# Summary of Feed Carcinogenicity Study of Diphenylamine in B6D2F1 Mice

August 2011

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

#### **PREFACE**

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on August 25, 2011.

This English Summary was translated by JBRC from Japanese complete report.

## Summary of Feed Carcinogenicity Study of Diphenylamine in B6D2F1 Mice

#### Purpose, materials and methods

Diphenylamine (CAS No. 122-39-4) is a colourless solid with a floral odour, and with a melting point of 52.85°C. It is insoluble in water, and soluble alcohol, and ether.

The carcinogenicity and chronic toxicity of diphenylamine were examined in B6D2F1/Crlj mice. Groups of test animals were administered diphenylamine in their food for 2 years (104 weeks). Each group consisted of either 50 male or 50 female mice. The dietary concentration of diphenylamine were 0, 250, 1000 or 4000 ppm (w/w). Both sexes were administered each concentration of diphenylamine. The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in a previous 13-week toxicity study. The identity of the diphenylamine used in these experiments was confirmed by both infrared spectrometry and mass spectrometry. The chemical was analyzed by high performance liquid chromatography before and after use to affirm its stability. The concentrations of diphenylamine in the diet were determined by high performance liquid chromatography at the time of preparation and on the 8th day after preparation while stored at room temperature or stored in the refrigerator. The animals were observed daily for clinical signs and mortality. Body weight, water consumption and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year administration period underwent complete necropsy. Urinalysis was performed near the end of the administration period. Hematology and blood biochemistry analysis were performed at the terminal necropsy: surviving animals were fasted overnight and bled under deep ether anesthesia. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were then fixed and embedded in paraffin. Five µm thick tissue sections were prepared and stained with hematoxylin and eosin and examined microscopically. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. Any positive dose-response trends of diphenylamine induction of neoplastic lesions were analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by the Chi-square test. Changes in body weight, water consumption, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory

Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

#### **Results**

The markedly decreased survival rate of the 4000 ppm-fed male group was attributed to the increased number of deaths due to urinary retention. Survival rates of the females fed 4000 ppm inceased more than the female control at the end of administration period. Brown urine was observed in the 4000 ppm-fed males and females. Body weights were supressed in males fed 4000 ppm diphenylamine throughout the 2-year administration period and in females fed 4000 ppm diphenylamine after 18th week of the administration period. Food consumption in the all administerd group were similar to the respective controls. Due to the markedly decreased survival rate caused by urinary retention and the marked body weights supression, the high dose level of 4000 ppm for males was considered to exceed the MTD.

The incidences of selected neoplastic lesions in male and female mice are presented in the tables below. The combined incidence of hemangioma and/or hemangiosarcoma in spleen was increased in males fed 1000 ppm (Fisher's exact test). The incidence of hemangioma in all organs including subcutis, bone marrow, spleen, liver and heart was increased in males (Peto test), and the incidence of hemangioma and the combined incidence of hemangioma and/or hemangiosarcoma was increased in males fed 1000 ppm (Fisher's exact test). The incidence of histiocytic sarcoma in uterus was increased in female mice fed 1000 ppm diphenylamine. But the incidence was within the range of maximum incidence of the JBRC historical control data, so the incidence of histiocytic sarcoma in uterus can not be judged to be attributed to the diphenylamine administration. No significant diphenylamine related increase in incidence of neoplastic lesions was found in females.

In blood and hematopoietic system, methemoglobin concentration was increased in all groups of males and females fed diphenylamine. Anemia caused by the increase of methemoglobin concentration was observed in all groups of males and females fed diphenylamine. Also vearious anemia-related changes in hematology and biochemistry were observed in diphenylamine-fed groups. In the bone marrow, increased hematopoiesis was observed. In the spleen, increased organ weights, increased extramedullary hematopoiesis, deposit of hemosiderin and engorgement of erythrocyte were observed. Deposit of hemosiderin was observed also in liver and kidney. In the liver, hepatocellular hypertrophy were increased in males and females fed 4000 ppm. In the urinary system, urinary retention was observed in males fed 4000 ppm. Plasma urea nitrogen was increaded in females fed 4000 ppm. Kidney weights

were increased in femels fed 1000 ppm above, pyelonephritis was observed in males fed 4000 ppm. In the urinary bladder, dilatation was observed in males fed 4000 ppm and hyaline droplet degeneration was observed in both males and females fed 4000 ppm. The inflammation in urethra was observed in males fed 4000 ppm. In lung, uremic pneumonitis was increased in males fed 4000 ppm and degeneration of blood vessel was observed in both males and females fed 4000 ppm.

In the present two-year feeding study, the effects on blood and hematopoietic system were observed for the lowest dose of 250 ppm in both males and females. The lowest observed-adverse-effect-level (LOAEL) of diphenylamine in the diet was 250 ppm (male : 29 mg/kg body weight per day).

#### **Conclusions**

There was some evidence for carcinogenicity of diphenylamine in male mice based on the increased incidences of vascular tumours in spleen and in all organs included spleen and liver. There was no evidence for carcinogenicity of diphenylamine in female mice.

Incidences of selected neoplastic lesions of male mice in the 2-year feed carcinogenicity study of diphenylamine

|                 | Dose (ppm)                                 | 0               | 250  | 1000  | 4000 | Peto<br>test | Cochran-<br>Armitage<br>test |
|-----------------|--------------------------------------------|-----------------|------|-------|------|--------------|------------------------------|
| Number of exa   | mined animals                              | 50              | 50   | 50    | 50   |              |                              |
| benign tumor    |                                            |                 |      |       |      |              |                              |
| subcutis        | hemangioma                                 | 0               | 0    | 1     | 0    |              |                              |
| lung            | bronchiolar-alveolar adenoma               | 5               | 4    | 7     | 4    |              |                              |
| bone marrow     | hemangioma                                 | 0               | 0    | 0     | 1    |              |                              |
| spleen          | hemangioma                                 | 1               | 0    | 6     | 2    |              |                              |
| liver           | hemangioma                                 | 2               | 2    | 5     | 3    | <b>1</b>     |                              |
|                 | hepatocellular adenoma                     | 9               | 14   | 10    | 2 *  |              | $\downarrow\downarrow$       |
| Harderian gland | adenoma                                    | 4 <sup>a)</sup> | 2    | 1     | 1    |              |                              |
| malignant tume  | or                                         |                 |      |       |      |              |                              |
| lung            | bronchiolar-alveolar carcinoma             | 5               | 6    | 8     | 1    |              |                              |
| lymph node      | malignant lymphoma                         | 6               | 4    | 3     | 2    |              |                              |
| spleen          | hemangiosarcoma                            | 0               | 0    | 3     | 1    |              |                              |
| heart           | hemangiosarcoma                            | 0               | 1    | 0     | 0    |              |                              |
| liver           | histiocytic sarcoma                        | 5               | 1    | 1     | 1    |              |                              |
|                 | hepatocellular carcinoma                   | 7               | 15 * | 5     | 2    |              | $\downarrow \downarrow$      |
|                 | hemangiosarcoma                            | 0               | 1    | 2     | 1    |              |                              |
| epididymis      | histiocytic sarcoma                        | 1               | 1    | 3     | 1    |              |                              |
| spleen          | hemangioma+hemangiosarcoma                 | 1               | 0    | 9 **  | 3    |              |                              |
| liver           | hemangioma+hemangiosarcoma                 | 2               | 3    | 7     | 4    | <b>↑</b>     |                              |
| all organs b)   | hemangioma                                 | 3               | 2    | 10 *  | 6    | 1            |                              |
|                 | hemangiosarcoma                            | 0               | 1    | 4     | 1    |              |                              |
|                 | hemangioma + hemangiosarcoma <sup>c)</sup> | 3               | 3    | 14 ** | 6    |              |                              |

#### Significant difference

b: All organs were consisted of spleen, liver, subcutis, bone marrow and heart.

c: Combined analysis of hemangioma+hemangiosarcomain in all organs of Peto test and Cochran-Armitage test was not applied.

a: Number of animals examined is 49

Incidences of selected neoplastic lesions of female mice in the 2-year feed carcinogenicity study of diphenylamine

|                 |                                 |    |     |      |      | Peto | Cochran-     |
|-----------------|---------------------------------|----|-----|------|------|------|--------------|
|                 | Dose (ppm)                      | 0  | 250 | 1000 | 4000 | test | Armitage     |
|                 |                                 |    |     |      |      |      | test         |
| Number of ex    | camined animals                 | 50 | 50  | 50   | 50   |      |              |
| benign tumor    |                                 |    |     |      |      |      |              |
| lung            | bronchiolar-alveolar<br>adenoma | 1  | 3   | 1    | 2    |      |              |
| liver           | hepatocellular adenoma          | 4  | 4   | 3    | 0    |      | $\downarrow$ |
| pituitary       | adenoma                         | 2  | 0   | 5    | 4    |      |              |
| Harderian gland | adenoma                         | 0  | 3   | 1    | 2    |      |              |
| malignant tur   | nor                             |    |     |      |      |      |              |
| lymph node      | malignant lymphoma              | 18 | 20  | 17   | 15   |      |              |
| spleen          | malignant lymphoma              | 0  | 3   | 1    | 0    |      |              |
| liver           | histiocytic sarcoma             | 4  | 0   | 1    | 1    |      |              |
|                 | hemangiosarcoma                 | 1  | 1   | 2    | 3    |      |              |
| uterus          | histiocytic sarcoma             | 8  | 7   | 17 * | 12   |      |              |

#### Significant difference

| 1. p \(\geq 0.03\) (1 islici tes | *: p≦0.05 | **: p≦0.01 | (Fisher test |
|----------------------------------|-----------|------------|--------------|
|----------------------------------|-----------|------------|--------------|

## SELECTED TABLES

| TABLE C 1 | BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE         |
|-----------|---------------------------------------------------------------|
| TABLE C 2 | BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE       |
| TABLE C 3 | BODY WEIGHT CHANGES: MALE                                     |
| TABLE C 4 | BODY WEIGHT CHANGES: FEMALE                                   |
| TABLE D 1 | FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE    |
| TABLE D 2 | FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE  |
| TABLE D 3 | FOOD CONSUMPTION CHANGES: MALE                                |
| TABLE D 4 | FOOD CONSUMPTION CHANGES: FEMALE                              |
| TABLE E 1 | WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE   |
| TABLE E 2 | WATER CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE |
| TABLE E 3 | WATER CONSUMPTION CHANGES: MALE                               |
| TABLE E 4 | WATER CONSUMPTION CHANGES: FEMALE                             |
| TABLE F 1 | CHEMICAL INTAKE CHANGES: MALE                                 |
| TABLE F 2 | CHEMICAL INTAKE CHANGES: FEMALE                               |
| TABLE G 1 | HEMATOLOGY: MALE                                              |
| TABLE G 2 | HEMATOLOGY: FEMALE                                            |
| TABLE H 1 | BIOCHEMISTRY: MALE                                            |
| TABLE H 2 | BIOCHEMISTRY: FEMALE                                          |

## SELECTED TABLES (CONTINUED)

| TABLE I 1 | URINALYSIS: MALE                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------|
| TABLE I 2 | URINALYSIS: FEMALE                                                                                               |
| TABLE K 1 | ORGAN WEIGHT, ABSOLUTE: MALE                                                                                     |
| TABLE K 2 | ORGAN WEIGHT, ABSOLUTE: FEMALE                                                                                   |
| TABLE L 1 | ORGAN WEIGHT, RELATIVE: MALE                                                                                     |
| TABLE L 2 | ORGAN WEIGHT, RELATIVE: FEMALE                                                                                   |
| TABLE M 1 | HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS                                            |
| TABLE M 4 | HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS                                          |
| TABLE P 1 | NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE                                                      |
| TABLE P 2 | NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE                                                    |
| TABLE R 1 | HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crl MALE MICE   |
| TABLE R 2 | HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crl FEMALE MICE |
| TABLE S 1 | CAUSE OF DEATH: MALE                                                                                             |
| TABLE S 2 | CAUSE OF DEATH: FEMALE                                                                                           |
|           |                                                                                                                  |

## TABLE C 1

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE

(B10040)

MEAN BODY WEIGHTS AND SURVIVAL

PAGE : I

STUDY NO. : 0685
ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]
UNIT : R
REFORT TYPE : A1 104
SEX : MALE

| # of Court. (500) ppm   # of Court. (500) ppm   100 ppm |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### TABLE C 2

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE

(BI0040)

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Cr1j[Cr.j:BDF1]
UNIT : K
REPORT TYPE : A1 104
SEX : FEMALE

|                  | Control   | TO.T                     | -          | undd nez              |                   | •          | 1000 ppm              |                   | 4          | 4000 ppm              |                   |  |
|------------------|-----------|--------------------------|------------|-----------------------|-------------------|------------|-----------------------|-------------------|------------|-----------------------|-------------------|--|
| Week<br>on Study | Av. Wt.   | No.of<br>Surviv.<br><50> | Av. Wt.    | % of<br>cont.<br>(50> | No. of<br>Surviv. | Av. Wt.    | % of<br>cont.<br><50> | No. of<br>Surviv. | Av. Wt.    | % of<br>cont.<br><50> | No. of<br>Surviv. |  |
| 0                | 19.0 (50) | 50/50                    |            | 100                   | 50/50             | - 1        | 100                   | 50/50             | 1 -        | 100                   | 50/50             |  |
| 1                | 19.3 (50) | 20/20                    |            | 101                   | 50/50             |            | 101                   | 50/50             | _          | 001                   | 50/50             |  |
| 2                |           | 20/20                    |            | 100                   | 20/20             |            | 66                    | 50/20             | _          | 86                    | 50/50             |  |
| က                | 60        | 50/50                    | 20.4 (50)  | 100                   | 20/20             | 20, 2 (50) | 100                   | 50/50             | 20, 1 (50) | 66                    | 50/50             |  |
| 4                | _         | 20/20                    |            | 100                   | 50/50             |            | 101                   | 50/50             | _          | 100                   | 50/20             |  |
| ιΩ               | 21.2 (50) | 20/20                    |            | 100                   | 50/50             |            | 101                   | 50/50             | _          | 66                    | 50/50             |  |
| 9                | ~         | 20/20                    | 21.8 (50)  | 100                   | 50/50             |            | 100                   | 20/20             | 21.5 (50)  | 66                    | 50/50             |  |
| 7                | _         | 20/20                    |            | 101                   | 20/20             |            | 100                   | 20/20             | 21.9 (50)  | 66                    | 20/20             |  |
| œ                | ~         | 20/20                    | 22.6 (50)  | 100                   | 20/20             |            | 66                    | 20/20             |            | 86                    | 20/20             |  |
| 6                | _         | 20/20                    |            | 100                   | 20/20             |            | 66                    | 50/50             |            | 86                    | 50/50             |  |
| 10               | 6         | 20/20                    |            | 101                   | 20/20             |            | 101                   | 20/20             |            | 100                   | 50/50             |  |
| 11               |           | 20/20                    |            | 66                    | 20/20             |            | 66                    | 20/20             |            | 86                    | 50/50             |  |
| 77               |           | 50/50                    |            | 001                   | 20/20             |            | 66                    | 50/50             |            | 97                    | 50/50             |  |
| 13               |           | 20/20                    |            | 101                   | 20/20             |            | 100                   | 50/50             |            | 86                    | 50/50             |  |
| 14               |           | 20/20                    |            | 100                   | 50/50             |            | 100                   | 50/50             | 23.7 (50)  | 86                    | 50/50             |  |
| 18               | 25.8 (50) | 20/20                    | 26.0 (50)  | 101                   | 20/20             |            | 66                    | 50/50             |            | 95                    | 50/50             |  |
| 22               |           | 20/20                    |            | 101                   | 20/20             |            | 86                    | 50/50             | 25.7 (50)  | 93                    | 50/50             |  |
| 26               |           | 20/20                    |            | 102                   | 50/50             |            | 100                   | 20/20             |            | 93                    | 50/50             |  |
| 30               | 30.2 (49) | 49/50                    |            | 102                   | 20/20             |            | 66                    | 49/50             |            | 06                    | 50/50             |  |
| 34               |           | 49/50                    | 32, 7 (50) | 103                   | 20/20             |            | 86                    | 49/50             |            | 87                    | 50/50             |  |
| 38               |           | 49/50                    |            | 102                   | 20/20             |            | 86                    | 49/50             |            | 98                    | 50/50             |  |
| 42               | 33.8 (49) | 49/20                    | 34.2 (50)  | 101                   | 20/20             |            | 98                    | 49/50             |            | 98                    | 50/50             |  |
| 46               |           | 49/50                    |            | 102                   | 50/50             |            | 86                    | 19/50             |            | 84                    | 50/50             |  |
| 50               | 35.3 (49) | 49/50                    | 35.6 (49)  | 101                   | 49/50             |            | 96                    | 49/50             | 29.6 (50)  | 84                    | 50/50             |  |
| 54               |           | 48/50                    |            | 100                   | 49/50             |            | 96                    | 49/50             |            | 83                    | 50/50             |  |
| 58               | 36.8 (47) | 47/50                    |            | 100                   | 48/50             |            | 96                    | 49/20             |            | 84                    | 50/50             |  |
| 29               |           | 47/50                    |            | 100                   | 48/50             |            | 86                    | 48/50             |            | 84                    | 49/50             |  |
| 99               | _         | 47/50                    |            | 101                   | 48/50             |            | 26                    | 47/50             |            | 84                    | 49/50             |  |
| 70               | _         | 47/50                    |            | 100                   | 46/50             |            | 96                    | 47/50             |            | 82                    | 48/50             |  |
| 74               | 37.9 (47) | 47/50                    | _          | 66                    | 43/50             |            | 96                    | 46/50             |            | 83                    | 47/50             |  |
| 28               | _         | 42/50                    |            | 86                    | 42/50             | _          | 96                    | 44/50             |            | 82                    | 46/50             |  |
| 85               | _         | 40/20                    | ===        | 88                    | 41/50             | _          | 97                    | 44/50             | 31.5 (45)  | 82                    | 45/50             |  |
| 98               | -         | 37/20                    | -          | 101                   | 40/20             | _          | 86                    | 39/20             |            | 83                    | 45/50             |  |
| 06               | -         | 34/50                    | _          | 66                    | 37/50             | 37.4 (36)  | 86                    | 36/20             |            | 83                    | 42/50             |  |
| 94               | _         | 32/50                    | _          | 100                   | 34/50             | _          | 26                    | 30/20             | 31.8 (41)  | 82                    | 41/50             |  |
| 86               | ~         | 30/20                    | _          | 103                   | 30/20             | _          | 100                   | 29/20             | _          | 88                    | 41/50             |  |
| 102              | 35.5 (27) | 27/20                    | 35.9 (26)  | 101                   | 26/50             | 36.1 (26)  | 102                   | 26/50             | 30.7 (35)  | 98                    | 35/50             |  |
| 104              | 36 4 (23) | 93/50                    | 35.8 (25)  | ×                     | 25/50             | _          | 85                    | 25/50             | 31 1 (35)  | χ<br>Υ                | 25/50             |  |

## TABLE C 3

BODY WEIGHT CHANGES: MALE

| SIGNI NO. : VOSS<br>ANIMAL : MOUSE BEDZFI/Crlj[Crj:BDF1]<br>UNIT : R<br>REPORT TYPE : AI 104<br>SEX : MALE | [Cr.j:BDF1]              |              | BODY WELGHT CHANGES<br>ALL ANIMALS | (SUMMARY)       |             |             | PAGE : 1       |
|------------------------------------------------------------------------------------------------------------|--------------------------|--------------|------------------------------------|-----------------|-------------|-------------|----------------|
| Group Name                                                                                                 | Administration week<br>0 | week         | 2                                  | es.             | 77          | rs.         |                |
| Control                                                                                                    | 23.3 ± 0.9               | 24. 2 ± 1. 1 | 24.7.± 1.7                         | 25.3± 1.9       | 26.4土 1.4   | 27.0± 1.8   | $27.5\pm\ 2.1$ |
| 250 ppm                                                                                                    | 23.3 ± 0.9               | 24.1± 1.3    | 24.8± 1.8                          | 25.3± 2.0       | 26.1± 2.7   | 27.0 ± 2.2  | 27.9± 2.6      |
| 1000 ppm                                                                                                   | 23.3 ± 0.9               | 24.1± 1.1    | 25.0 ± 0.9                         | 25.5± 1.2       | 26.2± 1.3   | 27.0± 1.4   | 27.6± 1.5      |
| 4000 չերու                                                                                                 | 23.3 ± 1.0               | 23.4± 1.2**  | 24.1± 1.6                          | 24.8 ± 1.5      | 25.6± 1.3** | 26.2± 1.2** | 26.3± 1.2**    |
|                                                                                                            |                          |              |                                    |                 |             |             |                |
| Significant difference ;                                                                                   | * : P ≤ 0.05             | **: P ≤ 0.01 |                                    | Test of Dunnett |             |             |                |

(HAN260)

BAIS 4

| ANTALA AND THE TOTAL OF T |                      |               |             |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE : 2    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Group Name                                                                                                                                                                                                                   | Administration week. | week 8        | G.          | 10              | 1,1         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13          |
| Control                                                                                                                                                                                                                      | 28.2 \(\pi\) 2.3     | 28.8 ± 2.4    | 29.2 = 3.0  | $30.2\pm2.9$    | 30.4± 2.5   | $31.9\pm2.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.5土 2.5   |
| 250 ppm                                                                                                                                                                                                                      | 28.8士 2.7            | 29.7± 2.2     | 30.2± 2.6   | $31.2\pm 2.6$   | 31.3± 2.6   | 32.4± 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.1+ 2.9   |
| 1000 ppm                                                                                                                                                                                                                     | 28.2± 1.7            | 28.6± 1.9     | 29.0± 2.9   | 30.3± 2.1       | 30.6± 2.2   | 31.7± 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.3± 2.5   |
| 4000 ppm                                                                                                                                                                                                                     | 27.0± 1.3**          | 26.9± 1.5**   | 27.4± 2.2** | 28.0± 1.3**     | 27.8± 1.7** | 28.8± 1.8**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.1± 2.2** |
|                                                                                                                                                                                                                              |                      |               |             |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Significant difference;                                                                                                                                                                                                      | *: P ≤ 0.05          | ** : P ≤ 0.01 |             | Test of Dunnett |             | A A Company of the Co |             |

14

(HAN260)

BAIS 4

| KEFOKT 1YPE : AI 104<br>SEX : MALE |                                                |             |                |                 |             |                | PAGE:       |
|------------------------------------|------------------------------------------------|-------------|----------------|-----------------|-------------|----------------|-------------|
| Group Name                         | Administration week.<br>14                     | week18      | 22             | 26              | 30          | 34             | 38          |
| Control                            | 32.9± 2.4                                      | 35.5± 2.8   | $37.7 \pm 3.5$ | 39.9± 3.9       | 41.7± 4.3   | 43.2± 4.5      | 45.0± 4.7   |
| 250 ppm                            | 33.6± 3.0                                      | 36.4± 3.4   | 39.1± 4.1      | 41.8± 4.6*      | 43.9± 4.7*  | 45.6± 4.5*     | 47.2± 4.2*  |
| 1000 ppm                           | 32.8± 2.6                                      | 35.0± 3.2   | 37.4± 3.5      | 39.4± 4.1       | 41.2± 4.4   | $43.0 \pm 4.7$ | 44.8± 4.7   |
| 4000 չրրա                          | 29.4± 2.0**                                    | 30.9± 2.0** | 32.2 ± 2.3**   | 32.9± 3.0**     | 34.0± 3.0** | 34.9士 3.3**    | 35.9± 3.5** |
| Significant difference :           | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 10 0 VI     |                | Test of Dunnett |             |                |             |

| KETOKI IYTE: AI 104<br>SEX: MALE | and the second s |             |              |             | 10 (204.04/07) and a second se | THE REPORT OF THE PROPERTY OF | PAGE:       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Group Name                       | Administration week,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | week46      | 50           | 54          | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99          |
| Control                          | 46.7 ± 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.2± 4.3   | 48.5± 4.7    | 49.9± 4.1   | 49.9士 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.7- 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.6土 4.0   |
| 250 ppm                          | 48.9± 4.2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.4± 3.9*  | 50.6 ± 4.0   | 52.4± 3.4** | 52.3± 3.3**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.6± 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.2 ± 4.4  |
| mdd 0001                         | 46.6± 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.7± 4.7   | 48.1± 5.4    | 50.5± 4.4   | 50.5± 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $50.7 \pm 4.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.4± 5.8   |
| 4006 թչու                        | 36.9± 4.1**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.8± 4.9** | 38.7 ± 4.5** | 40.3± 5.3** | 40.4± 5.6**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.6± 6.2**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.2± 6.7** |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·         |              | 4<br>4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |

| Control         51.9±         4.9         52.2±         4.4         52.8±         4.6         52.2±         5.7         52.4±         5.9           250 ppm         53.3±         5.4         52.9±         6.5         53.4±         6.9         51.3±         9.4         54.2±         6.5           1000 ppm         52.6±         6.2         53.4±         5.8         53.5±         6.9         54.0±         6.5         54.2±         6.4           4000 ppm         42.3±         6.8**         43.4±         7.2**         44.5±         7.7**         42.9±         9.2**         42.8±         7.9*** | REPORT TYPE : AI 104 SEX : MALE |                   |              |    |                 |      |              | PAGE :         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|--------------|----|-----------------|------|--------------|----------------|
| 53.3± 5.4 52.2± 4.4 52.8± 4.6 52.2± 5.7 52.4± 53.3± 5.4 52.9± 6.5 53.4± 6.9 51.3± 9.4 54.2± 52.6± 6.2 53.4± 5.8 53.5± 6.9 54.0± 6.5 54.2± 42.3± 6.8** 43.4± 7.2** 44.5± 7.7** 42.9± 9.2** 42.8±                                                                                                                                                                                                                                                                                                                                                                                                                    | ip Name                         | Administration 70 |              | 78 | 88              | 98   | 06           | 94             |
| 53.3± 5.4 52.9± 6.5 53.4± 6.9 51.3± 9.4 54.2±  52.6± 6.2 53.4± 5.8 53.5± 6.9 54.0± 6.5 54.2±  42.3± 6.8** 43.4± 7.2** 44.5± 7.7** 42.9± 9.2** 42.8±                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                   |              |    |                 |      | $52.8\pm5.2$ | 50.7± 8.4      |
| 52.6± 6.2 53.4± 5.8 53.5± 6.9 54.0± 6.5 54.2± 42.3± 6.8** 43.4± 7.2** 44.5± 7.7** 42.9± 9.2** 42.8±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                   |              |    |                 |      | 53.9± 7.2    | 53.2± 7.6      |
| 42.3± 6.8** 43.4± 7.2** 44.5± 7.7** 42.9± 9.2** 42.8±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                   |              |    |                 |      | 52.8± 7.4    | $51.7 \pm 8.0$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 42.3± 6.8**       |              |    | 42.9± 9.2**     | 42.8 | 43.0± 7.7**  | 40.7 ± 9.0**   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                   |              |    |                 |      |              |                |
| Significant difference ; *: P $\leq$ 0.05 **: P $\leq$ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                   | * : P ≤ 0.01 |    | Test of Dunnett |      |              |                |

| SIUNT NO. : UBSS ANIMAL : MOUSE BEDZF1/Crl;[Cr.j:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : MALE | [Cr.j:BDF1]         |               | BODY WEIGHT CHANGES<br>ALL ANIMALS | (SUMMARY) PAGE: 6 |
|-------------------------------------------------------------------------------------------------|---------------------|---------------|------------------------------------|-------------------|
| Group Name                                                                                      | Administration week | on week       |                                    |                   |
|                                                                                                 | 86                  | 102           | 104                                |                   |
| Control                                                                                         | 51.3 = 7.0          | 50.9± 7.2     | 50.6 ± 8.1                         |                   |
| 250 ppm                                                                                         | 53.3± 7.4           | 51.5± 8.7     | 49.7 = 9.4                         |                   |
| 1000 ppm                                                                                        | 50.7± 8.8           | $49.0\pm9.6$  | 48.8± 9.2                          |                   |
| 4000 չւրտ                                                                                       | 41.7± 7.7**         | 41.0± 7.8**   | 38.9± 8.1≉                         |                   |
|                                                                                                 |                     |               |                                    |                   |
| Significant difference;                                                                         | * : P ≤ 0.05        | ** : P ≤ 0.01 |                                    | Test of Dunnett   |
| (HAN260)                                                                                        |                     |               |                                    | BAIS 4            |
|                                                                                                 |                     |               |                                    |                   |

## TABLE C 4

BODY WEIGHT CHANGES: FEMALE

| SEX : FEMALE            |                       | A STATE OF THE STA |            | PRINTERPROPORTION AND AND AND AND AND AND AND AND AND AN | en el este este el este este este este est | ARTO ARTO LONG CONTRACTOR AND ARTON | PAGE :         |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| oroup ivane             | Administration week 0 | n week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62         | 3                                                        | 4                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9              |
| Control                 | 19.0 ± 0.8            | $19.3\pm1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.8 🛨 1.2 | 20.3 ± 1.0                                               | 20.7 ± 1.0                                 | 21.2 = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $21.7 \pm 1.2$ |
| 250 ppm                 | 19.0 ± 0.8            | 19.4± 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.8± 1.0  | 20.4± 1.0                                                | 20.8± 1.0                                  | 21.3± 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.8± 1.3      |
| 1000 ppm                | 19.0± 0.8             | 19.5± 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.7 ± 1.4 | $20.2 \pm 1.1$                                           | 20.9± 1.3                                  | 21.5± 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.6± 1.4      |
| 4000 թւթա               | 19.0± 0.8             | 19.3± 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.5 ± 1.0 | 20.1± 0.9                                                | 20.7± 0.9                                  | 21.0± 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.5± 0.9      |
| Significant difference; | * : P ≤ 0.05          | * <b>‡</b> : P ≤ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Test of Dunnett                                          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |

| NELOKI 1175 - A1 104<br>SEX : FEMALE | AND |                |            |                 | *************************************** | THE RESIDENCE OF THE PROPERTY | PAGE :         |
|--------------------------------------|-----------------------------------------|----------------|------------|-----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Group Name                           | Administration week                     | n week 8       | 6          | 01              | 111                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13             |
| Control                              | $22.1\pm1.1$                            | 22.7± 1.4      | 22.8 ± 1.4 | 22.9± 1.3       | 23.5± 1.3                               | 23.9± 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.9土 1.8      |
| 250 ppm                              | 22.3 ± 1.2                              | $22.6 \pm 1.3$ | 22.9± 1.4  | 23.2± 1.6       | 23.2± 1.4                               | 23.9± 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $24.2 \pm 1.9$ |
| 1000 ppm                             | 22.1± 1.3                               | 22.5± 1.5      | 22.6± 1.8  | 23.1± 1.7       | 23.2± 1.6                               | 23.7± 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.0± 1.8      |
| 4000 ppm                             | 21.9± 1.1                               | 22.3± 1.1      | 22.4± 1.0  | 22.9± 1.1       | 23.0± 1.2                               | 23.2± 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.5± 1.3      |
| Significant difference;              | * : P ≤ 0.05                            | *<br>\$ 0.01   |            | Test of Dunnett |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |

| Group Name Administration week                |               |              |                 |              |             | PAGE :     |
|-----------------------------------------------|---------------|--------------|-----------------|--------------|-------------|------------|
| 14                                            | , sek         | 22           | 3.6             | 30           | 34          | 88         |
| Control 24.3± 1.8                             | 25.8± 2.2     | $27.6\pm3.2$ | 28.7± 3.3       | 30.2士 3.4    | 31.9± 3.8   | 33.1± 3.8  |
| $250~\mathrm{ppm}$ $24.2\pm~2.0$              | 26.0± 2.3     | 27.9± 2.8    | 29.4± 3.0       | 30.8± 3.4    | 32.7± 3.6   | 33.8± 4.3  |
| 1000 ppm 24.4± 1.8                            | 25.6± 2.0     | 27.0± 2.5    | 28.7± 3.2       | 29.8± 3.3    | 31.4± 3.4   | 32.3+ 3.8  |
| 4000 ppm 23.7± 1.3                            | 24.6± 1.4**   | 25.7± 1.6**  | 26.6± 1.9**     | 27.1 ± 2.0** | 27.9± 2.0** | 28.6± 2.2₩ |
| Significant difference ; * : $P \leq 0.05$ ** | ** : P ≤ 0.01 |              | Test of Dunnett |              |             |            |

| Group Name               | Administration wood | Joon          |                |                 |             | T ADMINISTRATION OF THE PROPERTY OF THE PROPER | rage : 10   |
|--------------------------|---------------------|---------------|----------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                          | 42                  | 46            | 20             | 54              | 58          | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99          |
| Control                  | 33.8± 4.1           | 34.6± 4.5     | 35.3 = 4.4     | 36.8 - 4.5      | 36.8 ± 4.5  | 36.8 ± 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.1± 4.4   |
| 250 ppm                  | 34.2. 4.0           | 35.3± 4.2     | 35.6± 4.5      | 36.9± 4.9       | 36.7± 5.0   | 36.9± 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.4± 4.9   |
| 1000 ppm                 | 33.0 = 3.7          | 33.9士 3.7     | $33.9 \pm 4.2$ | $35.4\pm 4.1$   | 35.5士 4.3   | 35.9± 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.0± 5.2   |
| 4000 ppm                 | 29.0± 2.2**         | 29.1 ± 2.5**  | 29.6± 2.6*     | 30.4± 2.6≉*     | 30.8± 3.4** | 30.9± 3.1**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.2± 3.0** |
| Significant difference : | * : P ≤ 0.05        | ** : P ≤ 0.01 |                | Test of Dunnett |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

| STUDY NO.: 0685 ANIMAL: MOUSE BGDZF1/Crlj[Crj:BDF1] UNIT: R REPORT TYPE: A1 104 SEX: FEMALE | [[Cr.j:BDF1]              |                                       | BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS | (SUMMARY)       |               |             | PAGE: 11    |
|---------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|-------------------------------------------|-----------------|---------------|-------------|-------------|
| Group Name                                                                                  | Administration week<br>70 | on week. 74                           | 78                                        | 85              | 98            | 06          | 94          |
| Control                                                                                     | 38.0 ± 4.7                | 37.9± 4.7                             | 38.4± 4.9                                 | 38.3± 5.0       | 37.8土 4.9     | 38.0 ± 4.7  | 37.5± 4.6   |
| 250 ppm                                                                                     | 38.1± 5.4                 | 37.4± 5.7                             | 37.7± 5.8                                 | 37.4± 5.8       | $38.1\pm 5.7$ | 37.6± 5.9   | 37.6± 5.5   |
| 1000 ppm                                                                                    | 36.6± 5.8                 | 36.5± 5.4                             | $36.9\pm5.2$                              | $37.2\pm5.0$    | $37.2\pm5.2$  | 37.4± 5.5   | 36.4± 5.5   |
| 4000 มุมพ                                                                                   | 31.3± 3.1**               | 31.4± 3.1**                           | 31.4± 3.1**                               | 31.5± 3.3**     | 31.4土 3.6**   | 31.6± 3.4** | 31.8± 3.3** |
| Significant difference ;                                                                    | . P № 8.                  | * * * * * * * * * * * * * * * * * * * |                                           | Test of Dunnett |               |             |             |

(HAN260)

| Group Name         Administration week         102         10A           Control         36.2± 4.8         35.5± 5.2         36.4± 4.7           250 ppm         37.4± 5.6         35.9± 5.9         35.8± 5.7           1000 ppm         36.2± 5.2         36.1± 5.6         35.7± 5.0           4000 ppm         31.8± 3.9±         30.7± 4.0+         31.1± 4.3+           Significant difference:         *:P ≤ 0.05         **:P ≤ 0.01 | ANJAAL : MOUSE DEDZEL/CRIJCKRISDET<br>UNIT : R<br>REPORT TYPE : AI 104<br>SEX : FEMALE | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               | all animals   | PAGE : 12       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|---------------|---------------|-----------------|
| $36.2\pm 4.8$ $35.5\pm 5.2$ $36.4\pm 4.7$ $37.4\pm 5.6$ $35.9\pm 5.9$ $35.8\pm 5.7$ $36.2\pm 5.2$ $36.1\pm 5.6$ $35.7\pm 5.0$ $31.8\pm 3.9**$ $30.7\pm 4.0**$ $31.1\pm 4.3**$                                                                                                                                                                                                                                                                | оир Маве                                                                               | Administration<br>98                   |               | 104           |                 |
| $36.2\pm$ $4.8$ $35.5\pm$ $5.2$ $36.4\pm$ $4.7$ $37.4\pm$ $5.6$ $35.9\pm$ $5.9$ $35.8\pm$ $5.7$ $36.2\pm$ $5.2$ $36.1\pm$ $5.6$ $35.7\pm$ $5.0$ $31.8\pm$ $3.9**$ $30.7\pm$ $4.0**$ $31.1\pm$ $4.3**$                                                                                                                                                                                                                                        |                                                                                        |                                        |               | K 0.7         |                 |
| $37.4\pm 5.6$ $35.9\pm 5.9$ $35.8\pm 5.7$ $36.2\pm 5.2$ $36.1\pm 5.6$ $35.7\pm 5.0$ $31.8\pm 3.9**$ $30.7\pm 4.0**$ $31.1\pm 4.3**$                                                                                                                                                                                                                                                                                                          | Control                                                                                | 36.2± 4.8                              | 5.            | $36.4\pm 4.7$ |                 |
| $36.2\pm5.2$ $36.1\pm5.6$ $35.7\pm5.0$ $31.8\pm3.9**$ $30.7\pm4.0**$ $31.1\pm4.3**$ $*: P \le 0.05$ **: $P \le 0.01$                                                                                                                                                                                                                                                                                                                         | 250 ррт                                                                                |                                        |               |               |                 |
| 31.8± 3.9** 30.7± 4.0** 31.1± 4.3** * : P ≤ 0.05 ** : P ≤ 0.01                                                                                                                                                                                                                                                                                                                                                                               | 1000 ppm                                                                               |                                        | വ             |               |                 |
| *: P ≤ 0.05 **: P ≤ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                     | 4000 թ.թ.ու                                                                            | 31.8± 3.9**                            |               | 31.1± 4.3**   |                 |
| *: P ≤ 0.05 **: P ≤ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                        |               |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | Significant difference ;                                                               |                                        | ** : P ≤ 0.01 |               | Test of Dunnett |

#### TABLE D 1

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE

(B10040)

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0685
ANIMAL : MOUSE B6DZF1/Crlj[Crj:BDF1]
UNIT : R
REPORT TYPE : A1 104
SEX : MALE

PAGE : 1

|                  | Av. FC.  | No. of          | Av. FC.   | % of          | No. of  | Av. FC.  | % of          | No. of  | Av. FC.   | Jo %          | No. of  |
|------------------|----------|-----------------|-----------|---------------|---------|----------|---------------|---------|-----------|---------------|---------|
| Week<br>on Study |          | Surviv.<br>(50> |           | cont.<br><50> | Surviv. |          | cont.<br>(50) | Surviv. |           | cont.<br><50> | Surviv. |
|                  | 4.1 (50) |                 | 4.0 (50)  | 86            | 50/50   | 4.0 (50) | 86            | 50/50   | 3.9 (50)  | 95            | 50/50   |
|                  | 3.7 (50  |                 | 3.8 (50)  | 103           | 50/50   | 3.8 (50) | 103           | 20/20   | 3.9 (50)  | 105           | 50/50   |
|                  | 3.7 (50) | _               | 3, 7 (50) | 100           | 50/50   | 3.8 (50) | 103           | 20/20   | 3.7 (50)  | 100           | 20/20   |
|                  | 3.9 (49) | Ċ               | 3.9 (49)  | 100           | 20/20   | 3.9 (50) | 100           | 20/20   | 3.9 (50)  | 100           | 50/50   |
|                  | 4.0 (49) | _               | 3.9 (49)  | 86            | 49/50   | 4.0 (50) | 100           | 20/20   | 4.0 (50)  | 100           | 50/50   |
|                  | 4.0 (49) |                 | 4.0 (47)  | 100           | 49/50   | 3.9 (50) | 86            | 20/20   | 3.9 (50)  | 86            | 50/50   |
|                  | 4.0 (49) | ) 49/20         | 4.0 (49)  | 100           | 49/50   | 3.9 (49) | 86            | 50/50   | 4.0 (50)  | 100           | 50/50   |
|                  | 4.1 (49) | ) 49/50         | 4.2 (48)  | 102           | 48/50   | 3.9 (49) | 95            | 50/50   | 3.9 (50)  | 92            | 50/50   |
|                  | 4.0 (49) | Ċ               | 4.1 (48)  | 103           | 48/50   | 4.0 (50) | 100           | 20/20   | 4.0 (50)  | 100           | 50/50   |
|                  | 4.2 (49) |                 | 4.3 (48)  | 102           | 48/50   | 4.4 (50) | 105           | 50/50   | 4.1 (50)  | 86            | 50/50   |
|                  | 4.1 (48) | ĺ               | 4.1 (48)  | 100           | 48/50   | 4.2 (50) | 102           | 20/20   | 4.0 (50)  | 86            | 50/50   |
|                  | 4.2 (48) |                 | 4.2 (48)  | 100           | 48/50   | 4.1 (50) | 86            | 50/50   | 4.1 (50)  | 86            | 50/50   |
|                  | 4.2 (48) |                 | 4.2 (48)  | 100           | 48/50   | 4.2 (50) | 100           | 20/20   | _         | 95            | 50/50   |
|                  | 4.2 (48) | _               | _         | 100           | 48/50   | 4.2 (49) | 100           | 20/20   | _         | 86            | 50/50   |
|                  | 4.4 (48) |                 | 4.4 (48)  | 100           | 48/20   | 4.3 (50) | 86            | 20/20   | _         | 86            | 49/50   |
|                  | 4.3 (48) |                 | _         | 105           | 48/50   | 4.4 (50) | 102           | 20/20   | 4.3 (49)  | 100           | 49/50   |
|                  | _        | () 48/50        | _         | 102           | 48/50   | 4.4 (50) | 100           | 20/20   | _         | 95            | 49/50   |
|                  | _        |                 | 4.5 (48)  | 100           | 48/50   | 4.3 (50) | 96            | 20/20   | _         | 93            | 49/50   |
|                  | 4.5 (48) | () 48/50        | _         | 100           | 48/50   | 4.4 (50) | 86            | 20/20   | 4.3 (49)  | 96            | 49/50   |
|                  | _        |                 | 4.7 (48)  | 100           | 48/50   | 4.6 (50) | 86            | 50/50   | 4.7 (48)  | 100           | 48/50   |
|                  | 4.7 (48) |                 | _         | 102           | 48/50   | 4.7 (50) | 100           | 20/20   | 4.6 (47)  | 86            | 47/50   |
|                  | 4.7 (48) |                 | _         | 102           | 48/50   | 4.5 (50) | 96            | 20/20   | 4.6 (43)  | 86            | 47/50   |
|                  | _        | 0 47/50         | _         | 96            | 48/50   | 4.5 (50) | 96            | 20/20   | 4.4 (42)  | 94            | 45/50   |
|                  | _        |                 | _         | 102           | 48/50   | 4.7 (48) | 102           | 48/50   | 4.7 (44)  | 102           | 45/50   |
|                  | _        | Ĺ               | _         | 102           | 48/50   | 4.7 (48) | 100           | 48/50   | _         | 100           | 44/50   |
|                  | _        | _               |           | 107           | 48/50   | 4.6 (48) | 100           | 48/50   | _         | 100           | 44/50   |
|                  | 4.8 (45) |                 | 4.9 (47)  | 102           | 47/50   | 4.8 (48) | 100           | 48/50   | 4.7 (42)  | 86            | 42/50   |
|                  | _        |                 |           | 107           | 47/50   | 4.9 (45) | 107           | 46/50   | _         | 104           | 40/50   |
|                  | 4.7 (45) | •               | 4.8 (46)  | 102           | 46/50   | 4.8 (43) | 102           | 44/50   | _         | 106           | 37/50   |
|                  | 4.8 (45) | _               |           | 100           | 44/50   | 4.9 (44) | 102           | 44/50   | _         | 86            | 34/50   |
|                  | 4.6 (44) | () 44/50        | 4.7 (42)  | 102           | 42/50   | 4.8 (41) | 104           | 41/50   | _         | 107           | 34/50   |
|                  | 5.0 (42) | _               | _         | 86            | 34/50   | 5.0 (39) | 100           | 39/50   | _         | 102           | 28/50   |
|                  | 4.8 (40) | ) 40/50         | 5.0 (34)  | 104           | 34/50   | 4.8 (39) | 100           | 39/20   | 4.6 (23)  | 96            | 23/50   |
|                  | 4.6 (39) | ) 39/20         | 4.7 (32)  | 102           | 32/50   | 4.8 (35) | 104           | 35/50   | 4.4 (23)  | 96            | 23/50   |
| 86               | 4.9 (34) |                 | 5.2 (30)  | 106           | 30/20   | 5.0 (33) | 102           | 33/50   | 5.2 (19)  | 901           | 19/50   |
|                  | 4.9 (32) | 32/20           | _         | 100           | 29/50   | 1.8 (30) | 86            | 32/50   | 4.4 (17)  | 06            | 17/50   |
|                  | 4.7 (30) |                 | _         | 86            | 29/50   | 4.6 (29) | 86            | 29/50   | 4, 7 (15) | 100           | 16/50   |

#### TABLE D 2

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE

(BI0040)

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

PAGE: 2

|           | MOUSE BGD2F1/Crlj[Crj:BDF1] |      |             |       |
|-----------|-----------------------------|------|-------------|-------|
| 21        | SE                          |      | A1 104      | EMALE |
| 0685      | Ş                           | øť   | VI          | Ξ     |
| ٠.        | ٠.                          |      | ٠.          |       |
| .0.       |                             |      | REPORT TYPE |       |
| ×         | ΛĽ                          |      | RT          |       |
| STUDY NO. | ANIMAL                      | UNIT | EP0         | SEX   |
| S         | 2                           | 5    | 22          | S     |

| Av. FC.<br>Week<br>on Study |             |                 |          |               |         |          |               |         |            |               |         |
|-----------------------------|-------------|-----------------|----------|---------------|---------|----------|---------------|---------|------------|---------------|---------|
| ək<br>Study                 |             | No. of          | Av. FC.  | % of          | No. of  | Av. FC.  | % of          | No. of  | Av. FC.    | % of          | No. of  |
|                             | Sur<br>(50) | Surviv.<br><50> |          | cont.<br>(50) | Surviv. |          | cont.<br>(50) | Surviv. |            | cont.<br><50> | Surviv. |
| 1 3.                        | (20)        | 50/50           | 3.7 (50) | 103           | 50/50   | 3.7 (50) | 103           | 50/50   | 3.6 (50)   | 100           | 50/50   |
|                             | (20)        | 0/20            | 3.4 (50) | 26            | 20/20   | 3.3 (50) | 94            | 50/50   | 3.4 (50)   | 97            | 50/50   |
| 3.:                         | 3 (50) 5    | 0/20            | 3.5 (50) | 106           | 20/20   | 4        | 103           | 50/50   | 3.4 (50)   | 103           | 20/20   |
| 4 3.                        | _           | 0/20            | 3.6 (50) | 103           | 20/20   | 3.6 (50) | 103           | 50/50   | ري<br>ما   | 100           | 50/50   |
|                             |             | 0/20            | 9        | 100           | 50/50   | 3.6 (50) | 100           | 50/50   | 3.5 (48)   | 26            | 50/50   |
| 6 3.0                       |             | 0/20            | 9        | 100           | 20/20   | 3.6 (50) | 100           | 50/50   | 2          | 97            | 50/50   |
| 7 3.                        | 7 (50) 5    | 20/20           | 3.7 (50) | 100           | 50/50   | ~        | 100           | 50/50   | 9          | 97            | 50/50   |
| 3.:                         |             | 0/20            | 8        | 001           | 20/20   | 3.8 (50) | 001           | 50/50   | <b>!</b> ~ | 97            | 50/50   |
| 9 3.                        |             | 0/20            | 3.8 (50) | 103           | 20/20   | 3.8 (50) | 103           | 50/50   | _          | 97            | 50/50   |
| 10 3.                       |             | 0/20            | Ċυ.      | 103           | 50/50   | 4.0 (50) | 105           | 50/50   | 3.9 (50)   | 103           | 50/50   |
| 11 3.                       |             | 0/20            | 3.9 (50) | 100           | 50/50   | 3.8 (50) | 26            | 50/50   |            | 95            | 50/50   |
| 12 3.                       |             | 0/20            | 6        | 105           | 50/50   | 3.7 (50) | 100           | 50/50   | 3.7 (50)   | 100           | 50/50   |
| 13 3.                       |             | 0/20            | 3.9 (49) | 103           | 20/20   | 3.9 (50) | 103           | 50/50   | 3.8 (50)   | 100           | 50/50   |
|                             | 9 (50)      | 0/20            | 3.8 (50) | 26            | 50/50   | 3.9 (50) | 100           | 50/50   | _          | 97            | 50/50   |
| 18 4.0                      | 0 (20)      | 0/20            | 0        | 001           | 50/50   | 3.8 (50) | 92            | 50/50   | -          | 86            | 50/50   |
|                             | (20)        | 0/20            | _        | 102           | 20/20   |          | 86            | 20/20   | -          | 86            | 50/50   |
|                             | (20)        | 0/20            | ~        | 108           | 20/20   | 4.2 (50) | 108           | 20/20   | _          | 801           | 50/50   |
|                             | (49)        | 9/20            | _        | 102           | 20/20   |          | 001           | 49/50   | 4.0 (50)   | 86            | 50/50   |
|                             | (49)        | 9/20            | _        | 105           | 20/20   | 4.1 (49) | 86            | 49/50   | _          | 86            | 50/50   |
|                             | (49)        | 9/20            | _        | 105           | 20/20   |          | 100           | 49/50   | _          | 86            | 50/50   |
| 4.                          | (49)        | 9/20            | 4.6 (50) | 102           | 20/20   |          | 00<br>1       | 49/50   | 4.3 (50)   | 96            | 50/50   |
| 4.                          |             | 9/20            | 4.4 (50) | 105           | 20/20   | 4.5 (47) | 107           | 49/50   | _          | 102           | 50/50   |
| 50 1.                       | (46)        | 9/20            | _        | 102           | 49/50   |          | 105           | 19/20   | 4.6 (50)   | 105           | 50/50   |
| 4.                          | (48)        | 8/20            | 4.3 (49) | 100           | 49/50   | _        | 102           | 49/50   | 4.1 (50)   | 92            | 50/50   |
| 4.                          |             | 1/20            | 4.4 (48) | 102           | 48/50   | -        | 707           | 49/50   | _          | 001           | 50/50   |
| 4.                          | (41)        | 1/20            | 4.5 (48) | 102           | 48/50   |          | 105           | 48/50   | 4.3 (49)   | 86<br>86      | 49/50   |
| 4.                          | (41)        | 2/20            | 4.4 (48) | 102           | 48/50   | 4.6 (47) | 107           | 47/50   | 4.4 (49)   | 102           | 49/50   |
| 4.                          | _           | 1/20            | 4.3 (46) | 100           | 46/50   | -        | 100           | 47/50   | _          | 86            | 48/50   |
| 74 4.                       | _           | 2/20            | 4.4 (43) | 102           | 43/50   | -        | 102           | 46/50   | 4.3 (46)   | 001           | 47/50   |
| 78 4.                       |             | 2/50            | _        | 86            | 42/50   | -        | 102           | 44/50   | _          | 96            | 46/50   |
| 92 4.                       | _           | 0/20            | 4.5(41)  | 105           | 41/50   | _        | 102           | 44/50   | 4.3 (45)   | 001           | 45/50   |
| 86 4.                       |             | 37/20           | 4.6 (40) | 105           | 40/20   | 4.6 (39) | 105           | 39/20   | 4.4 (45)   | 001           | 45/50   |
| 90 4.                       | _           | 4/50            | 4.5 (37) | 107           | 37/20   | _        | 110           | 36/20   | 4.6 (42)   | 011           | 42/50   |
| 94 4.                       | .,          | 32/50           | 4.5 (34) | 001           | 34/50   | 4.9 (29) | 109           | 30/20   | 4.7 (41)   | 104           | 41/50   |
| 98 4.                       | _           | 0/20            | 4.5 (30) | 110           | 30/20   | _        | 112           | 29/20   | 4.4 (41)   | 107           | 41/50   |
| 02 4.                       | _           | 27/50           | 4.5 (25) | 102           | 26/50   | _        | 109           | 26/50   | 4.7 (34)   | 107           | 35/50   |
| 104 4. (                    | 6 (23) 2:   | 23/50           | 4.5 (25) | 86            | 25/50   | 4.6 (25) | 100           | 25/50   | 4.4 (35)   | 96            | 35/50   |

## TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

| Group Name                                                                                                     | Administration week | wook                 |             | *************************************** |           |           |           | . dob |
|----------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------|-----------------------------------------|-----------|-----------|-----------|-------|
| Victoria de la constanta de la | 1                   | 2                    | co          | 4                                       | w         | 9         | 7         |       |
| Control                                                                                                        | 4.1 - 0.3           | 3.7-1-0.5            | $3.7\pm0.5$ | 3.9 - 0.5                               | 4.0 1 0.4 | 4.0 ± 0.4 | 4.0 ± 0.4 |       |
| 250 ppm                                                                                                        | 4.0 + 0.4           | 3.8 \( \) 0.6        | 3.7士 0.6    | 3.9± 0.6                                | 3.9± 0.6  | 4.0 ₹ 0.5 | 4.0± 0.4  |       |
| 1000 mdd 0001                                                                                                  | 4.0 ± 0.4           | 3.8± 0.3             | 3.8 ± 0.4   | 3.9± 0.3                                | 4.0± 0.3  | 3.9± 0.4  | 3.9± 0.4  |       |
| 4000 թբու                                                                                                      | 3.9± 0.5**          | 3.9+ 0.5             | 3.7 = 0.4   | 3.9± 0.3                                | 4.0± 0.3  | 3.9± 0.4  | 4.0± 0.3  |       |
| Significant difference;                                                                                        | P 0.05              | **<br>P<br>N<br>0.01 |             | Test of Dunnett                         |           |           |           |       |

| REPORT TYPE : AI 104<br>SEX : MALE |                          |              |            |                 |             |           | PAGE :    |
|------------------------------------|--------------------------|--------------|------------|-----------------|-------------|-----------|-----------|
| Group Name                         | Administration week<br>8 | week 9       | 10         | 11              | 12          | 13        | 14        |
| Control                            | 4.1士 0.5                 | 4.0 ± 0.6    | 4.2 - 0.6  | 4.1-            | 4.2 ± 0.4   | 4.2± 0.3  | 4.2 ± 0.4 |
| 250 ppm                            | 4.2 \pm 0.4              | 4.1± 0.5     | 4.3 ± 0.5  | 4.1± 0.4        | 4.2± 0.5    | 4.2± 0.4  | 4.2± 0.5  |
| 1000 ppm                           | 3.9 ± 0.5                | 4.0± 0.5     | 4.4± 0.6   | 4.2± 0.3        | $4.1\pm0.4$ | 4.2± 0.3  | 4.2± 0.3  |
| 4000 րդոռ                          | 3.9 ± 0.4                | 4.0 = 0.4    | 4.1 ± 0.3* | 4.0 ± 0.4       | 4.1± 0.5    | 4.0 ± 0.5 | 4.1       |
|                                    |                          |              |            |                 |             |           |           |
| Significant difference;            | * : P ≤ 0.05             | **: P ≤ 0.01 |            | Test of Dunnett |             |           |           |

|                          |                           |              |                  | e de desente de la constitución de company de desente de la constitución de constitución de company de la cons |            |           |           |
|--------------------------|---------------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|
| Group Name               | Administration week<br>18 | reek 22      | 26               | 30                                                                                                             | 34         | 38        | 42        |
| Control                  | $4.4\pm0.4$               | 4.3 ± 0.5    | 4.4 0.4          | $4.5\pm0.6$                                                                                                    | 4.5± 0.6   | 4.7 1 0.7 | 4.7 ± 0.6 |
| 250 ppm                  | 4.4± 0.4                  | 4.5± 0.4     | <b>4.5</b> ± 0.4 | 4.5± 0.5                                                                                                       | 4.5 ± 0.5  | 4.7± 0.4  | 4.8± 0.6  |
| 1000 ppm                 | 4.3 ± 0.4                 | 4.4± 0.4     | 4.4 0.5          | 4.3± 0.5                                                                                                       | 4.4± 0.5   | 4.6± 0.4  | 4.7 ± 0.4 |
| 4000 թրա                 | 4.3 ± 0.5                 | 4.3 ± 0.4    | 4.2 ± 0.6        | 4.2± 0.4**                                                                                                     | 4.3 ± 0.4* | 4.7 ± 0.6 | 4.6± 0.5  |
|                          |                           |              |                  |                                                                                                                |            |           |           |
| Significant difference ; | *:P≤0.05 **               | **: P ≤ 0.01 |                  | Test of Dunnett                                                                                                |            |           |           |

| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Crl,[Cr.:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : MALE | Cr.j:BDF1]                 | Pt<br>Al      | FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS | ES (SUMMARY)    |           |               | PAGE: 4          |
|------------------------------------------------------------------------------------------------|----------------------------|---------------|------------------------------------------------|-----------------|-----------|---------------|------------------|
| Group Name                                                                                     | Administration week.<br>46 | week. 50      | 54                                             | 58              | 69        | 99            | 70               |
| Control                                                                                        | 4.7± 0.5                   | 4.7± 0.6      | 4.6 ± 0.8                                      | 4.7± 0.6        | 4.6± 0.5  | 4.8± 0.4      | 4.6± 0.6         |
| 250 ppm                                                                                        | 4.8 = 0.5                  | 4.5 ± 0.9     | 4.7 = 0.4                                      | 4.8 ± 0.4       | 4.9± 0.5* | 4.9± 0.6      | 4.9士 0.4         |
| 1000 ррт                                                                                       | 4.5 ± 0.7                  | 4.5 = 0.8     | $4.7\pm$ 0.5                                   | 4.7 ± 0.6       | 4.6± 0.8  | 4.8± 0.7      | 4.9± 0.6         |
| 4000 թվյա                                                                                      | 4.6土 0.7                   | 4.4± 0.6      | 4.7 = 0.6                                      | 4.7± 0.7        | 4.6± 0.7  | $4.7 \pm 0.5$ | <b>4.8</b> ± 0.6 |
| Significant difference;                                                                        | *                          | ** : ₽ ≤ 0.01 |                                                | Test of Dunnett |           |               |                  |

(HAN260)

BAIS 4

| PAGE:                                                                                       |                           |                   |           |                  |            |  |
|---------------------------------------------------------------------------------------------|---------------------------|-------------------|-----------|------------------|------------|--|
|                                                                                             | 86                        | 4.9. <u>1</u> 0.6 | 5.2 ± 0.6 | 5.0± 0.6         | 5.2± 0.7   |  |
|                                                                                             | 94                        | 4.6 ± 1.1         | 4.7± 0.9  | 4.8± 0.8         | 4.4 ± 0.9  |  |
|                                                                                             | 06                        | 4.8 - 0.7         | 5.0 + 0.8 | <b>4.</b> 8± 0.8 | 4.6± 0.8   |  |
| S (SUMMARY)                                                                                 | 98                        | 5.0 ± 0.7         | 4.9士 0.7  | 5.0 ± 0.7        | 5.1± 0.9   |  |
| FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS                                              | 78                        | $4.6 \pm 0.9$     | 4.7± 1.2  | 4.8± 0.8         | 4.9 ± 0.8  |  |
| FG<br>AL                                                                                    | week 78                   | 4.8 - 0.6         | 4.8 ± 0.6 | 4.9± 0.5         | 4.7± 0.9   |  |
| i[Cr.j:BDF1.]                                                                               | Administration week<br>74 | 4.7 - 0.7         | 4.8 + 0.8 | 4.8 ± 0.6        | 5.0 ± 1.0  |  |
| STUDY NO.: 0685 ANIMAL: MOUSE B6D2F1/Crl,i[Cr.j:BDF1] UNIT: R REFORT TYPE: A1 104 SEX: MALE | Group Name                | Control           | 250 թթա   | 1000 ppm         | 4000 չերու |  |

Test of Dunnett

\*\*: P ≤ 0.01

Significant difference ; \* \* :  $P \le 0.05$ 

(HAN260)

| PAGE: 6                                                                                            |                             |           |      |          |          |            |
|----------------------------------------------------------------------------------------------------|-----------------------------|-----------|------|----------|----------|------------|
| FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS                                                     |                             |           |      |          |          |            |
|                                                                                                    | on week                     | 2 O ÷ 7 L |      | 4.6± 0.9 | 4.6± 0.8 | 4.7± 1.1   |
| STUDY NO. : 0685  ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]  UNIT : R  REPORT TYPE : A1 104  SEX : MALE | Administration week.<br>102 | 8 0 + 0 8 | 0.0  | 4.9 1.0  | 4.8± 0.6 | 4.4士 0.9   |
| STUDY NO. : 068 ANIMAL : MOU UNIT : R REPORT TYPE : A SEX : MALE                                   | Group Name                  | (on tro   | 1010 | 250 ррм  | 1000 ppm | 4000 լորու |

| Test of Dunnett                                               | BAIS 4   |
|---------------------------------------------------------------|----------|
| Significant difference ; * : P $\leq$ 0.05 ** : P $\leq$ 0.01 | (HAN260) |

# TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

| KELOKI 117'E : AI 104<br>SEX : FEMALE |                          |              |              |                 |          |          | PAGE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|--------------------------|--------------|--------------|-----------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group Name                            | Administration week<br>I | week 2       | 3            | 4               | 2        | 9        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                          |              |              |                 |          |          | Address and the second |
| Control                               | 3.6 ± 0.3                | 3.5± 0.4     | 3.3 = 0.3    | 3.5± 0.2        | 3.6± 0.3 | 3.6± 0.3 | 3.7± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 250 ppm                               | 3.7± 0.2                 | 3.4± 0.3     | 3.5 ± 0.3*   | 3.6土 0.3        | 3.6± 0.3 | 3.6± 0.4 | $3.7 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1000 ppm                              | 3.7± 0.3                 | 3.3± 0.4     | 3.4 0.3      | 3.6± 0.3        | 3.6± 0.5 | 3.6± 0.3 | 3.7± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4000 рүш                              | 3.6± 0.4                 | 3.4± 0.4     | $3.4\pm 0.3$ | 3.5± 0.3        | 3.5± 0.4 | 3.5± 0.3 | 3.6± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                          |              |              |                 |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Significant difference;               | * : P ≤ 0.05             | * : P ≤ 0.01 |              | Test of Dunnett |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| REFORT TYPE : AI 104<br>SEX : FEMALE |                           |             |             |          |               |           | PAGE :   |
|--------------------------------------|---------------------------|-------------|-------------|----------|---------------|-----------|----------|
|                                      | Administration week.<br>8 | week 9      | 01          | 11       | 12            | 13        | 14       |
|                                      | 3.8± 0.3                  | $3.7\pm0.3$ | 3.8+ 0.3    | 3.9± 0.3 | 3.7± 0.4      | 3.8 ± 0.4 | 3.9士 0.3 |
|                                      | 3.8± 0.3                  | 3.8± 0.3    | 3.9 = 0.4   | 3.9± 0.3 | $3.9 \pm 0.3$ | 3.9士 0.4  | 3.8± 0.4 |
|                                      | 3.8± 0.4                  | 3.8 ± 0.5   | $4.0\pm0.4$ | 3.8± 0.3 | $3.7 \pm 0.3$ | 3.9± 0.4  | 3.9± 0.4 |
|                                      | $3.7 \pm 0.3$             | 3.6± 0.4    | 3.9 0.3     | 3.7± 0.2 | 3.7± 0.3      | 3.8± 0.3  | 3.8± 0.3 |

Test of Dunnett

\*\*: P ≤ 0.01

Significant difference ; \* : P  $\leq$  0.05

(HAN260)

| STUDY NO. : 0685 ANIMAL : MOUSE B6DZFL/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE | [Cr.j:BDF1]                | ii. 4        | FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS | BS (SUMMARY)    |          |      | PAGE : 9 |
|--------------------------------------------------------------------------------------------------|----------------------------|--------------|------------------------------------------------|-----------------|----------|------|----------|
| Group Name                                                                                       | Administration week.<br>18 | on week      | 36                                             | 30              | 34       | 38   | 42       |
| Control                                                                                          | 4.0 + 0.4                  | 4.2± 0.6     | 3.9± 0.6                                       | 4.1± 0.5        | 4.2± 0.6 | 4.4. | 4.5± 0.6 |
| 250 ppm                                                                                          | 4.0± 0.5                   | 4.3± 0.6     | 4.2± 0.7                                       | 4.2± 0.7        |          |      |          |
| под 0001                                                                                         | 3.8+ 0.5                   | 4.1± 0.5     |                                                |                 |          |      |          |
| 4000 main                                                                                        | 3.9 ± 0.4                  | 4.1+ 0.5     | 4.2± 0.6                                       | 4.0 ± 0.5       |          |      |          |
|                                                                                                  |                            |              |                                                |                 |          |      |          |
| Significant difference;                                                                          | *: P ≤ 0.05                | **: P ≤ 0.01 |                                                | Test of Dunnett |          |      |          |
| (HAN260)                                                                                         |                            |              |                                                |                 |          |      | BAIS 4   |

| STUDY NO. : 0685 ANIMAL : MOUSE BEDZFI/Crlj[Crj:BDF1] UNIT : R REPORT TYPE : AI 104 SEX : FEMALE | -BDF1]              | FOOD<br>ALL A      | FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS | UMMARY)  |           |           | PAGE: 10  |
|--------------------------------------------------------------------------------------------------|---------------------|--------------------|------------------------------------------------|----------|-----------|-----------|-----------|
| Group Name                                                                                       | Administration week |                    |                                                |          |           |           |           |
| ***************************************                                                          | 46                  | 50                 | 54                                             | 58       | 62        | 99        | 70        |
|                                                                                                  |                     |                    |                                                |          |           |           |           |
| Control                                                                                          | 4.2± 0.6            | <b>4.</b> 4 ± 0. 7 | 4.3 ± 0.7                                      | 4.3± 0.7 | 4.4 1 0.7 | 4.3± 0.6  | 4.3 1 0.7 |
| 250 ppm                                                                                          | <b>4.4</b> ± 0.8    | 4.5士 0.7           | 4.3± 0.8                                       | 4.4± 0.8 | 4.5 = 0.7 | 4.4       | 4.3± 0.6  |
| 1000 ppm                                                                                         | 4.5 ± 0.7           | <b>4.</b> 6± 0.6   | 4.4± 0.6                                       | 4.4± 0.7 | 4.6± 0.5  | 4.6± 0.8  | 4.3± 0.8  |
| 4000 չւրտ                                                                                        | 4.3± 0.5            | 4.6± 0.8           | 4.1 ± 0.6                                      | 4.3± 0.6 | 4.3 ± 0.6 | 4.4 ± 0.5 | 4.2± 0.5  |
|                                                                                                  |                     |                    |                                                |          |           |           |           |

Test of Dunnett

\*\*: P ≤ 0.01

Significant difference ; \* : P  $\leq$  0.05

(HAN260)

| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Cr1;[Cr.j:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : FEMALE | 1:30F1]          | Pi Asi   | FOOD CONSUMPTION CHANGES (SUMMARY)<br>ALL ANIMALS | S (SUMMARY) |           |          |           |
|---------------------------------------------------------------------------------------------------|------------------|----------|---------------------------------------------------|-------------|-----------|----------|-----------|
| Group Name                                                                                        | Administration w | week 78  | 82                                                | 98          | 06        | 94       | 86        |
| Control                                                                                           | 4.3 ± 0.6        | 4.5± 0.7 | 4.3 ± 0.6                                         | 4.4± 0.6    | 4.2 1.0.7 | 4.5± 0.7 | 4.1± 0.8  |
| 250 ppm                                                                                           | 4.4± 0.6         | 4.4土 0.6 | 4.5+ 0.8                                          | 4.6± 0.7    | 4.5± 0.9  | 4.5± 0.7 | 4.5 ± 0.6 |
| 1000 ppm                                                                                          | 4.4± 0.8         | 4.6± 0.8 | 4.4± 0.8                                          | 4.6± 0.5    | 4.6± 0.8  | 4.9± 0.5 | 4.6± 0.8* |

PAGE: 11

BAIS 4

 $4.4\pm 0.6$ 

 $4.7\pm 0.6$ 

 $4.6\pm0.7$ 

4.4 ± 0.8

 $4.3 \pm 0.6$ 

 $4.3\pm 0.5$ 

4.3 ± 0.5

4000 µm

42

| PAGE : 12                                                                                         |                            |           |          |          |          |  |
|---------------------------------------------------------------------------------------------------|----------------------------|-----------|----------|----------|----------|--|
| FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS                                                    | k 104                      | 4.6 ± 0.8 | 4.5士 0.6 | 4.6± 0.9 | 4.4± 0.7 |  |
| -1.j[Cr.j:BDF1]                                                                                   | Administration week<br>102 | 4.4± 1.3  | 4.5+     | 4.8± 0.7 | 4.7± 0.9 |  |
| STUDY NO. : 0685 ANTMAL : MOUSE BEDZF1/Crlj[Cr.j:BDF1] UNIT : R REPORT TYPE : A1 104 SEX : FEMALE | Group Name                 | Control   | 250 ppm  | 1000 ppm | 4000 ppm |  |

Test of Dunnett

\*\* : P ≤ 0.01

# TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

| PAGE: 1                                                                                                | ************************************** |          |                        |             |          |            |
|--------------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------------------|-------------|----------|------------|
| 2                                                                                                      |                                        |          | 0                      | 4           | 11       | 39         |
|                                                                                                        |                                        | 2        | ∓0                     | 32 H        | 140±     | ∓669       |
|                                                                                                        |                                        |          | 0                      | φ           | 12       | 48         |
|                                                                                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 9        | +0                     | 3€‡         | 142土     | ∓885       |
|                                                                                                        |                                        |          | 0                      | 4.          | 10       | 38         |
|                                                                                                        |                                        | വ        | + 0                    | 36±         | 148±     | €14±       |
|                                                                                                        | 7000                                   |          | 0                      | 4           | 10       | 46         |
| (SUMMARY)                                                                                              |                                        | 4        | ∓0                     | 37±         | 149±     | ∓609       |
| CHANGES                                                                                                |                                        |          | 0                      | 4           | 11       | 54         |
| CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS                                                          | ************************************** | т        | 0 <del>1.</del>        | 37.±        | 148±     | ∓665       |
| AI CE                                                                                                  |                                        |          | 0                      | 4           | 10       | 73         |
|                                                                                                        | Administration (weeks)                 | 2        | - <del>-</del> - <br>0 | 38∓         | 153±     | 655 ±      |
|                                                                                                        | tration                                |          | 0                      | m           | 11       | 22         |
| /crl;[cr.j:BDFt]<br>y                                                                                  | Adminis                                | <u> </u> | ∓0                     | 42 <b>±</b> | ∓ 291    | ∓ 299      |
| STUDY NO.: 0685 ANIMAL : MOUSE BGDZF1/Cr1,[Cr.j:BDF1] UNIT : ng/kg/day REPORT TYPE : A1 104 SEX : MALE | Group Name                             |          | Control                | 250 ppm     | 1000 ppm | 4000 չորու |

| 9 | CHEMICAL INTAKE |    | CHANGES | (SUMMARY) |
|---|-----------------|----|---------|-----------|
| • | ALL ANTMALS     | V. |         |           |

| Administration (weeks) 9 10 11 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STUDY NO. : 0685  ANTAAL : MOUSE BEDZF1/CrljfCrj;BDF1] UNIT : mg/kg/d a y  REPORT TYPE : AI 104  SEX : MALE | Cr.j:BDF1]    |            |                | CHEA | CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS | CHANGES | (SUMMARY)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |    |      |    |       | PAGE : |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|------------|----------------|------|-----------------------------------------------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|------|----|-------|--------|
| 0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0         0±         0±         0         0±         0±         0         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         0±         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Group Name                                                                                                  | Administ<br>8 | tration (w | eeks)          |      | 01                                            |         |                | THE RESIDENCE OF THE PARTY OF T | 12      |    | 13   |    | 14    |        |
| 35±     3     4     34±     4     33±     3     4     32±     3       137±     12     138±     12     145±     20     138±     10     131±     12     131±     11     127±       1     582±     50     583±     45     586±     45     577±     45     562±     54     556±     47     557±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control                                                                                                     | <del>.</del>  | 0          | <del>-</del> 0 | 0    | ÷!<br>0                                       | 0       | <del>+</del> 0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #0      | 0  | ÷ 0  | 0  | + 0   | 0      |
| $137 \pm 12 \qquad 138 \pm 12 \qquad 145 \pm 20 \qquad 138 \pm 10 \qquad 131 \pm 12 \qquad 131 \pm 11 \qquad 127 \pm 282 \pm 50 \qquad 583 \pm 45 \qquad 586 \pm 45 \qquad 577 \pm 45 \qquad 562 \pm 54 \qquad 556 \pm 47 \qquad 557 \pm 287 $ | 250 ppm                                                                                                     | 35+           | m          | 34±            | 4    | 34.±                                          | 4       | 33∓            | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33<br>+ | 4  | 32∓  | m  | 31.   | 4      |
| $582\pm$ 50 $583\pm$ 45 $586\pm$ 45 $577\pm$ 45 $562\pm$ 54 $556\pm$ 47 $557\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mdd 0001                                                                                                    | 137±          | 12         | 138#           | 12   | 145±                                          | 50      | 138∓           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131±    | 12 | 131± | 11 | 127 ± | 10     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000 յւթյու                                                                                                 | 582±          | 20         | 583±           | 45   | 于989                                          | 45      | 577±           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∓299    | 54 | ∓999 | 47 | ₹29   | 56     |

|                                                                                                         | 42                                            |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                                         | 38                                            |
|                                                                                                         | 34                                            |
| (SUMMARY)                                                                                               | 30                                            |
| CHEMICAL INTAKE CHANGES<br>ALL ANIMALS                                                                  | 26                                            |
|                                                                                                         | (weeks)                                       |
| 1/Crlj[Crj:BDF1]<br>a y                                                                                 | Group Name Administration (weeks) 30 34 38 42 |
| STUDY NO. : 0685 ANIMAL : MOUSE B6D2FL/Crlj[Cr.j:BDF1] UNIT : ng/kg/day REPORT TYPE : A1 104 SEX : MALE | Group Name                                    |

| *************************************** | 18      | 18 22 | 22   |    | 26   |    | 30              |    | 34             | Made in the second seco | 38             |     | 42       |    |
|-----------------------------------------|---------|-------|------|----|------|----|-----------------|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|----------|----|
| Control                                 | ÷I<br>0 | 0     | ÷I   | 0  | +0   | 0  | <del>- </del> 0 | 0  | <del>T</del> 0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> -0 | 0   | ÷0       | 0  |
| 250 ppm                                 | 30∓     | e     | ∓67  | ო  | 27±  | က  | 79°             | rs | 52±            | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 722±           | m   | 725 ±    | m  |
| 1000 ppm                                | 123±    | 13    | 117± | 10 | 112± | 11 | 105 ±           | 12 | 104±           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105 ±          | 111 | $102\pm$ | 10 |
| 4000 ppm                                | 558±    | 99    | 537± | 52 | 513± | 29 | 494±            | 45 | 488±           | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 522±           | 92  | 498 ±    | 50 |
|                                         |         |       |      |    |      |    |                 |    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |          |    |

| . INTAKE CHANGES (SUMMARY) | ALS         |
|----------------------------|-------------|
| CHEMICAL                   | ALL ANIMALS |

STUDY NO.: 0685
ANIMAL: MOUSE BGDZFI/Crlj[Crj;BDFl]
UNIT: mg/kg/day
REPORT TYPE: Al 104
SEX: MALE

PAGE: 4

| Group Name | Administ | Administration (weeks) | (s)  | *************************************** |                |    |      |    |      |    |                 |    | 100  |    |
|------------|----------|------------------------|------|-----------------------------------------|----------------|----|------|----|------|----|-----------------|----|------|----|
|            | 46       |                        | 20   |                                         | 54             |    | 58   |    | 62   |    | 99              |    | 70   |    |
|            |          |                        |      |                                         |                |    |      |    |      |    |                 |    |      |    |
| Control    | ÷ 0      | 0                      | +0   | 0                                       | <del>†</del> 0 | 0  | +0   | 0  | ÷-1  | 0  | <del>∵</del> 0  | 0  | 干0   | 0  |
| 250 ppm    | 24+      | 2                      | 22+  | 4                                       | 22 +           | 23 | 23.+ | 83 | 24+  | ო  | 23+             | က  | 23+  | ಣ  |
| 1000 ppm   | 76       | 15                     | 94±  | 15                                      | 76 ±           | 12 | 94±  | 12 | ∓26  | 16 | <del>+</del> 26 | 22 | +26  | 20 |
| 4000 բւրու | 700€     | 108                    | 464∓ | 09                                      | 469 ±          | 63 | 470± | 99 | 457± | 87 | 469十            | 97 | 461± | 85 |

(HAN300)

|                                                                                                                          |                | 86 |
|--------------------------------------------------------------------------------------------------------------------------|----------------|----|
|                                                                                                                          |                | 94 |
|                                                                                                                          |                | 06 |
| (SUMMARY)                                                                                                                |                | 86 |
| STUDY NO.: 0685  ANIMAL : MOUSE BGBZFI/Crli[Crj:BDF1]  ALL ANIMALS  UNIT : mg/kg/d a y  REPORT TYPE : Al 104  SEX : MALE |                | 82 |
|                                                                                                                          | (weeks)        | 78 |
| Crl;[Crj:BDFl]<br>/                                                                                                      | Administration | 74 |
| STUDY NO. : 0685 ANIMAL : MOUSE B6D2FL/Crl;[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : Al 104 SEX : MALE                   | Group Name     |    |

PAGE: 5

| 74 78 82                                    |    |    |     | *************************************** | -                          |         |    |              |     | *************************************** |    |  |
|---------------------------------------------|----|----|-----|-----------------------------------------|----------------------------|---------|----|--------------|-----|-----------------------------------------|----|--|
|                                             | 78 | 82 |     | 98                                      |                            | 06      |    | 94           |     | 86                                      |    |  |
|                                             |    |    |     |                                         | And Andrews of the Andrews |         |    |              |     |                                         |    |  |
| Control $0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 0 |    |    | 0   | +1 0                                    | 0                          | +0      | 0  | + 0          | 0   | <del> </del> 0                          | 0  |  |
| 250 ppm $23\pm$ 4 $23\pm$ 6                 |    |    | 9   | 23+                                     | 4                          | $23\pm$ | ಎ  | 75.<br>+ 27. | വ   | 25 +                                    | 4  |  |
| 1000 ppm $90\pm~11$ $94\pm~21$ $88\pm~13$   |    |    | 13  | 93±                                     | 12                         | 91±     | 15 | 94#          | 15  | 103土                                    | 28 |  |
| 4000 ppm 460± 73 435± 76 472± 114           |    |    | 114 | 485土                                    | 106                        | 436±    | 86 | 453 ±        | 134 | 512                                     | 66 |  |
|                                             |    |    |     |                                         |                            |         |    |              |     |                                         |    |  |

(HAN300)

PAGE: 6

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

STUDY NO. : 0685
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/d a y
REPORT TYPE : Al 104
SEX : MALE

| Group Name                             | Administ | Administration (weeks) | eks)   |     |
|----------------------------------------|----------|------------------------|--------|-----|
| ************************************** | 102      |                        | 104    |     |
|                                        |          |                        |        |     |
| Control                                | ∓0       | 0                      | +10    | 0   |
| 250 ppm                                | 23+      | rc                     | 24∓    | (Q  |
|                                        | + 00     | 20                     | + 80   |     |
| mdd ooyy                               | -        | ā t                    | - <br> | 0.0 |
| 4000 ppm                               | 443 ±    | 107                    | 489 ±  | 153 |

50

(HAN300)

# TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

| S | HEMICAL     | INTAKE | CHANGES | (SUMMARY) |
|---|-------------|--------|---------|-----------|
| W | ALL ANIMALS | TS     |         |           |

| CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANTMALS PAGE : 7                                                     | eeks) 2 3 4 5 6 7      | 0 	op 0 | $43\pm$ 3 $43\pm$ 3 $43\pm$ 3 $42\pm$ 2 | $168\pm$ 16 $166\pm$ 15 $170\pm$ 12 $166\pm$ 16 $165\pm$ 13 $167\pm$ 11 |         |
|------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|---------|
|                                                                                                            | Administration (weeks) |                                                         |                                         | 168±                                                                    | +902    |
| STUDY NO. : 0685 ANIMAL : MOUSE B6DZF1/Crlj[Crj:BDF1] UNIT : mg/kg/d a y REPORT TYPE : Al 104 SEX : FBMALE | Administratic<br>1     | 0 ∓0 .                                                  | 48±                                     | 190± 13                                                                 | 753+ 28 |
| STUDY NO. : 0685 ANIMAL : MOUS. UNIT : mg_/i REPORT TYPE : A1 SEX : FBMALE                                 | Group Name             | Control                                                 | 250 ppm                                 | 1000 ррп                                                                | 4000    |

| STUDY NO.: 0685 ANIMAL: MOUSE B6D2F1/Cr1;[Cr.j:BDF1] UNIT: ng/kg/day REPORT TYPE: A1 104 SEX: FEMALE | :BDF1]         |                        |        | CHBA | CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS | CHANGES | (SUMMARY)      | •                                       |         |    |                  |    |       | PAGE |
|------------------------------------------------------------------------------------------------------|----------------|------------------------|--------|------|-----------------------------------------------|---------|----------------|-----------------------------------------|---------|----|------------------|----|-------|------|
| Group Name                                                                                           | Administr<br>8 | Administration (weeks) | reeks) |      | 01                                            |         | 11             | AND | 12      |    | 13               |    | 14    |      |
| Control                                                                                              | <br>  <br> 0   | 0                      | · 0    | 0    | <del> </del>                                  | 0       | <del>†</del> ] | 0                                       | ÷I<br>0 | 0  | ∓0               | 0  | +0    | 0    |
| 250 ppm                                                                                              | 42 ±           | ю                      | 41=    | ო    | 42±                                           | 4       | 42+            | က                                       | 41 ±    | 63 | 40+              | 4  | 40+   | ಣ    |
| 1000 ppm                                                                                             | 167±           | 14                     | T991   | 18   | 172±                                          | 14      | ∓691           | 12                                      | 158±    | 13 | <del>+</del> 191 | 14 | 161 ± | 15   |
| 4000 չդրու                                                                                           | ∓ +999         | 56                     | 651±   | 69   | <del>+</del> 289                              | 49      | 648 ±          | 42                                      | 637±    | 51 | €40±             | 45 | 644 ± | 52   |
|                                                                                                      |                |                        |        |      |                                               |         |                |                                         |         |    |                  |    |       |      |

|                                                                                                                        | Group Name Administration (weeks) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| (SUMMARY)                                                                                                              |                                   |
| CHEMICAL INTAKE CHANGES ALL ANIMALS                                                                                    |                                   |
|                                                                                                                        | ion (weeks)                       |
| STUDY NO. : 0685<br>AVIMAL : MOUSE B6DZF1/Crlj[Crj:BDF1]<br>UNIT : mg/kg/d a y<br>REPORT TYPE : Al 104<br>SEX : FEMALE | Administration                    |
| STUDY NO. : 0685 ANIMAL : MOUSE BEDZFL/Cr<br>UNIT : mg/kg/day<br>REPORT TYPE : AI 104 SEX : FEMALE                     | Group Name                        |

| SEX : FEMALE |               |          |        |    |               |    |               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                               |    |         | PAGE: 9 |
|--------------|---------------|----------|--------|----|---------------|----|---------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|----|---------|---------|
| Group Name   | Administ      | ration ( | weeks) |    |               |    |               |    | The second secon | -                                      | 900000 Acad acad (management) |    |         |         |
|              | 81            |          | 18 22  |    | 26            |    | 30            |    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 38                            |    | 42      |         |
|              |               |          |        |    |               |    |               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                               |    |         |         |
| Control      | ÷I            | 0        | ÷ 0    | 0  | <del></del> 0 | 0  | <del></del>   | 0  | T-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                      | <del>-</del> 0                | 0  | ÷ <br>0 | 0       |
| 250 ppm      | +:<br>88<br>8 | ጥ        | 39∓    | が  | 36+           | 2  | 34+           | 9  | 34+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ເດ                                     | 34+                           | വ  | 34#     | വ       |
| 1000 ppm     | 148±          | 19       | 153土   | 20 | 148±          | 27 | 137±          | 18 | 133±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61                                     | 136±                          | 20 | 137±    | 23      |
| 4000 բրոո    | ∓689          | 29       | 642 ±  | 29 | 634±          | 06 | $\pm 297 \pm$ | 29 | ∓069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                     | ∓809                          | 16 | ∓069    | 69      |

| STUDY NO.: 0685  ANTMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] UNIT : mg/kg/day  REPORT TYPE : A1 104  SEX : FBMALE | :j:BDF1]               |         |        | CHEMICAL INT<br>ALL ANIMALS | CHEMICAL INTAKE CHANGES (SUMMARY)<br>ALL ANIMALS | CHANGES | (SUMMARY) |    |                    |    |                |    |                  | PAGE: 10 |
|------------------------------------------------------------------------------------------------------------|------------------------|---------|--------|-----------------------------|--------------------------------------------------|---------|-----------|----|--------------------|----|----------------|----|------------------|----------|
| Group Name                                                                                                 | Administration (weeks) | ation ( | weeks) |                             | 54                                               | 4       | 58        |    | 29                 |    | 99             |    | 0.2              |          |
| Control                                                                                                    | ÷ 0                    | 0       | +0     | 0                           | <del>4</del>  <br>0                              | 0       | +1 0      | 0  | <del> </del>  <br> | 0  | <del>∓</del> 0 | 0  | - <del> </del> 0 | 0        |
| 250 ppm                                                                                                    | 31.                    | 9       | 32±    | 7                           | 79 ∓                                             | ιo      | 30#       | 9  | 31+                | ર  | 30∓            | ø  | 767              | Ø        |
| 1000 ррт                                                                                                   | 134±                   | 23      | 138±   | 23                          | 124±                                             | 18      | 125±      | 19 | 131±               | 18 | $129 \pm$      | 24 | 119±             | 24       |
| 4000 руян                                                                                                  | ∓689                   | 19      | ∓819   | 100                         | 545±                                             | . 92    | ±858      | 92 | ∓ €99              | 99 | $\mp 992$      | 28 | 537±             | 49       |
|                                                                                                            |                        |         |        |                             |                                                  |         |           |    |                    |    |                |    |                  |          |

|                                                                                                            | Administration of the second o | 0                  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                                                                                            | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #0                 |
|                                                                                                            | TO THE PERSON AND AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF T | 0                  |
|                                                                                                            | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∓0                 |
|                                                                                                            | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                  |
|                                                                                                            | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0                 |
|                                                                                                            | 111001110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                  |
| (SUMMARY)                                                                                                  | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>+ </del><br>0 |
| CHANGES                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  |
| CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS                                                              | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +10                |
| J 44                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  |
|                                                                                                            | (weeks) 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷ 0                |
|                                                                                                            | Administration<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                  |
| 2F1/Cr1;[Crj:BDF1]<br>1 a y                                                                                | Adminis<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷-0                |
| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : mg/kg/d a y REPORT TYPE : A1 104 SEX : FEMALE | Group Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control            |

| MIS 4   |  |
|---------|--|
| B       |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
| (AN300) |  |
| ≅       |  |

80

554土

92

 $\mp 969$ 

101

 $\pm 83 \pm$ 

103

 $\pm 693$ 

64

 $542\pm$ 

19

555±

26

 $545\pm$ 

4000 ppm

 $127\,\pm$ 

19

136±

22

 $124\pm$ 

17

 $124 \pm$ 

23

 $121\,\pm$ 

22

 $126\pm$ 

20

 $120\,\pm$ 

1000 ppm

30∓

250 ppm

31+

30∓

30+

| UMMARY) PAGE                                                                                            |                                |                 |         |          |            |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|---------|----------|------------|--|
| CHENICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS                                                           |                                | 0               | 9       | 23       | 102        |  |
|                                                                                                         | (weeks)                        | - <del></del> 0 | 32+     | 129±     | 570±       |  |
| :BDF1]                                                                                                  | Administration (weeks)_<br>102 | 0 +0            | 31.± 9  | 134± 14  | 610± 123   |  |
| STUDY NO.: 0685 ANUMAL : MOUSE B6D2F1/Cr1;[Cr;:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE | Group Name                     | Control         | 250 ppm | 1000 ppm | 4000 յրջու |  |

# TABLE F 1

HEMATOLOGY: MALE

| STUDY NO. : 0685<br>ANIMAL : MOUSE BEDZFI/Crij[Crj:BDF1]<br>WEASURE. TIME : 1 | 3 B6D2F1/Cr1j<br>l | [Cr.j:BDF1]                           |         |                    | HEM   | HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W) | JMMARY)<br>(05W) |                 |       |            |        |               |        |                     |        |
|-------------------------------------------------------------------------------|--------------------|---------------------------------------|---------|--------------------|-------|--------------------------------------------|------------------|-----------------|-------|------------|--------|---------------|--------|---------------------|--------|
| SEX : MALE                                                                    | REPORT             | REPORT TYPE : AI                      |         |                    |       |                                            |                  |                 |       |            |        |               |        |                     | PAGE : |
| Group Name                                                                    | NO. of<br>Animals  | RED BLOOD CELL<br>1 O⁵ ∕ µℓ           | CELL    | HEMOGLOBIN<br>R/dl | BIN   | HEMATOCRIT %                               | CRIT             | MCV<br>f &      |       | MCH<br>P.R |        | MCIIC<br>R/dl |        | PLATELET<br>1 0³/µl | T<br>g |
| Control                                                                       | 30                 | 9.74 ± 1.                             | 1.07    | 13.7 ±             | 1.1   | 42. 4 <u>±</u>                             | 3.1              | 43.7-1-         | 2.1   | 14.2 -     | 8.0    | 32. 4 ==      | 0.7    | 1674±               | 465    |
| 250 ppm                                                                       | 28                 | 9.15± 1.                              | I. 48   | 13.2+              | 1.9   | 40.8±                                      | 5.5**            | 44.8±           | 2.0   | 14.5+      | 0.7*   | 32.4±         | 1.5    | 1804±               | 486    |
| 1000 ppm                                                                      | 28                 | 7.47± 1.                              | 1,15**  | 12.6±              | 1.9** | 33.4±                                      | 4.5**            | 45.2±           | 4.3   | 17.0±      | 1. 4** | 37.6±         | 2. 4** | 1758±               | 319    |
| 4000 ppm                                                                      | 15                 | 5.48± L                               | I. 42** | 10.5+              | 2.8** | 27.7±                                      | 4. 4**           | 52.4±           | 9.3** | 19.2+      | 0.8**  | 37.7±         | 6.7**  | 1957±               | 675    |
| Significant                                                                   | Hilference;        | Significant difference ; * : P ≤ 0.05 |         | **: P ≤ 0.01       |       |                                            |                  | Test of Dunnett | nett  |            |        |               |        |                     |        |

| PAGE: 2                                                                                             |                   |          |            |            |          | BAIS 4                   |
|-----------------------------------------------------------------------------------------------------|-------------------|----------|------------|------------|----------|--------------------------|
| HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)                                                             | OBIN              | 0.1      | 0. 4**     | 0. 7***    | 2.2*     | Test of Dunnett          |
|                                                                                                     | METHEMOCLOBIN     | 0.4⊹     | 1.0+       | 2.6+       | 5.3+     | ** : P \square 0.01      |
| FL/Crlj[Crj:BDFL]<br>REPORT TYPE : Al                                                               | RETICULOCYTE %    | 2.5± 1.2 | 3.8± 2.9** | 4.8± 5.0** | 1.8+ 2.6 | * : P ≤ 0.05             |
| 5<br>SE B6D2F1/Cr1,j<br>1<br>REPORT                                                                 | NO. of<br>Animals | 30       | 28         | 28         | 15       | Significant difference ; |
| STUDY NO. : 0685 ANIMAL : MOUSE BGDZFL/Cĸlj[Crj:BDFl] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1 | Group Name        | Control  | 250 ppm    | 1000 mpm   | 4000 ppm | Significant (HCL070)     |

| STUDY NO.: 0685 ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE REPORT TYPE : A1 | SS<br>ISE B6D2F1/Cr1.<br>1<br>REPORT | PF1/Cr1;[Crj:BDF1]<br>REPORT TYPE : A1 | _     |               |                      | HEMATOLOC<br>ALL ANIMA | HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W) | Q      |                 |         |    |                   |   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAGE: 3 |
|----------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|-------|---------------|----------------------|------------------------|--------------------------------------------|--------|-----------------|---------|----|-------------------|---|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Group Name                                                                                         | NO. of<br>Animals                    | ΨΒC<br>1 O³ ∕ μℓ                       | יק    | Dif<br>NEUTRO | Differential WDC (%) | WBC (%<br>LYMPHO       |                                            | MONO   |                 | EOSINO  |    | BAS0              |   | OTHER          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Control                                                                                            | 30                                   | 4. 90 ⊹                                | 3. 03 | 30 -⊦         | 14                   | <del>4</del> €9        | 16                                         | 4 +    | ~               | +I<br>& |    | · <del>+I</del> 0 | 0 | \frac{1}{k}    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 250 ppm                                                                                            | 28                                   | 4.77±                                  | 2.57  | 29+           | 14                   | €4±                    | 14                                         | e<br>† | -               | 3+      | 63 | +0                | 0 | 0 十            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1000 ppm                                                                                           | 28                                   | 5.76±                                  | 2.52  | 5e±           | [4                   | ∓49                    | 16                                         | 4+     |                 | 3<br>+1 | m  | #0                | 0 | 10             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 4000 ppm                                                                                           | 15                                   | 5.42±                                  | 2.35  | 39.           | 21                   | 25±                    | 17                                         | 2+     | 23              | 5+      | -  | +1                | 0 | <del>+</del> i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Significant                                                                                        | Significant difference : *: P ≤ 0.05 | <br>∗                                  | 0.05  | **: P S 0.01  | 0.01                 |                        |                                            | Test   | Test of Dunnett | 1,      |    |                   |   |                | 10 TO THE TOTAL |         |

# TABLE F 2

HEMATOLOGY: FEMALE

| STUDY NO. : 0685 ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1] MEASURE TIME : 1 | 3 B6D2F1/Crlj                      | [Cr.j:BDF1]                     |                                        |                    | HE                       | HEMATOLOCY (SUMMARY)<br>ALL ANIMALS (105W) | UMMARY)<br>105W) |                 |       |             |        |                |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------------------|--------------------|--------------------------|--------------------------------------------|------------------|-----------------|-------|-------------|--------|----------------|--------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEX : FEMALE                                                           | KEI'OKI                            | KEPORT TYPE : A1                |                                        |                    |                          |                                            |                  |                 |       |             |        |                |        |                     | PAGE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Group Name                                                             | NO. of<br>Animals                  | RED BLC<br>1 O <sup>5</sup> / µ | RED BLOOD CELL<br>1 O <sup>s</sup> /µl | HEMOGLOBIN<br>g/dl | BIN                      | HEMATOCRIT                                 | CRIT             | MCV<br>f 2      |       | MCII<br>p.g |        | MCHC<br>R / dl |        | PLATELET<br>1 0³∕µℓ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        | M                                  |                                 | And Anticked by November 1             |                    | Management of the second |                                            |                  |                 |       |             |        |                |        |                     | April Artificial management of the state of |
| Control                                                                | 83                                 | 10.01±                          | 0.43                                   | 14.5 =             | 0.7                      | 44.2±                                      | 2.6              | 44.1±           | L.3   | 14.5±       | 0.5    | 32.8±          | 0.7    | ±1711               | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 250 ppm                                                                | 25                                 | 9.05∓                           | 1.15**                                 | 13. 4±             | 1. 2**                   | 41.1±                                      | 3. 3**           | 45.6±           | 2.0** | 14.8+       | 0.6**  | 32.5±          | 0.8    | 1043±               | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1000 ppm                                                               | 24                                 | 7.46±                           | 1. 44**                                | 12.0±              | 2. 2**                   | 34.5±                                      | 5.0**            | 47.1±           | 5.1** | 16.2±       | 0.8**  | 34.6±          | 2. 6** | ∓996                | 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000 ppm                                                               | 34                                 | 5.97±                           | 1. 17**                                | II. 2±             | 2. 2**                   | 29.9∓                                      | 3. 9**           | 51.1±           | 6.7** | 18.8±       | 1. 3** | 37.1±          | 4. 1** | 1124±               | 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Significant o                                                          | Significant difference; *:P ≤ 0.05 | 0 ⋈ d : *                       |                                        | # : P ≤ 0.0I       | I                        |                                            |                  | Test of Dunnett | nett  |             |        |                |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                                                                         | PAGE: 5          |                    |              |            |            |            |                                     |
|-------------------------------------------------------------------------|------------------|--------------------|--------------|------------|------------|------------|-------------------------------------|
| HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W)                              |                  | METHEMOGLOBIN<br>% | $0.4\pm$ 0.1 | 0.7± 0.2** | 2.0± 0.6** | 4.0± 1.5** | **: P \le 0.01 Test of Dunnett      |
| Cr.j:BDF1]                                                              | IPE : AI         | RETICULOCYTE<br>%  | $2.1\pm0.6$  | 4.0± 1.9** | 7.0± 5.7** | 3.6+ 4.5   |                                     |
| E B6D2F1/Crlj[C                                                         | REPORT TYPE : A1 | NO. of<br>Animals  | 23           | 25         | 24         | 34         | Significant difference; *: P ≤ 0.05 |
| STUDY NO. : 0685 ANIMAL : MOUSE B6DZFI/Crlj[Crj:BDF1] MEASURE. TIME : 1 | SEX : FEMALE     | Group Name         | Control      | 250 ppm    | 1000 ppm   | 4000 ppm   | Significant o                       |

| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Crl;[Crj:DBF1] MEASURE TIME : 1 SEY : FRIMALE | 55<br>ISE B6D2F1/Cr.<br>1           | Lj[Crj:BDF1  |        |                                              |          | HEMATOLOC<br>ALL ANIMA | HEMATOLOGY (SUMMARY)<br>ALL ANIMALS (105W) | S        |                 |         |            |               |   |                 |    |         |
|--------------------------------------------------------------------------------------|-------------------------------------|--------------|--------|----------------------------------------------|----------|------------------------|--------------------------------------------|----------|-----------------|---------|------------|---------------|---|-----------------|----|---------|
| Group Name                                                                           | NO. of<br>Animals                   | WBC 103/µl   | Sut.   | Diff                                         | erential | Differential WBC (%)   |                                            | MONO     |                 | EOSINO  |            | BASO          |   | OTHER           |    | PAGE: 6 |
| Control                                                                              | 23                                  | 3.04±        | 1. 23  | 21±                                          | Ħ        | +89                    | 12                                         | 3+       | 63              | 4-1-    | <i>w</i> . | <del></del> 0 | 0 | - <del></del> [ | -  |         |
| 250 թթա                                                                              | 25                                  | 3.91+        | 3.81   | 23 <sup>±</sup>                              | σ,       | ±01                    | 01                                         | 3+       | ٦               | +i<br>& | 63         | +10           | 0 | +               | -  |         |
| 1000 ppm                                                                             | 24                                  | 3.40+        | 1.88   | 797                                          | 13       | €5 ±                   | 91                                         | <b>4</b> | 4               | 3+      | 63         | †1            | 0 | +1              | 4  |         |
| 4000 ppm                                                                             | 34                                  | 13.05± 42.81 | 42.81  | 30+                                          | 16       | +19                    | 17                                         | 4        | \$ <b>±</b>     | 3<br>+  | *          | +! 0          | 1 | 2±              | 69 |         |
| Significant                                                                          | Significant difference; *: P ≤ 0.05 | *            | ≤ 0.05 | **<br>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 0.01     |                        |                                            | Test     | Test of Dunnett |         |            |               |   |                 |    |         |

# TABLE G 1

BIOCHEMISTRY: MALE

| STUDY NO. : 0685 ANIAAL : MOUSE B6DZF1/Crlj[Crj:BDF1] MEASURE. TIME : 1 SEX : MALE | B6D2F1/Crlj       | BF1/Crlj[Crj:BDF1]<br>REPORT TYPE : A1 |                      |                   | BIC<br>ALI | BIOCHEMISTRY (SUMMARY)<br>ALL ANIMALS (1054) | (SUMMARY)<br>105W) |                      |        |                  |    |                        |       |                       | PAGE :: |
|------------------------------------------------------------------------------------|-------------------|----------------------------------------|----------------------|-------------------|------------|----------------------------------------------|--------------------|----------------------|--------|------------------|----|------------------------|-------|-----------------------|---------|
| Group Name                                                                         | NO. of<br>Animals | TOTAL F<br>g / dl                      | TOTAL PROTEIN R / dl | ALBUMIN<br>R / d2 | N          | A/G RATIO                                    | LIO                | T-BILIRUBIN<br>mg/de | RUBIN  | GLUCOSE<br>mg/dk |    | T-CHOLESTEROL<br>mg/dl | TEROL | TRIGLYCERIDE<br>mg/dl | RIDE    |
| Control                                                                            | 30                | 5.3 :-                                 | 0.7                  | 2.6 ±             | 0.4        | 1.0 =                                        | 0.2                | 0.11 =               | 0.02   | 185 ⊹            | 37 | 114±                   | 55    | 52 ±                  | 25      |
| 250 ppm                                                                            | 28                | 5.6±                                   | 6.0                  | 2.8±              | 0.4        | 1.1+                                         | 0.2                | 0.12±                | 0.01*  | 188±             | 27 | 148±                   | 82    | 70∓                   | 44      |
| 1000 ppm                                                                           | 27                | 5.1+                                   | 0.7                  | 2.5±              | 0.4        | 1. 0 ±                                       | 0.2                | ∓91.0                | 0.07** | 182±             | 44 | 122±                   | 29    | 64±                   | 38      |
| 4000 ppm                                                                           | 15                | 5.1±                                   | 0.8                  | 2.5               | 0.5        | 1.0±                                         | 0.2                | 0.21±                | 0.08** | ∓691             | 46 | 117±                   | 43    | + 29<br>+             | 36      |
| Significant difference ; * : P ≤ 0.05                                              | lifference ;      | Vil<br>≃<br>*                          | 0.05                 | ** : P ≤ 0.01     | 01         |                                              |                    | Test of Dunnetl      | nnetl  |                  |    |                        |       |                       |         |

(HCL074)

| STUDY NO. : 0685<br>ANIMAL : MOUSE B6DZF1/Cr1,i[Cr.j:BDF1]<br>MEASURE, TIME : 1 | ; B6D2F1/Crl,i    | [Cr.j:BDF1]        |          |                | BI<br>AI | BIOCHEMISTRY (SUMMARY)<br>ALL ANIMALS (105W) | SUMMARY)<br>05W) |                 |       |                |     |                  |   |               |        |   |
|---------------------------------------------------------------------------------|-------------------|--------------------|----------|----------------|----------|----------------------------------------------|------------------|-----------------|-------|----------------|-----|------------------|---|---------------|--------|---|
| SEX : MALE                                                                      |                   | REPORT TYPE : A1   |          |                |          |                                              |                  |                 |       |                |     |                  |   |               | PAGE : |   |
| Group Name                                                                      | NO. of<br>Animals | PHOSPHOLIPID mg/d2 | OL IP ID | AST<br>I U / 2 | 8        | ALT<br>I U / 2                               |                  | LDII            | 6     | ALP<br>I U / L | 5   | G-GTP<br>I U / L |   | CK<br>I U / & | g      |   |
| Control                                                                         | 30                | 199-               | 73       | 101            | 136      | 57 ±                                         | 78               | 298-1           | 236   | 208 ☆          | 69  | <del>!</del>     | 1 | 53            | 27     |   |
| 250 ppm                                                                         | 28                | 245 ±              | 103      | 73±            | 45       | 58±                                          | 72               | 250±            | 145   | 227 ±          | 116 | +1               | Т | 42±           | 11     |   |
| 1000 ppm                                                                        | 27                | 214±               | 103      | 93+            | 82       | 52±                                          | 53               | 297±            | 143   | 251±           | 218 | <del>+!</del>    |   | 10±           | 70     |   |
| 4000 ppm                                                                        | 15                | ∓961               | 49       | 147±           | 138      | 81 <del>+</del>                              | 601              | ∓019            | 344** | 703 ∓          | 112 | +                | - | 124 ±         | 261    |   |
| Significant difference ; * : P ≤ 0.05                                           | ifference ;       | * : P ≤ 0          | ), 05    | **: P ≤ 0.01   |          |                                              |                  | Test of Dunnett | nett  |                |     |                  |   |               |        | 1 |

(HCL074)

| Group Name NO. of UREA NITROGEN Animals ms/dt |          |                    | ALL | ALL ANIMALS (105W) | 54) |                      |     |                  |     |                  |                      | . 10,40 |
|-----------------------------------------------|----------|--------------------|-----|--------------------|-----|----------------------|-----|------------------|-----|------------------|----------------------|---------|
|                                               | TROGEN   | SODIUM<br>m Eq / & |     | POTASSIUM<br>mEq∕2 | W   | CHLORIDE<br>m Eq / & |     | CALCIUM<br>mg/dl |     | INORGAN<br>mg/d2 | INORGANIC PHOSPHORUS |         |
| Control 30 $22.3\pm$                          | 8.6      | 153±               | 67  | 4. 2 十             | 0.3 | 121                  | m   | 9.0 -            | 0,6 | 6.3±             | 6.0                  |         |
| 250 ppm 28 21.9±                              | 9.<br>9. | 152±               | _   | 4. 1±              | 0.3 | 120+                 | cs. | $9.2 \pm$        | 0.7 | 5.9±             | 0.6                  |         |
| 1000 ppm $27$ $22.3\pm$                       | 8.2      | 153±               | 6)  | 4.4+               | 0.4 | 121±                 | ო   | 8.9              | 0.6 | 6.2+             | 1.1                  |         |
| 4000 ppm 15 25.1±                             | 7.3      | 153±               | 23  | 4.4+               | 0.4 | 121                  | rs  | 8.8              | 0.7 | $6.2 \pm$        | 0.9                  |         |
| Significant difference; *: P ≤ 0.05           |          | **: P ≤ 0.01       |     |                    | =   | Test of Dunnett      | ett |                  |     |                  |                      |         |

# TABLE G 2

BIOCHEMISTRY: FEMALE

| STUDY NO. : 0685 ANIMAL : MOUSE B6DZF1/Crlj[Crj:BDF1] MEASURE, TIME : 1 | g BGDZF1/Crlj                       | [Cr.j:BDF1]           |        |                 | BIOC   | BIOCHEMISTRY (SUMMARY)<br>ALL ANIMALS (105W) | (SUMMARY)<br>(OSW) |                      |        |                  |    |                        |        |                       |       |
|-------------------------------------------------------------------------|-------------------------------------|-----------------------|--------|-----------------|--------|----------------------------------------------|--------------------|----------------------|--------|------------------|----|------------------------|--------|-----------------------|-------|
| SEX : FEMALE                                                            |                                     | REPORT TYPE : A1      |        |                 |        |                                              |                    |                      |        |                  |    |                        |        |                       | PAGE: |
| Group Name                                                              | NO. of<br>Animals                   | TOTAL PROTEIN<br>g/dl | ROTEIN | ALBUMIN<br>g/dl |        | A/G RATIO                                    | LIO                | T-BILIRUBIN<br>mg/dl | RUBIN  | GLUCOSE<br>mg/dl |    | T-CHOLESTEROL<br>mg/dl | STEROL | TRIGLYCERIDE<br>mg/d& | SRIDE |
| Control                                                                 | 53                                  | 4.9±                  | 0.4    | 2.6⊹            | 0.2    | 1.14                                         | 0.2                | 0.11 🕂               | 0.02   | 154±             | 30 | 75±                    | 11     | 40±                   | 15    |
| 250 ppm                                                                 | 25                                  | 4.9                   | 0.6    | 2.7±            | 0.3    | L. 2±                                        | 0.2                | 0.12±                | 0.04   | 155#             | 23 | †1<br>88               | 58     | 51,4                  | 27    |
| mad 0007                                                                | 24                                  | 4.9±                  | 8.0    | 2.6±            | 0.4    | 1.2+                                         | 0.3                | 0.15±                | 0.05** | 155±             | 23 | 81+                    | 25     | 799                   | 21    |
| 4000 ppm                                                                | 34                                  | 5.5                   | I. 0** | 2.9+            | 0. 4** | 1.2+                                         | 0.3                | $0.22\pm$            | 0.09** | 144±             | 38 | +96                    | 49     | <del>+</del> 02       | 41    |
| Significant                                                             | Significant difference; *: P ≤ 0.05 | 0 ∨I<br>              | 1, 05  | **: P ≤ 0.01    |        |                                              |                    | Test of Dunnett      | mett   |                  |    |                        |        |                       |       |

(HCL074)

| STUDY NO.: 0685 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] MEASURE. TIME : 1 SEX : FEMALE | B6D2F1/Crlj                          | [Crj:BDF1]<br>TYPE : A1 |       |                | B3  | BIOCHEMISTRY (SUMMARY)<br>ALL ANIMALS (105W) | SUMMARY)<br>.05W) |                 |       |                |       |                     |   |                  | PAGE . | ر. |
|-------------------------------------------------------------------------------------|--------------------------------------|-------------------------|-------|----------------|-----|----------------------------------------------|-------------------|-----------------|-------|----------------|-------|---------------------|---|------------------|--------|----|
| Group Name                                                                          | NO. of<br>Animals                    | PHOSPHOLIPID<br>mg/dl   | LIPID | AST<br>I U / g | 6   | ALT<br>I U / g                               | g g               | LDil<br>I U / g | e     | ALP<br>I U / g | ê     | G-GTP<br>I U / g    |   | CK<br>I U / g    | !      |    |
| Control                                                                             | 23                                   | 135 🚉                   | 26    | 122            | 177 | 54.±                                         | 7.1               | 736±            | 221   | ∓698           | 146   | <del>+</del> I<br>0 | - | <del>- </del> 69 | 64     |    |
| 250 ppm                                                                             | 25                                   | 760 +                   | 103   | 117±           | 143 | £65                                          | 201               | 223±            | 144   | 370±           | 187   | <b>1</b>            | - | 54±              | 30     |    |
| 1000 ppm                                                                            | 24                                   | 148±                    | 39    | 81±            | 36  | 31±                                          | 16                | 282±            | 203   | 232±           | 104** | +0                  | 0 | ∓89              | 56     |    |
| 4000 ppm                                                                            | 34                                   | 174±                    | 75**  | 136±           | 124 | 44±                                          | 20                | 542±            | 622** | <del></del>    | 113   | +1                  | က | 82±              | 56     |    |
| Significant c                                                                       | Significant difference ; *: P ≤ 0.05 | * . P S 0.              |       | ** : P ≤ 0.01  | _   |                                              |                   | Test of Dunnett | mett  |                |       |                     |   |                  |        |    |

(HCL074)

| STUDY ND. : 0685<br>ANIMAL : MOUSE BEDZFI/Crlj[Crj:BDF1]<br>MEASURE. TIME : 1 | 6 B6D2F1/Cr1j<br>1                  | [Cr.j:BDF1]      |                        |                  | BIC       | BIOCHEMISTRY (SUMMARY)<br>ALL ANIMALS (105W) | SUMMARY)<br>05W) |                      |      |                  |                  |                  |                      |   |
|-------------------------------------------------------------------------------|-------------------------------------|------------------|------------------------|------------------|-----------|----------------------------------------------|------------------|----------------------|------|------------------|------------------|------------------|----------------------|---|
| SEX : FEMALE                                                                  | REPORT                              | REPORT TYPE : AL |                        |                  |           |                                              |                  |                      |      |                  |                  |                  | PAGE :               | 9 |
| Group Name                                                                    | NO. of<br>Animals                   | UREA NI<br>mg/d& | UREA NITROGEN<br>mg/dk | SODIUM<br>m Eq∕2 |           | POTASSIUM<br>m.Eq./ &                        | î<br>Wn          | CHLORIDE<br>m Eq / 2 |      | CALCIUM<br>mg/dl |                  | INORGAN<br>mg/dl | INORGANIC PHOSPHORUS |   |
| Control                                                                       | 23                                  | 16.2±            | 2.6                    | 151±             | 63        | 4.0                                          | 0.3              | 121 ±                | 69   | 8.7±             | 0.4              | 5.4±             | 0.8                  |   |
| 250 ppm                                                                       | 25                                  | 17.6±            | 5.4                    | 152±             | 83        | 4.2                                          | 0.4              | 122±                 | က    | 8.9±             | 0.5              | 5.9              | 1.1                  |   |
| 1000 ppm                                                                      | 24                                  | 17.7±            | 4.9                    | 151±             | က         | 4.3+                                         | 0.5              | 121 ±                | m    | 9.0+             | 0.7              | 6.3              | J. 0**               |   |
| 4000 ppm                                                                      | 34                                  | 23.9±            | 23.9± 16.0**           | 154±             | **<br>3** | 4.4                                          | 0.8              | 122±                 | 44   | 9.3              | <b>%**</b> 0.7** | 6.5+             | J. 6**               |   |
| Significant o                                                                 | Significant difference; *: P ≤ 0.05 | 0 ≥ q · *        |                        | **: P ≤ 0.01     |           |                                              | 1                | Test of Dunnett      | att: |                  |                  |                  |                      |   |

(HCL074)

# TABLE H 1

URINALYSIS: MALE

#### Urinalysis of male mice

In the dosed groups, ketone body could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items and number of animals that could not be measured are shown as followed.

Ketone body: 1000 ppm(2), 4000 ppm(14)

Therefore, ketone body in 4000 ppm dosed group could not be evaluated.

| STUDY NO. : 0685  | ORINALYSIS               |  |
|-------------------|--------------------------|--|
| ANIMAL : MOUSE BO | 5E B6D2F1/Cr1;[Crj:BDF1] |  |
| MEASURE. TIME: 1  |                          |  |
| SEX : MALE        | REPORT TYPE : A1         |  |

| SEX : MALE  | REPORT TYPE : A1         | YPE : / | A1             |                         |                                         |         |        |          |                          |                    |     |                                   |                             | PAGE: 1 |  |
|-------------|--------------------------|---------|----------------|-------------------------|-----------------------------------------|---------|--------|----------|--------------------------|--------------------|-----|-----------------------------------|-----------------------------|---------|--|
| Group Name  | NO. of<br>Animals        | pII5.0  | 6.0            | 5.0 6.0 6.5 7.0 7.5 8.0 | 7.0.7                                   | .5 8.   |        | 8.5 CIII | Protein ± + 2+ 3+ 4+ CHI | Glucose            | IID | Netone body<br>- ± + 2+ 3+ 4+ CHI | 0ccult blood<br>- ± + 2+ 3+ | IID     |  |
| Control     | 31                       | 0       | 23             | 4                       | s                                       | 8       | 0 6    |          | 0 0 16 13 2 0            | 31 0 0 0 0 0       |     | 4 22 5 0 0 0                      | 28 1 0 1 1                  |         |  |
| 250 ppm     | 29                       | 0       | ಣ              | ဘ                       | 2                                       | 7       | 3 1    |          | 0 2 17 9 1 0             | 29 0 0 0 0 0       |     | 4 24 1 0 0 0                      | 29 0 0 0 0                  |         |  |
| 1000 ppm    | 28                       | 0       | rc             | rs                      | 6                                       | , ,     | 2 0    |          | 0 3 19 6 0 0             | 28 0 0 0 0 0       |     | 5 17 4 0 0 0                      | 26 0 0 0 2                  |         |  |
| 4000 ppm    | 16                       | 0       | က              | က                       | 23                                      | ıs.     | 3 0    |          | 137410                   | 16 0 0 0 0 0       |     | 0 1 1 0 0 0 ?                     | 16 0 0 0 0                  |         |  |
| Significant | Significant difference : |         | *: P \leq 0.05 | 0.05                    | *************************************** | # : P \ | ≥ 0.01 |          |                          | Test of CHI SQUARE |     |                                   |                             |         |  |

<sup>? :</sup> Significant test is not applied, because No. of data in this group is less than 3.

BAIS 4

76

(HCL101)

| SEX : MALE REPORT TYPE : A1 | MEI OM I I I      |                                  |              |                    | PAGE: 2 |
|-----------------------------|-------------------|----------------------------------|--------------|--------------------|---------|
| Group Name NO.<br>Anji      | NO. of<br>Animals | Urobilinogen<br>± + 2+ 3+ 4+ CHI |              |                    |         |
|                             |                   |                                  |              |                    |         |
| Control ;                   | 31                | 31 0 0 0 0                       |              |                    |         |
| 250 ppm                     | 29                | 29 0 0 0 0                       |              |                    |         |
| 1000 ppm                    | 28                | 28 0 0 0 0                       |              |                    |         |
| 4000 ppm                    | 16                | 16 0 0 0 0                       |              |                    |         |
| Significant difference :    |                   | *: P ≤ 0.05 **                   | # : P ≤ 0.01 | Test of CMI SQUARE |         |

# TABLE H 2

URINALYSIS: FEMALE

#### Urinalysis of female mice

In the dosed groups, ketone body could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items and number of animals that could not be measured are shown as followed.

Ketone body: 1000 ppm(2), 4000 ppm(26)

| Group Name  | NO. of<br>Animals        | pll<br>5.0 6.0 |             | 6.5 7.0 7.5 |            | 8.0 8.5 C     | CIII – | Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glucose — ± + 2+ 3+ 4+ CIII | Ketone body  - ± + 2+ 3+ 4+ GII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Occult blood - ± + 2+ 3+ CIII |
|-------------|--------------------------|----------------|-------------|-------------|------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|             |                          |                |             |             |            |               |        | Management of the control of the con |                             | And a second sec |                               |
| Control     | 24                       | 0 1            | e           | က           | 10 7       | 0 2           | 0      | 1 17 6 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 0 0 0 0 0                | 9141000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 0 0 0 4                    |
| 250 ppm     | 25                       | 0 0            | 63          | 4           | 13 5       | 5 1           | 0      | 2 15 8 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 0 0 0 0 0                | 5 19 1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 0 0 2 0 *                  |
| 1000 ppm    | 26                       | 0 4            | 63          | 4           | 6          | 0 2           | 0      | 4 18 4 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 0 0 0 0 0                | 9 15 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 0 0 2 1                    |
| 4000 ppm    | 35                       | 0 13           | 63          | 4.          | 11 5       | 5 0           | 0      | 7 26 2 0 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35 0 0 0 0 0                | 180000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35 0 0 0 0 *                  |
| Significant | Significant difference ; | ٠٠<br>*        | *: P ≤ 0.05 |             | ط<br><br># | ## : P ≤ 0.01 |        | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test of CHI SQUARE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

| STUDY NO. : 0685 ANHAL : MOUSE BED2F1/Cr1;[Cr.j:BDF1] SEX : FEMALE : 1 SEX : FEMALE : 1 SEvoup Name |
|-----------------------------------------------------------------------------------------------------|
| B6D2F1/C REPC NO. of Animals 21 25 26 35                                                            |

## TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

|                                                                                           | EYS                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.091      | 0.078      | 1.020     | 0.065      |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|------------|--|
|                                                                                           | KIDNEYS                                 | A CONTRACTOR OF THE PROPERTY O | 0.645土     | 0.620±     | 0.812±    | 0.624±     |  |
|                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.048      | 0.186      | 0.191     | 0.206      |  |
|                                                                                           | LUNGS                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.196±     | 0.235±     | 0.250±    | 0.250±     |  |
|                                                                                           | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.018      | 0.022      | 0.025     | 0.039**    |  |
| 0                                                                                         | IIEART                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, 225 ±   | 0.231±     | 0.238±    | 0.255±     |  |
| TE (SUMMAR)<br>547)                                                                       | SS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028      | 0.032      | 0.212     | 0.023      |  |
| ORCAN WEIGHT:ABSOLUTE (SUMMARY)<br>SURVIVAL ANIMALS (105W)                                | TESTES                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.218±     | $0.212\pm$ | 0.270±    | 0.223±     |  |
| ORGAN A<br>SURVIV                                                                         | ALS                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002      | 0.002      | 0.002     | 0.002      |  |
|                                                                                           | ADRENALS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009 ±    | 0.009      | 0.010±    | ₩ 00.00    |  |
|                                                                                           | eight                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4        | 9.1        | 8. 2      | 7.5**      |  |
| .j:BDF1]                                                                                  | Body Weight                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.2 ± 7.4 | 47.2± 9.1  | 46.0± 8.2 | 36.8± 7.5* |  |
| STUDY NO. : 0685 ANUMAL : MOUSE BGDZF1/Crlj[Crj;BDF1] REPORT TYPE : A1 SEX : MALE UNIT: g | NO. of<br>Animals                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30         | 28         | 28        | 15         |  |
| STUDY NO. : 0685 ANIMAL : MOUSE REPORT TYPE : A1 SEX : MALE UNIT: g                       | Group Name                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control    | 250 ppm    | 1000 ppm  | 4000 րլու  |  |

PAGE: 1

(IICL040)

Significant difference ; \*: P  $\leq$  0.05 \*\*: P  $\leq$  0.01

BAIS 4

Test of Dunnett

| (105W)                                                                       | BRAIN                  | 0.016        | 0.014*       | 0.013        | 0.012        |
|------------------------------------------------------------------------------|------------------------|--------------|--------------|--------------|--------------|
| ORGAN WEIGHT:ABSOLUTE (SUMMARY)<br>SURVIVAL ANIMALS (105W)                   | BRA                    | 0. 465 ±     | 0. 455土      | 0.462±       | 0.472±       |
| 50 tX                                                                        | LIVER                  | 1.765± 0.566 | 1.970± 0.777 | 1.821± 0.505 | 1.954± 0.476 |
|                                                                              | SPLEEN                 | 0.111        | 0.048        | 0. 224**     | 0.480**      |
| 2F1/Cr1,[Cr.j:BDF1]                                                          |                        | 0.122土       | 3 0.118+     | 3 0.215±     | 5 0.353士     |
| STUDY NO.: 0685 ANIMAL: MOUSE BEDZF1/Crlji REPORT TYPE: A1 SEX: MALE UNIT: g | Group Name NO.<br>Anim | Control 30   | 250 ppm 28   | 1000 ppm 28  | 4000 ppm 15  |

PAGE: 2

| Test of Dunnett         | BAIS 4                                                                                                         |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------|--|
| **: P ≤ 0.01            | an manadalahan kangan kang |  |
| *: P ≤ 0.05             |                                                                                                                |  |
| Significant difference; | (IICL040)                                                                                                      |  |
|                         |                                                                                                                |  |

# TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

|                                                                                             |                   |           |            |         | ž          | ž          |
|---------------------------------------------------------------------------------------------|-------------------|-----------|------------|---------|------------|------------|
|                                                                                             | EYS               |           | 0.053      | 0.065   | 0.284**    | 1. 092**   |
|                                                                                             | KIDNEYS           | Oddishing | $0.408\pm$ | 0.410±  | $0.525\pm$ | $0.640\pm$ |
|                                                                                             | Ş                 |           | 0.019      | 0.021   | 0.019*     | 0.051**    |
|                                                                                             | LUNGS             |           | 0.171±     | 0.177±  | 0.182±     | 0.194±     |
|                                                                                             | ST.               |           | 0.014      | 0.014   | 0.026*     | 0.021**    |
| S                                                                                           | IIEART            |           | 0, 164 ±   | 0. 168± | 0.182±     | 0.183±     |
| JTE (SUMMARY<br>105W)                                                                       | OVARIES           |           | 0.050      | 0. 171  | 0.173      | 0.055      |
| ORCAN WEIGHT:ABSOLUTE (SUMMARY)<br>SURVIVAL ANIMALS (105W)                                  | 0VA               |           | 0. 044 ±   | 0. 105± | 0. 093 ±   | 0.045±     |
| ORGAN W<br>SURVIVA                                                                          | ADRENALS          |           | 0.002      | 0. 002  | 0.002      | 0.002      |
|                                                                                             | ADRI              |           | 0. 013 ±   | 0.013±  | 0. 013 ±   | 0.012±     |
|                                                                                             | Weight            |           | 8.8        | 5.<br>8 | 5. 2       | 3. 9**     |
| rj:BDF1]                                                                                    | Body              |           | 33.8⊥      | 33.5±   | 33.8±      | 28.6±      |
| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1] REPORT TYPE : A1 SEX : FBMALE UNIT: g | NO. of<br>Animals |           | 23         | 25      | 24         | 34         |
| STUDY NO. : 068. ANIMAL : MOUR REPORT TYPE : A. SEX : FEMALE UNIT: g                        | Group Name        |           | Control    | 250 թթա | 1000 ppm   | 4000 րրա   |

PAGE: 3

(HCL040)

BAIS 4

Test of Dunnett

\*\*: P ≤ 0.01

Significant difference ; \* : P  $\leq$  0.05

| TUDY NO. | ••  | 0685  |                        |
|----------|-----|-------|------------------------|
| VIMAL    | • • | MOUSE | B6D2F1/Cr1j[Cr.j:BDF1] |

ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

STUDY NO. : 0685
ANIMAL : MOUSE B
REFORT TYPE : A1
SEX : FEMALE
UNIT: 8

| UNIT: g    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                    |          |              | PAGE: 4 |
|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|----------|--------------|---------|
| Group Name | NO. of<br>Animals | SPLEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nati    | LIVER              | 2        | BRAIN        | N       |
|            |                   | MANAGE CONTRACTOR OF THE PARTY |         | A 444 was a second |          |              |         |
| Control    | 23                | $0.125\pm0.110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.110   | 1.419-             | 0.648    | 0.472± 0.013 | 0.013   |
| 250 ррт    | 25                | 0. 207.±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.160** | 1.557±             | 0.690    | 0.470+       | 0.012   |
| 1000 ppm   | 24                | 0.251±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.181** | $1.827 \pm$        | 1.038**  | 0.477±       | 0.014   |
| 4000 չչչու | 34                | 0.333±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.453** | 1.872±             | 1. 282** | 0.474±       | 0.017   |
|            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                    |          |              |         |

(HCL040)

BAIS 4

Test of Dunnett

**\***\* : P ≤ 0.01

Significant difference : \* :  $P \leq 0.05$ 

## TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

|      | MOLICE REPORT /Cwl : [Cw::-pner] |
|------|----------------------------------|
|      | BG B                             |
| 0685 | MOLECT                           |
|      |                                  |

| SEA : MALE<br>UNIT: % |                   |                 |               |                 |                 |                   |                  | PACE : 1 |
|-----------------------|-------------------|-----------------|---------------|-----------------|-----------------|-------------------|------------------|----------|
| Group Name            | NO. of<br>Animals | Body Weight (g) | ADREMALS      | TESTES          | IIEART          | LUNGS             | KIDNEYS          |          |
| Control               | 30                | 47.2-1.4        | 0.020± 0.005  | 0. 471 ± 0. 091 | 0.490 ± 0.101   | $0.428\pm\ 0.145$ | 1.402± 0.327     |          |
| 250 ppm               | 87                | 47.2± 9.1       | 0.020± 0.007  | 0.466± 0.117    | 0.511± 0.137    | $0.580\pm\ 0.776$ | $1.359\pm0.285$  |          |
| 1000 ppm              | 88                | 46.0± 8.2       | 0.022± 0.007  | 0.604 ± 0.480   | $0.534\pm0.123$ | 0.562± 0.446      | $1.752\pm 1.908$ |          |
| 4000 թթա              | 15                | 36.8± 7.5**     | 0.026土 0.008* | 0.632± 0.157**  | 0.719± 0.174**  | 0.724± 0.667**    | 1.745± 0.304**   |          |

(IICL042)

BAIS 4

| SEX : MALE<br>UNIT: % |                   |                 |                   |                    | PAGE: 2 |
|-----------------------|-------------------|-----------------|-------------------|--------------------|---------|
| Group Name            | NO. of<br>Animals | SPLEEN          | LIVER             | BRAIN              |         |
| Control               | 30                | $0.275\pm0.272$ | $3.848\pm1.590$   | 1.011± 0.189       |         |
| 250 ppm               | 88                | 0.269± 0.159    | 4.652± 3.270      | I. 006 ± 0. 236    |         |
| 1000 ppm              | 88                | 0.483± 0.489**  | $4.088 \pm 1.528$ | 1. $040\pm\ 0.214$ |         |
| 4000 թբու             | 15                | 1.061 ± 1.541** | 5.506± 1.795**    | 1.331 ± 0.265*     |         |

(IICL042)

BAIS 4

# TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

|                                                                                             | LUNGS KIDNEYS      | $0.517 \pm 0.098$ $1.226 \pm 0.223$ | 0.542± 0.111 1.248± 0.228 | 0.548± 0.096 1.600± 1.017** | 0. 686± 0. 178** 2. 179± 3. 411** |
|---------------------------------------------------------------------------------------------|--------------------|-------------------------------------|---------------------------|-----------------------------|-----------------------------------|
| (4.)                                                                                        | HEART              | 0.490± 0.056                        | 0.512± 0.071              | 0.543± 0.068*               | 0.653± 0.108**                    |
| OKGAN WEIGHT:RELATIVE (SUMMARY)<br>SURVIVAL ANIMALS (105W)                                  | OVARIES            | $0.139 \pm 0.177$                   | $0.315\pm\ 0.496$         | 0.287± 0.543                | 0.158± 0.197                      |
| ORGAN W<br>SURVIVA                                                                          | ADRENALS           | 0.039 ± 0.006                       | 0.039 ± 0.005             | 0.039± 0.007                | 0.043± 0.008                      |
| Cr.j:BDF1]                                                                                  | Body Weight<br>(g) | 33.8土 4.8                           | 33.5± 5.8                 | 33.8± 5.2                   | 28.6土 3.9**                       |
| 5<br>SE B6D2F1/Cr1;[<br>.1                                                                  | NO. of<br>Animals  | 23                                  | 25                        | 24                          | 34                                |
| STUDY NO.: 0685 ANIMAL : MOUSE B6D2F1/Cr1;[Cr.j:BDF1] REPORT TYPE : A1 SEX : FEMALE UNIT: % | Group Name         | Control                             | 250 ppm                   | 1000 ppm                    | 4000 ppm                          |

PAGE: 3

(HCL042)

BAIS 4

Test of Dunnett

 $++ : P \le 0.01$ 

Significant difference ;  $\star$  : P  $\leq$  0.05

| PAGE                                                                                         |                   |                   |                |                 |                |                                                |
|----------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|-----------------|----------------|------------------------------------------------|
| ORGAN WEIGHT:RELATIVE (SUMMARY)<br>SURVIVAL ANIMALS (105%)                                   | BRAIN             | 1. 423 ± 0. 197   | 1. 440± 0. 249 | 1. 440 ± 0. 202 | 1.688± 0.217** | Test of Dunnett                                |
| ORGAN #<br>SURVIVA                                                                           | LIVER             | $4.302\pm\ 2.250$ | 4.789士 2.580   | 5.435± 2.856    | 6.365± 3.181*  | P ≤ 0.01                                       |
| .Cr.j:80F1.]                                                                                 | SPLEEN            | 0.376土 0.339      | 0.625± 0.475** | 0.775土 0.583*** | 1.117± 1.189** | Significant difference ; * : P $\leq$ 0.05 **: |
| 5<br>SE B6D2F1/Cr1,i[<br>L                                                                   | NO. of<br>Animals | 23                | 25             | 24              | 34             | difference ;                                   |
| STUDY NO. : 0685 ANIMAL : MOUSE B6D2F1/Crli[Cr.j:BDF1] REPORT TYPE : A1 SEX : FEMALE UNIT: % | Group Name        | Control           | 250 ррт        | 1000 ррт        | 4000 րբու      | Significant                                    |

(IICL042)

### TABLE L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

ALL ANIMALS (0-105W)

| STUDY NO. : 0685<br>ANIMAL : MOUSE<br>REPORT TYPE : AI | : 0685<br>: MOUSE B6D2F1/Cr1j[Crj:BDF1]<br>: A1 | HISTOPATHOLOGICAL FI<br>ALL ANIMALS (0-105W)         | TCAL FINDINGS :NO (0-105W)       | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) |                                              |                                             |
|--------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------------------------------------|----------------------------------------------|---------------------------------------------|
| SEX                                                    | : MALE                                          |                                                      |                                  |                                                              |                                              | PAGE :                                      |
| Organ                                                  | Findings                                        | Group Name No. of Animals on Study Grade (%) (%) (%) | Control<br>50<br>3 4<br>(%) (%)  | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%)                  | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%) | 4000 ppm 50 2 4 (%) (%) (%) (%) (%)         |
| (Integumentar                                          | (Integumentary system/appandage)                |                                                      |                                  |                                                              |                                              |                                             |
| skin/app                                               | ulcer                                           |                                                      | <50><br>0 0<br>0 0<br>0 0<br>0 0 | <pre></pre>                                                  | <50><br>0 2 0 0<br>( 0) ( 4) ( 0) ( 0)       | <50><br>0 1 0<br>( 0) ( 2) ( 0) ( 0)        |
|                                                        | erosion                                         | (0)(0)                                               | (0 ) (0 )                        |                                                              |                                              | 0 2 0 0 (0) (0) (0)                         |
|                                                        | inflammation                                    | (0 ) (0 )                                            | (0 ) (0 )                        |                                                              | (0) (2) (0) (0)                              |                                             |
|                                                        | squamous cell hyperplasia                       | 1 0 ( 2) ( 0)                                        | (0 ) (0 )                        |                                                              | (0)(0)(0)(0)                                 |                                             |
|                                                        | scab                                            | (0) (0)                                              | (0 ) (0 )                        |                                                              | 3 2 0 0 (6) (6) (7) (0)                      | 0 4 0 0 (0) (0) (0)                         |
| subcutis                                               | inflammation                                    | ( 0) ( 2)                                            | <50><br>0 0<br>0 ( 0) ( 0)       | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)                            | <50><br>0 2 0 0<br>( 0) ( 4) ( 0) ( 0)       | (6 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br>0 0 0 0 |
| Respiratory system <br>  nasal cavit                   | system)<br>exudate                              | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\              | (0 ) (0 ) (00) (00) (00)         | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)                            | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br><05>     | (6 ) (6 ) (6 ) (6 )<br>0 0 0 0 0<br>0 0 0 0 |

4 : Severe Grade 1: Slight 2: Moderate 3: Marked  $\langle$  a  $\rangle$  a : Number of animals examined at the site b : Number of animals with lesson (c) c:b/a\*100 Significant difference: \*:P  $\leq$  0.05 \*\*:P  $\leq$  0.01 T

(IIPT150)

\*\*: P ≤ 0.01 Test of Chi Square

(IIPT150)

| NOINGS : NON-NEOPLASTIC LESIONS (SUMMARY) |                      |
|-------------------------------------------|----------------------|
| HISTOPATHOLOGICAL FINDINGS                | ALL ANIMALS (0-105W) |

STUDY NO. : 0685
ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1

|                      | Group Name<br>No. of Animals on Study                                                                     | Control<br>50                              | 250 <b>µp</b> m<br>50                    | 1000 ppm<br>50                         | 000<br>50                             |
|----------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------|
| Organ                | Grade<br>Findings                                                                                         |                                            | (%) (%) (%) (%)                          | (%) (%) (%)                            | (%) (%) (%) (%)                       |
| (Respiratory system) | system}                                                                                                   |                                            |                                          |                                        |                                       |
| nasal cavit          | eosinophilic change:olfactory epithelium                                                                  | <pre></pre>                                | <50><br>11 0 0 0<br>( 22) ( 0) ( 0) ( 0) | <50><br>8 0 0<br>(16) (0) (0) (0)      | <50><br>2 0 0 0 0 ( 4) ( 0) ( 0) ( 0) |
|                      | eosinophilic change:respiratory epithelium                                                                | 15 0 0 0 (30) (30) (30) (30) (30) (30) (30 | 16 6 1 0 <b>*</b> (32) (12) (2) (0)      | 13 1 0 0 (26) (26) (2) (0) (0)         | 8 2 0 0 (16) (4) (0) (0)              |
|                      | respiratory metaplasia:olfactory epithelium                                                               | 11 0 0 0 0 (22) (22) (0) (0) (0)           | 8 1 0 0 (16) (16) (16) (16) (16)         | 4 0 0 0 (8) (8) (9) (9)                | 2 0 0 0 **<br>( 4) ( 0) ( 0) ( 0)     |
|                      | respiratory metaplasia:gland                                                                              | 8 2 0 0 (16) (16) (19) (10)                | 9 4 0 0 (18) (18) (19) (19)              | 10 2 0 0 (20) (4) (0) (0)              | 4 0 0 0 (0) (0) (0)                   |
|                      | atrophy:olfactory epithelium                                                                              | 1 0 0 0 (2) (2) (3) (4) (5)                |                                          |                                        |                                       |
| паѕоріагупх          | eosinophilic change                                                                                       | <pre></pre>                                | <50><br>2 0 1 0<br>( 4) ( 0) ( 2) ( 0)   | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0) | <50><br>3 0 0<br>( 6) ( 0) ( 0) ( 0)  |
| larупх -             | arthritis                                                                                                 | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)     | <250><br>0 0 0 0 0<br>( 0 ) ( 0 ) ( 0 )  | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0  | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0 |
| Grade < a > b b      | 1: Slight 2: Moderate 3: Marked a Number of animals examined at the site b: Number of animals with lesion | 4 : Severe                                 |                                          |                                        |                                       |

(IIPT150)

| (SUMMARY)                           |                      |
|-------------------------------------|----------------------|
| LESTONS                             |                      |
| L FINDINGS : NON-NEOPLASTIC LESIONS |                      |
| HISTOPATHOLOGICAL FINDINGS          | ALL ANIMALS (0-105W) |

| STUDY NO. : 068 ANIMAL : MOL REPORT TYPE : A1 SEX : MAL                                       | : 0685<br>: MOUSE BGDZF1/Cr1j[Crj:BDF1]<br>: A1<br>: MALE              |                                                | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%) | ICAL FIN<br>0-105W)   | DINGS :NON- | NEOPLASTIC | CLESTON                         | S (SUMMARY) |        |                  |                           |       |        |         |                    | PAGE  | ო<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-------------|------------|---------------------------------|-------------|--------|------------------|---------------------------|-------|--------|---------|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organ                                                                                         | Findings                                                               | Group Name<br>No. of Animals on Study<br>Grade | 22 (%)                                                                            | Control 3 3 4 (%)     | 4 (%)       | 1 (%) (%)  | 250 ppm<br>50<br>2 3<br>(%) (%) | 4 (%)       | (%)    | 1000             | 1000 ppm<br>50 3<br>) (%) | 4 (%) | 1 (%)  | (3)     | 4000 ppm 50 3      | 4 (%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Respiratory system)                                                                          | system)                                                                |                                                |                                                                                   |                       |             |            |                                 |             |        |                  |                           |       |        |         |                    |       | On the second se |
| lung                                                                                          | congestion                                                             |                                                | 0 1<br>( 0) ( 2)                                                                  | <50><br>0<br>) ( 0) ( | 0 (0        | 2) (2      | <50><br>0 0<br>0) (0)           | 0 (0        | 0 (0 ) | (50) (<br>( 0) ( | ) (0<br>0<br>(0)          | 0 0   | 0 )    | 9       | <50><br>(0)<br>(0) | 0 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | hemorrhage                                                             |                                                | 0 1 (0) (2)                                                                       | 0 (0 )                | 0 0         | 0 0 0      | 0 0                             | 6 )         | 1 (2)  | 2 (7             | 0 0 )                     | 0 (0  | 0 0    | 1 (2)   | 0 0                | 00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | squamous cell metaplasia                                               |                                                | (0 ) (0 )                                                                         | 0 (0 )                | 0 6         | 0 0 0      | 0 (0 0)                         | 0 )         | 0 )    | 0 0              | 0 0                       | 0 0   | ,<br>, | 0 0     | 0 (0               | 0 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | accumulation of foamy cells                                            |                                                | 1 0 ( 2) ( 0)                                                                     | 0 (0 )                | 0 6         | 0 0        | 0 0                             | 0 )         | 0 )    | o ô              | 0 0                       | 0 0   | 00     | 00      | 0 0                | 0 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | bronchiolar-alveolar cell hyperplasia                                  | ia                                             | (0 ) (0 )                                                                         | 0 (0 )                | 0 0         | 3 (9 )     | (O ) (O                         | o ()        | 0 (0 ) | 0 (0 )           | 0 (0 )                    | 0 0   | (2)    | 0 (0    | 0 )                | 0 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | uremic pneumonitis                                                     |                                                | (0 ) (0 )                                                                         | 0 (0 )                | 00          | 0 1 (0 )   | 1 0 2) (2)                      | 0 0         | 0 (0   | 3 (9)            | 0 (0 )                    | 0 0   | 2 (4)  | 7 ( 14) | 0 0                | 0 )   | ** (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                               | accumulation:macrophage                                                |                                                | (0) (0)                                                                           | 0 (0 )                | 0 6         | 2) (2)     | (0 ) (0<br>0 0                  | o (i)       | 0 0    | (2)              | 0 0 )                     | 0 6   | 1 ( 2) | 2 (4)   | 0 0                | 0 )   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | degeneration:blood vessel                                              |                                                | (0 ) (0 )                                                                         | 0 (0 )                | 0 6         | 0 0 0      | 1 0 2) (2)                      | 0 (0        | 0 0    | (2)              | 0 0                       | o 6   | 1 (2)  | 2 (4)   | 0 )                | 0 )   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grade 1 : Slight <a>&gt; a : Number b b : Number (c) c : b / a * Significant difference ;</a> | 2 : Moderate of animals examined of animals with lesi 100 * : P ≦ 0.05 | Marked .01                                     | 4 : Severe<br>Test of Chi Square                                                  |                       |             |            |                                 |             |        |                  |                           |       |        |         |                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

STUDY NO. : 0685 ANIMAL : MOUSE BGDZFL/Crlj[Crj:BDFl]

ANIMAL : MOUSE REPORT TYPE : A1 SEX : MALE

IC LESTONS (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 4 32 0 0 0 \*\* ( 64) ( 0) ( 0) ( 0) \* 0 0 00 4 % 00 00 00 000 10 0 0 0 (20) (20) (30) 0 0 0 0 0 0 0 0 0 1 0 (0) (0) (0) (0) 1 2 3 (%) (%) (%) 4000 **որտ** 50 36 2 (72) (4) ( \* 0 0 4 % 12 0 0 0 ( 24) ( 0) ( 0) ( 0) (0) (0) (0) (81) 2 0 0 0 ( 4) ( 0) ( 0) ( 0) (0)(0)(0)(0)(0) 00 00 0 (0 2 3 (%) (%) 100**0 ppm** 50 0 0 0 43 2 ( (86) (4) ( ( **-**|€ 41 1 0 0 \*\*\* ( 82) ( 2) ( 0) ( 0) 2 0 0 0 ( 0) ( 0) 0 1 0 0 (0) (0) (0) (0)(0)(0)(0)(0) 12 0 0 0 (24) (24) (30) (30) (30) 5 0 0 0 0 (10) (10) (10) 4 % 250 ppm 50 m 38 ~ § -188 2 3 4 (%) (%) (%) 10 0 0 0 (20) (20) (30) (30) 8 0 0 0 (01) 0 3 0 0 (0) (0) 0 1 0 0 (0) (0) (0) (0)(0)(0)(0)(0) 00 5 0 0 ( 10) ( 10) ( Control 50 Group Name No. of Animals on Study Grade granulopoiesis:increased increased hematopolesis deposit of hemosiderin lymphadenitis thrombus Findings atrophy atrophy (Hematopoietic system) bone marrow .ymph node thymus spleen

4 : Severe 3 : Marked Grado 1: Slight 2: Moderale 3: Ma < a > a: Number of animals examined at the site b b: Number of animals with lesion c: b / a \* 100 c: b / a \* 100 Significant difference : \*: P  $\leq$  0.05 \*\*: P  $\leq$  0.0

 $\star\star$ : P  $\leq$  0.01

Test of Chi Square

BAIS4

(HPT150)

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 5

| Organ                  | Findings                                                                                                    | Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%) | 1000 punn<br>50 1 2 3 4<br>(%) (%) (%) (%)    | 4000 ppm 50 x 4 x (%) (%) (%) (%)                    |
|------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| (Hematopoietic system) | ic system)                                                                                                  |                                                                             |                                             |                                               |                                                      |
| spleen                 | extramedullary hematopoiesis                                                                                | <50> 16 4 0 0 ( 32) ( 8) ( 0) ( 0)                                          | <50> 21 5 0 0 (42) (10) (0) (0)             | <50><br>16 17 1 0 **<br>( 32) ( 34) ( 2) ( 0) | <pre></pre>                                          |
|                        | engorgement of erythrocyte                                                                                  |                                                                             |                                             | 1 0 0 0 (2) (3) (4) (4)                       | 4 0 0 0 ( 8) ( 8) ( 9) ( 9)                          |
|                        | follicular hyperplasia                                                                                      | 2 0 0 0 (4) (4) (6) (6) (6)                                                 | 2 0 0 0 (4) (4) (6) (6) (6)                 |                                               |                                                      |
| (Circulatory system)   | .system)                                                                                                    |                                                                             |                                             |                                               |                                                      |
| lleart                 | thrombus                                                                                                    | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                      | <pre></pre>                                 | <pre></pre>                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                        | mineralization                                                                                              | 1 0 0 0 ( ) ( ) ( ) ( ) ( )                                                 | 2 1 0 0 (4) (2) (0) (0)                     | 4 0 0 0 (8) (8) (9) (9)                       | 3 2 0 0 (6) (4) (0) (0)                              |
|                        | degeneration                                                                                                |                                                                             | (2) (0) (0) (0)                             | 1 0 0 0 (2) (3) (4) (4)                       | (2) (0) (0) (0)                                      |
|                        | myocardial fibrosis                                                                                         | (2) (0) (0) (0)                                                             | 2 0 0 0 (4) (4) (6) (6)                     | 1 0 0 0 (0) (0) (0)                           |                                                      |
| Grade                  | 1: Slight 2: Moderate 3: 3<br>a: Number of animals examined at the site<br>b: Number of animals with lesion | 3 : Marked 4 : Sovere<br>site                                               |                                             |                                               |                                                      |

BAIS4

(IIPT150)

99

Grade 1: Slight 2: Moderate 3: Marked 1: Sovere  $\langle a \rangle$  a : Number of animals examined at the site b : Number of animals with lesion (c) c: b/a\*100 significant difference; \*: P  $\leq$  0.05 \*\*: P  $\leq$  0.01 Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANLMALS (0-105#)

| STUDY NO. : ANIMAL : REPORT TYPE : SEX : | STUDY NO. : 0685<br>ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]<br>REPORT TYPE : A1<br>SEX : MALE | HISTOPATHOLOGICAL FINDINGS :NA<br>ALL ANIMALS (0-105W)              | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) |                                              | PAGE : 6                                  |
|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| Organ                                    | Findings                                                                                   | Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)                                              | 1000 µpm<br>50<br>1 2 3 4<br>(%) (%) (%)     | 4000 ppm 50 1 2 3 4 (%) (%) (%) (%)       |
| (Circulatory system)<br>heart arte       | system)<br>arteritis                                                                       | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 029                             | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                               | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0        | (0) (0) (0) (0) (0)                       |
| (Digestive system)<br>oral cavity sq     | stem)<br>squamous cell hyperplasia                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                | <020<br>0 0 0 0 0 0<br>0 0 0 0 0 0                                                   | <00> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0     |
| tooth                                    | dysplasia                                                                                  | <50><br>0 3 1 0<br>( 0) ( 6) ( 2) ( 0)                              | <50><br>1 1 1 0<br>( 2) ( 2) ( 2) ( 0)                                               | <50><br>0 1 1 0<br>( 0) ( 2) ( 2) ( 0)       | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0 |
| tongue                                   | artoritis                                                                                  | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0                       | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                               | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)            | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0        |
| stomach                                  | atrophy:glandular mucosa                                                                   | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                              | <50> (0) (0) (0) (0) (0)                                                             | <50><br>0 0 0 0 0<br>( 0) ( 0) ( 0)          | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0        |
|                                          | hyperplasia:forestomach                                                                    | 6 0 0 0 0 (12) (13) (15) (15) (15) (15) (15)                        | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                              | (2)(0)(0)(0)                                 | (2) (0) (0) (0)                           |

(IIPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)

| STUDY NO. : 068 ANIMAL : MOU. REPORT TYPE : A1 SEX : MAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 0685<br>: MOUSE BGDZF1/Cr1j[Crj:BDF1]<br>: A1<br>: MALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HISTOPATHOLOGICAL FINDINGS :N<br>ALL ANIMALS (0-105W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) | c                                                     |                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE STATE OF THE S |                                                                                      |                                                       | Wee .                                    |
| Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Group Name Control  No. of Animals on Study 50  Grade 1 2 3 4  (%) (%) (%) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)                                              | 1000 µpm<br>50<br>1 2 3 4<br>(%) (%) (%)              | 4000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) |
| (I) i est i | (mo + e z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                       |                                          |
| (Digestive s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ystem)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                       |                                          |
| stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erosion:glandular stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre></pre>                                                                          | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0                 | <pre></pre>                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ulcer:glandular stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                       | 0 0 0 0 0                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hyperplasia:glandular stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 0 0 0 0 (16) (16) (16) (16) (16) (16) (16) (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 0 0 0 (20) (20) (30) (30)                                                         | 8 0 0 0 0 (16) (16) (16) (16)                         | 3 0 0 0 0 (9) (9)                        |
| small intes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inflammation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre></pre>                                                                          | <0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (             | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)   |
| liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | angioctasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                                               | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0                 | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | necrosis:central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 0 0 (0) (0) (0) (0)                                                              | 0 1 0 0 (0) (0) (0) (0)                               | (0)(0)(0)(0)                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | necrosis:focal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0 0 0 ( 4) ( 4) ( 6) ( 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1 2 0 (0) (2) (4) (0)                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4 3 0 0 (8) (8) (9) (0)                  |
| Grade <a>&gt; b (c) Significant o</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grade 1: Slight 2: Moderate 3: Mederate 4: Mederate 4: Mederate 4: Mederate 5: Mederate 5 | 3 : Marked 4 : Severe<br>c silc<br>P ≤ 0.01 Test of Chi Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                                                       |                                          |

40 0 0 0 \*\* ( 80) ( 0) ( 0) ( 0) 4000 ppm 50 m 38 1 0 0 (2) (2) (3) (0)(0)(0) 0 0 0 - -- 6 - -- 6  $\overline{\phantom{a}}$ 2 (%) 7 00 000 0 (0 \_ \_ **⊣**& 1 3 00 8 0 0 0 \*\*\* (16) (0) (00) (00) 4 8 00 00 00 06 06 06 00 ) 0 ô  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ \_  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ 1000 **ppm** 50 1 0 2) ( 0) ( 0 0 m 38 00 1 0 0 2 2) ( 0) ( 0) 00 (%) 0 0 0 (0 ) o ô 00 000 0 0 1 2) (2  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ 1 86 00 00  $\cup$ HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105R) 44 86 0 0 0 0 06 00 00 00 06 00 00 0 (0 0 (0  $\overline{\phantom{a}}$ \_ 250 ppm 50 m 8€ 00 00 00 00 00 0 0 0 0 0 000 00 1 (2) 1 0 ( 2) ( 0) (  $\overline{\phantom{a}}$ 2 8 。 。 。 00 00 , 2 00 1 3 **⊣** ⊗ 00 44 86 00 00 00 00 00 00 00 0 0 0 0  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ \_  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ Control 50 00 0 0 0 0 ლ §§ 00 00 00 06 00 0 (0 ) (0 ) 1 0 2) (2 (2) 2 1 ( ( 4) ( 2) ( ( ) 0 0 ) 0 0 2 8 00 0 0 2 (2  $\overline{\phantom{a}}$ 00 **€** Group Name No. of Animals on Study Grade extramedullary hematopoiesis : MOUSE BGD2F1/Cr1j[Crj:BDF1] inflammatory infiltration lymphocytic infiltration deposit of hemosiderin acidophilic cell focus basophilic cell focus clear cell focus Findings\_ : Slight scar REPORT TYPE : A1 SEX : MALE (Digestive system) STUDY NO. ANIMAL Organ liver

00

00

00

0 0

00

00

00

00

06

00

00

00

00

PAGE:

4 8

| 4 - Severe |                                            |  |
|------------|--------------------------------------------|--|
| 5 · Marked | the site                                   |  |
| Moderate   | examined at                                |  |
|            | animals                                    |  |
| 1 . 511gnt | a : Number of animals examined at the site |  |
| erade      | < a >                                      |  |

b : Number of animals with lesion ( c ) c : b / a \* 100 Significant difference ; \* : P  $\le$  0.05 \*\*

**★**:P≤0.01

(HPT150)

Test of Chi Square

102

| HISTOPATHOLOGICAL FINDINGS :NON-NEOPYASTIC LESIONS (SIMMARY) | ALL ANIMALS (0-105W)          |             |        |
|--------------------------------------------------------------|-------------------------------|-------------|--------|
| : 0685                                                       | : MOUSE B6D2F1/Crlj[Crj:BDF1] | 3 : A1      | : MALE |
| STUDY NO.                                                    | ANIMAL                        | REPORT TYPE | SEX    |

PAGE: 9

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Group Name<br>No. of Animals on Study                | Control<br>50                 | 250 ppm                                   | 1000 pun                                         | 4000 ppm                              |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------|
| Огван                           | Findings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grade (%) (%) (%)                                    | 3 4                           | 1 2 3 4<br>(%) (%) (%) (%)                | 1 2 3 4<br>(%) (%) (%) (%)                       | 50<br>1 2 3 4<br>(%) (%) (%) (%)      |
| {Digestive system}              | ystem)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                               |                                           |                                                  |                                       |
| liver                           | biliary cyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1 (0) (2                                           | <50><br>1 0 0<br>2) ( 0) ( 0) | (0) (0) (0) (0)<br>0 0 0 0<br>(0) (0) (0) | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0 | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0 |
|                                 | hepatocellular hypertrophy:central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 (0 )                                               | (0 ) (0 ) (0                  | (0)(0)(0)(0)                              |                                                  | 7 0 0 0 * (14) (0) (0) (0)            |
| (Urinary system)                | (tem)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                               |                                           |                                                  |                                       |
| kidney                          | cyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0                                                | <50><br>0 0 0<br>0) ( 0) ( 0) | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0     | (6) (6) (6) (6)<br>0 0 0 0<br>0 0 0 0            | <50><br>1 0 0<br>( 2) ( 0) ( 0) ( 0)  |
|                                 | hyaline droplet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0 (4) (4) (0)                                      | (0)(0)(                       | (0)(0)(0)(0)(0)                           | (2) (0) (0) (0)                                  | 1 0 0 0 (2) (3) (4) (4)               |
|                                 | deposit of Hemosiderin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0 ( 2) ( 0)                                        | (0)(0)(                       | (0) (0) (0) (0) (0) 0 0 0                 |                                                  | 33 0 0 0 **                           |
|                                 | hyaline cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0 (2) (3) (0)                                      | (0 ) (0 ) (                   | (0)(0)(0)(0)(0)                           |                                                  | (0)(0)(0)(0)                          |
|                                 | inflammation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0 ) (0 )<br>0 0                                     | (0 ) (0 ) (0                  | (0)(0)(0)(0)(0)                           |                                                  | 0 1 0 0 (0) (0) (0)                   |
| Grade < a > b ( c ) Significant | Grade 1: Slight 2: Moderate 3: Melocrate at the site beautiful b | 3 : Marked 4 : Sovere site ≤ 0.01 Test of Chi Square |                               |                                           |                                                  |                                       |

BAIS4

(IIPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

: 0685 : MOUSE B6DZF1/Cr1j[Crj:BDF1]

STUDY NO. ANIMAL

REPORT TYPE : A1 SEX : MALI

PAGE: 10 4 % 4000 **ந**்நா 50 m 😪 2 % --| B 4 % 1000 ppm 50 2 3 (%) ~ <del>3</del>8 4 8 250 ppm 50 m 8€ 2 (%) - 8 44 86 Control 50 e 8 2 8 **-**|⊛ Group Name No. of Animals on Study Grade Findings

00 00 o 6 00 06 00 00 00 0 1 2 ( 0) ( 2) ( 4) ( 1 0 0 ( 2) ( 2) ( 0) ( (0)(2)(0)( 0 (0 ) (0 ) (0 ) (0) (9) (0) 2 4 00 00 0 2 5 \_  $\overline{\phantom{a}}$ 。 。 。 <u>- 3</u> 0 0 0 0 00 00 06 00 00 00 00 00 0 (0 0 0 0 0  $\overline{\phantom{a}}$ 0 2 3 0) (4) (6) (  $\overline{\phantom{a}}$ \_ 0 0 0 0  $\overline{\phantom{a}}$ 0 1 0 (0 ) 00 00 (0) (0) (0 0 2 0) ( 4) ( ) 0 0 00 2 <del>(</del>4 )  $\overline{\phantom{a}}$ 00 00 00 06 o 6 1 5 00 00 00 00 0 0 0 0 0 0 0 0 0 6 2 ( 0) ( 12) ( 4) ( \_ 00 00 00 00 000 00 000 000 ) 0 (6) ) 00 00 00 00 00 00 00 00 7 8 00 00 00 00 <u>-</u> 1 0 0 (2) (2) (3) (3) (4)  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ 0 5 2 (0) (10) (4) 1 0 0 (2) (2) (3) (4) 00 (0)(0)(0) 00 00 1 0 0 (2) (0) (0) ) 0 0 ) 0 0 00 0 0 0 0 00 lymphocytic infiltration mineralization:cortex mineralization:pelvis papillary necrosis inflammatory polyp hydronephrosis pyelonephritis scar (Urinary system) kidney Organ\_

4 : Severe 3 : Marked Grade 1: Slight 2: Moderate 3: Mc  $\langle a \rangle$  a: Number of animals examined at the site b b: Number of animals with lesion (c) c: b/a\*100 Significant difference; \*: P  $\leq$  0.05 \*\*: P  $\leq$  0.07

(IIPT150)

Test of Chi Square \*\*: P ≤ 0.01 BAIS4

104

| STUDY NO. : 068 ANIMAL : MOU REPORT TYPE : A1 SEX : MAL | : 0685<br>: MOUSE BGDZFI/Crjj[Crj:BDF1]<br>: A1<br>: MALE | HISTOPATHOLOGICAL FINDINGS<br>ALL ANIMALS (0-105W)                            | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) |                                           | PAGE: 11                               |
|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Organ                                                   | Findings                                                  | Group Name Control No. of Animals on Study 50 Grade   1 2 3 4 (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)                                              | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)  | 4000 ppm 50 4 (%) (%) (%) (%)          |
| {Urinary system}<br>kidney                              | em)<br>dilatation:tubular lumen                           | <pre></pre>                                                                   | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0                                            | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0     | <50><br>0 1 1 0<br>( 0) ( 2) ( 2) ( 0) |
|                                                         | glomerulosclerosis                                        |                                                                               | 0 1 1 0 ( 0) ( 2) ( 2) ( 0)                                                          | 0 0 1 0 (0) (0) (0) (0)                   |                                        |
|                                                         | regeneration:proximal tubule                              | 12 0 0 0 (24) (24) (6) (6)                                                    | 14 0 0 0 0 (28) (28) (3) (4) (5)                                                     | 8 0 0 0 0 (16) (16)                       | 10 2 0 0 (20) (4) (0) (0)              |
| ureter                                                  | dilatation                                                | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                                        | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0                                                   | (0) (0) (0) (0)<br>0 0 0 0<br>(0) (0) (0) | (0)(0)(0)(0)                           |
| urin bladd                                              | dilatation                                                | <50><br>0 4 0 0<br>( 0) ( 8) ( 0) ( 0)                                        | <50><br>0 7 0 0<br>( 0) ( 14) ( 0) ( 0)                                              | (50)<br>0 10 0 0<br>( 0) ( 20) ( 0) ( 0)  | <pre></pre>                            |
|                                                         | simple hyperplasia:transitional epithelium                | lium 1 0 0 0 (2) (3) (3) (3) (3)                                              |                                                                                      |                                           | (2) (0) (0) (0)                        |
|                                                         | xanthogranuloma                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                         |                                                                                      | (0)(0)(0)(0)                              | 0 0 0 0 0                              |
| Grade                                                   | 1 . Clink 9 . Wodowata 3                                  | 9 · 16.mlol A · S.m.                                                          |                                                                                      |                                           |                                        |

| 4 · Severe   |                                            |                                   |           | Test of Chi Square                          |  |
|--------------|--------------------------------------------|-----------------------------------|-----------|---------------------------------------------|--|
| o . warked   | e site                                     |                                   |           | * : P ≤ 0.01                                |  |
| z - Moderate | a : Number of animals examined at the site | ith lesion                        |           |                                             |  |
| W - 7        | of animals o                               | b : Number of animals with lesion | 100       | Vil<br>⊶<br><br>*                           |  |
| 1118116 . 1  | a : Number                                 | b : Number                        | c:b/a*100 | ignificant difference ; * * : P $\leq$ 0.05 |  |
| angla        | < a >                                      | Ъ                                 | (°)       | Significant o                               |  |
|              |                                            |                                   |           |                                             |  |

(IIPT150)

HISTOPATHOLOGICAL FINBINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. : 0685
ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

| SEX :              | : MALE                                                                    |                                          |                                         |                                          | PAGE: 12                                   |
|--------------------|---------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|
| Organ              | Group Name No. of Animals on Study Grade                                  | Control 504 1 2 3 4 (%) (%) (%) (%)      | 250 ppm 50 (%) (%) (%) (%)              | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) | 4000 ppm 50 4 (%) (%) (%) (%)              |
| (Urinary system)   | em)                                                                       |                                          |                                         |                                          |                                            |
| urin bladd         | Inyaline droplet degeneration:superficial cell of transitional epithelium | \$20\$ (0) (0) (0) (0)                   | (0)(0)(0)(0)<br>0 0 0 0<br>0 000        | <00 ( 0) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) ( | <50><br>12 0 0 0 **<br>(24) ( 0) ( 0) ( 0) |
| urethra            | inflammetion                                                              | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)        | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0 0 | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)        | (50) 0 4 0 * (0) (14) (0) (0)              |
| (Endocrine system) | stem)                                                                     |                                          |                                         |                                          |                                            |
| pituitary          | cyst                                                                      | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br><05> | (49)<br>0 0 0 0<br>( 0) ( 0) ( 0)       | (49)<br>1 0 0 0<br>(2) (0) (0) (0)       | (6) (6) (6) (6)<br>0 0 0 0<br>0 0 0 0      |
|                    | lyperplasia                                                               | (0)(0)(0)(0)                             | 0 1 0 0 (0) (0) (0)                     | (2) (0) (0) (0)                          | (0) (0) (0) (0)                            |
|                    | Rathke pouch                                                              | 2 0 0 0 ( 4) ( 4) ( 0) ( 0) ( 0)         | 2 0 0 0 0 (4) (4) (6) (6)               | 1 0 0 0 (2) (2) (3) (4)                  | 2 0 0 0 (4) (4) (6) (6)                    |
| paratlyroid        | embryonal rest                                                            | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)   | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)  | <50><br>0 0 0 0<br>( 0) ( 0) ( 0)        | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0  |
|                    |                                                                           |                                          |                                         |                                          |                                            |

(IIPT150)

<sup>\*\*:</sup> P \le 0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

| STUDY NO. : 068: ANIMAL : MOUS REPORT TYPE : A1 SEX : MAL | : 0685<br>: MOUSE B6DZF1/Cr1j[Crj:BDF1]<br>: A1<br>: MALE | HISTOPATHOLOGICAL FINDINGS :) ALL ANIMALS (0-105W)                            | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) | (A                                                                        | PAGE : 13                                                          |
|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| Organ                                                     | Findings                                                  | 6roup Name Control No. of Animals on Study 50 Grade   1 2 3 4 (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%)                                          | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)                                  | 4000 ppm 50 1 2 3 4 (%) (%) (%) (%)                                |
| (Endocrine system)<br>adrenal                             | ystem)<br>focal fatty change:cortex                       | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br><05>                                      | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br>(05)                                             | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                    | (0 ) (0 ) (0 ) (0 ) (0 ) (0 )                                      |
| {Reproductive system}<br>testis                           | e system)<br>atrophy                                      | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)                                        | (50)<br>2 1 1 0<br>(4) (2) (2) (0)                                                   | <50><br>3 1 0 0<br>( 6) ( 2) ( 0) ( 0)                                    | (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0                               |
| epididymis                                                | mineralization<br>inflammation                            | ) (0 ) (0 )<br>0 0 0<br>0 0 0 0                                               | ) (0 ) (0 )<br>0 0 0<br>0 0 0<br>0 0 0 0                                             | ( 4) ( 0) (<br>(50) ( 2) ( 0) ( ( 2) ( 0) ( ( 2) ( 0) ( 0                 | 0 (0 ) (0 )<br>0 0 0<br>0 0<br>0 0<br>0 0 0<br>0 0 0               |
| prostate                                                  | spermatogenic granuloma<br>inflammation                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                         | 2 1 0 0<br>( 4) ( 2) ( 0) ( 0)<br>(50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)             | 2 0 0 0<br>( 4) ( 0) ( 0) ( 0)<br>( 50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | ( 0) ( 0) ( 0) ( 0)<br>( 0) ( 1) ( 0) ( 0)<br>( 2) ( 14) ( 0) ( 0) |

\* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(HPT150)

4 : Severe

3 : Marked

MARY)

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1]
REPORT TYPE : Al
SEX : MALE

PAGE: 14

|                                     | THE TAXABLE PROPERTY OF THE PR |                                             |                                           |                                            |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------|
| OrganFindings                       | Group Name Control No. of Animals on Study 50 trade $\frac{1}{(\%)} (\%) (\%) (\%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%) | 1000 ppm 50 4 (%) (%) (%) (%)             | 4000 ppm 50 1 2 3 4 (%) (%) (%)            |
| (Reproductive system)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                           |                                            |
| prep/cli gl<br>duct ectasia         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (20) (0 ) (0 ) (0 )<br>0 0 0 0 0<br>0 0 0 0 | (50)<br>1 0 0 0<br>(2) (0) (0) (0)        | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br><05>   |
| (Nervous system)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                           |                                            |
| brain<br>heworrhage                 | <00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0       | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)    | (0) (0) (0) (0) (0)                        |
| mineralization                      | 11 0 0 0 (22) (22) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 1 0 0 (24) (24) (2) (0) (0)              | 14 0 0 0 (28) (28) (30) (30) (40)         | 15 0 0 0 0 (30) (30) (30) (30) (30) (30) ( |
| spinal cord<br>mineralization       | (50)<br>( 2) ( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0   | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0 | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0  |
| (Special sense organs/appendage)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                           |                                            |
| eye<br>keratitis                    | (50)<br>0 0 1 0<br>(0) (0) (2) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0) (0) (0) (0)<br>0 0 0<br>0 0 0<br>0 0 0  | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0     | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>(20)     |
| Grade 1: Slight 2: Moderate 3:)<br> | 3 : Marked 4 : Severe<br>: site<br>: ≤ 0.01 Test of Chi Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                           |                                            |

BAIS4

(HPT150)

(IIPT150)

| STUDY NO. : 068 ANIMAL : MOU REPORT TYPE : A1 SEX : MAL                                   | : 0685<br>: WOUSE BGDZF1/Cr1j[Crj:BDF1]<br>: A1<br>: MALE                                                                                                            | H                                     | HISTOPATHOLOGICAL FINDINGS :N<br>ALL ANIMALS (0-105W) | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                           |    |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|----|
|                                                                                           |                                                                                                                                                                      |                                       |                                                       | THE PARTY OF THE P |                                        | MGE                                       | el |
|                                                                                           |                                                                                                                                                                      | Group Name<br>No. of Animals on Study | Control<br>50                                         | 20 <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                   | 4000 ppm<br>50                            |    |
| Organ                                                                                     | Findings                                                                                                                                                             | Grade                                 | (%) (%) (%) (%)                                       | (%) (%) (%) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 3 4<br>(%) (%) (%) (%)             | (%) (%) (%) (%)                           | 10 |
| (Special sens                                                                             | (Special sense organs/appendage)                                                                                                                                     |                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                           |    |
| eye                                                                                       | squamous cell metaplasia:cornea                                                                                                                                      |                                       | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0 0 0 0 0              | <50> <50> (50) (50) (50) (50) (50) (50) (50) (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0  | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0 |    |
| Harder gl                                                                                 | degeneration                                                                                                                                                         |                                       | <49><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)                | (50)<br>0 0 0 0<br>( 0) ( 0) ( 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0 |    |
|                                                                                           | lymphocytic infiltration                                                                                                                                             |                                       | 2 0 0 0 ( 4) ( 4) ( 0) ( 0) ( 0)                      | 1 0 0 0 ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0 0 0 (2) (2) (3) (4)                | 2 0 0 0 (4) (4) (6) (6) (6)               |    |
| (Musculoskeletal system)                                                                  | stal system)                                                                                                                                                         |                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                           |    |
| muscle                                                                                    | mineralization                                                                                                                                                       |                                       | ( 0) ( 0) ( 0) ( 0) ( 0)                              | (0)(0)(0)(0)<br>0 0 0<br>0 0 0<br>0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | (0) (0) (0) (0)<br>0 0 0 0<br><05)        |    |
|                                                                                           | inflammatory infiltration                                                                                                                                            |                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)(0)(0)(0)(0)                        | 1 0 0 0 ( ) ( ) ( ) ( )                   |    |
| (Body cavities)                                                                           | 35)                                                                                                                                                                  |                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                           |    |
| retroperit                                                                                | inflammatory infiltration                                                                                                                                            |                                       | (0) (0) (0) (0) (0) (0)                               | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <00                                    | (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)   |    |
| Grade 1 : Slight  (a) a : Number  b b : Number  (c) c : b / a *  Significant difference : | 1: Slight 2: Moderate 3::) a : Muchor of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; $*: P \leq 0.05$ **: $P \leq 0.05$ | Marked 01 Test of                     | 4 : Severe<br>Chi Square                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                           |    |

#### TABLE L 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

BAIS4

(IIPT150)

| Priority   Priority  | STUDY NO.<br>ANIMAL<br>REPORT TYPE<br>SEX | : 0685<br>: MOUSE BGD2F1/Cr1j[Crj:BDF1]<br>: A1<br>: FEMALE                              | ALL                                          | HISTOPATHOLOGICAL FINDINGS<br>ALL ANIMALS (0-105W) | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) | ۵                                           | PAGE                      | 91 : 19 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|---------|
| Seed   Color   Color | Organ                                     | Findings                                                                                 | Group Name<br>No. of Animals on Stu<br>Grade | Control<br>50<br>1 2 3<br>%) (%) (%)               | 250 ppm 50 3 (%) (%)                                                                 | 1000 µpm<br>50<br>2 3<br>(%) (%)            | (%)                       | _la     |
| State   Care   | {Integumenta                              | nry system/appandage)                                                                    |                                              |                                                    |                                                                                      |                                             |                           |         |
| Secondarie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | skin/app                                  | scat                                                                                     |                                              | <50><br>1 0 0<br>2) ( 0) ( 0) (                    | (20) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 )                                              | (50>) (0 (0) (0 (0) (0) (0) (0) (0) (0) (0) | 2 4) ( 0                  | 0.3     |
| evesinophilic change:effactory epithelium  (10) (0) (0) (0) (0) (0) (0) (0) (0) (0) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Respiratory                              | / system]                                                                                |                                              |                                                    |                                                                                      |                                             |                           |         |
| lic change-olfactory epithelium (10) ( 0) ( 0) ( 0) ( 6) ( 2) ( 0) ( 0) ( 6) ( 6) ( 6) ( 6) ( 6) ( 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nasal cavit                               |                                                                                          |                                              | (50) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          | <50><br>0 0 0<br>0) ( 0) ( 0) (                                                      | (50)<br>1 0 0<br>2) ( 0) ( 0) (             | 0 ) (0                    | c =     |
| lic change: respiratory epithelium  (50) (10) (0) (0) (60) (60) (60) (60) (60) (60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | eosinophilic change:olfactory epithe                                                     |                                              | 0 (0 )                                             | 3 1 0 6) (2) (0) (                                                                   | 4 0 0 8 ( 0) ( 0) (                         | 6 0<br>12) ( 0)           | c =     |
| ion: foreign body  ( 0) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | eosinophilic change:respiratory epit                                                     |                                              | 25 5 0<br>50) (10) (0) (                           | 30 3 0                                                                               | 26 6 0<br>52) (12) (0) (                    | 30 6 0<br>60) (12) ( 0) ( | 0 (0    |
| ry metaplasia:olfactory epithelium ( 2) ( 0) ( 0) ( 0) ( 0) ( 4) ( 0) ( 0) ( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | inflammation:foreign body                                                                | Š                                            | 0 0 0 0                                            | 0 1 0 0 0) ( 2) ( 0) (                                                               | 0 0 0 0                                     | 1 0 2) ( 0)               | . =     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | respiratory metaplasia:olfactory epi                                                     |                                              | 1 0 0 0 2) ( 0) (                                  | 2 0 0 4) ( 0) (                                                                      | 0 0 0 0                                     | 1 0 2) ( 0)               | 0.3     |
| 2 : Moderate 3 : Marked of animals examined at the site of animals with lesion 100   ∗ : P ≤ 0.05   ∗ : P ≤ 0.05   ∗ : P ≤ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | respiratory metaplasia:gland                                                             |                                              | 0 (0 )                                             | 0 (0 ) (0 )                                                                          | 0 (0 )                                      | 2 0 0<br>4) ( 0) ( 0) (   | 0 (0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grade < a > b b ( c ) Significant         | 2 : Modoratc of animals examined at the of animals with lesion : 100 * : P ≤ 0.05 ** : P | farked<br>01                                 | Sovero                                             |                                                                                      |                                             |                           |         |

4000 µрт 50 e 8€ 2 8 - 88 4 % 2 3 (%) 1000 **ppm** 50 - 88 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#) 4 % 250 µµm 50 2 3 (%) (%) **-**|⊛ 2 3 4 (%) (%) (%) Control 50 - 38 Group Name No. of Animals on Study Grade STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:EDF1]
REPORT TYPE : A1
SEX : FEMALE Findings\_ {Respiratory system} nasal cavit Organ

PAGE: 17

4 %

| squamous cell metaplasia:respiratory epithelium | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0   | <pre></pre>                            | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0  | <50><br>2 0 0<br>( 4) ( 0) ( 0) ( 0) |
|-------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|
| ulcer:respiratory epithelium                    |                                         | 1 0 0 0 0 (2) (2) (3) (4)              | (0) (0) (0) (0)                        |                                      |
| alrophy:olfactory epithelium                    | (0)(0)(0)(0)                            |                                        | 0 1 0 0 (0) (0) (0)                    |                                      |
| eosinophilic change                             | <50><br>2 2 0 0<br>( 4) ( 4) ( 0) ( 0)  | <50><br>2 1 0 0<br>( 4) ( 2) ( 0) ( 0) | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0) | <50><br>4 3 0 0<br>(8) (6) (0) (0)   |
| congostion                                      | (0)(0)(0)(0)<br>0 0 0<br>0 0 0<br>0 0 0 | <pre></pre>                            | <50><br>0 1 0<br>( 0) ( 2) ( 0) ( 0)   | (0) (0) (0) (0)<br>0 0 0 0<br>(20)   |
| inflammatory infiltration                       |                                         | (0)(0)(0)(0)(0)                        |                                        | 1 0 0 0 (2) (3) (4) (4)              |
| lymphocytic infiltration                        | (0) (0) (0) (0)                         | 1 0 0 0 ( 2) ( 2) ( 0) ( 0) ( 0)       | 1 0 0 0 0 0 0 (2) (2) (3) (4) (6)      | (0)(0)(0)(0)                         |

b b: Number of animals with losion ( c ) c: b / a \* 100 Significant difference; \*: P  $\leq$  0.05 \*\*

\*\*: P ≤ 0.01 Test of Chi Square

(IIPT150)

nasopharynx

lung

(IIPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 18

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Cx1j[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

|                        |                                                                                                                     | Group Name<br>No. of Animals on Study | Control<br>50                 | 250 ppm<br>50                         | 1000 µpm<br>50              | прп            | 4.               | 4000 ppm<br>50           |             |
|------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|-----------------------------|----------------|------------------|--------------------------|-------------|
| Organ                  | Findings                                                                                                            | -100                                  | (%) (%) (%)                   | 1 2 3 4<br>(%) (%) (%)                | (%) (%) (                   | (%) (%)        | (%) (%)          | (%) (%)                  | 8 8         |
| (Respiratory system)   | system)                                                                                                             |                                       |                               |                                       |                             |                |                  |                          |             |
| lung                   | accumulation of foamy cells                                                                                         | 0 0 0                                 | <50> (0) (0) (0) (0)          | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0 | <050><br>0 0<br>( 0) ( 0) ( | (O ) (O        | 0 1 (0) (2)      | <50><br>1 0<br>2) ( 0) ( | 0 0         |
|                        | bronchiolar-alveolar cell hyperplasia                                                                               | 0 0                                   | (0 ) (0 ) (0                  | (2) (0) (0) (0)                       | 0 0                         | (0 ) (0        | 1 0 (2) (0)      | 0 (0 )                   | 0 0         |
|                        | accumulation:macrophage                                                                                             | 0 (0 )                                | (0 ) (0 ) (0                  | (0)(0)(0)(0)(0)                       | 0 0                         | (0 ) (0<br>0 0 | 0 1 (0) (0.2)    | 0 0                      | 0 (0        |
|                        | degeneration:blood vessel                                                                                           | 0 ) (0 )                              | (0 ) (0 ) (0                  | (0)(0)(0)(0)                          | 1 0 (2) (0) (               | (0 ) (0        | 2 4 ( 4) ( 8)    | 0 (0 )                   | * (î        |
| {Hematopoietic system} | ic system)                                                                                                          |                                       |                               |                                       |                             |                |                  |                          |             |
| ьоне ваттом            | granulation                                                                                                         | 2 0 ( 4) ( 0                          | <50><br>0 0 0<br>0) ( 0) ( 0) | <pre></pre>                           | <05> (0 ) (0 ) (0 )         | 0 0            | (O) (O)          | <50><br>0 0<br>0) ( 0) ( | 0 (0        |
|                        | increased hematopoiesis                                                                                             | 17 C                                  | (0 ) (0 ) (0                  | 11 0 0 0 0 (22) (22) (3) (3) (3)      | 18 0 (36)                   | (O ) (O        | 36 0<br>(72) (0) | 0 (0 )                   | *<br>0<br>0 |
|                        | granulopoiesis:increased                                                                                            | 0 (0 )                                | (0) (0) (0                    |                                       | 1 0 (2) (0) (               | (0 ) (0        | (0) (0)          | 0 (0 )                   | 0 0         |
| Grade < a > b b ( c )  | 1 : Slight 2 : Modorate 3 : Malor of animals examined at the site b : Number of animals with lesion c : b / a * 100 | 3: Markod 4: Sovore<br>site           |                               |                                       |                             |                |                  |                          |             |

Grade 1: Slight 2: Moderate 3: Marked  $\langle$  a  $\rangle$  a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a\*100 Significant difference; \*:P  $\leq$  0.05 \*\*:P  $\leq$  0.01 T

(HPT150)

| FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) | SW)                  |  |
|---------------------------------------------|----------------------|--|
| HISTOPATHOLOGICAL                           | ALE ANTMALS (0-105W) |  |

| STUDY NO. : 068 ANIMAL : MOU REPORT TYPE : A1 SEX : FEM | : 0685<br>: MOUSE BEDZF1/Cr1j[Crj:BDF1]<br>: A1<br>: FEMALE | HISTOPATHOLOGICAL FINDINGS :N<br>ALL ANIMALS (0-105%)        | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105%) |                                           | PAGE: 19                                |
|---------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| Organ                                                   | Findings                                                    | Group Name No. of Animals on Study Grade (%) (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)                                              | 1000 ppm 50 4 (%) (%) (%) (%)             | 4000 ppm 50 1 2 3 4 (%) (%) (%) (%) (%) |
| {Hematopoietic system}<br>lymph node lympha             | ic system)<br>lymphadenitis                                 | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0                        | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                               | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0<br>0 0 0 0 | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)  |
| spleen                                                  | atrophy                                                     | (50)<br>0 1 0 0<br>(0)(2)(0)(0)                              | <00 ( 0) ( 0) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )                                          | (6 ) (0 ) (0 ) (0 )<br>0 0 0 0 (0 )       | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)  |
|                                                         | deposit of hemosiderin                                      | 19 0 0 0 (38) (38) (0) (0) (0)                               | 10 20 0 0 **<br>(20) (40) (0) (0)                                                    | 9 26 0 0 **<br>(18) (52) (0) (0)          | 14 29 1 0 ***<br>( 28) ( 58) ( 2) ( 0)  |
|                                                         | osseous metaplasia                                          |                                                              |                                                                                      |                                           | 1 3 0 0 (2) (3) (6) (0) (0)             |
|                                                         | extramedullary hematopoiesis                                | 11 10 0 0 (22) (20) (0) (0)                                  | 15 6 1 0<br>(30) (12) (2) (0)                                                        | 16 16 0 0<br>(32) (32) (0) (0)            | 28 10 0 0 *** (56) (20) (0) (0)         |
|                                                         | engorgement of erythrocyte                                  |                                                              |                                                                                      |                                           | 12 1 0 0 **<br>( 24) ( 2) ( 0) ( 0)     |
|                                                         | follicular hyperplasia                                      |                                                              | 2 0 1 0<br>(4) (0) (2) (0)                                                           | 1 0 0 0 (2) (2) (3) (4)                   | (0)(0)(0)(0)                            |
| {Circulatory system}<br>heart                           | system)<br>Lhrombus                                         | 2 0 0 0 (4) (6) (6) (6)                                      | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                                               | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0)    | <56><br>0 0 0 0<br>0 0 0 0<br>0 0 0 0   |

**★**: P ≤ 0.01

\* :  $P \le 0.05$ 

Significant difference;

(HPT150)

PAGE: 0 (0 0 0 0 0 0 0 0 0 2 3 (%) 4000 **որ**ու 50 (0)(0)(0) 2 0 0 ( 4) ( 0) ( 0) (0 ) (0 ) (0 ) (0 ) 0 0 7 % 1 0 0 0 ( 2) ( 2) ( 0) ( 0) ( 0) 00 00 00 00 00 4 8 000 0 (0  $\smile$ \_ 88 1000 ppm 50 1 0 0 2) ( 0) ( 00 (0)(0)(2) 0 ) (0 ) (0 ) 0 (0 (0 ) 1 0 (2) ( 0) ( 2 (%) **⊣** §€ HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W) 0 0 0 0 (0 ) (0 ) (0 (0 ) (0 ) (0 0 o ô 0 (0 ) (0 ) (0 (0)(0)(0)(0)(0) 4 % 0 0 0 250 ppm 50 8 2 (%) 3 (9 ) 000 000 0 0 1 (2) - <del>3</del>8 4 8 00 06 00 00 00 00 3 0 0 ( 1 0 0 ( ) ( ) ( 1 0 0 ( 2) ( 0) ( 0) ( 0 0 0 0 1 0 0 ( 2) ( 2) ( 0) ( 0 0 0 0 Control 50 ლ წ 2 (%) 4 : Severe · 89 Group Name No. of Animals on Study Grade 3 : Marked 1: Slight 2: Moderate 3: Me a : Number of animals examined at the site b : Number of animals with losion c : b / a \* 100 STUDY NO. : 0685
ANLMAL : MOUSE BGDZFL/Crij[Crj:BDF1]
RGPORT TYPE : A1
SEX : FEMALE myocardial fibrosis mineralization degeneration arteritis dysplasia arteritis Findings. (Circulatory system) (Digestive system) Grade < a > b ( c ) tongue heart Organ

20

4 %

00

06

00

00

00

00

Grade 1 : Slight 2 : Moderate 3 : Marked 4 : Severe  $\langle$  a  $\rangle$  a : Number of animals examined at the site b 1. Number of animals with lesson (c) c : b / a \* 100 Significant difference : \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 Test of Chi Square

(IIPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. : 0685
ANIMAL : MOUSE B6DZF1/Crlj[Crj:BDF1]
RDFORT TYPE : A1
SEX : FEMALE

| SEX :                                   | : FEMALE                                |                                                             |                                         |                                               | PAGE : 21                              |
|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------|
| Огван                                   | Findings                                | Group Name  No. of Animals on Study  Grade  (%) (%) (%) (%) | 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)      | 4000 ppm 50 1 2 3 4 (%) (%) (%) (%)    |
| (Digestive system)<br>salivary gl       | stem)<br>Xanthogranuloma                | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0            | (0)(0)(0)(0)                            | (0) (0) (0) (0)<br>0 0 0 0<br><05>            | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0) |
| stomach                                 | hyperplasia:forestomach                 | <50><br>2 0 0 0<br>( 4) ( 0) ( 0) ( 0)                      | (0)(0)(0)(0)                            | <200> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) |
|                                         | erosion:glandular stomach               |                                                             | 1 0 0 0 (2) (2) (3) (4)                 | (0)(0)(0)(0)(0)                               | 0 0 0 0 0 0                            |
|                                         | hyperplasia:glandular stomach           | 5 0 0 0 (10) (10) (10) (10) (10)                            | 6 0 0 0 ( 12) ( 0) ( 0) ( 0)            | 8 0 0 0 0 (16) (16)                           | 4 0 0 0 0 ( 8) ( 8) ( 0) ( 0)          |
| liver                                   | congestion                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       | <50><br>0 1 0 0<br>( 0) (2) ( 0) ( 0)   | <50> (0) (0) (0) (0) (0)                      | (0) (0) (0) (0) (0)                    |
|                                         | angiectasis                             | 0 2 0 0 (0) (4) (0) (0)                                     | 0 2 0 0 (0) (4) (0) (0)                 | 0 0 (0) (0) (0)                               | 0 4 0 0 (0) (0)                        |
|                                         | necrosis:central                        |                                                             |                                         | (0)(0)(0)(0)                                  | 1 0 0 0 ( 2) ( 3) ( 3)                 |
| *************************************** | *************************************** |                                                             |                                         |                                               |                                        |

(IIPT150)

BAIS4

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

PAGE: 22

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

| Organ              | oroup<br>No. of<br>Grade<br>Grade                                                                       | Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) | 250 ppm 50 (%) (%) (%) (%)              | 1000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) | 4000 ppm 50 4000 (%) (%) (%) (%) (%) (%) (%) | اءاء        |
|--------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------|-------------|
| (Digestive system) | system)                                                                                                 |                                                                     |                                         |                                          |                                              |             |
| liver              | necrosis:focal                                                                                          | (50)<br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)                              | <50> <50> (0) (2) (0) (0)               | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0    | <50> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) | 0 6         |
|                    | fatty change:central                                                                                    |                                                                     | 0 0 0 0 0                               | (0)(2)(0)(0)                             | 0 ) (0 ) (0 ) (0 )                           | 0 (0        |
|                    | deposit of hemosiderin                                                                                  |                                                                     |                                         | 2 0 0 0 0 (4) (4) (6) (6)                | 34 0 0 0 ( 0) ( 0) ( 0                       | <b>*</b> (0 |
|                    | lymphocytic infiltration                                                                                | 1 0 0 0 (2) (2) (3) (4) (4)                                         |                                         | 2 0 0 0 0 (4) (4) (6) (6)                | 1 0 0 0 ( ) ( ) ( ) ( )                      | 0 0         |
|                    | granulation                                                                                             | 2 1 0 0 (4) (2) (0) (0)                                             |                                         | 2 0 0 0 (4) (4) (6) (6)                  | 0 ) (0 ) (0 ) (0 )                           | o 6         |
|                    | clear cell focus                                                                                        |                                                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                          |                                              | o 6         |
|                    | acidophilic cell focus                                                                                  | 1 0 0 0 (2) (2) (3) (4) (5)                                         |                                         | (0)(2)(0)(0)                             | 1 0 0 0 (2) (3) (4 0) (4 0)                  | 06          |
|                    | hepatocellular hypertrophy:central                                                                      | (0) (0) (0) (0) (0)                                                 | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0          | 0 0 0 0 0                                | 7 0 0 0 (14) (14) (15) (15) (15)             | * (0        |
| Grade < a > b      | 1: Slight 2: Moderate 3: Ms a : Number of animals examined at the site b: Number of animals with lesion | 3 : Marked 4 : Severe<br>site                                       |                                         |                                          |                                              |             |

|           | 03:1]                       |                  |        |
|-----------|-----------------------------|------------------|--------|
| : 0685    | MOUSE BGD2F1/Cr1j[Crj:BDF1] | A1               | FEMALE |
|           | -                           |                  |        |
| STUDY NO. | ANIMAL                      | REPORT TYPE : A1 | SEX    |

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)

PAGE: 23

| 1000 ppm 50 50 2 3 4 1 2 3 4 (%) (%) (%) (%) (%) (%) | (50) (0) (0) (0) (0) (0) (0) (0) (0) (0) (  | (50)       (50)         2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | 0) (0) (0) (34) (0) (0) (0) | 0) (0) (0) (0) (5) (0) (0) | 0) (0) (0) (2) (0) (0) (0)              | 0) (0) (0) (0) (12) (0) (0) | 2) (0) (0) (0) (0) (0) (0) |                                                                                                                                                                                                    |
|------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------------------|-----------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -  %                                                 | 0 0                                         | 10 2 ( 20) ( 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 (0 )                      | 0 0                        | 1 (2) (-2)                              | 0 0                         | 0 0 0                      |                                                                                                                                                                                                    |
| 250 ppm<br>50<br>1 2 3 4<br>(%) (%) (%) (%)          | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br>0 0 0 0 | <pre>&lt;50&gt; 6 0 0 (12) (0) (0) (0)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0 0 0 (2) (2) (3) (4)     | 0 0 0 0 0                  | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (0)(0)(0)(0)                | (0)(0)(0)(0)(0)            |                                                                                                                                                                                                    |
| Animals on Study 50 4 (%) (%) (%) (%) (%) (%)        | (50)<br>0 0 1 0<br>( 0) ( 0) ( 2) ( 0)      | <50><br>7 0 0<br>(14) (0) (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0) (0) (0) (0)             | (0)(0)(0)(0)               | (0)(0)(0)(0)                            | 0 1 0 0 (0) (0) (0) (0)     |                            | 4 : Sovere                                                                                                                                                                                         |
| Group Name<br>No. of Animal.<br>Grade                | system) atroply                             | stem)<br>hyaline droplet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | deposit of hemosiderin      | inflammation               | lymphocytic infiltration                | scar                        | inflammatory polyp         | Grade 1: Slight 2: Moderate 3: Marked <a> a: Number of animals examined at the site b : Number of animals with lesion (c) c: b / a * 100 Significant difference; *: P ≤ 0.05 **: P ≤ 0.01 Test</a> |
| Огван                                                | (Digestive system)<br>pancreas at           | (Urinary system)<br>kidncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                            |                                         |                             |                            | Grade < a > b ( c ) Significant                                                                                                                                                                    |

BAIS4

(IIPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W) : 0685 : MOUSE BGDZF1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE

STUDY NO.

PAGE: 24

**\*** 0 0 4 8 00 00 00 00 00 00 (0)(2)(0)( (2)(2)(0)( 1 1 0 (2) (2) (0) ( 0 0 0 0 2 3 (%) (%) 4000 ppm 50 0 0 0 1 0 0 ( 2) ( 0) ( 0) o ô ` 2 0 0 ( 4) ( 0) ( 0) 3 (9) 4 (8) 14 (28) **-**|€ 00 4 % 00 00 00 00 00 00 00 0 2 1 0) (4) (2) ( \_  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ \_  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ 1000 ppm 50 2 3 (%) (%) 0 0 0 0 0 0 0 0 00 00 00 0 1 0 ( 0) ( 2) ( 0) 00 0 6 0 0 000 0 0 2 (4) (6) 000 00 - -- 6  $\overline{\phantom{a}}$  $\overline{\phantom{a}}$ 1 (2 00 **⊣** 8€ 0 1 0 0 (0) (0) (0) (0) 00 00 44 86 00 00 00 00 00 . 6 ි ට - -- 6 - -0 0 0 0 0 0 \_ ቪ 00 00 e 8€ 0 0 0 0 (0 (0 0 0 0 2) (0) (0 1 0 (2 000 250 2 (%) 00 **-** 8 0 0 00 0 0 o 6 . 4 86 0 2 0 ( 0) ( 4) ( 0) ( 0) 00 00 00  $\overline{\phantom{a}}$ 2 3 (%) (%) \_ Control 50 0 0 0 0 0 0 0 0 (6) 0 0 (0) (0) (0) (0) 00  $\overline{\phantom{a}}$ 00 000 000 000 (2) 000 - 8 Group Name No. of Animals on Study Grade hyaline droplet degeneration:superficial cell of transitional epithelium regeneration:proximal tubule dilatation:tubular lumen mineralization:papilla desquamation:pelvis papillary necrosis hydronephrosis dilatation Findings. (Urinary system) urin bladd kidney Organ

BAIS4

Test of Chi Square

**★**: P ≤ 0.01

(HPT150)

Grade 1 : Slight 2 : Moderate 3 : Ma  $\langle$  a  $\rangle$  a : Number of animals examined at the site b b : Number of animals with lesion ( c ) c : b / a \* 100 Significant difference ; \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.0

4 : Severe

3 : Marked

(HPT150)

| Y NO.<br>IAL<br>ORT TYPE          | : 0685<br>: MOUSE BGDZF1/Cr1j[Crj:BDF1]<br>: A1                                                                                                                                                          | HISTOPATHO<br>ALL ANIMAI                           | DLOGICAL FINDINGS :N.<br>JS (0-105W) | HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)<br>ALL ANIMALS (0-105W) |                                        |                                        |              |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------|
| SEX                               | : FEMALE                                                                                                                                                                                                 |                                                    |                                      |                                                                                      |                                        | PAGE                                   |              |
|                                   |                                                                                                                                                                                                          | Group Name<br>No. of Animals on Study              | Control<br>50                        | 250 ppm<br>50                                                                        | 1000 ppm<br>50                         | 1000<br>50                             |              |
| Organ                             | Findings                                                                                                                                                                                                 | (%)                                                | (%) (%) (%)                          | (%) (%) (%)                                                                          | (%) (%) (%) (%)                        | (%) (%) (%) (%)                        | Ja           |
| (Endocrine system)                | ystem)                                                                                                                                                                                                   |                                                    |                                      |                                                                                      |                                        |                                        |              |
| pituitary                         | angiectasis                                                                                                                                                                                              | 0                                                  | (50)                                 | <20><br>0                                                                            | <50><br>0                              | <49><br>0 0                            |              |
|                                   |                                                                                                                                                                                                          | ) (0 )                                             | (0 ) (0 ) (0                         | (0 ) (0 ) (0 ) (0 )                                                                  | (4) (0) (0) (0)                        | (0) (0) (0) (0)                        | _            |
|                                   | hyperplasia                                                                                                                                                                                              | ) (01)                                             | 3 0 0 (9) (9)                        | (10) (0) (0) (0)                                                                     | 0 0 0 (91)                             | 3 1 0 0 (6) (7) (7) (7) (8) (7)        | $\widehat{}$ |
|                                   | Rathke pouch                                                                                                                                                                                             | 3 (9 )                                             | (0) (0) (0                           |                                                                                      |                                        |                                        |              |
| adrena]                           | cyst                                                                                                                                                                                                     | 0 0                                                | <50><br>1 0 0<br>2) ( 0) ( 0)        | <00                                                                                  | <pre></pre>                            | (0) (0) (0) (0) (0) (0)                |              |
|                                   | spindle-cell hyperplasia                                                                                                                                                                                 | 12 ( 24) (                                         | (0) (0) (0                           | 10 0 0 0 0 (20) (20) (0) (0)                                                         | (0)(0)(0)(91)                          | 0 0 0 6                                |              |
|                                   | focal fatty change:cortex                                                                                                                                                                                | 1 ( 2) (                                           | (0) (0) (0                           |                                                                                      | (0) (0) (0) (0)                        | 1 0 0 0 (2) (2) (3) (4)                |              |
|                                   | fatty change:corticomedullary junction                                                                                                                                                                   | 0 0 0                                              | (0 ) (0 ) (0                         | 0 1 0 0 (0) (0) (0) (0)                                                              | (0)(0)(0)(0)                           |                                        |              |
| {Reproductive system}             | e system)                                                                                                                                                                                                |                                                    |                                      |                                                                                      |                                        |                                        |              |
| ovary                             | thrombus                                                                                                                                                                                                 | 0 (0 )                                             | <50><br>0 0 0<br>0) ( 0) ( 0)        | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0)                                               | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0) | <50><br>0 0 0 0<br>( 0) ( 0) ( 0) ( 0) |              |
| Grade < a > b b ( c ) Significant | Grade I : Slight 2 : Moderate 3 : N < a > a : Number of animals examined at the site b : Number of animals with lesion ( c ) c : b / a * 100 Significant difference : * : P $\leq$ 0.05 ** : P $\leq$ 0. | 3: Marked 4: Severe site ≤ 0.01 Test of Chi Square |                                      |                                                                                      |                                        |                                        |              |

PAGE: 25

\*\* : P ≤ 0.01

\* :  $P \le 0.05$ 

(HPT150)

PAGE: 26 ( 0) ( 6) ( 0) ( 0) (0)(0)(0)(0)(0) 4 0 0 0 ( 8) ( 8) ( 9) ( 9) 2 3 (%) (%) 0 0 0 0 (14) (2) (0) ( 0 0 0 0 4000 ppm 50 **⊣** § 00 4 % 7 0 0 0 (14) (0) (0) (0) 00 06 00 00 0 (0 ) (0 ) (0 ) 12 0 0 (24) (24) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0 1000 ppm 50 2 3 (%) (%) 7 86 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
ALL ANIMALS (0-105W) 4 8 3 0 0 0 0 ( 0) ( 0) 0 1 0 0 (0) (0) (0) 00 00 10 0 0 0 0 (20) (20) (30) (30) (0)(0)(0)(0)(0 - -- 6 0 0 e 8 nh 0 (0 ) (0 ) 0 0 0 2) (2 250 <sub>1</sub> 20 88 0 0 **⊣** §€ 4 86 3 0 0 0 0 (0) (0) (0 ) (0 ) (0 ) (0 ) 00 00 00 00 10 0 0 0 (20) (20) (20) 1 0 0 ( 2) ( 2) ( 0) ( 0 0 0 0 1 0 0 (2) (2) (3) (3) Control 50 2 3 (%) 4 : Severe 8 Group Name No. of Animals on Study Grade 1 3 : Marked 1: Slight 2: Moderate 3: Mas a: Number of animals examined at the site b: Number of animals with losion c: b/a\*100 cystic endometrial hyperplasia : MOUSE B6D2F1/Cr1j[Crj:BDF1] inflammatory infiltration hyperplasia:gland dilatation hemorrhage Findings. REPORT TYPE : A1 SEX : FEMALE (Reproductive system) cyst STUDY NO. : 0685 ANIMAL : MOUSE (Nervous system) uterus Organ brain ovary

00

00

00

4 8

| LES I ONS        |
|------------------|
| : NON-NEOPLASTIC |
| FINDINGS         |

(SUMMARY)

HISTOPATHOLOGICAL FIN ALL ANIMALS (0-105W)

STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Cr1j[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

| SEX : 1                  | : PEMALE                         |                                              |                                           |                                              |                                        | PAGE: 27                                               |
|--------------------------|----------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------|
| Organ                    | Findings.                        | Group Name No. of Animals on Study Grade (%) | Control 50 4 (%) (%)                      | 250 ppm<br>50<br>1 2. 3 4<br>(%) (%) (%) (%) | 1000 ppm 50 4 (%) (%) (%) (%)          | 4000 ppm<br>50<br>1 2 3 4<br>(%) (%) (%)               |
| {Nervous system}         | (a                               |                                              |                                           |                                              |                                        |                                                        |
| brain                    | mineralization                   | 10 ( 20) (                                   | <50><br>0 0 0<br>0) ( 0) ( 0)             | <50><br>6 0 0<br>( 12) ( 0) ( 0) ( 0)        | <50><br>9 0 0 0<br>(18) ( 0) ( 0) ( 0) | <50><br>14 0 0 0<br>( 28) ( 0) ( 0) ( 0)               |
| (Special sense           | (Special sense organs/appendage) |                                              |                                           |                                              |                                        |                                                        |
| cyc                      | keratilis                        | 0                                            | <50><br>0 0 0<br>0) ( 0) ( 0)             | <pre></pre>                                  | (0) (0) (0) (0)<br>0 0 0 0<br>0 0 0 0  | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$ |
| Harder gl                | lymphocytic infiltration         | 0 0                                          | \$20\$<br>0 0 0<br>0 0 0<br>0 0 0         | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0)       | <50><br>1 0 0 0<br>( 2) ( 0) ( 0) ( 0) | (0) (0) (0) (0)                                        |
| {Musculoskeletal system} | al system)                       |                                              |                                           |                                              |                                        |                                                        |
| muscle                   | mineralization                   | 0 0                                          | <50><br>1 0 0<br>2) ( 0) ( 0)             | (50) (2) (0) (0)                             | <50> 2 0 0 ( 0) ( 0) ( 0)              | (0) (0) (0) (0)<br>0 0 0 0<br>(0) (0) (0)              |
| hone                     | deformity                        | 0 0                                          | (20) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (0)(0)(0)(0)<br>0 0 0 0<br>0 0 0 0<br>0 0 0  | <50><br>0 1 0 0<br>( 0) ( 2) ( 0) ( 0) | (0 ) (0 ) (0 ) (0 )<br>0 0 0 0 0<br><05>               |

4 : Severe Grade 1 : Slight 2 : Moderate 3 : Marked  $\langle a \rangle$  a : Number of animals examined at the site b : Number of animals with lesion (c) c : b / a \* 100 Significant difference : \* : P  $\leq$  0.05 \*\* : P  $\leq$  0.01 T

++: P ≤ 0.01 Test of Chi Square

BAIS4

(IIPT150)

PAGE: 28 0 0 0 0 0 (0)(0)(0)(0) 4000 ppm 50 2 3 (%) (%) **<20** - <del>8</del> 4 8 (0 ) (0 ) (0 ) (0 ) 00 0 0 0 0 1000 **ppm** 50 2 3 (%) (%) 7 86 HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANLMALS (0-105%) 4 8 2 0 0 0 ( 4) ( 0) ( 0) ( 0) ( 2) ( 0) ( 0) 2 3 (%) (%) 25**0 ppm** 50 - 80 4 % (0) (0) (0) (0) 0 0 0 0 0 2 3 (%) (%) Control 50 Group Name No. of Animals on Study Grade I STUDY NO. : 0685
ANIMAL : MOUSE BGDZF1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE osteosclerosis inflammation Findings\_ {Musculoskeletal system} (Rody cavities) peri toneum Organ bone

4 %

|                                      | 1 : Slight 2 : Moderate                    | 3 : Marked       | 4 : Severe         |
|--------------------------------------|--------------------------------------------|------------------|--------------------|
| (a) a: Number                        | a : Number of animals examined at the site | t the site       |                    |
| b b : Number                         | b : Number of animals with lesion          | _                |                    |
| (c) c:b/a*100                        | . 100                                      |                  |                    |
| ignificant difference ; * : P ≤ 0.05 |                                            | **: P ≤ 0.01 Tes | Test of Chi Square |
|                                      |                                            |                  |                    |
| HPT [50)                             |                                            |                  |                    |

#### TABLE O 1

## NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

| -                  |  |
|--------------------|--|
| ANA                |  |
| Z                  |  |
| ~                  |  |
|                    |  |
|                    |  |
| IV.LIST.           |  |
| -                  |  |
| _                  |  |
| _                  |  |
| ⊱                  |  |
| 51                 |  |
| <u>~</u>           |  |
| 6                  |  |
| 5                  |  |
| TATA               |  |
| ⊱                  |  |
| :/                 |  |
| -                  |  |
| _                  |  |
| =                  |  |
| 2                  |  |
| <                  |  |
|                    |  |
| ٠,                 |  |
| _                  |  |
| ⋍                  |  |
| z                  |  |
| 7                  |  |
| 三                  |  |
|                    |  |
| •                  |  |
| $\succeq$          |  |
| _                  |  |
| _                  |  |
|                    |  |
| ŀ                  |  |
| ŀ                  |  |
| ŀ                  |  |
| ŀ                  |  |
| ŀ                  |  |
| <br>ŀ              |  |
| <br>ŀ              |  |
| <br>ŀ              |  |
| <br>ŀ              |  |
| <br>               |  |
| <br>-VIOLVI        |  |
| -VIOLVI            |  |
| -VIOLVI            |  |
| -VIOLVI            |  |
| <br>-VIOLVI        |  |
| -VIOLVI            |  |
| -VNOIVI C. 15V     |  |
| -VNOIVI C. 15V     |  |
| <br>-VNOIVI C. 15V |  |
| <br>-VNOIVI C. 15V |  |
| -VNOIVI C. 15V     |  |
| -VNOIVI C. 15V     |  |
| -VIOLVI            |  |
| -VNOIVI C. 15V     |  |

| Grate Name   Gra                                                                                                                                                                                                                                                                                                     |                                                          |                                            |                                          | *************************************** | THE PROPERTY OF THE PROPERTY O |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SITE   Liung   10,00   4/56 ( 8.0)   7/50 ( 14.0)   7/50 ( 14.0)   7/50 ( 14.0)   7/50 ( 14.0)   7/50 ( 10.0)   7/50 ( 14.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)   7/50 ( 10.0)                                                                                                                                                                                                                                                                                                     | Group Name                                               | Control                                    | 250 ppm                                  | 1000 при                                | 4000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| S/50 (10.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          | SITE : lung<br>TUMOR : bronchiolar—alveola | ir adenoma                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 11.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tumor rate                                               |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 11.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Overall rates(a)                                         | 5/50(10.0)                                 | 4/50(8.0)                                | 7/50(14.0)                              | 4/50(8.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| P = 0.4743   P = 0.4743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjusted rates(b)                                        | 11. 43                                     | 10.34                                    | 19.35                                   | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| D = 0.4743<br>  SITE : lung<br>  D = 0.5500   D = 0.3786   P = 0.3786<br>  D = 0.5500   D = 0.3786   P = 0.3886   P = 0.4786   P                                                                                                                                                                                                                                                                           | Ferminal rates(c)<br>atistical analysis                  | 3/31(9.7)                                  | 3/29(10.3)                               | 5/29( 17.2)                             | 1/16( 6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| P = 0.4743<br>  SITE : lung<br>  F = 0.5000   P = 0.3788   P = 0.500   P = 0.3788<br>  P = 0.570 ( 10.0)   8/50 ( 16.0)   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35                                                                                                                                                                                                                                                                          | Peto test                                                |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| st(e) P = 0.7356  p = st(e) P = 0.7356  p = 0.5000  SITE : lung  TUMOR : bronchiolar-alveolar carcinoma  5/50(10.0)  P = 0.5588  4/31(12.9)  P = 0.5588  10.50  P = 0.5588  P = 0.5000  P = 0.2768  P = 0.5000  P = 0.2768  P = 0.2                                                                                                                                                                                                                                                                                                          | Standard method(d)                                       | = d                                        |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| P = 0.3788   P = 0.3788   P = 0.5000   P = 0.3788   P = 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prevalence method(d)                                     | P = 0.4743                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SITE   Lung   TUMOR   bronchiolar-alveolar carcinoma   5/50(16.0)   8/50(16.0)   18.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.                                                                                                                                                                                                                                                                                                     | Compined analysis(d)<br>Cochran—Armita <i>me</i> test(e) | P = 0 7395                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SITE : lung   TUMOR : bronchiolar-alveolar carcinoma   5/50(10.0)   6/50(12.0)   8/50(10.0)   13.89   13.89   14/29(13.8)   15.35   14/31(12.9)   4/29(13.8)   5/29(17.2)   19.35   19.35   11/20   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35   19.35                                                                                                                                                                                                                                                                                                        | Fisher Exact test(e)                                     |                                            |                                          | 11                                      | P = 0, 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 5/50(10.0)   6/50(12.0)   8/50(16.0)     13.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |                                            | r carcinoma                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5/50(10,0)   6/50(12,0)   8/50(16,0)     13.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mor rate                                                 |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 13.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | verall rates(a)                                          | 5/50(10.0)                                 | 6/50(12.0)                               | 8/50(16.0)                              | 1/50(-2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H 4/31 ( 12. 9) 4/29 ( 13. 8) 5/29 ( 17. 2)  P = 0.5588  Str = 0.0595  P = 0.500  P = 0.500  P = 0.2768  P = 0.2768  P = 0.2768  P = 0.500  P = 0.2768  P = 0.2768  P = 0.500  P = 0.2768  P = 0.500  P = 0.2768  P = 0.2768  P = 0.500  P = 0.2768  P                                                                                                                                                                                                                                                                                                   | djusted rates(b)                                         | 13.89                                      | 16.67                                    | 19.35                                   | 6, 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| P = 0.5588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | erminal rates $(c)$                                      | 4/31(12.9)                                 | 4/29 (13.8)                              | 5/29(17.2)                              | 1/16(6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| P = 0.5588   P = 0.8969     St(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atistical analysis                                       |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 010 Lest                                                 | 0000                                       |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| st(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dente   method (d)                                       | F = 0. 5565                                |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SITE : lung  SITE : lung  TUMOR : bronchiolar-alveolar carcinoma  10/50(20.0)  10/50(20.0)  26.67  7/31(22.6)  P = 0.2768  P = 0.500  14/50(28.0)  26.67  26.67  27.39 (24.1)  P = 0.5588  P = 0.588  P = 0.8835  P = 0.8835  P = 0.8835  P = 0.5984  P = 0.5984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frevarence method(d)<br>Combined analysis(d)             | 7 = 0.0/3/<br>D = 0.8969                   |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SITE : lung  SITE : lung  TUMOR : bronchiolar-alveolar adenoma, bronchiolar-alveolar carcinoma $10/50(20.0)$ $25.00$ $10/50(20.0)$ $14/50(28.0)$ $25.67$ $35.48$ $7/31(22.6)$ $10/29(24.1)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$ $10/29(34.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compiled analysis(d)                                     | F = 0.0909                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SITE : lung  TUMOR : bronchiolar—alveolar carcinoma  10/50(20.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ochran armitage test(e)<br>Isher Exact test(e)           | r = 0.00%                                  | P = 0.5000                               | P = 0. 2768                             | P = 0.1022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| SITE : lung  TUMOR : bronchiolar—alveolar adenoma, bronchiolar—alveolar carcinoma  10/50 ( 20. 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10/50( $20.0$ ) 10/50( $20.0$ ) 10/50( $20.0$ ) 14/50( $28.0$ ) 35.48 7/31( $22.6$ ) 7/31( $22.6$ ) 7/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $34.5$ ) 10/29( $34.5$ ) 11/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ ) 10/29( $24.1$ |                                                          |                                            | r adenoma hronchiolar—alveolar carcinoma |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10/50( $20.0$ ) $10/50( 20.0)$ $14/50( 28.0)$ $25.00$ $26.67$ $35.48$ $7/31( 22.6)$ $7/31( 22.6)$ $7/29( 24.1)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$ $10/29( 34.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mor rate                                                 |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 25.00 26.67 35.48 7/31(22.6) 7/29(24.1) 10/29(34.5) 10/29(34.5) 26.67 35.48 26.67 36.48 27/31(22.6) 7/29(24.1) 10/29(34.5) 27/31(22.6) 7/29(24.1) 10/29(34.5) 27/31(22.6) 7/29(24.1) 10/29(34.5) 28/305 7/31(22.6) 7/29(24.1) 10/29(34.5) 29/305 7/29(24.1) 10/29(34.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Overall rates(a)                                         | 10/50(20.0)                                | 10/50 ( 20.0)                            | 14/50(28.0)                             | 5/50(10.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 7/31 (22.6) 7/29 (24.1) $10/29$ (34.5) $7/29$ (24.1) $10/29$ (34.5) $9 = 0.5588$ $9 = 0.8084$ $9 = 0.1002$ $9 = 0.1002$ $9 = 0.5984$ $9 = 0.2415$ $9 = 0.2415$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Adjusted rates(b)                                        | 25.00                                      | 26.67                                    | 35.48                                   | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>p ± 0, 5588</li> <li>f) p = 0, 8084</li> <li>f) p = 0, 8084</li> <li>f) p = 0, 1002</li> <li>f) p = 0, 5984</li> <li>f) p = 0, 2415</li> <li>f) p = 0, 5415</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ferminal rates(c)                                        | 7/31(22.6)                                 | 7/29 (24.1)                              | 10/29(34.5)                             | 2/16(12.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| method (d) $p = 0.5588$<br>= method (d) $p = 0.8084analysis (d) p = 0.8305analysis (e) p = 0.1002= 0.5984= 0.5984= 0.5984$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atistical analysis                                       |                                            |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| V = 0.3585 $P = 0.8084$ $P = 0.8305$ $P = 0.1002$ $P = 0.5984$ $P = 0.2415$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eto test                                                 | 6                                          |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| F = 0.0004 $P = 0.8305$ $P = 0.1002$ $P = 0.5984$ $P = 0.2415$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standard method(d)                                       | P = 0,5588                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| F = 0.3595<br>P = 0.1002<br>P = 0.5984<br>P = 0.2415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frevalence method(d)                                     | F = 0.8084                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| P = 0.5984 $P = 0.2415$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Combined analysis(d)                                     | F = 0.8303                                 |                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fisher Exact test(e)                                     | 1 0:1006                                   | P = 0 5984                               | D = 0 9415                              | D = 0 1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| :/          |
|-------------|
| 2           |
| >           |
|             |
| _           |
| -           |
| -           |
| 7           |
| N           |
| -           |
|             |
|             |
|             |
| 3           |
| 2           |
|             |
|             |
|             |
|             |
| =           |
|             |
|             |
| 5           |
|             |
|             |
|             |
|             |
|             |
|             |
| STATE       |
| 1           |
|             |
|             |
| _           |
|             |
| 2           |
| Ę,          |
| <           |
|             |
|             |
| Ž           |
| -           |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
| NCIDE       |
| 7           |
| ī           |
| 7           |
| -S          |
| 1           |
| NS-I        |
| ONS-1       |
| -SNO        |
| I SNOT      |
| NOIS-       |
| I-SNOLS:    |
| FS LONS-    |
| 2           |
| LES TONS-   |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| ASTIC LESIO |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |
| S           |

| SITE<br>TUMOR<br>6/8<br>5/8<br>5 sis<br>(d) P = (<br>od(d) P = (<br>is(d) P = (<br>test(e) P = (<br>st(e) P = (<br>test(e) TUMOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/50(12.0) 9.68 3/31(9.7) = 0.5931 = 0.6406 = 0.6976 = 0.1956 : spleen | 4/50 ( 8.0) 10.34 3/29 ( 10.3)                     |                     |                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|---------------------|--------------------|--|
| 6/7<br>6/7<br>3/7<br>3/7<br>3/7<br>1) P = (<br>1) P = (<br>1) P = (<br>2) P = (<br>2) P = (<br>3/7<br>1) P = (<br>3/7<br>1) P = (<br>4/7) P = (<br>4/7) P = (<br>4/7) P = (<br>4/7) P = (<br>5/7) P = | ( 12. 0) 9. 68 ( 9. 7) 5931 6406 1956 spleen hamonolione               | 4/50 ( 8.0)<br>10.34<br>3/29 ( 10.3)<br>P = 0.3703 |                     |                    |  |
| 6/50( 3/31( 3/31( 3/31(  P = 0.56  P = 0.66  Str(e) P = 0.16  SITE : TUMOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 4/50 (8.0)<br>10.34<br>3/29 (10.3)<br>P = 0.3703   |                     |                    |  |
| 3/31( P = 0.56  P = 0.66  St (e) P = 0.16  St (e) P = 0.11  SITE  TUMOR  TUMOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        | 3/29 (10.3) $P = 0.3703$                           | 3/50( 6.0)          | 2/50( 4.0)         |  |
| P = 0.55  P = 0.65  P = 0.65  St (e) P = 0.15  SITE :  TUMOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        | II                                                 | 10.34<br>3/29(10.3) | 6.25<br>1/16( 6.3) |  |
| malysis (d) P = 0.66 itage test(e) P = 0.15 ct test(e) SITE : TUMOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | II.                                                |                     |                    |  |
| ct test(e) SITE : TUMOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | 0                                                  |                     |                    |  |
| SITE : TUMOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |                                                    | P = 0.2435          | P = 0.1343         |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |                                                    |                     |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                      |                                                    |                     |                    |  |
| Overall rates(a) 1/50(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/50( 2.0)                                                             | 0/50( 0.0)                                         | 6/50(12.0)          | 2/50( 4.0)         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( 3.2)                                                                 | 0/29( 0.0)                                         | 3/29(10.3)          | 0.23               |  |
| Statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                    |                     |                    |  |
| method(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                                                                    |                                                    |                     |                    |  |
| Prevalence method(d) P = 0.2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2366                                                                   |                                                    |                     |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C C C C                                                                |                                                    |                     |                    |  |
| Cochran-Armitage test(c) P = 0.65<br>Fisher Exact test(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6866                                                                   | P = 0.5000                                         | P = 0.0559          | P = 0.5000         |  |
| SITE : TUNOR :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | spleen<br>hemangiosarcoma                                              |                                                    |                     |                    |  |
| Tumor rate<br>Overall rates(a) 0/50(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0)                                                                  | 0/20(0.0)                                          | 3/50( 6.0)          | 1/50(-2.0)         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        | 0.0                                                |                     |                    |  |
| Terminal rates(c) 0/31( Statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 0/29( 0.0)                                         | 2/29( 6.9)          | 1/16(6.3)          |  |
| reto test Standard method(d) P = Prevalence method(d) P = 0.1556 Combined analysis(d) P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9991                                                                   |                                                    |                     |                    |  |
| Cochran-Armitage test(e) P = 0.5794<br>Fisher Exact test(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5794                                                                   | P = N.C.                                           | P = 0.1212          | P = 0.5000         |  |

| _                   |   |
|---------------------|---|
|                     | • |
| _                   |   |
| SMALVETE            |   |
| _                   | ١ |
|                     |   |
|                     |   |
| ~                   | : |
|                     |   |
| -                   | _ |
| - 2                 |   |
|                     | í |
|                     |   |
|                     |   |
|                     |   |
| _                   |   |
| CTATICTICA          |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
| - 6-                |   |
|                     |   |
| - U                 |   |
|                     |   |
|                     |   |
|                     |   |
| ANI                 |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
|                     |   |
| - 2                 | 2 |
| - 2                 | 2 |
| 2                   |   |
| 7                   |   |
| 7.70                |   |
| I DEN               |   |
| NOUL                |   |
| NAUL                |   |
| NACL                |   |
| NOT DEN             |   |
| NOTIFIE             |   |
| NUCTURN             |   |
| - INCLUEN           |   |
| - INCLUEN           |   |
| NULL INC.           |   |
| S-INCTURN           |   |
| NE-INCTUEN          |   |
| NS-INCTURN          |   |
| DNS-INCTORN         |   |
| ONS-INCTORN         |   |
| TONS-INCLUEN        |   |
| TONS-INCTUEN        |   |
| STONS-INCTINEN      |   |
| NUCLUME - INCLUM    |   |
| FCTONS-INCLINE      |   |
| RETONS-INCTINEN     |   |
| LESTONS-INCLINEN    |   |
| I RETONG—INCTINEN   |   |
| -SNOTSH I           |   |
| NEGIONS-INCLOSE C   |   |
| NACITONS-INCIDEN    |   |
| NEUTONS-INCTUEN     |   |
| NEUTONS-INCTION     |   |
| NACIONI-SNOISEL OLI |   |
| J.J.                |   |
| JUSVI               |   |
| J.J.                |   |
| J.J.                |   |

| Group Name                                       | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 ppm      | 1000                                    | 4000 num    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | SITE : spleen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tumor rate                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RIBO         |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall rates(a)                                 | 1/50( 2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/50(0.0)    | 9/50(18.0)                              | 3/50( 6 0)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adjusted rates(b)                                | 3. 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0          | (2) (2) (2) (3) (4)                     | (5.50)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terminal rates(c)<br>Statistical analysis        | 1/31(3.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0/29( 0.0)   | 5/29(17.2)                              | 2/16(12.5)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peto test                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard method(d)                               | ± d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prevalence method(d)                             | P = 0.1265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cochran-Armitage test(e)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fisher fxact test(e)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P = 0.5000   | P = 0.0078**                            | P = 0.3087  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | SITE : Liver<br>TUMON : hemangioma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                         |             | A STATE OF THE STA |
| Tumor rate                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall rates(a)                                 | 2/50(4.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/50(4.0)    | 5/50(10.0)                              | 3/50(-6.0)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adjusted rates(b)                                | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0          | 7.50                                    | 13.04       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terminal rates(c)                                | 1/31(3.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0/29(0.0)    | 2/29(6.9)                               | 2/16(12.5)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Statistical analysis<br>Poto test                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard method(d)                               | P = 0 8249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prevalence method(d)                             | P = 0, 0450*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Combined analysis (d)                            | P = 0.2212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cochran-Armitage test(c)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fisher Exact test(e)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P = 0.6913   | P = 0.2180                              | P = 0, 5000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | SITE : liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tumor rate                                       | Participant of the second of t |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall rates(a)                                 | 9/50(18.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14/50 (28.0) | 10/50(20.0)                             | 2/50( 4.0)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adjusted rates(b)                                | 25.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.38        | 30.00                                   | 7.69        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terminal rates(c)<br>Statistical analysis        | 8/31(25.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/29(41.4)  | 8/29(27.6)                              | 1/16(6.3)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peto test                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard method(d)                               | P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prevalence method(d)                             | P = 0.9834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| combined analysis(d)<br>Cochran-Armitage test(e) | P = 0.0043**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fisher Exact test(a)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.171.0 - 0  | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|     | , |
|-----|---|
|     | - |
|     | 7 |
|     | > |
|     | - |
|     | V |
|     | ÷ |
|     |   |
|     | 2 |
|     | 2 |
| - 9 | - |
|     | ÷ |
| - 1 | ′ |
|     | 7 |
| •   |   |
| -   | • |
|     | / |
|     |   |
|     | = |
| - : | Z |
| ,   | Z |
|     |   |
|     | 2 |
|     | ≒ |
| - 3 | ; |
| - 3 | = |
|     | - |
| ٠   |   |
| - 2 | Z |
| ,   | 7 |
|     | ļ |
| -   | 6 |
| 3   |   |
| 3   | Ξ |
| :   | 1 |
| :   | / |
|     | - |
|     |   |
| - 2 | 7 |
| - 2 | _ |
| - 2 | , |
| - 3 | d |
|     | - |
| - 5 | ۲ |
| 3   | = |
| - 5 | 1 |
| •   | 4 |
|     |   |

| Group Name                                                                                                         | Control                                               | 250 ppm             | 1000                 | 4000 yrm             |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|----------------------|----------------------|--|
|                                                                                                                    | SITE : liver<br>TUMOR : histionarie sarrenna          |                     |                      |                      |  |
| Tumor rate<br>Overall rates(a)                                                                                     | 5/50(10.0)                                            | 1/50( 2.0)          | 1/50( 2.0)           | 1/50(-2.0)           |  |
| Adjusted rates(b) Terminal rates(c)                                                                                | 5.26<br>1/31(-3.2)                                    | 0.0<br>0/29( 0.0)   | 0.0<br>0/29(0.0)     | 0.0 0/16( 0.0)       |  |
| Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Ochran-Armiage test(e) | P = 0.5823<br>P = 0.9227<br>P = 0.7689<br>P = 0.788   |                     |                      |                      |  |
| Fisher Exact test(e)                                                                                               |                                                       | P = 0.1022          | P = 0.1022           | P = 0.1022           |  |
| •                                                                                                                  | SITE : liver<br>TUMOR : hepatocellular carcinoma      |                     |                      |                      |  |
| Overall rates(a)                                                                                                   | 7/50( 14. 0)                                          | 15/50( 30.0)        | 5/50(10.0)           | 2/50( 4.0)           |  |
| Adjusted rates(b)  Terminal rates(c)                                                                               | 15. 63<br>4/31( 12. 9)                                | 32.35<br>9/29(31.0) | 13.79<br>4/29( 13.8) | 12.50<br>2/16( 12.5) |  |
| Peto test<br>Standard method(d)<br>Provalence method(d)                                                            | P = 0.8807 $P = 0.08007$                              |                     |                      |                      |  |
| Combined analysis (d) Cochran-Armitage test(e)                                                                     | P = 0.9877<br>P = 0.0073**                            |                     |                      |                      |  |
| Fisher Exact test(e)                                                                                               |                                                       | P = 0.0448*         | P = 0.3798           | P = 0.0798           |  |
|                                                                                                                    | SITE : liver<br>TUMOR : hemangioma,hemangiosarcoma    |                     |                      |                      |  |
| Tumor rate<br>Overall rates(a)                                                                                     | 2/50 ( 4.0)                                           | 3/50 ( 6.0)         | 7/50 (14.0)          | 4/50(8.0)            |  |
| Adjusted rates(b) Terminal rates(c) Statistical analysis                                                           | 3. 23<br>1/31( 3. 2)                                  | 3.45<br>1/29(3.4)   | 10.34<br>3/29(10.3)  | 18.75<br>3/16( 18.8) |  |
| Peto test<br>Standard mcthod(d)<br>Provalence method(d)<br>Combined analysis(d)<br>Cochran-Armitame test(e)        | P = 0.8021<br>P = 0.0248*<br>P = 0.1437<br>P = 0.6531 |                     |                      |                      |  |
| Fisher Exact test(e)                                                                                               |                                                       | P = 0.5000          | P = 0 0798           | 0380 0 = 0           |  |

| Group Name                        | Control                                                  | 250 թթա                  | 1000 թթո     | 4000 µpm         |  |
|-----------------------------------|----------------------------------------------------------|--------------------------|--------------|------------------|--|
|                                   | SITE : liver                                             |                          |              |                  |  |
| F                                 | TOWOK · Reparocellular adenoma, Reparocellular carcinoma | hepatocellular carcinoma |              |                  |  |
| lumor rate                        |                                                          |                          |              |                  |  |
| Overall rates(a)                  | 15/50(30.0)                                              | 24/50 (48.0)             | 13/50 (26.0) | 4/50(8.0)        |  |
| Adjusted rates(b)                 | 37.50                                                    | 58.62                    | 36.67        | 18.75            |  |
| Terminal rates(c)                 | 11/31(35.5)                                              | 17/29 (58.6)             | 10/29 (34.5) | 3/16(18.8)       |  |
| Statistical analysis              |                                                          |                          |              |                  |  |
| Peto test                         |                                                          |                          |              |                  |  |
| Standard method(d)                | P = 0.8807                                               |                          |              |                  |  |
| Prevalence method(d)              | P = 0.9963                                               |                          |              |                  |  |
| Combined analysis(d)              | P = 0.9984                                               |                          |              |                  |  |
| Cochran-Armitage test(e)          | P = 0.0001**                                             |                          |              |                  |  |
| Fisher Exact test(e)              |                                                          | P = 0.0502               | P = 0.4120   | P = 0.0047**     |  |
|                                   | SITE : epididymis<br>TUMOR : histiocytic sarcoma         |                          |              |                  |  |
| Tumor rate                        |                                                          |                          |              |                  |  |
| Overall rates(a)                  | 1/50( 2.0)                                               | 1/50(2.0)                | 3/50(6.0)    | 1/50( 2.0)       |  |
| Adjusted rates(b)                 | 0.0                                                      | 3.45                     | 06.9         | 0.0              |  |
| Terminal rates(c)                 | 0/31(0.0)                                                | 1/29(3.4)                | 2/29(6.9)    | 0/16(0.0)        |  |
| Statistical analysis<br>Peto test |                                                          |                          |              |                  |  |
| Standard method(d)                | P = 0.2543                                               |                          |              |                  |  |
| Prevalence method(d)              | P = 0.5152                                               |                          |              |                  |  |
| Combined analysis (d)             | P = 0.3570                                               |                          |              |                  |  |
| Conference American tours (a)     | 0 - 0 - 0                                                |                          |              |                  |  |
| Fisher Fyact tost (a)             | 0.0503                                                   | D = 0 7595               | 20000        | 0 = 0            |  |
| (a) read toward toward            |                                                          |                          | r - 0.500    | $\Gamma = 0.025$ |  |

| ANALYSIS      |
|---------------|
| STATISTICAL A |
| ICE AND S     |
| -INCIDEN      |
| LESIONS-      |
| VEOPLASTIC    |
|               |

: 0685 : MOUSE B6D2F1/Crlj[Crj:BDF1] : MALE

STUDY No. ANIMAL SEX

9

PAGE:

| Group Name               | Control                                   | 250 ppm    | muu 1000   | 4000 ррт   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------------------------------------------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | SITE : Harderian gland<br>THMOR : adenoma |            |            |            | The state of the s |
| Cumor rate               |                                           |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall rates(a)         | 4/49(8.2)                                 | 2/50(4.0)  | 1/50(-2.0) | 1/50( 2 0) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adjusted rates(b)        | 12, 12                                    | 6.90       | 3. 45      | 75.62      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terminal rates(c)        | 3/31( 9.7)                                | 2/29(6.9)  | 1/29(3,4)  | 0/18( 0 0) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Statistical analysis     |                                           |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peto test                |                                           |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard method(d)       | E = C                                     |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prevalence method(d)     | P = 0.7661                                |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Combined analysis(d)     | P =                                       |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cochran-Armitage test(e) | P = 0.2532                                |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fisher Exact test(e)     |                                           | P = 0.3292 | P = 0.1748 | P = 0.1748 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HPT360A)                 |                                           |            |            |            | RATSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          |                                           |            |            |            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.
Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Destin analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

Significant difference: \*: P \( \leq \) 0.05 \*\*: P \( \leq \) 0.01

N.C. :Statistical value cannot be calculated and was not significant.

| NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS |  |
|-------------------------------------------------------|--|
|                                                       |  |
| 35                                                    |  |

| Group Name                                       | Control                            | 250 ppm     | 1000 mag     | 4000 թրա   |  |
|--------------------------------------------------|------------------------------------|-------------|--------------|------------|--|
|                                                  | SITE : ALL SITE TUMOR : hemangioma |             |              |            |  |
| Tumor rate                                       |                                    |             |              |            |  |
| Overall rates(a)                                 | 3/50( 6.0)                         | 2/50(-4.0)  | 10/50( 20.0) | 6/50(12.0) |  |
| Adjusted rates(b)<br>Terminal rates(c)           | 6.45                               | 0.0         | 20.00        | 25.00      |  |
| Statistical analysis                             | 7,51( 0.5)                         |             | 5/29( 11.2)  | 4/16(25.0) |  |
| reto test<br>Standard method(d)                  | P = 0.8249                         |             |              |            |  |
| Decidar method (4)                               | D = 0.0235                         |             |              |            |  |
| Frevalence method(d)                             | 7 = 0.0109*<br>8 = 0.0616          |             |              |            |  |
| Cochran-Armitage test(e)                         | P = 0.0010                         |             |              |            |  |
| Fisher Exact test(e)                             |                                    | P = 0.5000  | P = 0.0357*  | P = 0.2435 |  |
|                                                  | SITE : ALL SITE                    |             |              |            |  |
| Tumor rate                                       | omoo ibs ora footastii . wowoi     |             |              |            |  |
| Overall rates(a)                                 | 8/50(16.0)                         | 3/50(6.0)   | 7/50 (14.0)  | 3/50(6.0)  |  |
| Adjusted rates(b)                                | 8.11                               |             | 13.79        |            |  |
| Terminal rates(c)                                | 2/31(6.5)                          | 2/29(6.9)   | 4/29(13.8)   | 1/16(6.3)  |  |
| Statistical analysis                             |                                    |             |              |            |  |
| ero rest<br>Standard mothod(d)                   | D = 0 5967                         |             |              |            |  |
| Desiral order method (d)                         | D = 0 5007                         |             |              |            |  |
| Combined analysis (d)                            | P = 0 6033                         |             |              |            |  |
| Conference and the Conference toot (a)           | D = 0 9585                         |             |              |            |  |
| Fisher Exact test(e)                             |                                    | P = 0.0999  | P = 0.5000   | P = 0.0999 |  |
|                                                  | SITE : ALL SITE                    |             |              |            |  |
|                                                  | ٠.                                 |             |              |            |  |
| Tumor rate                                       |                                    |             |              |            |  |
| Overall rates(a)                                 | 6/50(12.0)                         | 4/50(8.0)   | 5/50(10.0)   | 2/50( 4.0) |  |
| djusted rates(b)                                 | 9.68                               | 10.34       | 13.79        |            |  |
| Terminal rates(c)<br>Statistical analysis        | 3/31(-9.7)                         | 3/29( 10.3) | 4/29(13.8)   | 1/16(6.3)  |  |
| Peto test                                        |                                    |             |              |            |  |
| Standard method(d)                               | P = 0.6003                         |             |              |            |  |
| Prevalence method(d)                             | P = 0.0316                         |             |              |            |  |
| combined analysis(d/<br>Cochran-Armitage test(e) | F = 0.0915<br>P = 0.1863           |             |              |            |  |
| Fisher Exact test(e)                             |                                    | P = 0.3703  | P = 0.5000   | P = 0.1343 |  |

| ANALYSIS           |
|--------------------|
| STATISTICAL        |
| W                  |
| LES TONS-INCLDENCE |
| NEOPLASTIC         |
|                    |

STUDY No. : 0685
ANIMAL : MOUSE BGDZFI/Crlj[Crj:BDF1]
SEX : MALE

PAGE:

| Group Name                                                                                                                                                   | Control                                                                                                               | 250 µpm                          | unta 0001                          | 4000 µpm                         | management of the state of the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysisical | SITE : ALL SITE  TUMOR : hemangiosarccoma  0/50( 0.0)  0.0  0/31( 0.0)  P = 0.2713  P = 0.2713  P = 0.1989  P = 0.187 | 1/50( 2.0)<br>3.45<br>1/29( 3.4) | 4/50( 8.0)<br>10.34<br>3/29( 10.3) | 1/50( 2.0)<br>6.25<br>1/16( 6.3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cochran-Armitage test(e) Fisher Exact test(e)                                                                                                                | P = 0.923                                                                                                             | P = 0.5000                       | P = 0.0587                         | P = 0.5000                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (HPT360A)                                                                                                                                                    |                                                                                                                       |                                  |                                    |                                  | BATSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
 ? The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.
 . There is no data which should be statistical analysis.
 Significant difference: \* : P ≤ 0.05 \*\* : P ≤ 0.01
 N.C. Statistical value cannot be calculated and was not significant.

#### TABLE O 2

## NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

| _                |   |
|------------------|---|
| <                |   |
| -                | ŕ |
| -                |   |
| VNV              |   |
|                  |   |
| ATISTICAL        |   |
| _                |   |
| -                |   |
| -                | ) |
| -                | 4 |
| -                |   |
| 5.               |   |
| · '/             |   |
| _                | 4 |
| _                | ľ |
| _                |   |
| ST.V             | ı |
| -                |   |
| ٠,               | ١ |
| J.               | 2 |
| _                |   |
| $\sim$           | ١ |
| 9                |   |
| -                |   |
| <                |   |
|                  |   |
| THENCE AND       | ١ |
| -                | ١ |
| _                | • |
| 2                | 1 |
| - 57             | i |
| =                | ٩ |
| _                | ١ |
| _                | ٩ |
| 7.               | Ś |
|                  |   |
| _                |   |
| -                |   |
| .,               |   |
| - '-             |   |
| J.               | 2 |
| -                |   |
|                  |   |
| _                | ; |
| Ξ                | 5 |
| Ξ                |   |
|                  |   |
| ULS              |   |
| FSTO             |   |
| I FSTO           |   |
| I FSTO           |   |
| T. FESTO         | * |
| C LESTO          |   |
| OLESTO           | 1 |
| TIC LESIO        | , |
| STIC LESIO       | , |
| ASTIC LESIO      | , |
| ASTIC LESIO      | 1 |
| LASTIC LESTO     | , |
| PLASTIC LESTO    |   |
| PLASTIC LESIO    | , |
| OPLASTIC LESTO   | , |
| EOPLASTIC LESTO  | , |
| MEDPLASTIC LESIO |   |
| NEOPLASTIC LESTO | , |
| DPLASTIC I       | , |
| NEOPLASTIC LESTO | , |
| NEOPLASTIC LESIO | , |
| NEOPLASTIC LESTO | , |
| NEOPLASTIC LESIO | , |
| NEOPLASTIC LESIO | , |
| NEOPLASTIC LESTO | , |
| NEOPLASTIC LESIO | , |
| NEOPLASTIC LESIO | , |

| Group Name                                        |                                                     |                                                                         |                    |                   |  |
|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|--------------------|-------------------|--|
|                                                   | Control                                             | 250 րբա                                                                 | 1000 pm            | 4000 µµm          |  |
|                                                   | SITE : lung<br>TUMOR : bronchiolar—alveolar adenoma | ar adonoma                                                              |                    |                   |  |
| Tumor rate<br>Overall rates(a)                    | 1/50( 2.0)                                          | 3/50(6.0)                                                               | 1/50( 2.0)         | 2/50( 4.0)        |  |
| Adjusted rates(b)<br>Terminal rates(c)            | 2. 63<br>0/23( 0.0)                                 | 7.50 0/25(0.0)                                                          | 4.00<br>1/25( 4.0) | 5.71 2/35(5.7)    |  |
| Statistical analysis Peto test Standard method(d) |                                                     |                                                                         |                    |                   |  |
| rrevalence method(d) Combined analysis(d)         | P = 0.4889 P = D = 0.8830                           |                                                                         |                    |                   |  |
| Coomen Armicage test(e)<br>Fisher Exact test(e)   | r - 0.0360                                          | P = 0.3087                                                              | P = 0.7525         | P = 0.5000        |  |
|                                                   | SITE : lung<br>TUMOR : bronchiolar-alveol           | : lung<br>: bronchiolar-alveolar adenoma bronchiolar-alveolar carcinoma |                    |                   |  |
| Overall rates(a)                                  | 1/50( 2.0)                                          | 4/50(8.0)                                                               | 2/50( 4.0)         | 3/50(6.0)         |  |
| Adjusted rates(b)<br>Terminal rates(c)            | 2. 63<br>0/23( 0.0)                                 | 7.50<br>0/25(0.0)                                                       | 4.00<br>1/25( 4.0) | 8.57<br>3/35(8.6) |  |
| Statistical analysis<br>Peto test                 |                                                     |                                                                         |                    |                   |  |
| Standard method(d)<br>Prevalence method(d)        | P = 0.6699<br>P = 0.2868                            |                                                                         |                    |                   |  |
| Combined analysis(d)<br>Cochran-Armitage test(e)  | P = 0.4082<br>P = 0.7028                            |                                                                         |                    |                   |  |
| Fisher Exact test(e)                              |                                                     | P = 0.1811                                                              | P = 0.5000         | P = 0.3087        |  |
|                                                   | SITE : lymph node<br>TUMOR : malignant lymphoma     |                                                                         |                    |                   |  |
| Tumor rate<br>Overall rates(a)                    | 18/50(36.0)                                         | 20/50 (40.0)                                                            | 17/50 (34.0)       | 15/50(30.0)       |  |
| Adjusted rates(b)                                 | 17.39                                               | 28.00                                                                   | 20.00              | 28.57             |  |
| Terminal rates(c) Statistical analysis            | 4/23(17.4)                                          | 7/25(28.0)                                                              | 5/25 ( 20. 0)      | 10/35( 28.6)      |  |
| Standard method (d)                               | P = 0.9970                                          |                                                                         |                    |                   |  |
| Prevalence method(d)<br>Combined analysis(d)      | P = 0.2508<br>P = 0.9576                            |                                                                         |                    |                   |  |
| Cochran-Armitage test(e)<br>Fisher Exact test(e)  | P = 0.3586                                          | P = 0.4185                                                              | P = 0.5000         | P = 0.3355        |  |

|               | , |
|---------------|---|
| AMALVETS      | - |
| 9             | 7 |
| >             |   |
|               |   |
| Z             | 2 |
| -             |   |
|               |   |
| ~             |   |
| ς,            | ì |
| CTICA         |   |
| - 57          | _ |
| ř             |   |
| ŕ             |   |
| CTATE         |   |
| - 87          | - |
|               | 1 |
| =             | 3 |
| AMI           | Ē |
| _             |   |
| ÷             |   |
| _≒            |   |
| 5             | ` |
| =             | 2 |
| _             |   |
| TNCIDEN       | 4 |
| Ξ             |   |
| _l            |   |
| 2             | 2 |
| N             |   |
| Ξ             |   |
| 1/2           | Ś |
| -             | 3 |
| _             |   |
| IC LESTONS-IN | 2 |
| Ξ             | 2 |
| 57            | 2 |
| ~             |   |
| =             | 4 |
| NEOP          | 3 |
| Œ             | Š |
| Z             |   |
|               |   |

| Sile   Sale      |                                                  | Maria MANAAA AA A |            | ALM |            | LAGE . |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------|-----------------------------------------|------------|--------|
| SITE   subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Group Name                                       | Control                                         | 250 րրա    | 1000 Turk                               | 4000 upan  |        |
| 0/50( 0.0)   1/30( 2.0)   1/30( 2.0)   1/30( 2.0)   1/30( 2.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/30( 0.0)   1/3   |                                                  | ,                                               |            |                                         |            |        |
| 1,50 ( 0, 0)   1,50 ( 2, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25 ( 4, 0)   1,25   | umor rate                                        |                                                 |            |                                         |            |        |
| P = 0.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Overall rates(a)                                 | 0/50(0.0)                                       |            |                                         | 0/50(0.0)  |        |
| P = 0,8237   0.0)   L/25( 4.0)   L/25( 6.0)   L/25( 6.0   | Adjusted rates(b)                                | 0.0                                             |            |                                         | 0.0        |        |
| P = 0.8237  SITE : spleon TUMON : hearingtocarcoma  0/500 0.0  1/25 ( 4.0)  P = 0.2475  P = 0.1212  P = 0.5000  P = N.C.  1/25 ( 4.0)  P = 0.500  0/500 0.0  1/25 ( 4.0)  P = 0.8377  P = 0.8377  SITE : liver TUMON : hepstocellular adenoma  4/50 ( 8.0)  4/50 ( 8.0)  5/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  6/50 ( 6.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)  7/50 ( 8.0)   | <pre>[erminal rates(c) tatistical analysis</pre> | 0/23( 0.0)                                      |            |                                         | 0/35( 0.0) |        |
| P = 0.7389<br>  P = 0.9088<br>  Street   P = 0.2576   P = 0.1212   P = 0.5000   P = M.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eto test                                         |                                                 |            |                                         |            |        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard method(d)                               | P = 0.8237                                      |            |                                         |            |        |
| SITE : splean  TUMON : hemangioum, hemangicsarcoma  O/50( 0.0)  O/50( 0.0)  O/20( 0.0)  O/ | Frevalence method(d)<br>Combined analysis(d)     | P = 0.7389                                      |            |                                         |            |        |
| SITE : spleen TUMOR : hemongious, hemongiosarcoma  0/50( 0.0) 0/20( 0.0) 0/20( 0.0) 1/25( 4.0) 1/25( 4.0) 1/25( 4.0) 0/35( 0/20( 0.0) 0/35( 1/25( 4.0) 1/25( 4.0) 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35( 0/35(  | contan-Armitage test(e)                          | P = 0.2676                                      |            |                                         |            |        |
| SITE : spleen  TUMOR : hemanglocatcoma  0/50( 0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isher Exact test(e)                              |                                                 |            |                                         | H          |        |
| Decision   Control   Con   |                                                  |                                                 | College    |                                         |            |        |
| 0,50( 0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mor rate                                         |                                                 | 2000       |                                         |            |        |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | verall rates(a)                                  | 0/20(0.0)                                       |            | 3/50(6.0)                               | 0/20(-0.0) |        |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | djusted rates(b)                                 | 0.0                                             |            | 8.00                                    | 0.0        |        |
| P = 0.3471 P = 0.8620 I) P = 0.8587 st (a) P = 0.8587 SITE : liver TUMOR : hepatocellular adenoma  4/50( 8.0) 2/23( 8.7) P = 0.2475 P = 0.1212 P = 0.2475 P = 0.1212  | erminal rates(c)                                 | 0/23(0.0)                                       |            |                                         | 0/35( 0.0) |        |
| P = 0.3471  P = 0.8620  I) P = 0.8587  st (a) P = 0.3844  P = 0.2475  P = 0.2475  P = 0.1212  P = N.C.  13.79  4/50( 8.0)  3/50( 6.0)  3/50( 6.0)  6/50(  12.00  3/25( 12.0)  9 = 0.9956  10 P = 0.9956  11 P = 0.9956  11 P = 0.9956  12 P = 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atistical analysis                               |                                                 |            |                                         |            |        |
| P = 0.3411   P = 0.3820     P = 0.3847     P = 0.3847     P = 0.3847     P = 0.3847     P = 0.2475     P = 0.2475     P = 0.1212     P = N.C.     SITE : liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eto test<br>Sacaloni contrata                    | 0 1                                             |            |                                         |            |        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard method(d)                               | F = 0.34/1<br>B = 0.650                         |            |                                         |            |        |
| SITE : liver TUMOR : hepatocellular adenoma  4/50( 8.0)  2/23( 8.7)  P = 0.2475  P = 0.1212  P = N.C.  13.79  4/50( 8.0)  3/50( 6.0)  0/50(  12.00  2/23( 8.7)  A/25( 16.0)  3/25( 12.0)  0/35(  13.79  P = 0.9956  13.79  P = 0.9956  14.25 ( 16.0)  15.00  16.00  17.00  17.00  18.00  19.00  19.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00   | rrevalence method(d)                             | F = 0.8620                                      |            |                                         |            |        |
| SITE : liver TUMOR : hepatocellular adenoma  4/50( 8.0)  3/50( 6.0)  3/50( 6.0)  6/35(  13.79  14.25( 16.0)  7/25( 12.0)  15.00  16.00  17.00  17.00  18.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  19.00  | companied analysis(d)                            | F = 0.6367                                      |            |                                         |            |        |
| SITE : liver TUMOR : hepatocellular adenoma 4/50(8.0) 2/23(8.7) 2/23(8.7) 4/50(6.0) 3/50(6.0) 0/50( 12.00 12.00 12.00 12.00 12.00 0/35( 13.0) 12.00 13.50 14/50(8.0) 15.00 15.00 15.00 16.00 17.00 18.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19. | isher Exact test(e)                              | 0.3027                                          |            |                                         | P = N.C.   |        |
| TUMOR: hepatocellular adenoma 4/50(8.0) 3/50(6.0) 0/50( 13.79 13.79 14.25(16.0) 3/25(12.0) 0/35( 15.0) 15.00 16.00 17.00 17.00 18.79 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 |                                                  |                                                 |            |                                         |            |        |
| 4/50(-8.0) $4/50(-8.0)$ $3/50(-6.0)$ $0/50(-6.0)$ $13.79$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$ $17.00$      |                                                  |                                                 |            |                                         |            |        |
| 4/50(8.0) $4/50(8.0)$ $3/50(6.0)$ $0/50($ $13.79$ $16.00$ $12.00$ $12.00$ $12.00$ $12.00$ $12.00$ $13.00$ $13.00$ $13.00$ $13.00$ $13.00$ $14.25(16.0)$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$ $15.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mor rate                                         |                                                 |            |                                         |            |        |
| 13.79 16.00 12.00 12.00 12.00 17.50 12.00 17.50 12.00 17.50 12.00 17.50 12.00 17.50 12.00 17.50 12.00 17.50 12.00 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50 17.50  | )verall rates(a)                                 | 4/50(8.0)                                       | 4/50(8.0)  | 3/50(6.0)                               | 0/20(0.0)  |        |
| 2/23(8.7) 4/25(16.0) 3/25(12.0) 0/35(  p =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adjusted rates(b)                                | 13. 79                                          | 16.00      | 12.00                                   |            |        |
| 1) P = 0.956<br>1) P = 0.9956<br>1) P =<br>1) P =<br>1) P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erminal rates(c)                                 | 2/23(8.7)                                       | 4/25(16.0) | 3/25(12.0)                              |            |        |
| method(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | atistical analysis                               |                                                 |            |                                         |            |        |
| P = 0.9956 P = P = 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eto test                                         | 1                                               |            |                                         |            |        |
| F = U.9900<br>P =<br>P = 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard method(d)                               |                                                 |            |                                         |            |        |
| F =<br>P = 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prevalence method(d)                             | P=0.9956                                        |            |                                         |            |        |
| 7 = 0.0423*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Combined analysis(d)                             | F =                                             |            |                                         |            |        |
| 11 C 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coolian-Aimicage lest(e)<br>Fichar Evact tast(a) | 1                                               |            |                                         |            |        |

|                                                                    | 4000 ppm   |                                             | 1/50( 2.0) 2.86                                                           |                                                                                             | P = 0. 1811                                      |                                         | 3/50( 6.0)       | 2/35(5.7)                                                          | P = 0.3087                                                                                                 |
|--------------------------------------------------------------------|------------|---------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| STICAL ANALYSIS                                                    | mqq 0001   |                                             | 1/50( 2.0) 2.08 0/25( 0.0)                                                |                                                                                             | P = 0. 1811                                      |                                         | 2/50( 4.0)       | 4.00<br>1/25( 4.0)                                                 | P = 0.5000                                                                                                 |
| NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS              | 250 թթա    |                                             | 0.0 0/50(0.0)                                                             |                                                                                             | P = 0.0587                                       |                                         | 1/50( 2.0)       | 1/25( 4.0)                                                         | P = 0.7525                                                                                                 |
| rlj[Grj:BDF1]                                                      | Control    | SITE : liver<br>TUMOR : histiocytic sarcoma | 4/50(8.0)<br>2.38<br>0/23(0.0)                                            | 0.96                                                                                        | P = 0.4549                                       | SITE : liver<br>TUMOR : hemangiosarcoma | 1/50( 2.0)       | 1/23(4,3)                                                          | P = 0, 2237<br>P = 0, 3524<br>P = 0, 2290<br>P = 0, 2219                                                   |
| STUDY No. : 0685 ANIMAL : MOUSE B6D2FL/Crlj[Crj:BDFL] SEX : FEMALE | Group Name | É                                           | Julior rate<br>Overall rates(a)<br>Adjusted rates(b)<br>Terminal rates(c) | Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) | Cochran-Armitage test(e)<br>Fisher Exact test(e) | Turney with                             | Overall rates(a) | Adjusted faces(v) Terminal rates(c) Statistical analysis Peto text | Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e) |

6

PAGE:

| Tumor rate               |            |            |            |            |  |
|--------------------------|------------|------------|------------|------------|--|
| Overall rates(a)         | 2/50( 4.0) | 1/50( 2.0) | 3/50(6.0)  | 5/50(10.0) |  |
| Adjusted rates(b)        | 4.35       | 4.00       | 8.00       | 8.57       |  |
| Terminal rates(c)        | 1/23(4.3)  | 1/25( 4.0) | 2/25(8.0)  | 3/35(8.6)  |  |
| Statistical analysis     |            |            |            |            |  |
| Peto test                |            |            |            |            |  |
| Standard method(d)       | P = 0.4033 |            |            |            |  |
| Prevalence method(d)     | P = 0.0979 |            |            |            |  |
| Combined analysis(d)     | P = 0.1161 |            |            |            |  |
| Cochran-Armitage test(e) | P = 0.0865 |            |            |            |  |
| Fisher Exact test(e)     |            | P = 0.5000 | P = 0.5000 | P = 0.2180 |  |

| ANA                   |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
| ISTICAL               |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
| STATIST               |
| Ę.                    |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
| _                     |
| $\overline{}$         |
| T                     |
| Ţ                     |
| Į                     |
| 2                     |
| 128                   |
| NS-1                  |
| I-SNO                 |
| -SNO                  |
| I-SNOT                |
| I-SNOT                |
| I-SNOTS               |
| I-SNOTS               |
| I-SNOTS:              |
| FSIONS-1              |
| FSIONS-1              |
| FESTONS-INCLUSIONER   |
| I-SIOIS-I             |
| I-SIONS-1             |
| I-SIOIS-I             |
| C FESTONS-1           |
| IC LESTONS-1          |
| TC LESTONS-I          |
| FIC LESIONS-I         |
| TIC LESIONS-I         |
| TIC LESIONS-1         |
| STIC LESIONS-1        |
| STIC LESIONS-1        |
| ASTIC LESIONS-1       |
| ASTIC LESIONS-1       |
| LASTIC LESIONS-1      |
| PLASTIC LESIONS-1     |
| PLASTIC LESIONS-1     |
| PLASTIC LESIONS-1     |
| DPLASTIC LESIONS-1    |
| OPLASTIC: LESTONS-1   |
| FOPLASTIC LESIONS-1   |
| EOPLASTIC: LESTONS-1  |
| NEOPLASTIC LESIONS-1  |
| NEOPLASTIC: LESTONS-1 |
| NEOPLASTIC: LESTONS-1 |
| NEOPLASTIC LESIONS-1  |
| NEOPLASTIC LESIONS-1  |
| NEOPLASTIC LESIONS-1  |
| NEOPLASTIC LESTONS-1  |
| NEOPLASTIC: LESTONS-1 |
| NEOPLASTIC LESIONS-1  |
| NEOPLASTIC: LESTONS-1 |
| NEOPLASTIC LESIONS-I  |
| NEOPLASTIC: LESTONS-1 |
| NEOPLASTIC LESIONS-I  |

| Group Name                                              | Control                                                                 | 250 ppm                                 | 1000 mm      | 4000 ppm         |  |
|---------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|--------------|------------------|--|
|                                                         | SITE : liver<br>TUMOR : hepatocellular adenoma,hepatocellular carcinoma | ypatocollular carcinoma                 |              |                  |  |
| lumor rate<br>Overall rates(a)                          | 4/50(8.0)                                                               | 5/50 (10.0)                             | 3/50(6.0)    | 1/50(-2.0)       |  |
| Adjusted rates(b)                                       | 13.79                                                                   | 20.00                                   | 12.00        | (S) 13<br>(S) 13 |  |
| Terminal rates(c) Statistical analysis                  | 2/23(8.7)                                                               | 5/25(20.0)                              | 3/25(12.0)   | 0/35( 0.0)       |  |
| leto test<br>Standard method(d)                         | =                                                                       |                                         |              |                  |  |
| Prevalence method(d)                                    | P = 0.9787                                                              |                                         |              |                  |  |
| Combined analysis(d)                                    | P =<br>D = 0.1190                                                       |                                         |              |                  |  |
| Coontain ministage vest(e)<br>Fisher Exact test(e)      | 0.1129                                                                  | P = 0.5000                              | P = 0.5000   | P = 0.1811       |  |
|                                                         | SITE : pituitary gland<br>TUMOR : adenoma                               |                                         |              |                  |  |
| Overall rates(a)                                        | 2/50( 4.0)                                                              | 0/50(0.0)                               | 5/50 ( 10.0) | 4/49( 8 2)       |  |
| Adjusted rates(b)                                       | 4.35                                                                    | 0.0                                     | 12.00        | 8. 11.           |  |
| Terminal rates(c)<br>Statistical analysis<br>Peto test  | 1/23( 4.3)                                                              | 0/25( 0.0)                              | 3/25(12.0)   | 2/35(5.7)        |  |
| Standard method(d)                                      | P = 0.2792                                                              |                                         |              |                  |  |
| Prevalence method(d)<br>Combined analysis(d)            | P = 0.1904<br>P = 0.1533                                                |                                         |              |                  |  |
| Cochran-Armitage test(e)                                | P = 0.1897                                                              |                                         |              |                  |  |
| Fisher Exact test(e)                                    |                                                                         | P = 0.2475                              | P = 0.2180   | P = 0.3292       |  |
|                                                         | SITE : uterus<br>TUMOR : histiocytic sarcoma                            |                                         |              |                  |  |
| Tumor rate<br>Overall rates(a)                          | 8/50(-16, 0)                                                            | 7/50 ( 14 0)                            | 17/50( 34 0) | 12/50( 24 0)     |  |
| Adjusted rates(b)                                       | 14.29                                                                   | 4:00                                    | 28.00        | 12, 30, 24, 9)   |  |
| Terminal rates(c) Statistical analysis                  | 3/23( 13.0)                                                             | 1/25(4.0)                               | 7/25( 28.0)  | 4/35(11.4)       |  |
| reto lest<br>Standard method(d)<br>Prevalence method(d) | P = 0.4025<br>P = 0.3987                                                |                                         |              |                  |  |
| Combined analysis (d)                                   | P = 0.3683<br>P = 0.3584                                                |                                         |              |                  |  |
| cocnran-Armitage test(e)                                | $\Gamma = 0.3534$                                                       | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |              |                  |  |

| ANALYSIS          |
|-------------------|
| STATISTICAL       |
| ONV               |
| LESTONS-INCIDENCE |
| NEOPLASTIC        |
|                   |

: 0685 : MOUSE BGD2FL/Crlj[Crj:BDF1] : FEMALE

STUDY No. ANIMAL SEX

Ξ

PAGE:

| WARRANDA AND THE REAL PROPERTY OF THE PROPERTY | AAAAA AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA | Vancation (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE PROPERTY OF THE PROPERTY O |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Group Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control                                | 250 րբա                                           | 1000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4000 թչու                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SITE : Harderian gland                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUMOR : adenoma                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Tumor rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Overall rates(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/50(0.0)                              | 3/50(6.0)                                         | 1/50( 2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/50( 4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Adjusted rates(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                    | . 38                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Terminal rates(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0/23(0.0)                              | 0/25(0.0)                                         | 1/25(4,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/35( 2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Peto test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Standard method(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) =                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Prevalence method(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P = 0.3124                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Combined analysis(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | р =                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Cochran-Armitage test(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = 0.6260                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Fisher Exact test(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | P = 0.1212                                        | P = 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P = 0.2475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| (HPT360A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                   | Water and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAIS4 |

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis Prevalence method : Incidental tumor test

Combined analysis: Death analysis 4 Incidental tumor test
Combined analysis: Death analysis 4 Incidental tumor test
(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.
-----: There is no data which should be statistical analysis.
Significant difference: \*: P ≤ 0.05 \*\*: P ≤ 0.01
N.C.:Statistical value cannot be calculated and was not significant.

| SITE : ALL SITE  TUMOR : hemangiouma  2/50(4.0) 4.35  1/23(4.3)  1/23(4.3)  P = 1.0000 ? P = 0.7200  3)  SITE : ALL SITE  TUMOR : histiocytic sarcoma  12/50(24.0) 14.29 3/23(13.0)  P = 0.6129  P = 0.6129  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0) 17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250 ppm 4/50( 8. 0) 15.38 | 1000 maja         | , , , , , , , , , , , , , , , , , , , | AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|---------------------------------------|----------------------------------------|
| SITE : ALL SITE  TUMOR : lemangiouma  2/50( 4. 0)  4.35  1/23( 4. 3)  1/23( 4. 3)  1/23( 4. 3)  P = 0.7200  P = 0.7200  P = 0.7200  SITE : ALL SITE  TUMOR : histiocytic sarcoma  12/50( 24. 0)  P = 0.6129  P = 0.6129  P = 0.3962  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50( 36. 0)  17.39  4/23( 17. 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/50(8.0)                 |                   | 4000 ppm                              |                                        |
| 1.50 ( 4.0)   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35   4.35      | 4/50(8.0)                 |                   |                                       |                                        |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.38                     | 4/50(-8.0)        | 9/50( 4 0)                            |                                        |
| P = 1.0000 ?  p = 0.7200  p = 0.7200  p = 0.7869  st(e) P = 0.6076  stTE : ALL SITE  TUMOR : histiocytic sarcoma  12/50(24.0)  14.29  3/23(13.0)  P = 0.6129  P = 0.6129  P = 0.3884  st(c) P = 0.3884  st(c) P = 0.3902  stTE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0)  17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0 01 / 10/ 0             | 1,05( .0.0)       | 4.08                                  |                                        |
| P = 1.0000 ?  p = 0.7200  p = 0.7200  p = 0.7200  p = 0.7200  looping it is a companied in the companied in the constant in the constant in the companied in th | 3/ 25 ( 12. 0)            | 3/25( L2.0)       | 1/35( 2.9)                            |                                        |
| 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                   |                                       |                                        |
| st(e) P = 0.6076  SITE : ALL SITE  TUMOR : histiocytic sarcoma  12/50(24.0)  14.29  3/23(13.0)  P = 0.6129  P = 0.6129  P = 0.3884  st(c) P = 0.3884  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0)  17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                                       |                                        |
| SITE : ALL SITE  TUMOR : histiocytic sarcoma  12/50(24.0)  14.29  3/23(13.0)  P = 0.6129  P = 0.2035  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0)  17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                                       |                                        |
| SITE : ALL SITE  TUMOR : histiocytic sarcoma 12/50(24.0) 14.29 3/23(13.0) P = 0.6129 P) P = 0.2035 P) P = 0.3884 st(c) P = 0.3902 )) SITE : ALL SITE TUMOR : malignant lymphoma 18/50(36.0) 17.39 4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = 0.3389                | P = 0.3389        | P = 0.6913                            |                                        |
| 12/50(24.0) 14.29 3/23(13.0) 14.29 3/23(13.0) P = 0.6129 P = 0.2035 D) P = 0.3884 Stf = Surg StT = ALL SITE TUMOR : malignant lymphoma 18/50(36.0) 17.39 4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                   |                                       |                                        |
| 14.29<br>  3/23(13.0)<br>  P = 0.6129<br>  D = 0.2035<br>  P = 0.3884<br>  STE : ALL SITE<br>  TUMOR : malignant lymphoma<br>  18/50(36.0)<br>  17.39<br>  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/50( 14 0)               | 19/50(38.0)       | 14/50/ 90 0                           |                                        |
| 3/23(13.0)  P = 0.6129  P = 0.2035  1) P = 0.3884  st(c) P = 0.3902  2)  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0)  17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00                      | 70.00.00<br>28.00 | 17 17                                 |                                        |
| P = 0.6129<br>  D = 0.2035<br>  D = 0.3884<br>  St(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/25( 4.0)                | 7/25( 28.0)       | 6/35( 17. 1)                          |                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                                       |                                        |
| st(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                                       |                                        |
| st(e) P = 0.3902  SITE : ALL SITE  TUMOR : malignant lymphoma  18/50(36.0)  17.39  4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                   |                                       |                                        |
| SITE : ALL SITE TUMOR : malignant lymphoma 18/50(36.0) 17.39 4/23(17.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                   |                                       |                                        |
| SITE :<br>TUMOR :<br>18/50(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P = 0.1540                | P = 0.0971        | P = 0.4100                            |                                        |
| TUMOR :<br>18/50(<br>4/23(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                   |                                       |                                        |
| 18/50(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                   |                                       |                                        |
| 4/23 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23/50 (46.0)              | 18/50(36.0)       | 15/50(30.0)                           |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.00                     | 24.00             | 28.57                                 |                                        |
| ralistical analysis<br>Pato tast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8/25 (32.0)               | 6/25(24.0)        | 10/35( 28.6)                          |                                        |
| mcthod(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                   |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                                       |                                        |
| Cochran-Armitage test(e) P = 0.2193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                   |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P = 0.2081                | P = 0.5824        | P = 0.3355                            |                                        |

| ANALYSIS          |
|-------------------|
| STATISTICAL       |
| AND               |
| LESTONS-INCIDENCE |
| NEOPLASTIC        |
|                   |

| Y No. :                  | OGSS<br>MOUSE B6D2F1/Cr1;[Crj:BDF1]                                                                            | NEOPLASTIC LESTONS-INCIDENCE AND STATISTICAL ANALYSIS | TSTICAL ANALYSIS |            |         |
|--------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|------------|---------|
| SEX : FEMALE             |                                                                                                                |                                                       |                  |            | PAGE: 4 |
| Сгоир Мате               | Сонтго]                                                                                                        | 250 pm                                                | 1000 ապո         | 4000 pmm   |         |
|                          | SITE : ALL SITE                                                                                                |                                                       |                  |            | 4444    |
|                          | TUMOR : hemangiosarcoma                                                                                        |                                                       |                  |            |         |
| Tumor rate               | ,                                                                                                              |                                                       |                  |            |         |
| ()verall rates(a)        | 1/50( 2.0)                                                                                                     | 1/50( 2.0)                                            | 3/50( 6.0)       | 3/50( 6 0) |         |
| Adjusted rates(b)        | 4.35                                                                                                           | 4.00                                                  | 4.00             |            |         |
| Terminal rates(c)        | 1/23(4.3)                                                                                                      | 1/25(4.0)                                             | 1/25(4.0)        | 2/35( 5.7) |         |
| Statistical analysis     |                                                                                                                |                                                       |                  |            |         |
| Standard method(d)       | P = 0.2782                                                                                                     |                                                       |                  |            |         |
| Prevalence method(d)     | P = 0.3524                                                                                                     |                                                       |                  |            |         |
| Combined analysis(d)     | P = 0.2616                                                                                                     |                                                       |                  |            |         |
| Cochran-Armitage test(e) | P = 0.2824                                                                                                     |                                                       |                  |            |         |
| Fisher Exact test(e)     |                                                                                                                | P = 0.7525                                            | P = 0.3087       | P = 0.3087 |         |
| (HPT360A)                | ANAMAN ANAMA |                                                       |                  |            | BAISA   |

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.
Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

-----: There is no data which should be statistical analysis.

Significant difference: \*: P \( \leq \) 0.05 \*\*: P \( \leq \) 0.01

N.C.:Statistical value cannot be calculated and was not significant.

### TABLE Q 1

# HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $B6D2F1/Crlj \ MALE \ MICE$

TABLE Q 1 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crl; MALE MICE

| No. of animals | No. of animals           | Incidence                                                               | Min Max.                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| examined       | bearing tumor            | (%)                                                                     | (%)                                                                                                                                                                                                                                                                                           |
| 2244           |                          |                                                                         |                                                                                                                                                                                                                                                                                               |
|                | 48                       | 2.1                                                                     | 0 - 10                                                                                                                                                                                                                                                                                        |
|                | 59                       | 2.6                                                                     | 0 - 10                                                                                                                                                                                                                                                                                        |
|                | 107                      | 4.8                                                                     | 0 - 14                                                                                                                                                                                                                                                                                        |
| 2245           |                          |                                                                         |                                                                                                                                                                                                                                                                                               |
|                | 70                       | 3.1                                                                     | 0 - 14                                                                                                                                                                                                                                                                                        |
|                | 96                       | 4.3                                                                     | 0 - 14                                                                                                                                                                                                                                                                                        |
|                | 166                      | 7.4                                                                     | 0 - 16                                                                                                                                                                                                                                                                                        |
| 2245           |                          |                                                                         |                                                                                                                                                                                                                                                                                               |
|                | 145                      | 6.5                                                                     | 0 - 18                                                                                                                                                                                                                                                                                        |
|                | 157                      | 7.0                                                                     | 0 - 18                                                                                                                                                                                                                                                                                        |
|                | 279                      | 12.4                                                                    | 0 - 22                                                                                                                                                                                                                                                                                        |
|                | examined<br>2244<br>2245 | examined bearing tumor  2244  48 59 107  2245  70 96 166  2245  145 157 | examined         bearing tumor         (%)           2244         48         2.1           59         2.6           107         4.8           2245         70         3.1           96         4.3           166         7.4           2245         145         6.5           157         7.0 |

<sup>45</sup> carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

0044,0060,0062,0064,0066,0068,0096,0105,0116,0140,0159,0163,0190,0206,0211, 0225, 0243, 0268, 0270, 0279, 0285, 0297, 0319, 0329, 0343, 0348, 0366, 0372, 0402, 0406, 0418, 0422, 0438, 0449, 0458, 0462, 0498, 0515, 0561, 0580, 0611, 0613,

0642, 0676, 0705

## TABLE Q 2

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER:  $B6D2F1/CrlCrlj\ FEMALE\ MICE$ 

TABLE Q 2 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : B6D2F1/Crlj FEMALE MICE

| Organs              | No. of animals | No. of animals | Incidence | Min Max. |
|---------------------|----------------|----------------|-----------|----------|
| Tumors              | examined       | bearing tumor  | (%)       | (%)      |
| Uterus              | 2245           |                |           |          |
| Histiocytic sarcoma |                | 464            | 20.7      | 10 - 34  |

45 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0044,\,0060,\,0062,\,0064,\,0066,\,0068,\,0096,\,0105,\,0116,\,0140,\,0159,\,0163,\,0190,\,0206,\\0211,\,0225,\,0243,\,0268,\,0270,\,0279,\,0285,\,0297,\,0319,\,0329,\,0343,\,0348,\,0366,\,0372,\\0402,\,0406,\,0418,\,0422,\,0438,\,0449,\,0458,\,0462,\,0498,\,0515,\,0561,\,0580,\,0611,\,0613,\\0642,\,0676,\,0705$ 

## TABLE R 1

CAUSE OF DEATH: MALE

| NALMAL : MOUSE B6D2F1/A SEX : MALE Sroup Name Sroup Name Acribund Animal Noribund Animal Lirombosis Lirombosis Lumor d:leukemia tumor d:leukemia tumor d:subcutis tumor d:subcutis tumor d:subiary gl | ### MOUSE B6DZF1/Cr1j[Crj:BDF1]  ################################### | 250 ppm 21 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 21 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (0-105W) 4000 ppm 34 32 2 2 3 21 21 21 0 0 0 0 1 | PAGE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|--------------------------------------------------|------|
| cumor d:epididymis                                                                                                                                                                                                                                                                                   | _                                                                    | 0                                              |                                         |                                                  |      |

## TABLE R 2

CAUSE OF DEATH: FEMALE

| Control 250 ppm 100  27 25 2  1m 0 2 1  1 0 0 0  14 15 1  2 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0  9 0 0 | ANIMAL : MOUSE BGD2F1<br>SEX : FEMALE | : MOUSE BGDZF1/Crlj[Crj:BDF1]<br>: FEMALE |         |          | (0-105#) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|---------|----------|----------|
| rm 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Group Name                            | Control                                   | 250 ppm | 1000 ppm |          |
| 0<br>0<br>1<br>1<br>0<br>0<br>14<br>15<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Dead and<br>Moribund Animal | 27                                        | 25      | 25       | 1.5      |
| 0<br>1<br>0<br>14<br>12<br>2<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>4<br>4<br>6<br>6<br>6<br>6<br>7<br>6<br>7<br>7<br>8<br>7<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | no microscop confirm                  | 0                                         | 2       | 0        |          |
| 1<br>0<br>0<br>14<br>12<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | thrombosis                            | 0                                         | _       | 0        |          |
| 0<br>14 15<br>2 0<br>0 0<br>4 0<br>4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arteritis                             | 1                                         | 0       | 0        | 0        |
| 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hydronephrosis                        | 0                                         | 0       | 1        | 0        |
| 2 0 0 4 H 44 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tumor d:leukemia                      | 14                                        | 15      | 10       | ما       |
| 0 0 4 1 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tumor d:subcutis                      | 2                                         | 0       |          |          |
| 0 4 1 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tumor d:lung                          | 0                                         | -       | Т        | 0        |
| iry 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tumor displeen                        | 0                                         | 0       | _        | 0        |
| iry 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tumor d:liver                         | 4                                         | 0       | 2        | -        |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tumor d:pituitary                     | T                                         | 0       | 0        | 1        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tumor d:uterus                        | 4                                         | 9       | 6        | -        |
| 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tumor dimuscle                        |                                           | 0       | 0        | 0        |

## **FIGURES**

| FIGURE 1 | SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE       |
|----------|-----------------------------------------------------------------------------------|
| FIGURE 2 | SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE     |
| FIGURE 3 | BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE L      |
| FIGURE 4 | BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE      |
| FIGURE 5 | FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE   |
| FIGURE 6 | FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE |

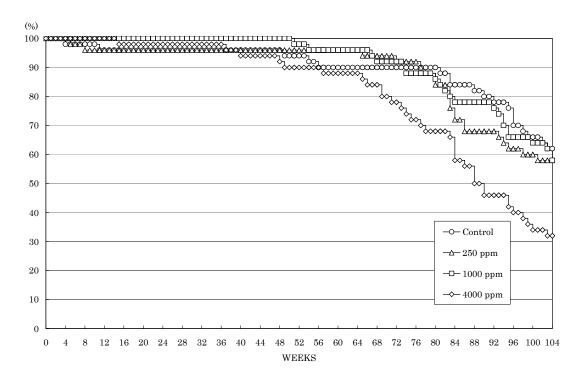



FIGURE 1 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

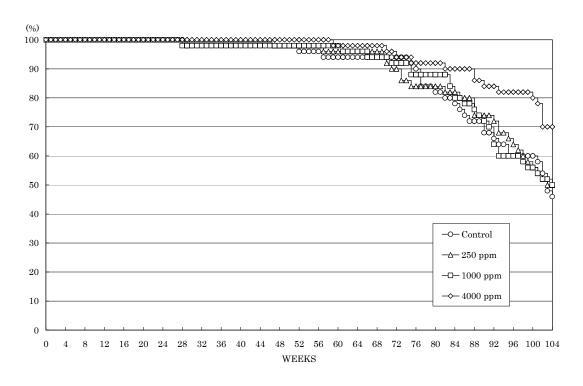



FIGURE 2 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

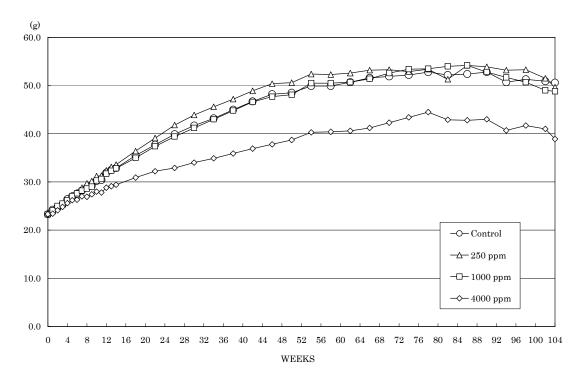



FIGURE 3 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

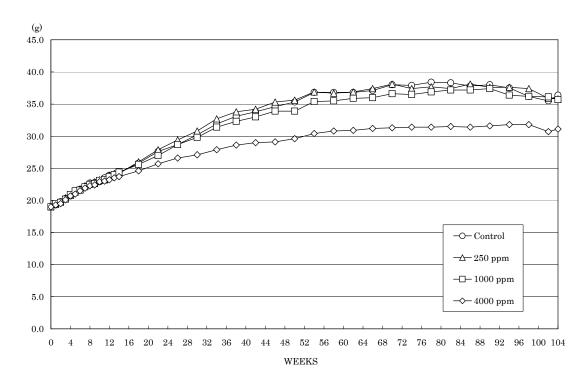



FIGURE 4 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

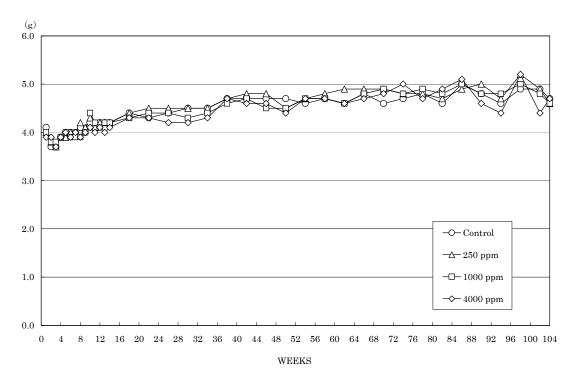
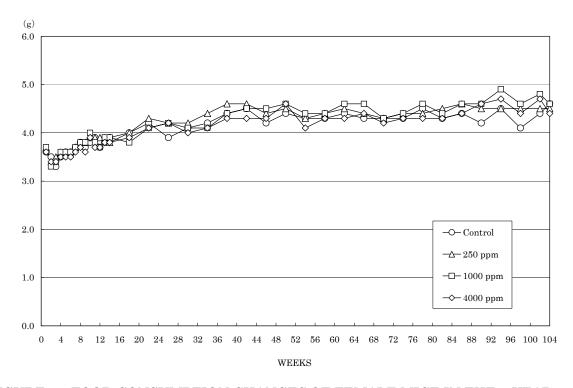
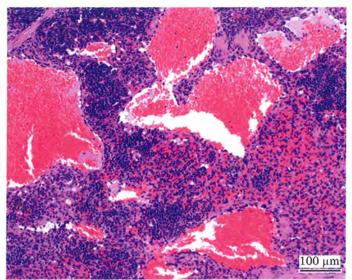
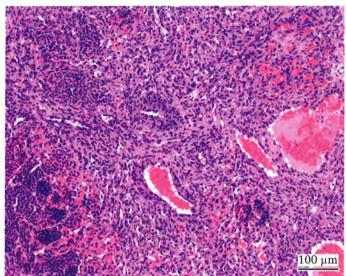
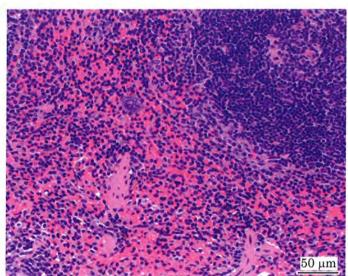
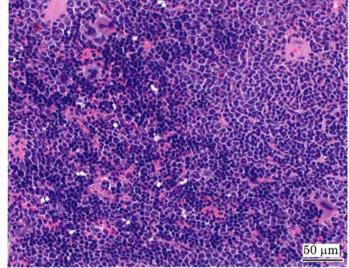



FIGURE 5 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

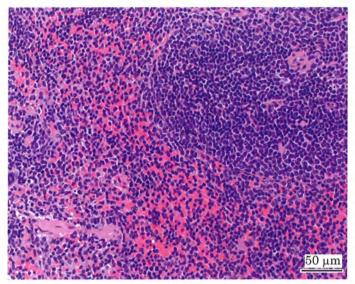






FIGURE 6 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR FEED STUDY OF DIPHENYLAMINE

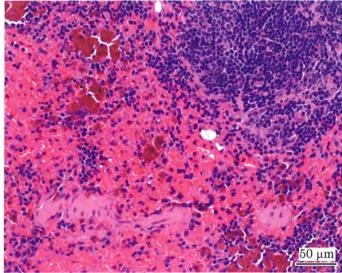



Photograph 1 Spleen: Hemangioma Rat, Male, 1000 ppm, Animal No. 0685-1208 (H&E)

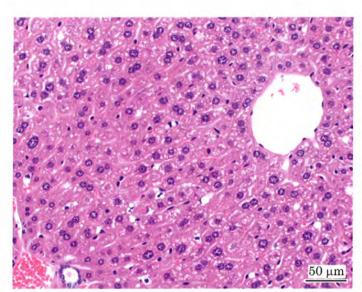



Photograph 2 Spleen: Hemangiosarcoma Rat, Male, 1000 ppm, Animal No. 0685-1222 (H&E)

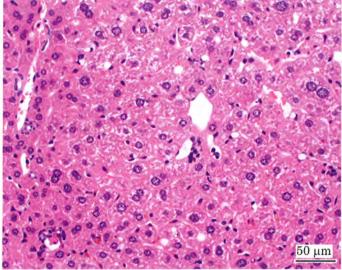



Photograph 3 Spleen: Normal Rat, Male, Control, Animal No. 0685-1004 (H&E)




Photograph 4 Spleen: Extramedullary hematopoiesis Rat, Male, 1000 ppm, Animal No. 0685-1202 (H&E)




Photograph 5 Spleen: Normal Rat, Female, Control, Animal No. 0685-2002 (H&E)



Photograph 6 Spleen: Engorgement erythrocyte and deposit of hemosiderin Rat, Female, 1000 ppm, Animal No. 0685-2333 (H&E)



Photograph 7 Liver: Normal Rat, Female, Control, Animal No. 0685-2002 (H&E)



Photograph 8 Liver: Hepatocellular hypertrophy Rat, Female, 4000 ppm, Animal No. 0685-2301 (H&E)