50(32.0)	10/50(20.0)
djusted rates(b)	40.48	45.16	38.46	24. 24
ferminal rates(c)	16/41(39.0)	14/31 (45.2)	14/37(37.8)	8/33(24.2)
atistical analysis				
eto test				
Standard method(d)	P = 0.8299			
Prevalence method(d)	P = 0.9531			
Combined analysis(d)	P = 0.9746			
Cochran-Armitage test(e)	P = 0.0100*			
isher Exact test(e)		P = 0.5000	P = 0.2038	P = 0.0149*

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; $*: P \leq 0.05$ $**: P \leq 0.01$

N.C. Statistical value cannot be calculated and was not significant.

BAIS4

PAGE: 5

TABLE P 2

NEOPLASTIC LESIONS-INCIDENCE AND

STATISTICAL ANALYSIS: FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

 \sim

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : FEMALE

Group Name	Control	800 ppm	2000 µµm	5000 ppm	
	SITE : lung				
	TUMOR : bronchiolar-alveolar	adenoma			
'umor rate					
Overall rates(a)	3/50 (6.0)	0/50(0.0)	1/50(2.0)	1/50 (2.0)	
Adjusted rates(b)	8. 33	0.0	3. 23	4. 17	
Terminal rates(c) tatistical analysis	3/36(8.3)	0/29(0.0)	0/23(0.0)	1/24(4.2)	
Peto test				,	
Standard method(d)	P =				
Prevalence method(d)	P = 0.6618				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.5120				
Fisher Exact test(e)		P = 0.1212	P = 0.3087	P = 0.3087	
	SITE : lung				
	TUMOR : bronchiolar-alveolar	carcinoma			
'umor rate					
Overall rates(a)	2/50(4.0)	4/50(8.0)	2/50(4.0)	0/50(0.0)	
Adjusted rates(b)	5. 26	6. 67	6. 67	0. 0	
Terminal rates(c)	1/36(2.8)	1/29(3.4)	0/23(0.0)	0/24(0.0)	
tatistical analysis					
Peto test	D - 0 5590	,		м. М	
Standard method(d)	P = 0.5520				
Prevalence method(d)	P = 0.9218 P = 0.9410				
Combined analysis(d) Cochran-Armitage test(e)	P = 0.9410 P = 0.1105				
Fisher Exact test(e)	1 - 0.1100	P = 0.3389	P = 0.6913	P = 0.2475	
LOUAL DEGOD (C)		1 - 0.0000	r – 0. 0910	r - v. 2410	
	SITE lung				
	TUMOR : bronchiolar-alveolar	adenoma, bronchiolar-alveolar carcinoma			
umor rate					
Overall rates(a)	5/50(10.0)	4/50 (8.0)	3/50 (6.0)	1/50 (2.0)	
Adjusted rates(b) Terminal rates(c)	13.16 4/36(11.1)	6.67	9.68	4.17	
tatistical analysis	4/30(11.1)	1/29 (3. 4)	0/23(0.0)	1/24(4.2)	
Peto test					
Standard method(d)	P = 0.5520				
Prevalence method(d)	P = 0.9253				
Combined analysis(d)	P = 0.9417				
Cochran-Armitage test(e)	P = 0.0922				
Fisher Exact test(e)		P = 0.5000	P = 0.3575	P = 0.1022	

(HPT360A)

BAIS4

1

PAGE: 6

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

 $\overline{}$

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] SEX : FEMALE

Group Name	Control	800 mugu	2000 ppm	5000 ppm
	SITE : 1ymph node			
fumor rate	TUMOR : malignant lymphoma			
Overall rates(a)	14/50 (28.0)	19/50 (38, 0)	17/50(34.0)	15/50(30.0)
Adjusted rates(b)	16. 67	13, 79	17,30(34.0) 17.39	15/50(50.0) 16.67
Terminal rates(c)	6/36(16.7)	4/29(13.8)	4/23(17.4)	4/24(16.7)
statistical analysis	0/30(10.1)	4/29(13.6)	4/23(17.4)	4/24(10.7)
Peto test				
Standard method(d)	P = 0.3014			
Prevalence method(d)	P = 0.4462			
Combined analysis(d)	P = 0.3063			
Cochran-Armitage test(e)	P = 0.8394			
Fisher Exact test(e)		P = 0.1976	P = 0.3329	P = 0.5000
	SITE : liver			
	TUMOR : hemangioma			
umor rate		· · · ·		
Overall rates(a)	3/50(6.0)	0/50(0.0)	2/50(4.0)	1/50(2.0)
Adjusted rates(b)	8. 33	0.0	4. 35	0.0
Terminal rates(c)	3/36(8.3)	0/29(0.0)	1/23(4.3)	0/24(0.0)
tatistical analysis				
Peto test	D 0 1010		·	
Standard method(d)	P = 0.1342			
Prevalence method(d)	P = 0.9133 P = 0.5074			
Combined analysis(d)	P = 0.5974			
Cochran-Armitage test(e)	P = 0.5557	D 0 1010	N 0 5000	
Fisher Exact test(e)		P = 0.1212	P = 0.5000	P = 0.3087
	SITE : liver			
	TUMOR : hepatocellular adenoma			
umor rate	-			
Overall rates(a)	2/50(4.0)	1/50(2.0)	5/50(10.0)	3/50(6.0)
Adjusted rates(b)	5.56	2. 38	13.79	12.50
Terminal rates(c)	2/36(5.6)	0/29(0.0)	3/23(13.0)	3/24(12.5)
tatistical analysis				
Peto test				
Standard method(d)	P =			·
Prevalence method(d)	P = 0.1924			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.4775			
Fisher Exact test(e)		P = 0.5000	P = 0.2180	P = 0.5000

(HPT360A)

PAGE: 7

STUDY No. : 0642

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : FEMALE

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

×

PAGE : 8

Group Name	Control	800 muu	2000 muq	5000 ppm
	SITE : liver			
	TUMOR : hepatocellular adenoma, he	patocellular carcinoma		
fumor rate				
Overall rates(a)	2/50(4.0)	2/50(4.0)	6/50(12.0)	4/50(8.0)
Adjusted rates(b)	5.56	4.76	17.39	12.50
Terminal rates(c)	2/36(5.6)	0/29(0.0)	4/23(17.4)	3/24(12.5)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.1088			
Prevalence method(d)	P = 0.2550			
Combined analysis(d)	P = 0.1415			
Cochran-Armitage test(e)	P = 0.3580			
Fisher Exact test(e)		P = 0.6913	P = 0.1343	P = 0.3389
	SITE : pituitary gland			
_	TUMOR : adenoma			
Tumor rate				
Overall rates(a)	11/50 (22. 0)	4/50(8.0)	6/50(12.0)	9/50(18.0)
Adjusted rates(b)	23. 26	10. 34	14.81	29.63
Terminal rates(c)	8/36(22.2)	3/29(10.3)	2/23(8.7)	6/24(25.0)
Statistical analysis				
Peto test				
Standard method(d)	P = 0.3049			
Prevalence method(d)	P = 0.3244			
Combined analysis(d)	P = 0.2735			
Cochran-Armitage test(e)	P = 0.8593			
Fisher Exact test(e)		P = 0.0453*	$\mathbf{P} = 0.1434$	$\mathbf{P} = 0. \ 4016$
	SITE : uterus			
n .	TUMOR : endometrial stromal polyp			
Tumor rate				
Overall rates(a)	1/50 (2.0)	1/50 (2.0)	1/50(2.0)	3/50(6.0)
Adjusted rates(b)	2.78	2. 27	4. 35	8.82
Terminal rates(c)	1/36(2.8)	0/29(0.0)	1/23(4.3)	2/24(8.3)
Statistical analysis				
Peto test	D			
Standard method(d)	$\mathbf{P} =$			•
Prevalence method(d)	P = 0.0860			
Combined analysis(d)	P =			
Cochran-Armitage test(e)	P = 0.1831	D 0 5505		
Fisher Exact test(e)		P = 0.7525	P = 0.7525	P = 0.3087

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

SEX : FEMALE

PAGE: 9

Group Name	Control	800 ppm	2000 ppm	5000 ypm	
	SITE : uterus			· .	,
• *	TUMOR : histiocytic sarcoma				
fumor rate					
Overall rates(a)	7/50(14.0)	6/50 (12.0)	8/50(16.0)	8/50(16.0)	
Adjusted rates(b)	13.89	11. 76	13.04	6.06	
Terminal rates(c)	5/36(13.9)	3/29(10.3)	3/23(13.0)	1/24(4.2)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.0419*				
Prevalence method(d)	P = 0.7963				
Combined analysis(d)	P = 0.2240				
Cochran-Armitage test(e)	P = 0.6532				
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.5000	
			۲ -		
	SITE : Harderian gland				
	TUMOR : adenoma		,		
lumor rate Overall rates(a)	0/60(0.0)				
Adjusted rates(b)	0/50(0.0) 0.0	5/50(10.0)	0/50(0.0)	2/50(4.0)	
Terminal rates(c)	0/36(0.0)	11.63	0.0	8. 33	
itatistical analysis	0/36(0.0)	3/29(10.3)	0/23(0.0)	2/24(8.3)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.4014				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.9435				

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(c): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis.

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01

N.C.:Statistical value cannot be calculated and was not significant.

TABLE Q 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEY : MALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

~

		Group Name	Control 50	800 ppm 50	2000 ppm 50	5000 ppm
gan	Findings	No. of Animals on Study	50	50	50	50
	· · · · · · · · · · · · · · · · · · ·					
espiratory sy	/stem}					
sal cavit			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	2	0	0
hg			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	2	. 2	0
	metastasis:liver tumor		3	3	4	3
ematopoietic	system}					
he marrow			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	1	1	0
	metastasis:liver tumor		0	2	1	1
	metastasis:spleen tumor		0	1	0	0
npli node			<50>	<50>	<50>	<50>
	metastasis:subcutis tumor		0	1	0	0
	metastasis:lung tumor		1	0	0	0
leen			<50>	<50>	<50>	<50>
	leukemic cell infiltration		5	5	4	2
	metastasis:liver tumor		0	2	0	0
irculatory sy	vstem)					
art			<50>	<50>	<50≻	<50>
	metastasis:liver tumor		0	0	1	0
	metastasis:lung tumor		0	0	1	0
a > b	a : Number of animals examined at the si b : Number of animals with lesion	te				terration t

(JPT150)

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 2

rgan		No. of Animals on Study	50	50	50	50
	Findings	×				
)igestive syste	em}					
			(50)	(50)	(50)	(50)
alivary gl	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
	metastasis:liver tumor		0	1	0	0
tomach	1.1.1.1		<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	0	0	1
mall intes	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 1
iver			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	3	3	1
	metastasis:lung tumor		0	0	I	0
	metastasis:spleen tumor		0	1	0	0
ancreas	loukemic cell infiltration		<50>	<50> 0	<50> 0	<50> 0
	metastasis:peritoneum tumor		1	0	0	0
Urinary system)						
idney	1 1 1 11 11 11 11 11		<50>	<50>	<50>	<50>
	leukemic cell infiltration		2	2	0	0
	metastasis:liver tumor		0	0	0	1
	metastasis:peritoneum tumor		1	0	0	0
	metastasis:spleen tumor		0	1	0	0
rin bladd	leukemic cell infiltration		<49> 0	<50> 3	<50> 0	<50> 0

-

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

.

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

 \checkmark

.

 \sim

		Group Name No. of Animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50
)rgan	Findings		50	50	50	50
Urinary sys	stem)					
ırin bladd	metastasis:liver tumor		<49> 0	<50> 0	<50> 0	<50> 1
Endocrine s	ystem)					
oituitary	metastasis peripheral nerve tumor		<50> 1	<50> 0	<50> 1	<50> 0
(Keproductiv	re system)					
cestis	metastasis:peripheral nerve tumor		<50> 0	<50> 0	<50> 1	<50> 0
Nervous sys	stem)					
rain	metastasis:liver tumor		<50> 0	<50> · · 1	<50> 0	<50> 1
	metastasis:pituitary tumor		0	1	0	0
	metastasis:peripheral nerve tumor		0	0	1	0
Special sen	ise organs/appendage)					
arder gl	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
Musculoskel	etal system}					
one	metastasis:lung tumor		<50> 0	<50> 0	<50> 1	<50> 0
∑a> b	a : Number of animals examined at the s b : Number of animals with lesion	ite		· · · · · · · · · · · · · · · · · · ·		

(JPT150)

BAIS4

PAGE : 3

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

Group Name 800 ppm 2000 ppm 5000 ppm Control No. of Animals on Study 50 50 50 50 Findings_ Organ_ {Body cavities} <50> <50> <50> <50> pleura metastasis:spleen tumor 0 0 1 0 mediastinum <50> <50> <50> <50> leukemic cell infiltration 0 0 0 1 peritoneum <50> <50> <50> <50> metastasis:epididymis tumor 0 0 1 0

< a > a : Number of animals examined at the site

b : Number of animals with lesion

(JPT150)

BAIS4

PAGE : 4

TABLE Q 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

Drgan	Findings	Group Name No. of Animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50
{Respiratory	system}					
nasal cavit	leukemic cell infiltration		<50> 0	<50> 1	<50> 0	<50> 0
ung	leukemic cell infiltration		<50> 10	<50> 12	<50> 11	<50> 10
	metastasis:liver tumor		0	0	0	1
	metastasis:uterus tumor		0	1	0	2
	metastasis bone tumor		1	1	0	0
	metastasis:ovary tumor		0	0	0	1
Hematopoieti	c system)					
oone marrow	leukemic cell infiltration		<50> 5	<50> 5	<50> 9	<50> 5
	metastasis:liver tumor		1	0	1	1
	metastasis:uterus tumor		0	2	2	2
ymph node	metastasis:uterus tumor		<50> 1	<50> 0	<50> 1	<50> 0
spleen	leukemic cell infiltration		<50> 9	<50> 11	<50> 13	<50> 9
	metastasis:liver tumor		0	0	1	1
	metastasis:uterus tumor		0	0	0	1
Circulatory	system}					
ieart	leukemic cell infiltration		<50> 0	<50> 0	<50> 1	<50> 1
<a>b	a : Number of animals examined at the b : Number of animals with lesion	e site				

(JPT150)

BAIS4

PAGE: 5

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

		Group Name No. of Animals on Study	Control 50	800 ppm 50	מסק 2000 50	5000 ppm 50
gan	Findings			· · · · · ·		
rculatory	system)					
art	metastasis:liver tumor		<50> 0	<50> 0	<50> 0	<50> 1
	metastasis:uterus tumor		0	1	0	0
igestive sy	stən)					
ngue			<50>	<50>	<50>	<50>
-	leukemic cell infiltration		0	1	0	0
alivary gl			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	1	2	1
ophagus	leukemic cell infiltration		<50> 1	<50> 0	<50> 0	<50> 0
				•		
all intes	leukemic cell infiltration		<50> 0	<50> 0	<50> 0	<50> 2
ver.			<50>	<50>	<50>	<50>
	leukemic cell infiltration		12	14	13	8
	metastasis:uterus tumor		4	3	5	6
ncreas			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	0	1	0
	metastasis ovary tumor		0	0	0	1
	metastasis:lymph node tumor		0	0	0	1
rinary syst	em)					
idney			<50>	<50>	<50>	<50>
-	leukemic cell infiltration		2	8	8	5

PAGE: 6

 \smile

STUDY NO.	;	0642
ANIMAL	:	MOUSE B6D2F1/Cr1j[Crj:BDF1]
REPORT TYPE	;	Λ1
SEX	1	FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

)rgan	Findings	Group Name No. of Animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ррт 50
						······
Urinary syst	em)					
idney	metastasis:uterus tumor		<50> 0	<50> 0	<50> 0	<50> 3
	metastasis:ovary tumor		0	0	0	1
	metastasis:spleen tumor		0	0	0	1
rin bladd	leukemic cell infiltration		<50> 3	<50> 5	<50> 3	<50> 3
Endocrine sy	stem}					
oituitary	leukemic cell infiltration		<50> 0	<50> I	<50> 0	<50> 2
drena1	leukemic cell infiltration		<50> 1	<50> 1	<50> 4	<50> 1
Reproductive	system)					
vary	leukemic cell infiltration		<50> 0	<50> 5	<50> 7	<50> 5
	metastasis:uterus tumor		1	1	4	4
terus	leukemic cell infiltration		<50> 1	<50> 3	<50> 0	<50> 2
	metastasis ovary tumor		0	0	0	1
Nervous syst	em)				• •	
rain	leukemic cell infiltration		<50> 1	<50> 3	<50> 3	<50> 2

PAGE : 7

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

•

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

PAGE : 8

Organ		Group Name No. of Animals on Study	Control 50	800 ppm 50	2000 ppm 50	5000 ppm 50
. gan	Findings					
lervous syst	.em)					
inal cord			<50>	<50>	<50>	<50>
	leukemic cell infiltration		0	0	3	1
	metastasis:liver tumor		1	0	0	0
pecial sens	se organs/appendage)					
e			<50>	<50>	· <50>	<50>
	leukemic cell infiltration		0	0	1	0
arder gl	leukemic cell infiltration		<50> 0	<50> 6	<50> 3	<50> 0
			U	U	3	U
usculoskele	tal system]					
scle			<50>	<50>	<50>	<50>
	leukemic cell infiltration		1	1	0	0
	metastasis:bone tumor		0	1	0	0
ody cavitie	s}					
eura			<50>	<50>	<50>	<50>
	metastasis uterus tumor		0	1	0	0
	metastasis:lung tumor		0	1	0	0
ediastinum	leukemic cell infiltration		<50> 3	<50> 3	<50> 2	<50>
					-	3
	metastasis:liver tumor		0	0	0	1
	metastasis:uterus tumor		0	1	0	0
a ≻ b	a : Number of animals examined at the si b : Number of animals with lesion	te				
PT150)						

(JPT150)

BAIS4

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

Group Name Control 800 ppm 2000 ppm 5000 ppm No. of Animals on Study 50 50 50 50 Findings_ Organ_ {Body cavities} mediastinum <50> <50> <50> <50> metastasis:lung tumor 0 0 0 1 peritoneum <50> <50> <50> <50> leukemic cell infiltration 2 2 0 1 metastasis:bone tumor 0 0 0 1 <a>> a : Number of animals examined at the site b : Number of animals with lesion b

(JPT150)

BAIS4

PAGE : 9

~ 2

TABLE R 1

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC

LESIONS IN JAPAN BIOASSAY RESEARCH CENTER:

B6D2F1/Crlj MALE MICE

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : B6D2F1/Crlj MALE MICE

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Lung	2144			
Bronchiolar-alveolar adenoma		187	8.7	2 - 18
Bronchiolar-alveolar carcinoma		215	10.0	0 - 24
Bronchiolar-alveolar adenoma + Bronchiolar-alveolar carcinoma	L	401	18.7	2 - 34

43 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No. : 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372, 0402, 0406, 0418, 0422, 0438, 0449, 0458, 0462, 0498, 0515, 0561, 0580, 0611, 0613, 0676

TABLE R 2

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC

LESIONS IN JAPAN BIOASSAY RESEARCH CENTER:

B6D2F1/Crlj FEMALE MICE

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : B6D2F1/Crlj FEMALE MICE

Organs	No. of animals	No. of animals	Incidence	Min Max.
Tumors	examined	bearing tumor	(%)	(%)
Uterus Histiocytic sarcoma	2145	440	20.5	10 - 32

43 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No. : 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372, 0402, 0406, 0418, 0422, 0438, 0449, 0458, 0462, 0498, 0515, 0561, 0580, 0611, 0613, 0676

TABLE S 1

CAUSE OF DEATH: MALE

STUDY NO. : 0642 ANIMAL : MOUSE BGD2F SEX : MALE	F1/Cr1j[Crj:BDF1]		COUSE OF DEATH (SUMMARY) (0-105\)					PAGE : 1
Group Name	Control	800 ppm	2000 ppm	5000 ppm				
Number of Dead and Moribund Animal	9	19	13	17				··
no microscop confirm	1 .	0	0	0		······		
respiratory sy les	0	0	0	1				
hepatic lesion	0	0	0	1				
urinary retention	1	2	0	3				
hydronephrosis	0	1	1	3				
peritonitis	0	0	L	0			•	
tumor d:leukemia	1	3	3	3				
tumor d:subcutis	0	1	0	0				
tumor d:lung	1	0	2	1				
tumor d:liver	5	10	5	5				
tumor dipituitary	0	1	0	0				
tumor d:periph nerv	0	0	1	0				
tumor dimuscle	0	1	0	0				

(BI0120)

BAIS4

TABLE S 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0642 ANIMAL : MOUSE B6D2F SEX : FEMALE	71/Cr1j[Crj:BDF1]			DUSE OF DEATH (SUI D-105W)	MARY)		PAGE 2
Group Name	Control	800 ppm	2000 ppm	5000 ppm			
Number of Dead and Moribund Animal	14	21	27	26			
no microscop confirm	0	0	i	0			
arteritis	0	0	1	0			
hydronephrosis	1	1	2	3			
tumor d:leukemia	8	15	13	11			
tumor d:lung	0	1	0	0			
tumor d:liver	1	0	2	3			,
tumor d:pituitary	1	0	2	1			
tumor d:ovary	0	0	0	1			
tumor d:uterus	2	3	5	6			
tumor dibone	1	1	0	0			
tumor diperitoneum	0	0	0	1			
tumor d:retroperit	0	0	1	0			

(BI0120)

BAIS4