4- tert-ブチルカテコールのマウスを用いた 経口投与によるがん原性試験(混餌試験)報告書

試験番号:0740

TABLES

TABLES

TABLE A 1	SURVIVAL ANIMAL NUMBERS: MALE
TABLE A 2	SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE B 1	CLINICAL OBSERVATION: MALE
TABLE B 2	CLINICAL OBSERVATION: FEMALE
TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	CHEMICAL INTAKE CHANGES: MALE
TABLE E 2	CHEMICAL INTAKE CHANGES: FEMALE
TABLE F 1	HEMATOLOGY: MALE
TABLE F 2	HEMATOLOGY: FEMALE
TABLE G 1	BIOCHEMISTRY: MALE
TABLE G 2	BIOCHEMISTRY: FEMALE

TABLE H 1	URINALYSIS: MALE
TABLE H 2	URINALYSIS: FEMALE
TABLE I 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE I 2	GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS
TABLE I 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
TABLE I 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE I 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE I 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
TABLE J 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS
TABLE L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: MALE: DEAD AND MORIBUND ANIMALS
TABLE L 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS:
	MALE: SACRIFICED ANIMALS
TABLE L 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS
TABLE L 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE L 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS: FEMALE: SACRIFICED ANIMALS
TABLE M 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
TABLE M 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

TABLE N 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
TABLE N 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
TABLE O 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE O 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE P 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
TABLE P 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
TABLE Q	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE
TABLE R 1	CAUSE OF DEATH: MALE
TABLE R 2	CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : MALE

PAGE: 1

Group Name	Animals	Administ	ration (Wee												
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0
1250 ppm	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0
2500 ppm	50	50/50 100. 0													
5000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
ontrol	50	49/50 98. 0													
250 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
2500 ppm	50	98. 0 50/50													
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
5000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104
SEX : MALE

PAGE: 3

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	49/50 98. 0	48/50 96. 0												
250 ppm	50	49/50 98. 0													
2500 ppm	50	50/50 100. 0													
5000 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0											

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : MALE

SURVIVAL ANIMAL NUMBERS

PAGE: 4

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	47/50 94. 0	46/50 92. 0	45/50 90. 0							
250 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0											
2500 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0											
5000 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0											

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	44/50 88. 0	43/50 86. 0												
250 ppm	50	49/50 98. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0									
2500 ppm	50	49/50 98. 0	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0								
5000 ppm	50	49/50 98. 0	48/50 96. 0	47/50 94. 0	47/50 94. 0										

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	43/50 86. 0	42/50 84. 0	41/50 82. 0	41/50 82. 0										
1250 ppm	50	46/50 92. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	42/50 84. 0					
2500 ppm	50	46/50 92. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0	44/50 88. 0	43/50 86. 0							
5000 ppm	50	47/50 94. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 7

Group Name	Animals	Administ	ration (Wee	ks)											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	40/50 80. 0	39/50 78. 0	39/50 78. 0	38/50 76. 0	36/50 72. 0	35/50 70. 0								
1250 ppm	50	41/50 82. 0	40/50 80. 0	39/50 78. 0	39/50 78. 0	39/50 78. 0	38/50 76. 0	38/50 76. 0	38/50 76. 0						
2500 ppm	50	43/50 86. 0	43/50 86. 0	42/50 84. 0	42/50 84. 0	42/50 84. 0	40/50 80. 0	39/50 78. 0	39/50 78. 0	38/50 76. 0	38/50 76. 0	37/50 74. 0	37/50 74. 0	37/50 74. 0	37/50 74. 0
maa 0005	50	47/50 94. 0	45/50 90. 0												

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104
SEX : MALE

PAGE: 8

Group Name	Animals	Administ	ration (Wee	ks)				
	At start	98	99	100	101	102	103	104
Control	50	35/50 70. 0	34/50 68. 0	34/50 68. 0	34/50 68. 0	33/50 66. 0	32/50 64. 0	32/50
250								64. 0
1250 ppm	50	36/50 72. 0	35/50 70. 0	35/50 70. 0	35/50 70. 0	34/50 68. 0	34/50 68. 0	32/50 64. 0
2500 ppm	50	37/50	37/50	36/50	35/50	34/50	33/50	33/50
		74. 0	74. 0	72. 0	70. 0	68. 0	66. 0	66. 0
5000 ppm	50	45/50 90. 0	44/50 88. 0	43/50 86. 0	42/50 84. 0	42/50 84. 0	40/50 80. 0	40/50 80. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 9

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50 100. 0													
2500 ppm	50	50/50 100. 0													
5000 ррм	50	50/50 100. 0													
10000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 10

Group Name	Animals	Administ	ration (Wee	ks)							***************************************				
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0									
2500 ppm	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0									
5000 ppm	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0									
10000 ppm	50	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0	50/50 100. 0									

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 11

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50 100. 0													
2500 ppm	50	50/50 100. 0													
5000 ppm	50	50/50 100. 0													
10000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 12

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0
2500 ppm	50	50/50 100. 0	49/50 98. 0												
5000 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0				
10000 ppm	50	50/50 100. 0	49/50 98. 0												

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 13

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	47/50 94. 0													
2500 ppm	50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50	47/50	47/50	47/50	46/50	46/50
		98. 0	98. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	94. 0	94. 0	94. 0	94. 0	92. 0	92. 0
5000 ppm	50	49/50 98. 0	49/50 98. 0	48/50 96. 0											
10000 ppm	50	49/50 98. 0	48/50 96. 0	46/50 92. 0	46/50 92. 0										

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 14

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	47/50 94. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0	44/50 88. 0	43/50 86. 0								
2500 ppm	50	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0								
5000 ppm	50	48/50 96. 0	46/50 92. 0	44/50 88. 0	44/50 88. 0										
10000 ppm	50	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	41/50 82. 0	41/50 82. 0	41/50 82. 0	41/50 82. 0	40/50 80. 0	39/50 78. 0				

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104 SEX : FEMALE

PAGE: 15

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	43/50	41/50	41/50	40/50	40/50	39/50	38/50	37/50	37/50	36/50	35/50	34/50	32/50	31/50
		86. 0	82. 0	82. 0	80. 0	80. 0	78. 0	76. 0	74. 0	74. 0	72. 0	70. 0	68. 0	64. 0	62. 0
2500 ppm	50	43/50	43/50	42/50	42/50	42/50	42/50	42/50	42/50	41/50	40/50	40/50	40/50	40/50	40/50
		86. 0	86. 0	84. 0	84. 0	84. 0	84. 0	84. 0	84. 0	82. 0	80. 0	80. 0	80. 0	80. 0	80. 0
5000 ppm	50	42/50	42/50	42/50	42/50	41/50	41/50	41/50	39/50	37/50	36/50	36/50	36/50	33/50	31/50
		84. 0	84. 0	84. 0	84. 0	82. 0	82. 0	82. 0	78. 0	74. 0	72. 0	72. 0	72. 0	66. 0	62. 0
10000 ppm	50	39/50	38/50	37/50	37/50	37/50	37/50	35/50	33/50	32/50	32/50	32/50	31/50	29/50	28/50
		78. 0	76. 0	74. 0	74. 0	74. 0	74. 0	70. 0	66. 0	64. 0	64. 0	64. 0	62. 0	58. 0	56. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 16

Group Name	Animals	Administ	ration (Wee	eks)				
	At start	98	99	100	101	102	103	104
Control	50	29/50 58. 0	29/50 58. 0	28/50 56. 0	27/50 54. 0	22/50 44. 0	21/50 42. 0	20/50 40. 0
2500 ppm	50	38/50 76. 0	38/50 76. 0	35/50 70. 0	33/50 66. 0	33/50 66. 0	32/50 64. 0	29/50 58. 0
5000 ppm	50	29/50 58. 0	29/50 58. 0	29/50 58. 0	27/50 54. 0	27/50 54. 0	23/50 46. 0	22/50 44. 0
10000 ppm	50	28/50 56. 0	26/50 52. 0	25/50 50. 0	25/50 50. 0	25/50 50. 0	24/50 48. 0	21/50 42. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE B 1

CLINICAL OBSERVATION: MALE

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	. 5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	1	1	1	1	1	1	1	1	1	1	1	1
CATH	1250 ppm	0	0	Ó	i	ì	1	i	i	i	i	i	1	1	1
	2500 ppm	n	0	0	Ö	Ö	ò	Ó	Ö	Ó	Ö	Ó	Ó	Ö	ò
	5000 ppm	0	0	0	0	0	0	Ö	Ö	Ö	Ö	Ö	ő	Ö	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	Ō	0	0	0	n	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-dav											
***************************************	·	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
LATTI	1250 ppm	i	i	i	i	i	i	i	i	i	i	i	i	i	1
	2500 ppm	0	Ö	Ô	Ô	Ò	0	0	0	Ô	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9000 mqq	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 n	0	0 n
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	U	0	U
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	U	U	U	U
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav					***************************************						
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ATH	Control	1	1	1	1	2	2	2	2	2	2	2	2	2	2
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm 5000 ppm	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 1	0 1	0 1
	3000 ppiir	v	Ū	U	Ü	U	U	Ū	Ū	U	v	Ū	•	•	•
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	1250 ppm 2500 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		· ·	-	-		-	-	•	-	-	•	v	, ,	-	
AXIC GAIT	Control	0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0
	1250 ppm 2500 ppm	U N	0	0 0	0 0	0	0	0	0	υ 0	O O	0	0	0	0 N
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ő
DALVILC CALT	Combined	٨	۸	۸	0	n	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control 1250 ppm	U	0 0	0	0	0 0	0	0 0	0	0	0	O O	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ö	Õ	0	0	Õ	Ö	Ō	Ō	Õ	0	0	0	0	0
EMOR	Control	Λ	0	0	0	0	0	0	0	0	0	0	0	0	0
LIIIOX	1250 ppm	Ö	Ŏ	Ö	Ö	Ö	Õ	ŏ	Õ	Õ	Ö	Õ	ŏ	Ö	Õ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0
	5000 ppm	U	0	0	0	0	0	0	0	0	U	U	U	U	U
LOERECTION	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 n	0	0	0 n
	արդ հուր	U	U	U	U	U	U	U	U	U	U	U	U	U	U
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0
	5000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
.,,,,,,		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
															_
EATH	Control	2	2	2	3	3	3	3	3	3	3	3	4	4	5
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	Ţ	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Õ	Ö	0	Ô	Õ	Õ	Ö	Ō	Ö	Ō	Ö	0	Ō	0
	2500 ppm	Õ	Õ	Õ	Ö	Õ	ŏ	ŏ	Ö	Õ	Ō	Ö	Õ	Ō	Ō
	5000 ppm	0	Ö	Ö	Ö	Ö	Ö	Ô	Õ	0	Õ	Õ	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	ň	0	0	0	Ô	ŏ	Ö	Õ	ő	Õ	Õ	Ö	Õ	0
	2500 ppm	0	0	0	0	0	0	Ö	Ö	0	0	0	0	Õ	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
EMOR	Control	0	1	0	0	0	0	0	0	0	0	0	0	0	0
LEMOR	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		•		-			-					0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	-		0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
LLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_OERECTION	Control	0	1	1	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Õ	Ö	ò	Õ	Õ	Õ	Ō	Ō	Ō	0	Ō	Ō	0	0
	2500 ppm	Ö	0	Ö	0	0	Ö	Ö	0	0	0	1	Ö	ő	ő
	5000 ppm	Ö	ŏ	Ő	Ö	ő	Ö	Ŏ	Õ	ő	ŏ	ò	Ö	Ö	Ö
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ou DEEL!	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-		-		0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
-		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
DEATH	Control	5	5	5	5	5	5	5	5	5	5	5	5	6	6
PENTIL	1250 ppm	1	1	1	1	1	1	1	1	1	3	3	3	4	4
	2500 ppm	2	2	2	2	2	2	2	2	2	3	3	3	4	4
	5000 ppm	1	1	1	1	2	2	2	2	2	2	2	3	3	3
	OOO ppiii	•	,	•	•	-	-	-	-	-	-	-	·	·	•
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Ō	0	Ö	0	Ō	0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	O	0	0	0	0	0	0	0	0
modelino unii	1250 ppm	0	0	0	0	0	0	0	0	0	n	n	Ô	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Û	0	0
	Jood phii	U	U	U	U	U	U	U	Ü	U	v	U	·	Ū	Ū
REMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	1250 ppm	Ö	Ö	Ö	Õ	Ö	Ō	Õ	Ö	Ö	Ō	Ō	Ō	0	0
	2500 ppm	0	Ō	Ö	Õ	Ō	Ō	Ō	Ō	Ō	0	0	Ō	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OI LED	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0 N	n	0	0	0
	Judu ppili	U	U	U	U	U	v	U	υ	U	U	U	U	U	U
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	n	0	O	0	0	0
	1250 ppm	Ô	0	Õ	Ö	0	0	Õ	ő	ñ	Û	Ô	Õ	Ô	Ô
	2500 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	Õ	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3000 phili	U	U	v	U	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	6	6	6	6	c	6	6	6	6	6	6	7	7	8
CAIN	1250 ppm	4	4	4	5	6 5	5	6	6	6	6	6	6	8	9
	2500 ppm	5	5	6	6	6	7	7	7	7	7	7	7	7	7
	2000 ppm 5000 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	2	2	2	2	2	2	2	2
5	1250 ppm	Ò	Ö	ò	Ö	Ó	Ò	Ō	Ō	0	Ō	Ö	0	0	0
	2500 ppm	0	0	ő	0	0	Ö	Ö	0	Ö	Ö	Õ	Õ	Ö	ő
	5000 ppm	0	Õ	0	0	ő	Õ	ő	Ö	Ö	ő	ő	ŏ	Ö	Ö
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Õ	Ö	0	Ō	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Õ	Ö	Õ	Õ	Ö	Ö	Ö	Ö	Ō	0	0	0	0
	5000 ppm	Ö	ő	Ö	Ö	0	Ō	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	1	0	0	0	0	0	0	2	2	1	1	1	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	2500 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	Ō	0	0	0	0	0	0	1	1	1	1	1
	5000 ppm	Ö	Õ	Õ	Ô	Õ	Ö	Ô	Ô	Õ	Ö	Ò	Ó	Ò	Ô

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admin	istration W	leek-day											.,,,,
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
			_												
EATH	Control	9	9	10	10	10	10	10	10	10	10	10	11	11	11
	1250 ppm	10	10	10	10	10	10	10	11	11	11	12	12	12	14
	2500 ppm	7	8	8	8	10	11	11	11	11	12	12	12	12	12
	5000 ppm	3	3	3	3	3	3	3	5	5	5	5	5	5	5
ORIBUND SACRIFICE	Control	2	2	2	2	2	2	2	2	2	2	2	3	4	4
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1250 ppm	Ô	Ŏ	Ö	Ö	Ö	Ō	Ö	Õ	Ö	Ō	Ō	Ō	Ö	Ô
	2500 ppm	ñ	Ô	Ö	Ö	Ö	Õ	Ö	Õ	Õ	0	Ô	Ö	Ö	ō
	5000 ppm	0	n	0	0	0	0	0	0	0	0	0	Ô	Õ	0
		-	Ü	v	-	-			-	-	-	•	v	_	J
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REMOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ô	Õ	Ö	0	Ö	Õ	Ö	Õ	Ō	Ö	Ō	Ō	Ō	0
	2500 ppm	Ö	Ö	Ö	Ö	Ö	ő	Ö	Ö	Õ	Õ	Õ	Õ	Ö	Ö
	5000 ppm	0	0	n	0	0	0	0	0	0	0	0	n	Ô	Ô
	3000 ррш	U	U	U	U	U	U	U	U	U	U	U	U	U	U
DLLING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	Ö	0	0	0	Ö	Ō	0	0	0	0	0	0
	2500 ppm	Ö	Õ	Õ	1	i	Ö	Ö	Õ	Õ	Ö	Õ	Õ	Õ	Ō
	5000 ppm	0	Ō	Ö	Ö	0	Ö	Ö	0	Ö	Ö	Ö	0	Õ	Ö
LOERECTION	Control	2	2	2	2	2	2	2	2	1	1	1	1	0	0
LUCKLUIIUN	1250 ppm	0	0	0	0	0	0	0	0	0	0	Ó	0	1	0
		-	-						-				-	•	_
	2500 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	ı	1	1	1	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	2500 ppm	1	1	1	1	Ö	Ö	Ō	Ō	Ō	Ō	Ö	Ò	Ö	0
•	5000 ppm	ò	ò	Ö	ò	Ö	Ö	0	Ô	0	Ô	ñ	Õ	Ô	Õ

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day					
-	·	99-7	100-7	101-7	102-7	103-7	104-7		

ATH	Control	11	11	11	12	13	13		
	1250 ppm	15	15	15	16	16	18		
	2500 ppm	12	12	13	14	15	15		
	5000 ppm	6	7	8	8	10	10		
RIBUND SACRIFICE	Control	5	5	5	5	5	5		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	1	2	2	2	2	2		
	5000 ppm	0	0	0	0	0	0		
AXIC GAIT	Control	0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
	5000 ppm	Ō	Ō	Õ	Õ	Ō	Ō		
				-					
ARALYTIC GAIT	Control	0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	1	1	0	0	0	0		
	5000 ppm	0	0	0	0	0	0		
REMOR	Control	0	0	0	0	0	0		
	1250 ppm	0	Ō	0	Ō	0	0		
	2500 ppm	Ō	0	0	Ö	Ō	Ö		
	5000 ppm	Ő	Õ	Ô	Ö	0	ŏ		
		·	Ü	Ū	U	Ū	·		
OLLING	Control	0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
	5000 ppm	0	0	0	0	0	0		
OILED	Control	0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	1	1	1	0	0		
	5000 ppm	Ò	0	0	0	0	0		
ILOERECTION	Control	0	1	1	1	0	0		
	1250 ppm	Ő	Ö	Ö	i	1	1		
	2500 ppm	0	0	0	Ó	Ó	Ó		
	5000 ppm	0	0	0	0	0	0		
	2000 phill	U	U	U	U	U	U		
ROG BELLY	Control	. 0	0	0	0	0	0		
	1250 ppm	0	0	0	0	0	0		
	2500 ppm	0	0	0	0	0	0		
	5000 ppm	0	0	0	0	0	0		

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration We	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JOILED LEKT GENTIALIA	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	Ô
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	n	Ď	0	0
	3000 բիլո	U	U	U	U	U	U	U	U	U	U	U	U	U	U
XOPHTHALMOS	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	Ð	0	0
	1250 ppm	ő	0	0	0	Ö	Ô	0	Õ	0	Õ	Õ	Õ	Ö	Õ
	2500 ppm	Ö	0	Ö	0	0	0	0	0	0	0	0	Õ	Õ	Õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Õ	Ö	Ő
פומפכת בעבוות	Control	0	0	0	0	0	n	0	0	0	0	0	n	0	0
CLOSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	0	0	0	0	0	0	0	•	•	•	0	_	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALOCCLUSION	Control	0	0	0	0	0	0	0	0	n	0	O	0	0	0
INCOOCED TON	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	Õ	Õ	Ô
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	n	n	0	0	n	0
	որդգ որու	U	U	U	U	U	U	U	U	U	U	U	U		U
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	2
	1250 ppm	Ö	Ŏ	Ŏ	Ö	Ö	Õ	Õ	Õ	Ö	Ö	Ö	Ö	Ó	ō
	2500 ppm	Õ	Ö	Ö	Ö	Ö	0	0	Ö	Õ	Õ	Ö	0	1	1
	5000 ppm	Ö	Û	0	0	1	1	1	1	1	1	1	1	ò	Ö
	0000 ppm	•	•	Ü	v	•	•	•	•	•	,	•	•	•	ū
I. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	O	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEA . MALL															TAGE . I
Clinical sign	Group Name	Admini	stration W	eek-day										***************************************	
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
														_	_
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CLOSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JEGGED EVERIG	1250 ppm	ň	Õ	Õ	Õ	Õ	Ŏ	0	Õ	Õ	Õ	Ô	Õ	Ô	ñ
	2500 ppm	ñ	Õ	Õ	0	0	Ö	Ö	Õ	Ö	ŏ	Ö	Ö	Õ	ñ
	5000 ppm	Ő	Õ	ő	0	Ö	Ö	Ö	Õ	Ö	ő	Ö	Õ	Ō	0
CORNEAL OPACITY	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	n
OUNIERE OFFICE	1250 ppm	ň	Õ	Õ	0	0	Ö	Ö	Õ	Õ	ŏ	ŏ	Ö	Ö	ň
	2500 ppm	n	0	0	0	Ô	0	0	0	0	Õ	0	0	0	Õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ñ
	3000 ppin	U	U	U	U	U	U	U	v	U	U	U	U	U	U
MALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	2	2	2	1	1	1	1	1	1	1	2	2	2	3
AINE MIOO	1250 ppm	0	0	0	Ó	Ó	Ó	Ö	Ó	ò	Ó	0	Õ	0	0
	2500 ppm	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	5000 ppm	1	1	1	1	1	1	3 1	1	J 1	3 1	1	1	1	1
	Jood phiii	ı	1	ı,	'	ı	•	'	'	•	•	'	•	'	•
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

)L/(. III/\L															17102
Clinical sign	Group Name	Admini	stration W	leek-day											
***************************************		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Ö	Ö	Ö	Ö	Õ	Ō	Ō	Ō	0	0	0	0	0
	2500 ppm	0	Ö	Ō	Õ	0	Ō	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JM	Control	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0
	1250 ppm 2500 ppm	Ū	0	0	0	0	•	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	U N	U N	0	0	0
	5000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
OSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	3	3	3	3	2	2	2	2	2	2	2	2	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	3	4	4	4	4	4	4	5	5	5	5	5	4	4
	5000 ppm	1	1	1	1	1	1	1	1	1	2	2	2	2	2
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Administration Week-day													
_		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
OILED PERI-GENITALIA	Control	0	. 0	,	0	0	0	0	0	0	0	0	0	0	0
OTLED PERT-GENTIALIA	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	n	n	n	0	0
	JOOU PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	v
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	ő	Ö	ŏ	Ŏ	Õ	Õ	Ŏ	Ö	Õ	Ŏ	Ō	Ö	Õ	Ō
	2500 ppm	ň	0	ŏ	Ö	0	Õ	Õ	Ö	Õ	ŏ	Ö	Ö	Ŏ	Ö
	5000 ppm	0	0	Ô	Õ	0	Ö	Ö	0	Ö	0	Ö	Õ	0	Õ
CLOSED EYELID	Control	n	0	0	0	0	n	0	0	0	0	n	0	0	0
SCOSED ETELID	1250 ppm	0	0	0	0	0	0	0	0	0	n	0	0	0	0
	2500 ppm	0	-		0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0
	mqq oooc	U	U	U	U	U	U	U	U	U	U	U	U	U	U
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	n	Õ	Ô	Õ	0	Û	Õ	Õ	1
	2500 ppm	0	0	0	0	0	0	0	0	0	n	Ô	0	0	ò
	5000 ppm	Õ	0	1	0	0	0	0	0	Ö	Õ	0	0	Ö	Ö
NTCONAL MACO	0	•		•		•	•	•	•	•	•	0	0	0	
NTERNAL MASS	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	ı
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	4	4	4	5	5	5	6	6	7	7	6	5	5	5
	5000 ppm	3	3	1	2	2	2	2	2	2	2	2	2	2	2
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	ne Administration Week-day													
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
OUTD DEDL OFFITALIA	0	0		0	•	٥		0	0	0	0	٥	0	n	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Ō	Ō	0	Ō	0	Ö	0	0	0	0	0	0	0
	2500 ppm	Ö	Ö	Ö	0	Ö	Ö	Ō	Ō	Õ	Ō	Ö	0	Ō	0
	5000 ppm	0	0	0	Õ	Ö	Ö	Ô	Õ	Ō	Ö	Ō	Ö	0	0
OSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOOLD LILLID	1250 ppm	0	0	0	0	0	0	0	0	0	Õ	Ö	Ŏ	Ö	Õ
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq ovoc	U	U	U	U	U	U	U	U	U	U	U	U	U	U
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Õ	Õ	Õ	Õ	Ö	Ö	Õ	Ö	Õ	Õ	Õ	Ō	Ō	ō
	2500 ppm	Õ	Õ	Ö	Ô	Ö	Õ	Õ	Õ	Õ	Õ	0	Ö	Ö	Õ
	5000 ppm	ŏ	Ő	Ô	ő	Õ	ŏ	Ö	ŏ	ő	Õ	Õ	Ö	Ö	Ö
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRIOU	1250 ppm	1	1	1	2	2	2	2	2	3	3	3	3	3	3
	2500 ppm	Ö	i	i	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	'n	ò	0	Ó	Ó	Ó	Ó	'n	'n	Ó	'n	'n	'n
	Jood phili	U	υ	U	U	U	U	U	υ	U	v	U	U	U	J
ITERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	0	0
	1250 ppm	1	1	1	1	1	2	4	4	4	4	4	4	5	6
	2500 ppm	4	4	4	4	4	4	4	4	4	4	4	6	6	6
	5000 ppm	2	2	2	2	2	2	2	2	2	3	3	2	1	2
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Õ	Ō	Ö	Ö	Ō	Õ	Õ	Ö	Ö	Õ	Ö	0	Ō	Ō
	2500 ppm	Ö	ő	ŏ	Ö	Õ	Õ	Õ	0	Ö	Õ	Ö	Ŏ	Ö	ő
	5000 ppm	Ö	0	Õ	0	0	0	0	0	Õ	0	Ö	Ŏ	ŏ	ő

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

JEX . MINEL															17102
Clinical sign	Group Name	Admini	istration W	eek-dav	***************************************										
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
													_		
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Ō	Ö	Ö	Ö	Ö	Ō	Ö	Ō	Ō	Ö	0	0	0
	2500 ppm	0	0	Ō	Ō	Ō	Ō	0	0	0	0	Ō	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Ō	Ö	Ö	Ō	Ō	Õ	Ō	0	Ō	0	0	0	0
	2500 ppm	Ō	Ō	Ö	Ö	Ō	Ö	Õ	Ö	Õ	Ō	Ō	Ō	0	0
	5000 ppm	ő	ő	Ô	Õ	Õ	Õ	Ö	Ô	0	Ô	Ô	ñ	Ô	ñ
		·	Ť	·	·	-	-		ŭ	•	·	•	ŭ	Ü	•
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	3	3	3	3	3	3	2	2	2	2	2	2	2	1
	2500 ppm	1	1	1	1	1	1	1	2	2	2	2	2	2	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	3	3	2
NTERNAL MASS	Control	0	0	0	0	1	1	1	2	2	2	2	2	2	2
	1250 ppm	6	7	8	8	8	8	7	7	7	7	9	9	8	8
	2500 ppm	6	6	5	5	5	4	4	4	4	4	4	4	4	4
	5000 ppm	2	2	2	3	2	2	2	2	3	2	3	3	4	4
	and hhiii	۷.	۷.	۷	J	4	۲	۷	۲.	J	L	J	J	4	4
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEX : MALE															PAGE I
Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILLD FERT GENTIALIA	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	. 0	0	ő
	2500 ppm	0	0	0	0	0	0	0	0	0	Ö	Ö	0	Õ	ő
	5000 ppm	Ö	Ő	Ö	0	ő	Ő	Ö	Ő	Ö	Ö	Ö	Ö	ő	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
CLOSED EYELID	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	U	U	U	U	U
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1 0	1	ı
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	U	0	0
MALOCCLUSION	Control	0	0	0	0	2	2	2	2	2	2	2	2	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	1	1	1	1	1	1	1	2	2	2	3
	1250 ppm	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	2500 ppm	1	1	1	2	3	2	2	1	1	1	1	1	1	1
	5000 ppm	2	2	2	2	2	2	2	3	3	3	3	4	4	3
INTERNAL MASS	Control	1	1	0	0	0	0	0	0	2	2	2	1	3	3
	1250 ppm	7	7	7	9	9	9	8	6	8	8	8	8	8	7
	2500 ppm	5	4	4	4	4	3	3	2	5	4	5	5	6	6
	5000 ppm	4	4	4	4	4	4	5	5	5	5	5	5	6	6
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day				
	GIOUP Humo	99-7	100-7	101-7	102-7	103-7	104-7	
001150 0501 050151111		•		•		•		
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	1	1	0	0	
	5000 ppm	0	0	0	0	0	0	
EXOPHTHALMOS	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	1	1	1	1	1	1	
	5000 ppm	0	Ô	Ô	Ô	Ô	0	
GUM	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	Ō	Õ	Ö	Ö	Õ	Ō	
	5000 ppm	Ô	Ô	Ö	Ö	Ö	Ö	
CLOSED EYELID	Control	0	0	0	0	0	0	
OLUGED LILLID	1250 ppm	0	0	0	0	0	0	
		-		0				
	2500 ppm	0	0		0	0	0	
	5000 ppm	0	0	0	0	0	0	
CORNEAL OPACITY	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	1	1	1	1	1	1	
	5000 ppm	0	0	0	0	0	0	
MALOCCLUSION	Control	2	2	2	2	2	2	
	1250 ppm	0	Õ	Õ	Õ	0	Õ	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	
	ոսս իրա	U	U	U	U	U	U	
EXTERNAL MASS	Control	3	3	3	2	2	2	
	1250 ppm	2	2	2	1	1	1	
	2500 ppm	2	2	3	2	2	2	
	5000 ppm	3	2	1	1	1	1	
INTERNAL MASS	Control	6	6	6	5	4	4	
	1250 ppm	8	8	8	7	7	11	
	2500 ppm	6	5	5	4	3	6	
	5000 ppm	5	6	6	9	7	7	
		,	U	U	J	,	ı	
M. NOSE	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE PAGE: 17

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	57	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIL	1250 ppm	0	0	0	0	0	0	0	0	0	Ö	0	Õ	ő	0
	2500 ppm	ñ	Ö	0	0	Ö	Õ	Ö	Ô	ő	Õ	Õ	Ô	Õ	Ö
	5000 ppm	Ö	Ö	Õ	Ö	Ö	0	0	0	Ô	Ö	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IEM I A	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 N
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
A. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ô	0	Ô	0	Ô	0	0	Ô	Ô	0	Õ	ŏ	Õ	Ö
	2500 ppm	ő	Õ	Õ	Ö	Õ	ŏ	Ö	Õ	Õ	Õ	Ö	Õ	Ō	0
	5000 ppm	0	0	0	0	ō	Ō	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	U	U	Ü	U
1. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	U	U	U	0
I. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0 0	0	0	0 0	0	0 0	0 0						
	5000 ppm	0	U	0	0	U	U	U	U	U	U	U	U	U	U
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	U	U	0	U
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

TEN . INNEE															11102
Clinical sign	Group Name	Admini	stration W	eek-day			······································								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
											•	•		•	۰
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ŏ	Ö	Õ	ŏ	Ö	Ö	Ō	Ö	Ö	Ö	Ō	0	0	0
	5000 ppm	Ö	ő	Õ	Ö	Ö	Ö	ő	0	Ö	Ö	Ö	Õ	0	Ō
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	ñ	ñ	Ö	Õ	0	Õ	Õ	Õ	Ô	Õ	Õ	Õ	ŏ	Õ
	2500 ppm	0	0	0	0	0	Ö	0	0	0	0	0	0	0	ő
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADDOMEN	1250 ppm	0	0	0	0	0	0	0	0	0	0	Ô	0	Ô	0
		•	•						-	-	_	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	-	•	0	
	9000 mqq	0	0	0	0	0	0	0	0	0	0	0	0	U	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Ō	0	0	Ō	0	Ō	Ō	0	0	0	0	0	0
	2500 ppm	ŏ	ŏ	0	ő	Ö	Ö	Ö	Õ	Ô	Ô	Ő	Õ	Ö	ŏ
	5000 ppm	0	Ô	0	0	0	0	Ô	0	0	0	0	Ö	0	Ö
050				•				•	•	•	•		•	•	•
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

linical sign															
Timical Sign	Group Name		stration W	eek-day	40.7		40.7	40.7		F. 7	F0. 7		F4 7	CC 7	FC 7
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7 	55-7	56-7
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
									0		_	0	-		0
	2500 ppm	0	0	0	0	0	0	0	-	0	0	-	0	0	0 N
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	0	0	Ō	0
	2500 ppm	n	0	Õ	0	Õ	Ö	Õ	ő	0	0	Ô	ŏ	Ö	ñ
	5000 ppm	Ô	0	0	0	0	0	Ô	n	0	0	0	0	Ô	0
		U	Ū	J	v	U	v		U	U	v	U	v	U	J
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ö	Ö	Õ	Ö	Õ	Ŏ	Ö	Ō	Ö	Ö	Ö	Õ	Ō	Õ
	2500 ppm	Õ	0	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Õ	Õ	Ŏ	Õ	Ö
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	mdd ooot	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Ö	Õ	Õ	Ŏ	Ŏ	Õ	Ö	Õ	Õ	Ö	Ŏ	Ö	Ö
	2500 ppm	0	0	0	Õ	0	Ö	0	Ö	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IEMI A	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILM I A		U N		_					-				-	0	-
	1250 ppm	ŭ	0	0	0	0	0	0	0	0	0	0	0	•	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	. 0	Ö	Õ	Ö	Ö	Õ	Ö	Ö	Õ	Õ	Õ	Õ	Ö
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

OCA . INALL															11100
Clinical sign	Group Name	Admini	stration W	eek-day							***************************************				
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67–7	68-7	69-7	70-7
I. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Ö	Ö	1	1	1	i	1	1	1	1	1	1	1
	2500 ppm	Ô	Õ	Ô	ò	, O	Ö	Ö	Ö	Ó	ò	ò	ò	Ö	Ô
	5000 ppm	0	0	Ö	0	Ő	Ö	ő	Õ	Ö	Ö	Ö	ŏ	ő	0
. NECK	Control	0	O	0	0	0	0	0	0	0	0	0	n	0	n
· HEOR	1250 ppm	0	0	0	0	0	0	0	0	0	n	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4DDQUEN	0	•	•		•		•	•	•	•	•	•			
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0 *	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	Õ	Ō	Ö	Ō	Ō	Õ	Ö	Ō	Ō	Ō	Ō	Ō	0
	2500 ppm	Õ	Ö	Õ	Ö	Ö	Õ	Ö	Ö	Ö	0	0	0	Ō	0
	5000 ppm	Ō	Ö	0	Ö	Ö	Ö	Ö	Ö	0	Ō	0	0	Ō	Ō
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0				0			0	0	0 N	0
	5000 ppm	U	U	U	U	0	0	0	U	0	0	U	U	U	U
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

SEX : MALE															PAGE : 2
Clinical sign	Group Name	Admini	stration W	eek-day	***************************************										
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
w. eye	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	1250 ppm	í	1	ĭ	ĭ	ĭ	1	1	1	ĭ	1	1	1	1	Ī
	2500 ppm	i	i	i	i	i	1	i	2	2	2	2	2	2	1
	5000 ppm	Ô	Ò	0	Ô	0	0	0	0	0	0	0	0	0	0
A. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1.	1	1	1	1	1	1	1	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	U
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	2	2	1
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	1	1	1	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ULCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-day	·····	***************************************									
	~~~	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CIC	1250 ppm	1	1	0 1	1	1	1	0 1	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	i	1	1	1	1	1	1	1
	5000 ppm	Ö	Ó	Ö	Ö	Ö	ò	Ö	Ö	Ö	Ö	Ö	Ö	ò	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	1	1 0	1	1
	1250 ppm	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
	2500 ppm 5000 ppm	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
	ազգ Ծորջ	U	U	U	U	U	υ	U	U	U	U	U	U	U	U
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	1	1	1	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0 1	0 1	1	1	0 1	0 1	0 1	0 1	0 1	0 1	0	0 1	0
	5000 ppm	1	1	ı	i	1	ı	1	ŧ	1	'	ı	'	1	'
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	U
GENITALIA	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	1	1	1	1	2	2	1
VEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0
	5000 ppm	0	0	0	0	0	0	0	0	0	U	0	U	U	U
.CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-dav				
		99-7	100-7	101-7	102-7	103-7	104-7	-,-,
								***************************************
M. EYE	Control	0	0	0	0	0	0	
M. LIL	1250 ppm	1		1	1	1	1	
		!	1					
	2500 ppm	1	1	2	2	2	2	
	5000 ppm	0	0	0	0	0	0	
M. PERI-MOUTH	Control	0	0	0	0	0	0	
	1250 ppm	1	1	1	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	
M. EAR	Control	1	1	1	1	1	1	
m. LAN	1250 ppm	0	0	0	0	Ó	0	
	2500 ppm	0	0	0 0	0	0	0	
	5000 ppm	0	0	U	0	0	0	
M. NECK	Control	1	1	1	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	1	1	1	0	0	0	
	5000 ppm	1	1	0	0	0	0	
M ADDONEN	Cambual	۸	0	0	0	•	٥	
M. ABDOMEN	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	mag 0002	1	1	1	1	1	1	
A. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	
	1250 ppm	Ō	Õ	Ö	Ö	Ö	Õ	
	2500 ppm	0	Ö	Ô	Ö	Õ	Õ	
	5000 ppm	0	0	0	0	0	0	
	ազգ սսս	U	U	U	U	U	U	
A. GENITALIA	Control	1	1	1	1	1	1	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	1	0	0	0	0	0	
AMPAGIA	Cantual	0	0	0	0	0	٥	
ANEMIA	Control	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	
ULCER	Control	0	0	0	0	0	0	
<del></del>	1250 ppm	ŏ	Ö	0	Ö	Õ	ŏ	
	2500 ppm	0	0	0	0	0	0	
	2000 ppm 5000 ppm	0	0	0	0	0	0	
	ակկ օսօգ	U	U	U	U	U	U	

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini:	stration W	eek-day											
		1 7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
OSION	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0							
JSTA	Control 1250 ppm 2500 ppm 5000 ppm	1 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
MORRHAGE	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
RTICOLLIS	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0							
OLAPSE OF PENIS	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0 0													
REGULAR BREATHING	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0 0													
D URINE	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0								
OWN URINE	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0								
ALL STOOL	Control 1250 ppm 2500 ppm 5000 ppm	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200100	1250 ppm	ŏ	Ő	Ö	Õ	Ö	Ö	Õ	Õ	ŏ	Ŏ	Õ	Õ	Õ	Ö
	2500 ppm	ŏ	Ő	Õ	Ö	Ö	Ö	0	ŏ	Ö	Ö	Ö	Ö	Ō	Ō
	5000 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<b>IEMORRHAGE</b>	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	leek-day					······································						
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	Ō	Ö	Ö	Ō	Ö	Ō	Õ	Ō	Õ	Ö	Ö	Ō	Ō	Ō
	2500 ppm	0	Ō	Ō	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

								***************************************							
inical sign	Group Name		tration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
OSTON	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70 1011	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	Ô
	2500 ppm	0	0	0	Ô	0	Ö	0	0	Ö	Ö	Ô	Ö	Ö	Õ
	5000 ppm	Ō	Ö	Õ	Ö	0	ő	Ö	Õ	Ö	Ō	Ö	Ô	0	Ō
ISTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	Ô	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	0	Ō	Ō	0	0	1	1	1	1	1	Ō	Ō	0
	5000 ppm	Ď	0	Ō	Ō	0	Ō	Ô	ò	Ò	Ó	Ó	Ō	Ō	Ō

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
OSTON	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100101	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	ő	Õ	Õ	Õ	0	0	Õ	0	0	0	Õ	Ŏ	Ö	0
	5000 ppm	Õ	0	Ö	0	Õ	Õ	0	Ö	Ö	0	Õ	0	Ō	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	1	0	0	1	1
	5000 ppm	0	0	0	0	0	0	0	n	0	0	1	n	Λ	0

REPORT TYPE : A1 104

## CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

OLA . MALL															11100
Clinical sign	Group Name	Admini	istration W	leek-day											
_		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	1	1	1	1	1	1	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0
	3000 ppili	U	U	U	U	U	U	U	U	U	U	U	U	-	U
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm 2500 ppm	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0
	2500 ppm 5000 ppm	0	0	0 0	0	0	0	0	0	0	0	n	0	0	0
		v	Ů	-	-	-		Ť	-	•	•	U	Ü	Ū	
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0	1 0	1 0	1 0	1 0	1 0	0	0,	1 0	ı	1	1 0	1 0
	ազգ որու	U	U	U	U	U	U	U	U	U	U	U	U	U	U
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0 n	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0 0	0 0
	mqq vouc	U	U	0	Ü	U	U	U	U	U	U	U	U	U	U
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	1	1	1	0	0	0	0	1	1	1	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	2500 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

JEA . MALL															11102
Clinical sign	Group Name		stration W												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	1	2	1	0	0	1	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	1	1	1	1	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
RTICOLLIS	Control	1	1	1	2	2	2	3	3	3	3	3	2	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	0	1 0	1 0	1 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	U	υ	U	U	U
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0 n	0 0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	U	U	U
RREGULAR BREATHING	Control	2	2	2	2	2	2	2	2	3	3	3	3	2	2
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	2	1	0	0	0	0	0	0	0	0	0
	5000 ppm	U	0	1	1	0	0	0	0	0	0	U	0	0	U
D URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	1	0	0	2	2	2	1	1	1	2	2	2	1	1
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	1	1	0	0	0	0	0	0	0	0	1
	5000 ppm	1	1	1	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Administration   Week-day   99-7   100-7   101-7   102-7   103-7   104-7   104-7   101-7   102-7   103-7   104-7   104-7   102-7   103-7   104-7   104-7   102-7   103-7   104-7   104-7   102-7   103-7   104-7   104-7   102-7   103-7   104-7   102-7   103-7   104-7   102-7   103-7   104-7   102-7   103-7   104-7   102-7   103-7   104-7   102-7   103-7   104-7   102-7   102-7   103-7   104-7   102-7   102-7   103-7   104-7   102-7   102-7   102-7   103-7   104-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   102-7   1	Clinical sign	Group Name	Admin	istration	Week-day				
EROSION   Control   0	<del></del>	a, 445 Ham	99-7	100-7	101-7	102-7	103-7	104-7	
1500 ppm									
1250 ppm									
1250 ppm	EDOCION	Control	0	n	0	0	n	0	
2500 ppm	ERUSTUM								
RUSTA  CONTROL  1250 ppm 0 0 0 1 1 1 1 0 0 0  1250 ppm 0 0 0 0 1 1 1 1 1 2  2500 ppm 0 0 0 0 0 0 0 0 0  5000 ppm 0 0 0 0 0 0 0 0 0  EMORRHAGE  CONTROL  1250 ppm 0 0 0 0 0 0 0 0 0  1250 ppm 0 0 0 0 0 0 0 0 0  2500 ppm 0 0 0 0 0 0 0 0 0  2500 ppm 0 0 0 0 0 0 0 0 0  5000 ppm 0 0 0 0 0 0 0 0 0  FORTICOLLIS  CONTROL  CONT				-					
RRISTA  Control 1250 ppm 0 0 1 1 1 1 2 2500 ppm 0 0 0 0 0 0 0 0 5000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 1 1 1 1 1 1 6000 ppm 0 0 0 0 1 1 1 1 1 6000 ppm 0 0 0 0 1 1 1 1 1 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000 ppm 0 0 0 0 0 0 0 0 0 0 0 6000									
1250 ppm		5000 ppm	0	0	1	1	0	0	
1250 ppm	ODUCTA	01	•	•	0		•	0	
EMORRHAGE	CKUSTA			_					
EMORRHAGE			_			•	•		
NEMORRHAGE   Control		2500 ppm	0	0	0	0	0	0	
1250 ppm		5000 ppm	0	0	0	0	0	0	
1250 ppm	UCMODDIJACE	01	•	^	•	^	^	c	
2500 ppm	HEMUKKHAGE								
CORTICOLLIS									
TORTICOLLIS  Control 2									
1250 ppm		5000 ppm	0	0	0	0	0	0	
1250 ppm	TODILOUILE	Control	0	^	•	0	0	0	
2500 ppm	TUKTICULLIS						Z		
FROLAPSE OF PENIS   Control   0			0						
PROLAPSE OF PENIS  Control 1250 ppm 0 0 0 1 3 3 3 2 2500 ppm 0 0 0 0 0 0 0 5000 ppm 0 0 0 0 1 1 3 3 3 2 2500 ppm 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1	1	1			
1250 ppm		5000 ppm	0	0	0	0	0	0	
1250 ppm	DDOLADOR OF DENIE	Combinat	n		0	٥	0	0	
2500 ppm	PRULAPSE UF PENIS				-				
RREGULAR BREATHING  Control 1					-				
RREGULAR BREATHING  Control 1			0	0	0	0	0	0	
1250 ppm			0	0	0	1		1	
1250 ppm	IDDECHIAD DDEATHING	0	4		4	•	^	c	
2500 ppm	IKKEGULAK BREATHING		1	1	•				
SED URINE   Control   0								•	
RED URINE   Control   0			0	0	0	0	0	0	
1250 ppm			0	0	0				
1250 ppm	DED UDINE	Combinal	0	0	0	0	0	0	
2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KED OKINE				-			_	
STOWN URINE   Control   0			0						
STOWN URINE   Control   0		2500 ppm	0	0	0	0	0	0	
1250 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
1250 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROWN UNITE							•	
2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RROWN ORINE								
2500 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1250 ppm	0	0	0	0	0	0	
5000 ppm 0 0 0 0 0 0 0  MALL STOOL Control 0 0 0 0 0 0 1 1250 ppm 0 1 1 0 0 1 2500 ppm 2 1 0 0 0		2500 ppm	0	0	0	0		0	
MALL STOOL Control 0 0 0 0 0 0 1 1250 ppm 0 1 1 0 0 1 2500 ppm 2 1 0 0 0		5000 ppm					Õ		
1250 ppm 0 1 1 0 0 1 2500 ppm 2 1 0 0 0									
2500 ppm 2 1 0 0 0 0	SMALL STOOL	Control							
					•			•	
			2	1	0	0			
		5000 ppm		0	0	0		0	

REPORT TYPE : A1 104

# CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 33

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2100 01002	1250 ppm	ő	Ö	Ô	Ő	0	Ŏ	ŏ	Ö	Ö	Ŏ	Õ	Ö	Õ	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ON REMARKABLE	Control	49	49	49	49	49	49	49	49	48	48	48	48	48	47
	1250 ppm	49	50	50	49	49	49	49	49	49	49	49	49	49	49
	2500 ppm	50	50	50	49	50	50	50	50	50	50	50	50	49	49
	5000 ppm	50	50	50	50	49	49	48	49	49	49	49	49	50	50

BAIS 5 (HAN190)

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 34

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DL1GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2140 01002	1250 ppm	Õ	Õ	Õ	Ö	Õ	Ō	Ö	Ō	Ö	0	Ō	Ô	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	47	47	47	48	48	48	48	48	48	48	47	46	46	45
	1250 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	2500 ppm	48	48	48	48	47	47	47	47	47	47	47	47	47	47
	5000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49

(HAN190)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 35

Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
OLIGO-STOOL	Control	0	Ω	0	0	0	0	0	n	0	0	0	0	0	0
22,40 07002	1250 ppm	Õ	Õ	Ö	Ö	Õ	Õ	Õ	Ö	Õ	Õ	Õ	Õ	Õ	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
ON REMARKABLE	Control	45	45	46	46	46	46	46	46	46	46	46	46	45	46
	1250 ppm	49	49	49	49	49	49	49	49	48	48	48	48	48	48
	2500 ppm	47	46	46	46	46	46	46	45	45	45	45	45	46	46
	5000 ppm	49	49	49	49	49	49	49	49	49	48	47	47	47	47

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 36

Clinical sign	Group Name	Admini	stration W	eek-day											,
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
ILIGO-STOOL	Control	2	1	1	0	0	n	0	0	n	Λ	0	n	n	n
LIGO STOOL	1250 ppm	0	'n	Ó	0	0	0	0	0	0	0	0	0	Õ	Ö
	2500 ppm	1	1	1	1	Õ	1	1	1	Ō	1	1	Ō	0	0
	5000 ppm	2	2	1	1	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	44	45	45	45	45	45	45	45	45	45	45	44	43	43
	1250 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	48
	2500 ppm	46	46	45	44	44	43	43	43	42	42	43	43	43	43
	5000 ppm	44	44	46	46	46	45	46	46	46	46	46	46	46	46

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 37

Clinical sign	Group Name	Admini	stration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
DL1GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	2
	1250 ppm	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ō	Ō	0	0	2
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	43	43	43	43	43	43	43	43	43	43	43	43	42	41
	1250 ppm	47	47	47	46	46	45	43	43	42	40	39	39	38	34
	2500 ppm	43	42	42	42	42	42	42	42	42	41	41	39	38	38
	5000 ppm	46	46	46	46	46	46	46	46	46	45	45	45	46	45

BAIS 5 (HAN190)

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 38

Clinical sign	Group Name	Admini	stration W	leek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
OLIGO-STOOL	Control	1	n	0	n	0	0	0	n	1	1	2	2	2	1
5E1 40 0700E	1250 ppm	ò	Õ	Ô	Ö	ő	Õ	Õ	Õ	Ö	i	1	1	Õ	Ö
	2500 ppm	1	2	0	0	0	0	0	0	0	1	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	1
ION REMARKABLE	Control	42	43	43	42	42	42	41	39	39	39	38	37	37	36
	1250 ppm	36	35	34	33	33	33	34	34	34	34	33	33	33	32
	2500 ppm	37	37	37	37	37	37	37	36	36	35	36	36	36	37
	5000 ppm	45	45	45	44	45	45	45	45	43	45	44	41	40	40

(HAN190)

BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 39

Clinical sign	Group Name	Admini	stration W	leek-day											***********
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
OLIGO-STOOL	Control	2	2	1	3	3	3	2	2	1	2	4	3	3	3
02.00 07002	1250 ppm	0	Ō	Ö	Ŏ	Ö	Ō	ō	Ō	Ö	Ō	Ó	Ö	Ō	Ō
	2500 ppm	0	0	0	1	1	0	0	0	0	0	1	1	0	0
	5000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	1
NON REMARKABLE	Control	35	35	35	33	31	31	30	30	28	27	25	25	25	24
	1250 ppm	33	33	33	31	31	31	32	33	31	31	30	29	30	29
	2500 ppm	36	36	36	35	32	33	34	33	30	30	28	29	28	28
	5000 ppm	40	40	40	40	41	40	39	37	37	37	37	36	35	36

(HAN190)

BAIS 5

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 40

Clinical sign	Group Name	Admin	istration	Week-day				
		99-7	100-7	101-7	102-7	103-7	104-7	
OLIGO-STOOL	Control	1	0	0	1	0	0	
	1250 ppm	0	2	2	1	1	0	
	2500 ppm	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	
NON REMARKABLE	Control	22	22	22	23	23	23	
	1250 ppm	25	24	24	25	25	18	
	2500 ppm	27	27	26	27	27	25	
	5000 ppm	36	35	35	33	33	33	
(HAN190)								

## TABLE B 2

CLINICAL OBSERVATION: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L/////	2500 ppm	Ô	Ŏ	Õ	Õ	Ô	Õ	Ö	Ö	Ŏ	0	Ö	ő	Ö	Õ
	5000 ppm	Ô	Ö	Ö	Ö	Ö	Ŏ	0	0	Ŏ	Õ	Õ	Ö	Ō	Ō
	10000 ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Û
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE															PAGE : 42
Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DEATH	Control	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	Ō	Ō	Ō	Ō	Ō	0	0	0	Ō	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					····					
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	Ō	Ō	Ō	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0
	10000 ppm	U	0	0	0	0	0	0	0	0	U	U	U	U	U
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

TEX . I CHINEC															man.
Clinical sign	Group Name	Admin	stration W	leek-dav											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATH	Control	1	1	1	1	1	1	1	1	1	2	2	2	2	2
	2500 ppm	Ö	ò	Ö	Ö	Ö	i	i	i	i	ī	1	ī	ī	1
	5000 ppm	Ō	Ö	Ō	0	1	i	1	i	i	i	i	i	1	1
	10000 ppm	0	0	0	Ō	Ô	1	i	i	i	i	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0 0	0	0	0 0	0	0 0	0 0	0
	2500 ppm	U O	0	0	0	0	0	-	0	0			0		U O
	5000 ppm 10000 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	U N	0 0	0
	HOUUU PPM	U	υ	U	U	U	U	U	U	U	U	· ·	U	•	บ
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

SEX - FEMALE															FAUL .
Clinical sign	Group Name	Admini	stration W	eek-day						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
LAIII	2500 ppm	1	2	2	2	2	2	2	3	3	3	3	4	4	4
	2500 ppm 5000 ppm	1	2	2	2	2	2	2	2	2	2	2	2	2	2
	10000 ppm	2	2	2	2	2	2	2	2	2	2	2	4	4	4
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	•	0	•
	5000 ppm	0	0 0	0	0	0	0	0 0	0	0 0	0 0	0	0	0 0	0 0
	10000 ppm	U	U	0	0	0	0	U	0	υ	U	U	U	U	U
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	2	2
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

JEX : TEMALE															Thos.
Clinical sign	Group Name	Adminis	stration W	leek-day									***************************************		
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
FATU	Cantual	4	r	r	r	C	C	r	c	c	c	c	c	c	6
EATH	Control 2500 ppm	4	5 4	5 4	5 4	6 5	6 5	6 5	6 5	6 6	6 6	6 6	6 6	6 6	0 7
	2000 ppm 5000 ppm	2	2	2	2	2	2	2	2	2	2	4	6	6	8
	10000 ppm	4	4	4	4	5	5	5	7	7	7	7	8	9	9
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	2	2	2	2	2	2	2
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	1	0	0	0 .	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	.0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	1	1	1	2	2	3	1	0	0	0
	10000 ppm	3	3	4	4	4	4	5	3	3	4	4	3	3	3
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	1	1	2	1	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ALL : MOUSE BODZFI/CFI][CF]:BDFI] ALL

SEX : FEMALE

SEX : FEMALE															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day			,,								
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEATH	Control	8	8	9	9	10	10	10	11	12	13	13	15	16	18
DEXTIL	2500 ppm	7	8	8	8	8	8	8	9	9	9	9	9	9	11
	5000 ppm	8	8	8	9	9	9	11	13	14	14	14	16	18	20
	10000 ppm	10	11	11	11	11	12	13	14	14	14	15	17	18	18
MORIBUND SACRIFICE	Control	1	1	1	1	1	2	2	2	2	2	3	3	3	3
	2500 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	10000 ppm	2	2	2	2	2	3	4	4	4	4	4	4	4	4
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WASTING	Control	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	1	2	1	1	1	1	1	1	1	1
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	2	2
PILOERECTION	Control	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	2	1	1	1	1	2	0	0	0
	10000 ppm	2	3	5	7	9	8	7	6	6	4	3	2	1	1
LOSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	1	1	1	1	1	1	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	2	1	1	1	0
	2500 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	1	1	1	2	0	0
	10000 ppm	1	1	1	2	2	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day			
-		99-7	100-7	101-7	102-7	103-7	104-7
		***************************************	~************		***************************************	***************************************	
DEATH	Control	18	19	20	25	26	27
DE/(III	2500 ppm	11	14	16	16	17	19
	5000 ppm	20	20	22	22	26	27
	10000 ppm	19	20	20	20	20	22
	1000 ppiii	10	20	LU			
MORIBUND SACRIFICE	Control	3	3	3	3	3	3
	2500 ppm	1	1	1	1	1	2
	5000 ppm	1	1	1	1	1	1
	10000 ppm	5	5	5	5	6	7
HUNCHBACK POSITION	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
DADAL VILC CATT	Cont1	n	۸	0	Λ	n	^
PARALYTIC GAIT	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0
morna	2500 ppm	Ô	Ô	Ö	ŏ	Õ	0
	5000 ppm	0	0	0	ő	0	0
	10000 ppm	1	1	1	0	0	0
	10000 ppiii	1	'	'	U	U	U
SOILED	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	Ō	. 1	0	0
	10000 ppm	1	Ö	ŏ	i	Õ	Ö
PILOERECTION	Control	0	2	3	0	0	0
	2500 ppm	1	1	1	1	0	0
	5000 ppm	0	0	0	1	0	0
	10000 ppm	2	2	4	4	5	3
1000 05 11110							
LOSS OF HAIR	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
FROG BELLY	Control	0	1	1	n	n	Λ
I NOG DELLI	2500 ppm	0	0	0	0	0	0
		0	-		0	0	0
	5000 ppm	_	0	0	0	0	0
	10000 ppm	0	0	0	0	1	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

7-71 · 1 Limital															1710
Clinical sign	Group Name	Admini	stration W	eek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	. 8-7	9-7	10-7	11-7	12-7	13-7	14-7
														_	
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	õ	Õ	Ō	Ö	Ö	Ö	0	Ō	Ö	Ô	Ō	Ō	Ō	Ō
	5000 ppm	Õ	Õ	Ö	Ö	Õ	Ö	Ö	Ō	Ö	Ō	Ö	Õ	Õ	Ō
	10000 ppm	Ö	Ö	Ö	Ō	Ō	Ö	0	0	0	0	Ō	0	0	0
ITERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	2	0
TI ENWIE IN 100	2500 ppm	ő	Ő	Ô	Ö	0	Ö	n	Ö	Ö	Õ	Ô	ő	Õ	ñ
	5000 ppm	0	0	0	Ö	0	0	0	Ö	0	0	0	Õ	Ö	Ô
	10000 ppm	n	n	0	0	0	0	0	0	0	n	Û	Õ	0	Ô
	10000 ppili	U	U	U	U	U	U	U	U	U	U	U	U	U	U
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ö	Õ	Ö	Ö	Õ	Õ	Ö	Õ	Õ	Õ	Õ	ŏ	Õ	Ō
	5000 ppm	0	0	0	0	0	0	Ö	0	0	Ö	0	Õ	Õ	0
	10000 ppm	ő	0	Õ	0	Ö	0	Õ	0	Õ	Õ	Ô	Õ	ő	0
		•	-	_	_	_	_	_	_	_	-	-	-	-	-
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

OLA . I CHIACL															THUE .
Clinical sign	Group Name	Admini	stration W	eek-day											
among appropriate and the state of the state	.,	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	Ō	0	Ō	Ō	Ō	Ō	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm 10000 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
	indd opoot	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ALOCCLUSION	Control 2500 ppm	0	0 0	0	0 0										
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
ATERNAL MASS	2500 ppm	n n	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	n	Ö	0	0	0	0	0	Ö	0	0	0	0	Ö	Ô
	10000 ppm	Ö	Ŏ	Ö	Ö	ő	Ö	Ö	Ö	Ö	Ō	Ö	Ō	Ō	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
i. eye	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0 0	0 0	0	0	0	0 n	0	0 0	Ú N
	10000 ppm	U	U	0	0	0	U	υ	U	0	U	U	Ü	U	U
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm 10000 ppm	0	0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0 0	0
		U	· ·	U	U	U	-	· ·	U	U	•	· ·	Ū	-	U
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0 0
	5000 ppm 10000 ppm	0	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0	U N
		U	U	U	U	U	U	U	U	U	U	U	U	U	U
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm 10000 ppm	0	0 0	0	0 0	0	0 0	0 0							
	10000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

															,,,,,,
linical sign	Group Name	Admini	istration V	Veek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
								_			_				•
(OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Ö	Ö	Õ	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ō	0
	5000 ppm	Õ	Ö	Ö	Ö	Ŏ	Ŏ	Ö	Ö	Ö	Ô	Ö	Ö	Ō	0
	10000 ppm	0	Ö	Ö	Õ	0	0	Ö	Ō	Ō	Ō	Ö	Ō	0	Ō
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERRITE WILLOW	2500 ppm	ő	Ö	Õ	Õ	ŏ	Ŏ	Ô	Õ	Ö	Õ	Õ	Ö	Ö	Ô
	5000 ppm	ő	Ö	Õ	Ö	Õ	Õ	Õ	Ö	Õ	Ö	Ö	Ô	Ö	Ö
	10000 ppm	0	0	Ö	Ö	Ö	Ő	Ö	Ö	0	ő	Ö	Õ	Õ	Õ
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	2	2
HERNAL MASS	2500 ppm	n	0	0	0	0	0	1	1	1	1	1	1	1	1
		Ū						ı			•	•	1	•	!
	5000 ppm	0	0	0	0	0	0	0	0	1 4	1	3 7	3 7	2	1
	10000 ppm	0	0	0	0	0	0	U	0	4	3	1	1	5	'
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	Ō	0	0	0	Ō	Ō	Ō	0	0	0	0	0
	10000 ppm	0	Ō	0	0	0	Ō	Ō	0	Ō	0	0	0	0	0
BREAST	Control	٥	0	0	0	0	0	0	0	0	0	0	0	0	0
DICEAG I	2500 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	ñ
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0 N	0	0	n
	լ սսսս քիա	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

JEX : I LHIALL															TAGE .
Clinical sign	Group Name	Adminis	tration W	eek-day				***************************************	***************************************		.,.,.				
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
														_	
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	0	Ô	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ô	Ō	Ō	0	Ō	Ō	0	Ö	0	Ô	0	0	0	0
	10000 ppm	0	Ō	0	Õ	0	0	0	0	0	0	0	0	0	0
ITERNAL MASS	Control	2	2	2	1	1	1	1	1	1	0	0	0	1	0
	2500 ppm	1	1	ī	i	2	i	í	1	i	ì	1	1	1	1
	5000 ppm	ò	ò	Ö	Ö	Õ	Ö	0	ò	Ö	ò	Ö	ò	Ö	i
	10000 ppm	1	2	2	2	3	3	3	Ö	Ô	0	0	ő	Ô	i
		'	_	L	_	J	3	3	Ü	v	J	U	v	Ü	•
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- ·	2500 ppm	Ö	Õ	Õ	Ŏ	ŏ	Ö	Õ	ŏ	ŏ	Õ	Ö	ŏ	Õ	Õ
	5000 ppm	ŏ	Ŏ	Ö	Ŏ	ŏ	Ö	Õ	ŏ	ŏ	0	Õ	Õ	ŏ	ŏ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0
		U	Ü	v	U	U	Ü	U	u	v	U	U	v	Ü	v
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

ILA . ILMALL															TAUL .
Clinical sign	Group Name	Admini	stration We	ek-day		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	0	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	0	1
	5000 ppm	Ö	Õ	Ö	ŏ	Ö	Õ	Ö	Ö	Ŏ	ŏ	Õ	Õ	Ö	Ö
	10000 ppm	Ö	0	Ö	0	0	Õ	Ő	ő	Ö	ő	ő	Ö	Ö	ŏ
TERNAL MASS	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TENIAL MAGO	2500 ppm	'n	ò	Ö	Ö	Ö	Ö	ò	Ö	Ö	ò	'n	ò	Ö	ċ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	٥	0	0	0	0	0	0	0	٥			•	1	1
HEKNAL MASS	Control	U	0	0	0	0	0	-	0	0	!	!	1	ı	1
	2500 ppm	I.	0	0	0	0	1	2	1	1	1	1	0	0	0
	5000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	2	2	2	3	3	3	1	1	1
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ō	Ō	Ö	ō	Õ	Ö	Ō	Ō	Õ	Ō	Ō	Ō	0	0
	10000 ppm	0	Õ	Ö	Ô	Õ	Ö	Õ	Ö	0	0	0	0	Õ	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ô	0	0	Ö	Ô	0	0	0	0	0	0	0	0	ñ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Û	0
	ממק טטטטן	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
LAUT ITTIALMUS	2500 ppm	1	1	1	1	1	1	1	1	i	i	i	i	i	i
	5000 ppm	'n	ò	Ö	ò	Ö	Ö	Ö	O	ò	ò	ò	Ö	ò	Ò
	10000 ppm	Ö	ő	Ö	Ö	Õ	Ö	Ö	Õ	Ö	0	Õ	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALOCCLUSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	'
NTERNAL MASS	Control	1	1	1	1	1	1	1	2	3	5	5	7	7	6
	2500 ppm	0	0	0	1	1	1	1	3	3	3	3	2	2	1
	5000 ppm	0	0	2	3	4	4	4	7	7	8	6	5	5	3
	10000 ppm	2	3	5	6	5	6	8	5	5	5	5	5	4	4
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

SEA . FEMALE															i Auc.
Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EXOPHTHALMOS	Control	1	1	1	1	1	1	1	1	2	1	1	0	1	1
AUFITTIALINUS	2500 ppm	1	i	1	1	1	i	1	Ó	0	0	Ö	0	Ó	Ö
	5000 ppm	Ó	Ö	Ó	Ö	Ö	Ó	ò	0	0	0	Ö	0	0	ő
	10000 ppm	Ő	Ö	ő	Ô	Ö	Ö	ő	Õ	Ö	Õ	Ö	Ö	Ö	Ö
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IALOCCLUSION	Control 2500 ppm	0	0 0	0 0	0	0	0 0	0	0 0						
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
		· ·	Ü	-		U	-	-	-		•	Ü	v	•	
XTERNAL MASS	Control	0	0	0	2	1	2	2	2	2	3	3	2	2	2
	2500 ppm	0	0	0	1	1	1	1	1	1	1	1	1	2	2
	5000 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	5	5	4	6	6	6	6	7	6	7	7	5	5	6
	2500 ppm	1	0	0	0	0	0	0	0	0	5	5	4	6	6
	5000 ppm	3	4	4	5	5	4	3	3	3	6	6	6	4	3
	10000 ppm	4	4	6	7	7	5	3	4	3	4	5	3	3	3
I. EYE	Control	0	0	0	0	0	1	1	1	1	2	2	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	5000 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ABDOMEN	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day			***************************************
	a. sup itulio	99-7	100-7	101-7	102-7	103-7	104-7
***************************************	*						
EVODUTURANOS	0						
EXOPHTHALMOS	Control	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
CODUCTI COLOUTY		_					
CORNEAL OPACITY	Control	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
MAI OCCUBETOR	0	•	•	^	•	^	•
MALOCCLUSION	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
EXTERNAL MASS	Control	2	2	2	0	0	1
EVIEKNAT WASS	Control	3	2	2	0	0	1
	2500 ppm	2	2	1	1	1	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	1	1	1	1	1	1
INTERNAL MASS	Control	7	7	7	A	7	7
INIERNAL MASS	Control	-	7	7	4	7	7
	2500 ppm	9	7	6	6	9	8
	5000 ppm	3	3	1	4	2	2
	10000 ppm	3	2	2	2	2	4
M. EYE	Control	1	0	0	0	0	1
M- L ( L	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0
W HLUN	2500 ppm	1	-	0	0	0	0
		ı	1				
	5000 ppm	0	0	0	0	0	0
•	10000 ppm	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0
III- DALAGI	2500 ppm	0	0	0	0	0	0
		•					
	5000 ppm	0	0	0	0	0	0
	10000 ppm	ı	1	1	1	1	1
M. ABDOMEN	Control	1	1	1	0	0	0
, JOHIET	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
	10000 ppm	U	U	U	U	U	U

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTENTON DORSOM	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0
	5000 ppm	0	0	0	0	0	0	0	0	0	Ô	0	0	Ö	0
	10000 ppm	0	0	0	0	0	0	0	0	0	Ö	Ö	0	ŏ	Ő
			_		_	_	-							_	_
HINDLIMB	Control	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· Cini	2500 ppm	Ô	Ö	Ô	Ö	Ö	Ŏ	0	Õ	Õ	n	Ô	ñ	Õ	ő
	5000 ppm	ő	Õ	0	0	0	Ô	0	Ö	0	0	Ô	0	Õ	ő
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppiii	v	Ū	v	U	U	U	U	Ü	Ū	U	·	· ·	Ü	Ū
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	n	0	0	0	0
30.1002210	2500 ppm	Ô	Ö	0	0	0	Ö	Ö	Õ	Ö	Ô	0	Õ	Õ	Õ
	5000 ppm	ő	Õ	Ö	Ö	Õ	Õ	Õ	Õ	Õ	Ô	0	Ô	Ŏ	ŏ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	Ö	Ö
		•	•	•	-	-	-	-	•	-	-	-	-	-	-
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Ö	Õ	Ö	0	Ö	Ö	Ö	Ö	Ō	0	Ō	Ō	Ō
	5000 ppm	ŏ	Õ	0	Ô	Ô	Õ	0	Ö	Õ	Ô	Ô	Õ	Ö	ő
	10000 ppm	ő	Ö	Ö	Ö	0	Ö	Ö	Ŏ	ő	Ô	Õ	Õ	Ö	Õ
		-	-	-	-	=			-		-	-	-	-	
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration W	Veek-day									***************************************		***************************************
	aroup mano	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Ō	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	0	0	0	0
	5000 ppm	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Ö	Õ	Ö	Ŏ	ŏ	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö
	5000 ppm	Õ	Ö	Õ	Ö	Ö	Ö	Ö	Ō	Ō	Ö	Ō	Ö	Ō	Õ
	10000 ppm	0	0	0	0	0	Ō	0	Ō	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Ö	0	Ö	0	Õ	0	0	0	0	0	Ö	Õ	Õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ő	Ö
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IUU SIUUL	Control 2500 ppm	0	0	0	0	0	U O	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	լսսս իիա	U	U	U	U	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Group Name	Admini	stration W	leek-day											
or out many	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
		-			-				-	0	-	0	-	0
	•	_					-			_	-			0
	•	_					-				Ū	-		0
luuuu ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ō	0	Ö	-	Õ	Õ	Ö	Ō	0	Ō	Õ	Ō	Ō	0
	0	0	0		0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	Λ	0	0	0	0	0	0	0	n	n	0	0	0
	Ō				Ō	Õ	Ō		Ō	Ō	Ō	Ō		0
5000 ppm	Ō	Ō				Ō	Ō		Ō	Ō	0	0	0	0
10000 ppm	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
Control	n	Λ	0	n	n	n	0	n	٥	n	0	Λ	n	0
	Ô					ñ	-		Õ	Õ	Ô	_		0
	Õ			-	-	Õ			Õ	Ö	Ö	Ö		Õ
10000 ppm	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0
Control	0	0	Λ	n	n	n	n	n	n	n	Λ	n	n	0
	ñ	-		-		-	-	-	•	-	-	-	-	Ö
	Ö								Õ	Õ	Õ	Õ		Ö
10000 ppm	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0
Control	0	0	n	n	n	0	n	n	n	0	n	n	0	0
	-			-	-	-			-	-	-	-		0
	•	_				-	-	-	-	-	-	_		0
10000 ppm	Ô	Ö	Ö	Ö	Õ	Ô	Õ	ő	Ô	Ö	Ö	Ö	Ö	Ö
Control	Λ	n	0	n	0	n	0	Λ	0	n	0	0	0	0
	•	-		-					-		-	•		0
	•				_	-			-	-	-	_		0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm 10000 ppm 10000 ppm 2500 ppm 5000 ppm 10000 ppm	Control 0 2500 ppm 0 5000 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 5000 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 5000 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 5000 ppm 0 Control 0 2500 ppm 0	Control   O	Control   O	29-7   30-7   31-7   32-7	Control   O	Control   O	Control   O	Control   O   O   O   O   O   O   O   O   O	Control	Control   O	Control   O   O   O   O   O   O   O   O   O	Control	Control

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

OEA . TEMPLE															77102
Clinical sign	Group Name	Admin	istration W	leek-day						w				***************************************	
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	Ō	Ō	Ō	Ō	0	Ō	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	10000 ppm	U	0	0	0	0	0	0	0	0	U	U	U	U	Ü
M. GENITALIA	Control 2500 ppm	0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0
	2000 ppm 5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		U			-	-		-		_	-	·	v	ŭ	•
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	Ü	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DL1G0-ST00L	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	2500 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

SEA . FEMALE															FAUL .
Clinical sign	Group Name	Admini	stration W	eek-dav							A-10-11-11-11-11-11-11-11-11-11-11-11-11-				
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ANTERIOR DORSUM	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	Õ	Õ	Õ	Ō	Õ	Õ	Õ	Õ	ō	ñ	ñ	Ō	Ō	0
	5000 ppm	Ô	Ö	0	0	Ö	Ö	Ō	Ō	Ō	Ō	0	0	0	0
	10000 ppm	Õ	Ö	Ö	Ö	Ö	Ö	0	Ō	0	Ō	0	0	Ō	0
RUSTA	Control	Λ	0	0	0	0	0	0	0	0	1	1	1	1	1
NOO 171	2500 ppm	ñ	Ö	Ô	Ö	Ö	ő	Õ	ŏ	Ö	Ö	Ö	ò	Ö	'n
	5000 ppm	Ô	0	0	0	Ö	0	0	Õ	Ö	Ö	Õ	Õ	Ö	Ô
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	ñ
	10000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	maq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	0	Ō	0	0	Ō	Ō	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2500 ppm	Õ	Õ	0	0	0	0	0	0	0	0	0	Õ	0	ò
	5000 ppm	1	0	1	0	0	0	0	0	0	0	1	0	0	0
	10000 ppm	0	0	Ů	0	0	0	0	0	0	0	0	0	1	0
	10000 ppm	Ū	U	Ū	U	U	U	U	U	U	U	U	U	'	v

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Group Name Control 2500 ppm	Admini 71-7 1	stration W 72-7	eek-day 73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
Control 2500 ppm	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
2500 ppm	1													
2500 ppm	1													
		0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0		-	-		-	0
	0	0	0	0	0	0	0	0	0					0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0						-			•		-	-	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0					0		0	•	•		0
5000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10000 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
5000 ppm	0	0	0	0	0	0	0	0	2	2	1	0	0	0
10000 ppm	0	1	1	1	1	1	2	0	0	0	0	0	0	0
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2500 ppm	0	Ō	Ō		0	Ō	Ō	Ō	0	0	Ō	0	0	0
	Ŏ						_	-	i	1	Ō	Ō	Ō	0
10000 ppm	ī	1	Ö	Ö	Ö	ő	0	Ö	ò	Ö	0	Ō	0	Ö
Control	0	0	O	0	0	0	0	n	0	0	0	0	0	0
	ŏ						-			ñ			1	0
	n						-			•	_	-	'n	0
	1	1										-	-	0
	2500 ppm 5000 ppm 10000 ppm 10000 ppm 2500 ppm 5000 ppm 10000 ppm 10000 ppm 2500 ppm 5000 ppm 10000 ppm 2500 ppm 10000 ppm 10000 ppm	2500 ppm 0 5000 ppm 0 10000 ppm 0 10000 ppm 0  Control 0 2500 ppm 0 10000 ppm 0  Control 0 2500 ppm 0 10000 ppm 0 10000 ppm 0  Control 1 2500 ppm 0 10000 ppm 0 10000 ppm 0 Control 0 2500 ppm 0 10000 ppm 1 Control 0 2500 ppm 0 10000 ppm 1	2500 ppm	2500 ppm	2500 ppm	2500 ppm	2500 ppm	2500 ppm	2500 ppm	2500 ppm	SEGO ppm	2500 ppm	2500 ppm	2500 ppm

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

JEA : I EMINEE															17102
Clinical sign	Group Name	Admin	istration V	Veek-day		···							***************************************		
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	Ō	Ō	0	Ō	Ō	0	Ō	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0 0	0
	10000 ppm	0	0	0	0	0	0	0	0	U	U	U	U	U	U
GENITALIA	Control 2500 ppm	0	0 0	0	1	0 1	0	0	0 1	0	0	0 1	0	0 1	0
	5000 ppm	0	0	0	Ó	Ó	0	Ó	Ó	Ó	Ó	Ö	Ó	Ó	'n
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Õ	Ö
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	.0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm 5000 ppm	1	l n	1 0	1	1 0	0	0	1 0	1 0	1 0	0	0	1 0	1
	10000 ppm 10000 ppm	1	0	0	0 0	0	0	0	0	0	0	0	0 N	0	0
		Į.	U	-		•	•	U	U	-	U	U	U	U	U
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	2500 ppm	1	0	0	0	0	1	1	1	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	2	1	0	0	0	0	0	0 0	0
	10000 ppm	0	0	0	1	1	0	ı	0	0	0	0	U	U	U
ALL STOOL	Control	0	0	0	2	1	0	0	1	1	0	0	1	1	0
	2500 ppm	]	0	0	0	0	0	0	0	0	0	0	0	1	U
	5000 ppm	1 N	0	0 0	0	0	1 0	1	0	0	0 0	1	0 N	1 0	0
	10000 ppm	U	U	U	0	0	U	0	0	0	U	0	U	U	U
IGO-STOOL	Control	0	0	0	2	1	0	0	1	1	0	1	1	0	0
	2500 ppm	0	0	0	. 0	0	0	0	1	0	0	0	0	0	0
	5000 ppm	1	0	1	0	0	2	2	1	1	1	3	1	1	0
	10000 ppm	0	0	0	0	1	1	1	1	1	1	2	2	2	1

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name						
		99-7	100-7	Week-day _ 101-7	102-7	103-7	104-7
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	Ō	Ö	Ō	Ō	0
	10000 ppm	0	0	0	0	0	0
	rooo ppiii	U	U	U	U	U	U
M. HINDLIMB	Control	1	1	1	0	0	0
	2500 ppm	Ö	Ö	Ö	Ö	Ö	Ö
	5000 ppm	0	0	0	0	0	0
			0				
	10000 ppm	0	U	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0
m. den i ine in	2500 ppm	1	1	1	1	1	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
EDEMA	Control	,	0	0	0	0	0
EDEMA		1	-				
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
CDUCTA	Cantual	0		•	•		
CRUSTA	Control	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0
TORTLOGILLO	0 1 1	•				•	
TORTICOLLIS	Control	0	0	0	0	0	0
	2500 ppm	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
		_	_				
IRREGULAR BREATHING	Control	2	2	1	0	0	0
	2500 ppm	1	0	0	0	0	0
	5000 ppm	0	0	0	1	0	1
	10000 ppm	0	0	0	0	0	0
SMALL STOOL	Control	0	0	2	0	0	0
	2500 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	Ō	Ō	0
OLIGO-STOOL	Control	1	0	1	0	0	0
	2500 ppm	1	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	10000 ppm	1	2	2	0	0	0
	10000 ppiii						

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 65

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3–7	4–7	5-7	6-7	7-7	8-7	97	10-7	11-7	12-7	13-7	14-7
UBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	49	48	50
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

PAGE: 66

Clinical sign	Group Name	Admini	stration W	eek-day											
e de la companya de l		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
SUBNORMAL TEMP	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2500 ppm	0	Ō	Ó	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	49	50	50	50	50
	2500 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	49	50

BAIS 5 (HAN190)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

#### CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 67

Clinical sign	Group Name	Admini	stration W	eek-day											
	AA	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
SUBNORMAL TEMP	Control	0	0	0	n	n	0	0	0	Ω	0	0	0	0	0
JOBNORMINE TEM	2500 ppm	ő	Õ	0	0	Õ	0	Õ	Õ	Ô	Õ	Õ	Ö	Ö	Ö
	5000 ppm	0	Ō	Ō	0	Ō	0	Ō	0	Ō	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	48	48
	2500 ppm	50	50	50	50	50	50	49	49	49	49	49	49	49	49
	5000 ppm	50	50	50	50	50	50	50	50	49	49	47	47	48	49
	10000 ppm	50	50	50	50	50	50	50	50	46	47	43	43	45	49

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 68

Clinical sign	Group Name	Admini	stration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
UBNORMAL TEMP	Control	n	n	0	n	n	0	0	0	n	n	n	0	n	n
JODITONNAL (LAI)	2500 ppm	Ô	n	n	0	n	ñ	n	0	n	n	n	Ô	Ô	Ő
	5000 ppm	ŏ	Õ	Õ	Ö	Õ	Õ	Õ	Õ	0	Ö	Ö	Ŏ	Ö	Ö
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	47	47	47	48	48	48	48	48	48	48	48	48	47	47
	2500 ppm	49	49	49	49	47	48	48	48	48	48	48	48	48	48
	5000 ppm	50	50	50	49	49	49	49	49	49	49	49	49	49	48
	10000 ppm	49	48	48	48	47	46	46	49	49	49	49	49	48	48

(HAN190)

BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 69

Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
SUBNORMAL TEMP	Control	0	0	Λ	0	0	0	0	0	0	0	0	0	0	0
JOSHONIII I EIN	2500 ppm	Õ	Õ	Ŏ	Õ	Õ	Õ	Õ	Ö	Õ	Õ	Õ	Õ	Ö	Õ
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	46	46	46	46	46	46	46	46	46	45	45	45	45	43
	2500 ppm	48	48	48	48	48	47	46	46	46	46	45	44	44	43
	5000 ppm	48	48	47	48	48	48	48	48	48	48	47	48	48	48
	10000 ppm	48	48	48	48	48	46	46	46	45	45	45	44	43	43

(HAN190)

BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 70

linical sign	Group Name	Admin	istration W	eek-day _											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	847
UBNORMAL TEMP	Control	0	n	0	0	0	0	0	n	0	0	0	0	0	0
ODITORNIA TENI	2500 ppm	Õ	Ö	Õ	Ŏ	Õ	ŏ	Õ	Õ	Õ	Õ	Ö	Ö	Ö	Ō
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	43	43	43	43	42	42	42	41	39	37	36	34	34	36
	2500 ppm	43	43	43	42	41	41	41	40	39	39	39	40	39	40
	5000 ppm	48	48	46	45	44	44	44	41	40	40	40	39	39	39
	10000 ppm	42	41	36	36	36	35	32	33	33	34	34	33	33	33

(HAN190) BAIS 5

REPORT TYPE : A1 104

# CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 71

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
UBNORMAL TEMP	Control	n	n	0	n	0	n	0	n	n	0	0	n	0	0
ODNOMBIE TEM	2500 ppm	Õ	Ô	Õ	Õ	Õ	Õ	Ŏ	Õ	Õ	Õ	Ö	Ö	Ō	Ō
	5000 ppm	0	0	0	Ö	Ō	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	35	35	35	31	31	31	31	28	27	23	23	22	20	19
	2500 ppm	39	40	40	39	39	39	39	38	38	33	33	34	31	30
	5000 ppm	38	38	38	36	36	33	33	32	30	29	27	26	26	26
	10000 ppm	33	31	27	25	23	23	22	23	24	24	22	23	21	22

(HAN190)

BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 72

Clinical sign	Group Name	Admin	istration	Week-day _			
***************************************		99-7	100-7	101-7	102-7	103-7	104-7
SUBNORMAL TEMP	Control	0	0	0	0	0	n
ODMONIMAL ( LIM)	2500 ppm	0	Ö	Õ	Ö	Õ	Ö
	5000 ppm	0	0	0	1	0	0
	10000 ppm	0	0	0	0	0	0
NON REMARKABLE	Control	17	16	16	16	12	11
	2500 ppm	27	25	24	24	21	20
	5000 ppm	25	25	25	22	21	20
	10000 ppm	20	20	19	19	16	14

(HAN190)

BAIS 5

#### TABLE C 1

### BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0740

ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104 SEX : MALE

	Control			1250	) ppm		2500	ppm		5000	ppm		
	Av. Wt.		. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	·
Week on Study			viv.		cont.	Surviv.		cont.	Survív.		cont. <50>	Surviv.	
on Study		<b>&lt;50&gt;</b>			<50>			<50>			(30)		
0	23. 7 (50		0/50	23. 7 (50)	100	50/50	23. 7 (50)	100	50/50	23. 7 (50)	100	50/50	
1	24. 6 (50		0/50	24. 6 (50)	100	50/50	24. 3 (50)	99	50/50	23. 4 (50)	95	50/50	
2	25. 8 (50		0/50	25. 8 (50)	100	50/50	25. 5 (50)	99	50/50	24. 4 (50)	95	50/50	
3	26. 3 (49		9/50	26. 3 (50)	100	50/50	26. 0 (50)	99	50/50	24. 7 (50)	94	50/50	
4	26. 7 (49		9/50	27. 1 (49)	101	49/50	26. 4 (50)	99	50/50	25. 3 (50)	95	50/50	
5	28. 2 (49		9/50	28. 2 (49)	100	49/50	27. 6 (50)	98	50/50	26. 0 (50)	92	50/50	
b 7	28. 7 (49		9/50	28. 9 (49)	101	49/50	28. 4 (50)	99	50/50	26. 4 (50)	92	50/50	
1	29. 5 (49		9/50	29. 8 (49)	101	49/50	29. 1 (50)	99	50/50	26. 9 (50)	91	50/50	
0	30. 5 (49		9/50	30. 7 (49)	101	49/50	30. 3 (50)	99	50/50	27. 8 (50)	91	50/50 50/50	
9 10	31. 1 (49 31. 6 (49		9/50 9/50	31. 1 (49) 31. 7 (49)	100 100	49/50 49/50	30. 7 (50) 31. 1 (50)	99	50/50 50/50	28. 1 (50) 28. 3 (50)	90 90	50/50 50/50	
11	32. 5 (49		9/50 9/50	31. 7 (49)	100	49/50 49/50	31. 8 (50)	98 98	50/50 50/50	29. 0 (50)	89	50/50 50/50	
12	33. 1 (49		9/50	33. 1 (49)	100	49/50	32. 3 (50)	98	50/50	29. 5 (50)	89	50/50	
13	34. 5 (49		9/50	34. 6 (49)	100	49/50	33. 5 (50)	97	50/50	30. 0 (50)	87	50/50	
14	34. 9 (49		9/50	35. 2 (49)	101	49/50	34. 3 (50)	98	50/50	30. 7 (50)	88	50/50	
18	37. 0 (49		9/50	36. 7 (49)	99	49/50	35. 8 (50)	97	50/50	31. 6 (50)	85	50/50	
22	39. 6 (49		9/50	39. 7 (49)	100	49/50	38. 5 (50)	97	50/50	33. 5 (50)	85	50/50	
26	41. 3 (49		9/50	41. 7 (49)	101	49/50	40. 7 (50)	99	50/50	34. 9 (50)	85	50/50	
30	43. 5 (49		9/50	43. 2 (49)	99	49/50	41. 6 (50)	96	50/50	35. 6 (50)	82	50/50	
34	45. 2 (48		8/50	45. 0 (49)	100	49/50	42. 9 (50)	95	50/50	36. 6 (50)	81	50/50	
38	46. 0 (48		8/50	45. 8 (49)	100	49/50	43. 9 (50)	95	50/50	36. 8 (50)	80	50/50	
42	46. 9 (48		8/50	47. 2 (49)	101	49/50	44. 5 (50)	95	50/50	37. 3 (49)	80	49/50	
46	48. 6 (47		7/50	48. 0 (49)	99	49/50	45. 2 (50)	93	50/50	38. 1 (49)	78	49/50	
50	48. 1 (47	7) 4	7/50	48. 2 (49)	100	49/50	45. 8 (50)	95	50/50	38. 8 (49)	81	49/50	
54	49. 5 (46	6) 4	6/50	49. 3 (49)	100	49/50	46. 8 (49)	95	49/50	39. 2 (49)	79	49/50	
58	50. 7 (44		4/50	49. 6 (49)	98	49/50	47. 8 (48)	94	48/50	39. 8 (49)	79	49/50	
62	50. 2 (44		4/50	49. 4 (49)	98	49/50	47. 4 (48)	94	48/50	40. 0 (48)	80	48/50	
66	51. 9 (44		4/50	51. 0 (47)	98	47/50	49. 0 (47)	94	47/50	41. 0 (48)	79	48/50	
70	50. 7 (43		3/50	49. 7 (46)	98	46/50	47. 6 (46)	94	46/50	40. 1 (47)	79	47/50	
74	51. 4 (43		3/50	49. 5 (45)	96	45/50	48. 1 (44)	94	44/50	40. 9 (47)	80	47/50	
78	51. 1 (42		2/50	49. 2 (44)	96	44/50	48. 1 (43)	94	43/50	40. 4 (47)	79	47/50	
82	50. 9 (41		1/50	48. 4 (44)	95	44/50	47. 9 (43)	94	43/50	39. 9 (47)	78	47/50	
86	49. 5 (39		9/50	48. 1 (40)	97	40/50	47. 5 (42)	96	42/50	39. 2 (47)	79	47/50	
90	48. 7 (38		8/50	47. 1 (40)	97	40/50	46. 3 (39)	95	39/50	38. 4 (47)	79	47/50	
94	47. 1 (38		8/50	45. 6 (39)	97	39/50	45. 9 (37)	97	37/50	37. 5 (45)	80	45/50	
98	46. 0 (35		5/50	43. 1 (36)	94	36/50	42. 6 (37)	93	37/50	36. 0 (45)	78 70	45/50	
102	45. 6 (33		3/50	41. 3 (34)	91	34/50 32/50	41. 9 (34)	92	34/50	35. 5 (42)	78 70	42/50	
104	45. 0 (32	:) 3	4/50	40. 6 (32)	90	32/50	41. 7 (33)	93	33/50	35. 4 (40)	79	40/50	

Av. Wt. : g

#### TABLE C 2

### BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0740 MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

	Control			2500	ppm		5000	ppm		10000	ppm	
	Av. Wt.	No. o		lt.	% of	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of
Week on Study		Survi <50>	<b>'</b> .		con t. <50>	Surviv.		con t. <50>	Surviv.		cont. <50>	Surviv.
	·····											
0	19.0 (50	50/		(50)	100	50/50	19. 0 (50)	100	50/50	19. 0 (50)	100	50/50
1	19.6 (50 20.1 (50	) 50/! ) 50/!		(50) (50)	98	50/50 50/50	19. 1 (50) 19. 5 (50)	97	50/50 50/50	18. 1 (50) 18. 9 (50)	92	50/50 50/50
2	20. 1 (50			(50)	98 99	50/50 50/50	19. 5 (50)	97 97	50/50 50/50	18. 8 (50)	94 92	50/50
4	20. 9 (50			(50)	99	50/50	20. 1 (50)	96	50/50	19. 2 (50)	92	50/50
5	21. 5 (50			(50)	99	50/50	20. 8 (50)	97	50/50	19. 7 (50)	92	50/50
6	21. 9 (50			(50)	99	50/50	21. 2 (50)	97	50/50	20. 0 (50)	91	50/50
7	22. 5 (50	) 50/		(50)	99	50/50	21. 5 (50)	96	50/50	20. 6 (50)	92	50/50
8	23. 1 (50		0 22. 6	(50)	98	50/50	22. 1 (50)	96	50/50	20. 9 (50)	90	50/50
9	23.6 (50			(50)	97	50/50	22. 3 (50)	94	50/50	21. 3 (50)	90	50/50
10	23. 9 (50			(50)	97	50/50	22. 5 (50)	94	50/50	21. 5 (50)	90	50/50
11	24. 2 (50			(50)	97	50/50	22. 8 (50)	94	50/50	21. 6 (50)	89	50/50
12	24. 4 (50			(50)	97	50/50	22. 9 (50)	94	50/50	21. 7 (50)	89	50/50
13	25. 1 (50 25. 4 (50			(50) (50)	96 oc	50/50 50/50	23. 3 (50) 23. 5 (50)	93	50/50 50/50	21. 8 (50) 22. 1 (50)	87	50/50 50/50
14 18	26. 8 (50			(50)	96 95	50/50	24. 4 (50)	93 91	50/50 50/50	22. 7 (50)	87 85	50/50
22	28. 4 (50			(50)	95	50/50	25. 5 (50)	90	50/50 50/50	23. 5 (50)	83	50/50
26	30. 1 (50			(50)	93	50/50	26. 6 (50)	88	50/50	24. 0 (50)	80	50/50
30	31. 4 (50			(50)	93	50/50	27. 2 (50)	87	50/50	24. 3 (50)	77	50/50
34	32. 1 (50			(50)	95	50/50	27. 5 (50)	86	50/50	24. 6 (50)	77	50/50
38	33. 3 (50			(50)	93	50/50	28. 3 (50)	85	50/50	24.9 (50)	75	50/50
42	34. 2 (50	) 50/	0 32.0	(50)	94	50/50	29. 0 (50)	85	50/50	25. 4 (50)	74	50/50
46	35. 1 (49			(50)	93	50/50	28. 9 (50)	82	50/50	25. 3 (50)	72	50/50
50	35. 7 (49)			(49)	93	49/50	29. 8 (49)	83	49/50	25. 6 (49)	72	49/50
54	36. 9 (48			(49)	92	49/50	30. 0 (49)	81	49/50	25. 5 (49)	69	49/50
58	37. 8 (47			(48)	92	48/50	30. 2 (48)	80	48/50	25. 8 (48)	68	48/50
62	36. 9 (47			(48)	92	48/50	30. 1 (48)	82	48/50	25. 8 (48)	70	48/50
66	38. 0 (47)			(47)	93	47/50	31. 0 (48)	82	48/50	26. 3 (48)	69	48/50
70 74	36. 9 (47			(46) (46)	93	46/50	30. 7 (48)	83	48/50	26. 1 (46)	71 70	46/50
78	37. 6 (44 37. 7 (43			(45)	92 92	46/50 45/50	31. 0 (48) 30. 4 (48)	82 81	48/50 48/50	26. 2 (46) 25. 9 (41)	70 69	46/50 41/50
82	37. 1 (43			(44)	92	44/50	30. 1 (44)	81	44/50	25. 8 (40)	70	40/50
86	36. 9 (41			(42)	92	42/50	30. 1 (42)	82	42/50	26. 2 (37)	71	37/50
90	36. 1 (38			(42)	93	42/50	29. 3 (41)	81	41/50	25. 6 (35)	71	35/50
94	35. 8 (35			(40)	93	40/50	29. 6 (36)	83	36/50	25. 3 (32)	71	32/50
98	33. 9 (29			(38)	96	38/50	29. 5 (29)	87	29/50	25. 3 (28)	75	28/50
102	34. 4 (22			(33)	94	33/50	30. 5 (27)	89	27/50	25. 2 (25)	73	25/50
104	32. 7 (20	) 20/	0 31.7	(29)	97	29/50	29. 5 (22)	90	22/50	25. 3 (21)	77	21/50

## TABLE C 3

BODY WEIGHT CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES

ALL ANIMALS

PAGE: 1

1250 ppm 23.7± 0.9 24.6± 1.0 25.8± 1.3 26.3± 1.2 27.1± 1.2 28.2± 1.5 28. 2500 ppm 23.7± 0.9 24.3± 1.3 25.5± 1.3 26.0± 1.4 26.4± 1.8 27.6± 1.6 28.  5000 ppm 23.7± 0.9 23.4± 1.1** 24.4± 1.2** 24.7± 1.2** 25.3± 1.0** 26.0± 1.3** 26.0± 1.3**											on week	Group Name		
23.7± 0.9 24.6± 1.0 25.8± 1.3 26.3± 1.2 27.1± 1.2 28.2± 1.5 28.  200 ppm 23.7± 0.9 24.3± 1.3 25.5± 1.3 26.0± 1.4 26.4± 1.8 27.6± 1.6 28.  200 ppm 23.7± 0.9 23.4± 1.1** 24.4± 1.2** 24.7± 1.2** 25.3± 1.0** 26.0± 1.3** 26.0± 1.3**	6		5		4		3		2		1		0	***************************************
23. 7± 0. 9 24. 3± 1. 3 25. 5± 1. 3 26. 0± 1. 4 26. 4± 1. 8 27. 6± 1. 6 28. 100 ppm 23. 7± 0. 9 23. 4± 1. 1** 24. 4± 1. 2** 24. 7± 1. 2** 25. 3± 1. 0** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26. 0± 1. 3** 26.	28. 7± 1. 7	1. 5	28. 2±	1. 6	26. 7±	1. 2	26.3±	1. 3	25.8±	1. 2	24.6±	0. 9	23. 7±	ntrol
00 ppm 23.7± 0.9 23.4± 1.1** 24.4± 1.2** 24.7± 1.2** 25.3± 1.0** 26.0± 1.3** 26.	28.9± 1.7	1. 5	28. 2±	1. 2	27. 1±	1. 2	26. 3±	1. 3	25.8±	1. 0	24.6±	0. 9	23. 7±	50 ppm
	28.4± 1.7	1. 6	27.6±	1. 8	26. 4±	1. 4	26. 0±	1. 3	25. 5±	1. 3	24. 3±	0. 9	23.7生	00 ppm
Similiform difference at a D < 0.00 at a D < 0.00 Task of Downship	26.4± 1.4**	1. 3**	26.0±	1. 0**	25. 3±	1. 2**	24. 7±	1. 2**	24. 4±	1. 1**	23. 4±	0. 9	23.7±	mqq 00
Cimilificant difference D < 0.05 D < 0.04														
Significant difference; $*: P \ge 0.05$ **: $P \ge 0.01$ lest of punnett						)unne t t	Test of D			01	** : P ≦ 0.	0. 05	* : P ≦	Significant difference ;

(SUMMARY)

(HAN260)

BAIS 5

UNIT : g REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

PAGE: 2

Group Name	Administration	week					
	7	8	9	10	11	12	13
Control	29.5± 1.5	30. 5 ± 1. 7	31. 1 ± 2. 0	31. 6± 2. 2	32. 5± 2. 4	33. 1 ± 2. 6	34. 5 ± 2. 8
1250 ppm	29.8± 1.8	30.7± 1.9	31. 1 ± 2. 0	31. 7± 2. 3	32. 7± 2. 1	33. 1 ± 2. 3	34.6± 2.4
2500 ррт	29. 1 ± 1. 9	30. 3± 2. 1	30. 7 ± 2. 3	31. 1 ± 2. 4	31.8± 2.6	32. 3± 3. 0	33. 5 ± 3. 0
5000 ppm	26. 9± 1. 5 <b>*</b> *	27.8± 1.5**	28. 1 ± 1. 2**	28. 3± 1. 3**	29.0± 1.4**	29.5± 1.5**	30.0± 1.8**
Significant differe	ence;	:* : P ≤ 0. 01		Test of Dunnett		A A A A A A A A A A A A A A A A A A A	

(SUMMARY)

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : MALE

Group Name	Administration	week	······································				
	14	18	22	26	30	34	38
Control	34.9± 3.6	37.0± 2.9	39. $6 \pm 3.7$	41. 3± 4. 4	43. 5 ± 4. 9	45. 2 ± 4. 1	46. 0 ± 4. 1
1250 ppm	35. 2 ± 2. 4	36. 7± 3. 3	39. 7± 3. 5	41. 7± 4. 0	43. 2± 4. 0	45. 0 ± 3. 9	45. 8 ± 4. 0
2500 ppm	34. 3 ± 2. 9	35. 8 ± 3. 7	38. 5± 3. 7	40. 7± 4. 4	41. 6± 4. 3*	42.9± 4.6*	43. 9 ± 4. 5*
5000 ppm	30.7± 1.9**	31.6± 2.2**	33.5± 2.5**	34. 9± 2. 6**	35.6± 2.6**	36.6± 3.1**	36.8± 3.1**
Significant difference ;	* : P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			
(IIIAIOCO)							

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES

ALL ANIMALS

PAGE: 4

Group Name	Administration	week					
	42	46	50	54	58	62	66
							, , , , , , , , , , , , , , , , , , , ,
Control	46. 9 ± 3. 9	48.6± 3.9	48. 1 ± 4. 4	49.5± 3.9	50. 7± 3. 5	50. 2 ± 3. 3	51.9± 4.1
250 ppm	47. 2 ± 4. 0	48.0± 3.7	48. 2± 4. 1	49. 3± 3. 8	49.6± 3.5	49. 4± 4. 1	51.0± 4.7
			.5. 2				
2500 ppm	44. 5 ± 5. 0*	45. 2 ± 5. 5**	45. 8 ± 5. 3*	46.8± 5.0**	47. 8± 5. 2**	47. 4± 5. 5**	49. 0± 6. 1*
5000 ppm	37. 3 ± 3. 4**	38.1± 3.7**	38.8± 3.9 <b>*</b> *	39. 2± 4. 0**	39.8± 4.0**	40. 0± 3. 7**	41. 0± 3. 8**
Significant differer	nce;	:≭ : P ≦ 0.01		Test of Dunnett			

(SUMMARY)

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

	70	74	78	00			
				82	86	90	94
Control	50. 7 ± 4. 7	51. 4± 5. 3	51. 1 ± 6. 1	50. 9 ± 7. 1	49. 5± 8. 3	48. 7 ± 8. 6	47. 1 ± 10. 0
250 ppm	49. 7± 5. 4	49. 5 ± 6. 5	49. 2 ± 7. 3	48. 4± 8. 5	48. 1 ± 7. 8	47. 1 ± 8. 2	45. 6± 8. 2
500 ppm	47.6± 6.5*	48. 1 ± 6. 5**	48. 1 ± 6. 3*	47. 9± 7. 0*	47. 5± 7. 2	46. 3± 7. 7	45. 9± 7. 4
000 ppm	40. 1 ± 4. 2**	40.9± 4.3**	40. 4± 4. 2**	39. 9± 4. 2**	39. 2± 4. 9 <b>*</b> *	38. 4± 4. 3**	37.5± 4.5**
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

BAIS 5

PAGE: 5

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration	week			
	98	102	104		
Control	46.0± 8.8	45.6± 7.7	45. 0 ± 7. 5		
1250 ppm	43. 1 ± 7. 8	41.3± 8.1*	40.6± 8.6		
2520	40.01.00	41.0 ( 0.0	41.7.1.0.0		
2500 ppm	42.6± 8.8	41. 9± 8. 9	41. 7 ± 9. 3		
5000 ppm	36.0± 4.5**	35.5± 4.4**	35. 4± 4. 6**		
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01	-	Test of Dunnett	
(HAN260)					BAIS 5

### TABLE C 4

BODY WEIGHT CHANGES: FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

Group Name	Administrati	on week		· · · · · · · · · · · · · · · · · · ·			
	0	1	2	3	4	5	6
Control	19.0± 0.7	19.6± 0.9	20. 1 ± 1. 0	20.4± 1.1	20.9± 1.4	21.5± 1.2	21.9± 1.1
2500 ppm	19.0± 0.7	19. 2 ± 0. 8*	19.6± 1.1**	20.1± 1.0	20. 6± 1. 2	21. 3± 0. 9	21.6± 1.2
5000 ppm	19.0± 0.7	19. 1± 0. 8*	19.5± 0.7**	19.8± 0.7**	20. 1 ± 0. 8**	20.8± 0.9**	21. 2± 1. 0**
Mqq 0000	19.0± 0.7	18.1± 1.2**	18.9± 0.8**	18.8± 0.9**	19.2± 1.1**	19.7± 0.7**	20.0± 1.1**
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
**************************************				······································			

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : g REPORT TYPE : A1 104

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : FEMALE

Group Name	Administration	week					
	7	8	9	10	11	12	13
Control	22. 5 ± 1. 3	23. 1 ± 1. 3	23.6± 1.6	23.9± 1.6	24. 2± 1. 7	24. 4± 2. 1	25. 1 ± 2. 0
2500 ppm	22. 2± 1. 4	22.6± 1.3*	23. 0± 1. 5	23. 2± 1. 6**	23. 5± 1. 5	23.6± 1.9*	24. 1 ± 2. 0**
5000 ppm	21.5± 0.9**	22.1± 1.2**	22.3± 1.0**	22.5± 1.0**	22. 8± 1. 3**	22.9± 1.2**	23. 3± 1. 4**
10000 ppm	20.6± 0.9**	20.9± 1.0**	21. 3± 0. 9**	21. 5± 0. 8**	21.6± 0.9**	21. 7± 1. 0**	21.8± 0.9**
Significant differ	ence ;	** : P ≤ 0. 01		Test of Dunnett		**************************************	

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration	week					
	14	18	22	26	30	34	38
Control	25. 4± 2. 4	26.8± 2.7	28. 4± 2. 8	30. 1 ± 3. 4	31. 4± 3. 5	32. 1 ± 3. 7	33. 3± 3. 6
2500 ppm	24. 3± 1. 8*	25. 4± 2. 4**	27. 0± 2. 4*	28. 0± 3. 3**	29. 2± 3. 2**	30. 4± 2. 9*	31. 1 ± 3. 3**
mqq 000	23.5± 1.3**	24. 4± 1. 7**	25.5± 1.6**	26.6± 2.3**	27. 2± 2. 2**	27. 5± 2. 4**	28. 3± 2. 6**
10000 ppm	22. 1± 1. 1**	22.7± 1.0**	23. 5± 1. 2**	24. 0± 1. 1**	24.3± 1.0**	24.6± 1.1**	24. 9 ± 1. 1**
Significant differe	ence ;	;; P ≤ 0.01		Test of Dunnett			
(HAN260)							

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

42 34. 2 ± 3. 6	35. 1 ± 4. 0	50 35. 7± 4. 0	54 36. 9 ± 4. 1	58 37. 8± 4. 2	62 36. 9 ± 4. 3	66
34. 2± 3. 6	35. 1 ± 4. 0	35. 7 ± 4. 0	36.9± 4.1	37. 8± 4. 2	26 0 1 4 2	
					30. 3± 4. 3	38. 0± 4. 3
32. 0± 3. 8**	32. 7± 3. 4**	33. 3± 3. 8**	34. 1 ± 3. 9**	34. 7± 3. 8**	33. 9± 3. 7**	35. 2 ± 4. 1**
29.0± 3.0**	28. 9± 3. 4**	29.8± 3.1**	30.0± 3.2**	30. 2± 3. 4**	30. 1 ± 3. 6**	31.0± 3.8**
25. 4± 1. 2**	25.3± 1.3**	25.6± 1.6**	25. 5± 1. 3**	25. 8± 1. 2**	25.8± 1.4**	26.3± 1.7**
	29.0± 3.0**	29. 0 ± 3. 0** 28. 9 ± 3. 4**	29. 0 ± 3. 0** 28. 9 ± 3. 4** 29. 8 ± 3. 1**	29. 0 ± 3. 0** 28. 9 ± 3. 4** 29. 8 ± 3. 1** 30. 0 ± 3. 2**	29. 0 ± 3. 0** 28. 9 ± 3. 4** 29. 8 ± 3. 1** 30. 0 ± 3. 2** 30. 2 ± 3. 4**	29. 0 ± 3. 0** 28. 9 ± 3. 4** 29. 8 ± 3. 1** 30. 0 ± 3. 2** 30. 2 ± 3. 4** 30. 1 ± 3. 6**

(HAN260)

BAIS 5

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES

ALL ANIMALS

(SUMMARY)

Group Name	Administration	week		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	70	74	78	82	86	90	94
Control	36. 9 ± 4. 9	37.6± 4.2	37.7± 4.2	37. 1 ± 4. 3	36. 9± 4. 7	36. 1 ± 4. 3	35.8± 5.5
2500 ppm	34.5± 4.4*	34. 5± 4. 5**	34. 5 ± 4. 8**	34. 3± 4. 5**	34.1± 4.9*	33. 5± 4. 6*	33. 3± 4. 9
000 mqq 000	30.7± 3.6**	31.0± 3.8**	30. 4± 4. 2**	30. 1± 4. 2**	30.1± 4.1**	29. 3± 5. 0**	29.6± 4.9**
0000 ppm	26.1± 1.6**	26. 2± 2. 1 <b>*</b> *	25.9± 1.9**	25. 8± 2. 4**	26. 2± 2. 3**	25.6± 2.8**	25. 3± 3. 0**
Significant difference ;	* : P ≤ 0.05	** : P ≦ 0.01		Test of Dunnett	www.vi		
(HAN260)	·						

PAGE: 11

(HAN260)

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

Group Name	Administration	week			
	98	102	104		
Control	33. 9± 5. 8	34. 4± 5. 3	32.7± 5.9		
2500 ppm	32. 6 ± 4. 3	32.3± 4.2	31. 7± 3. 8		
5000 ppm	29. 5± 4. 4**	30.5± 4.4**	29.5± 3.9*		
10000 ppm	25. 3 ± 2. 5**	25. 2± 2. 5**	25. 3± 1. 4**		
Significant differer	nce ;	** : P ≦ 0.01		Test of Dunnett	
(UANGEN)		······································			 DAICE

(HAN260)

BAIS 5

## TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

UNIT : g
REPORT TYPE : A1 104 SEX : MALE

	Control		1250	ppm		2500	ppm		5000	ppm	
	Av. FC.	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of
Week		Surviv.		cont.	Surviv.		cont.	Surviv.		cont.	Surviv.
on Study		<50>		<50>			<50>			<50>	
1	3. 9 (50	) 50/50	4. 0 (50)	103	50/50	3. 9 (50)	100	50/50	3. 7 (50)	95	50/50
2	3.8 (50	50/50	3. 9 (50)	103	50/50	3. 9 (50)	103	50/50	3. 9 (50)	103	50/50
3	3. 9 (49	49/50	3. 8 (50)	97	50/50	3. 8 (50)	97	50/50	3. 8 (50)	97	50/50
4	3. 7 (49	49/50	3. 8 (49)	103	49/50	3. 8 (50)	103	50/50	3. 8 (49)	103	50/50
5	4.0 (49	49/50	4. 0 (49)	100	49/50	4. 0 (50)	100	50/50	3. 9 (50)	98	50/50
6	3. 8 (49		3. 9 (49)	103	49/50	3. 9 (50)	103	50/50	3. 7 (50)	97	50/50
7	4.0 (49		4. 1 (49)	103	49/50	4. 0 (50)	100	50/50	4. 0 (50)	100	50/50
8	4. 1 (49		4. 2 (49)	102	49/50	4. 2 (50)	102	50/50	4. 0 (50)	98	50/50
9	4. 2 (49		4. 2 (49)	100	49/50	4. 1 (50)	98	50/50	4. 0 (49)	95	50/50
10	4. 1 (49		4. 2 (49)	102	49/50	4. 1 (50)	100	50/50	3. 9 (50)	95	50/50
11	4. 1 (49		4. 1 (49)	100	49/50	3. 9 (50)	95	50/50	3. 9 (50)	95	50/50
12	4. 0 (49		4. 0 (49)	100	49/50	4. 0 (50)	100	50/50	3. 9 (50)	98	50/50
13	4. 1 (49		4. 1 (49)	100	49/50	4. 0 (50)	98	50/50	3. 9 (50)	95	50/50
14	4.0 (49		4. 1 (49)	103	49/50	4. 1 (50)	103	50/50	4. 0 (50)	100	50/50
18	4. 0 (49	49/50	3. 9 (49)	98	49/50	3.8 (50)	95	50/50	3. 8 (50)	95	50/50
22	4. 1 (49	49/50	4. 0 (49)	98	49/50	3. 9 (50)	95	50/50	3. 7 (50)	90	50/50
26	4. 0 (49		4. 1 (49)	103	49/50	4. 1 (50)	103	50/50	3. 8 (50)	95	50/50
30	4. 2 (49	49/50	4. 1 (49)	98	49/50	4.0 (50)	95	50/50	3. 9 (50)	93	50/50
34	4.1 (48		4. 4 (49)	107	49/50	4. 1 (50)	100	50/50	4. 0 (50)	98	50/50
38	4. 1 (48		4. 2 (49)	102	49/50	4. 1 (50)	100	50/50	4. 0 (48)	98	50/50
42	4. 1 (48		4. 3 (48)	105	49/50	4. 2 (50)	102	50/50	4. 1 (49)	100	49/50
46	4. 4 (47		4. 4 (49)	100	49/50	4. 2 (50)	95	50/50	4. 2 (49)	95	49/50
50	4. 4 (46		4. 5 (48)	102	49/50	4. 3 (49)	98	50/50	4. 1 (49)	93	49/50
54	4.5 (46		4. 4 (49)	98	49/50	4. 2 (49)	93	49/50	3. 9 (49)	87	49/50
58	4. 6 (44		4. 4 (49)	96	49/50	4. 3 (48)	93	48/50	4. 1 (49)	89	49/50
62	4. 5 (44		4. 5 (49)	100	49/50	4. 3 (48)	96	48/50	4. 2 (48)	93	48/50
66	4. 6 (44		4. 6 (47)	100	47/50	4. 3 (47)	93	47/50	4. 3 (48)	93	48/50
70	4. 3 (41		4. 5 (44)	105	46/50	4. 1 (41)	95	46/50	4. 2 (41)	98	47/50
74	4. 2 (42		4. 4 (44)	105	45/50	4. 3 (44)	102	44/50	4. 1 (47)	98	47/50
78	4. 5 (40		4. 5 (43)	100	44/50	4. 4 (43)	98	43/50	4. 2 (47)	93	47/50
82	4. 5 (40		4. 4 (43)	98	44/50	4. 3 (43)	96	43/50	4. 1 (47)	91	47/50
86	4. 1 (37		4. 2 (40)	102	40/50	4. 4 (42)	107	42/50	4. 3 (46)	105	47/50
90	4. 6 (30		4. 3 (36)	93	40/50	4. 6 (38)	100	39/50	4. 3 (43)	93	47/50
94	4. 1 (31		4. 3 (37)	105	39/50	4. 4 (32)	107	37/50	4. 1 (42)	100	45/50
98	4. 3 (29		4. 3 (31)	100	36/50	4. 2 (32)	98	37/50	4. 2 (36)	98	45/50
102 104	4. 3 (28 4. 2 (29	33/50	4. 0 (29) 4. 2 (26)	93 100	34/50 32/50	4. 3 (29) 4. 4 (30)	100 105	34/50 33/50	4. 1 (37) 4. 1 (34)	95 98	42/50 40/50

< >:No. of effective animals, ( ):No. of measured animals

## TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 2

***************************************	Control		2500	ppm		5000	ppm		10000	ppm	
	Av. FC.	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of	Av. FC.	% of	No. of
Week		Surviv.		cont.	Surviv.		cont.	Surviv.		cont.	Surviv.
on Study		<b>&lt;50&gt;</b>		<50>			<b>&lt;50&gt;</b>			<b>&lt;50&gt;</b>	
1	3. 6 (50	) 50/50	3. 5 (50)	97	50/50	3. 4 (50)	94	50/50	3. 3 (44)	92	50/50
2	3. 4 (50			97	50/50	3. 2 (50)	94	50/50	3. 4 (50)	100	50/50
3	3. 3 (50)	) 50/50	3. 5 (50)	106	50/50	3. 2 (50)	97	50/50	2. 9 (49)	88	50/50
4	3.4 (50)			103	50/50	3. 2 (50)	94	50/50	3. 1 (50)	91	50/50
5	3. 5 (50)			103	50/50	3. 5 (50)	100	50/50	3. 3 (49)	94	50/50
6	3.4 (50)			103	50/50	3. 3 (50)	97	50/50	3. 1 (49)	91	50/50
7	3. 6 (50)			100	50/50	3. 4 (50)	94	50/50	3. 3 (50)	92	50/50
8	3. 7 (50)			100	50/50	3. 6 (50)	97	50/50	3. 4 (46)	92	50/50
9	3.8 (50			105	50/50	3. 6 (50)	95	50/50	3. 6 (50)	95	50/50
10	3. 8 (50			100	50/50	3. 6 (50)	95	50/50	3. 5 (50)	92	50/50
11	3. 7 (50)			103	50/50	3. 5 (50)	95	50/50	3. 4 (50)	92	50/50
12	3. 6 (50)			103	50/50	3. 5 (50)	97	50/50	3. 3 (49)	92	50/50
13	3. 8 (50			100	50/50	3. 6 (50)	95	50/50	3. 4 (49)	89	50/50
14	3. 7 (50			97	50/50	3. 5 (50)	95	50/50	3. 4 (50)	92	50/50
18	3. 8 (50)			100	50/50	3. 7 (50)	97	50/50	3. 4 (50)	89	50/50
22	3. 7 (50)			100	50/50	3. 6 (50)	97	50/50	3. 3 (50)	89	50/50
26	3. 9 (50)			100	50/50	3. 7 (50)	95	50/50	3. 5 (49)	90	50/50
30	4. 0 (50)			98	50/50	3. 6 (50)	90	50/50	3. 4 (50)	85	50/50
34	4. 0 (50)			100	50/50	3. 6 (50)	90	50/50	3. 4 (49)	85	50/50
38	4. 0 (50)			98	50/50	3. 7 (50)	93	50/50	3. 5 (49)	88	50/50
42	4. 1 (50			98	50/50	3. 9 (50)	95	50/50	3. 4 (47)	83	50/50
46	4. 0 (49)			100	50/50	3. 7 (50)	93	50/50	3. 4 (50)	85	50/50
50	4. 0 (48)			103	49/50	3. 9 (49)	98	49/50	3. 7 (45)	93	49/50
54	3. 8 (48)			103	49/50	3. 7 (49)	97	49/50	3. 3 (47)	87	49/50
58	4. 0 (47)			100	48/50	3. 6 (48)	90	48/50	3. 4 (43)	85	48/50
62	4. 2 (47)			95	48/50	3. 9 (46)	93	48/50	3. 6 (43)	86	48/50
66	4. 1 (46)			100	47/50	3. 9 (48)	95	48/50	3. 5 (43)	85	48/50
70	4. 1 (47)			100	46/50	3. 8 (47)	93	48/50	3. 6 (40)	88	46/50
74	4. 0 (42)			95	46/50	3. 9 (46)	98	48/50	3. 5 (29)	88	46/50
78	4. 1 (43)			98	45/50	3. 7 (46)	90	48/50	3. 7 (36)	90	41/50
82	4. 0 (42)			95	44/50	3. 6 (44)	90	44/50	3. 6 (32)	90	40/50
86	4. 0 (41)			100	42/50	3. 7 (40)	93	42/50	3. 8 (25)	95	37/50
90	4. 1 (35)			98	42/50	3. 7 (34)	90	41/50	3. 6 (15)	88	35/50
94	3. 6 (31)			106	40/50	3. 5 (32)	97	36/50	3. 6 (20)	100	32/50
98	4. 0 (26)			93	38/50	3. 8 (24)	95	29/50	3. 6 (11)	90	28/50
102	3. 9 (17)			100	33/50	3. 9 (18)	100	27/50	3.8 (9)	97	25/50
104	3. 9 (18)	20/50	4. 0 (26)	103	29/50	3. 9 (16)	100	22/50	3. 9 (10)	100	21/50

< >:No. of effective animals, ( ):No. of measured animals

Av. FC. : g

# TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : MALE

Group Name	Administrati	on week					
	1	2	3	4	5	6	7
Control	3.9± 0.4	3.8 ± 0.4	3.9± 0.4	3. 7± 0. 5	4. 0± 0. 5	3.8± 0.6	4. 0± 0. 5
250 ppm	4. 0 ± 0. 4	3.9± 0.3	3.8± 0.3	3.8± 0.3	4. 0± 0. 3	3.9± 0.4	4. 1 ± 0. 4
2500 ppm	3.9± 0.4	3.9± 0.3	3.8± 0.4	3.8± 0.5	4. 0± 0. 4	3. 9± 0. 4	4. 0 ± 0. 4
mqq 000	3.7± 0.5	3. 9± 0. 6	3.8± 0.5	3. 8± 0. 4	3.9± 0.5	3.7± 0.5	4. 0 ± 0. 5
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			
HAN260)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				В

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Administration	week					
	8	9	10	11	12	13	14
Control	4. 1 ± 0. 5	4. 2 ± 0. 5	4. 1 ± 0. 4	4. 1 ± 0. 5	4. 0± 0. 5	4. 1 ± 0. 5	4. 0± 0. 7
1250 ppm	4. 2 ± 0. 4	4. 2 ± 0. 4	4. 2 ± 0. 4	4. 1 ± 0. 4	4. 0 ± 0. 5	4. 1 ± 0. 4	4. 1 ± 0. 4
2500 ppm	4. 2 ± 0. 4	4. 1 ± 0. 4	4. 1 ± 0. 4	3. 9 ± 0. 7	4. 0± 0. 5	4. 0 ± 0. 5	4. 1 ± 0. 3
5000 ppm	4. 0 ± 0. 4	4.0± 0.4	3.9± 0.3*	3.9± 0.3	3. 9± 0. 3	3. 9± 0. 4*	4. 0± 0. 4
Significant diffe	erence ;	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week					
·	18	22	26	30	34	38	42
Control	4. 0 ± 0. 4	4. 1 ± 0. 3	4. 0 ± 0. 6	4. 2 ± 0. 4	4. 1 ± 0. 5	4. 1 ± 0. 6	4. 1 ± 0. 7
250 ppm	3. 9 ± 0. 6	4. 0 ± 0. 4	4. 1 ± 0. 6	4. 1 ± 0. 4	4. 4± 0. 5**	4. 2 ± 0. 5	4. 3 ± 0. 5
2500 ppm	3. 8 ± 0. 4	3. 9 ± 0. 4	4. 1 ± 0. 6	4. 0± 0. 5	4. 1 ± 0. 5	4. 1 ± 0. 6	4. 2 ± 0. 6
5000 ppm	3.8± 0.4*	3.7± 0.5**	3. 8 ± 0. 5	3. 9 ± 0. 4**	4. 0± 0. 4	4. 0 ± 0. 6	4. 1 ± 0. 5
Significant differe	ence ;	** : P ≤ 0.01		Test of Dunnett			
(HAN260)		West Administration of the Control o			,		ВА

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 4

	Administration	week					
	46	50	54	58	62	66	70
Control	4. 4± 0. 6	4.4± 0.6	4. 5 ± 0. 6	4. 6± 0. 6	4. 5± 0. 6	4. 6 ± 0. 7	4. 3 ± 0. 7
1250 ppm	4. 4 ± 0. 4	4.5± 0.6	4. 4 ± 0. 4	4. 4± 0. 6	4.5± 0.5	4.6± 0.4	4. 5 ± 0. 5
2500 ppm	4. 2 ± 0. 7*	4. 3± 0. 6	4. 2 ± 0. 5*	4. 3 ± 0. 6*	4. 3 ± 0. 7	4. 3 ± 0. 6*	4. 1 ± 0. 6
5000 ppm	4. 2 ± 0. 4**	4.1± 0.5	3. 9 ± 0. 5**	4. 1 ± 0. 4**	4. 2 ± 0. 4**	4. 3 ± 0. 4**	4. 2 ± 0. 6

(HAN260)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 5

Group Name	Administratio	n week						
	74	78	82	86	90	94	98	
Control	4. 2± 0. 8	4.5± 0.8	4. 5± 0. 8	4.1± 0.9	4. 6± 0. 7	4. 1 ± 1. 2	4. 3 ± 0. 9	
1250 ppm	4. 4± 0. 6	4. 5± 0. 5	4. 4± 1. 0	4. 2 ± 0. 7	4. 3 ± 0. 6	4. 3 ± 0. 7	4. 3± 0. 7	
2500 ррт	4. 3 ± 0. 7	4. 4± 0. 6	4. 3 ± 0. 7	4. 4± 0. 6	4.6± 0.6	4. 4± 0. 5	4. 2 ± 1. 1	
5000 ppm	4. 1 ± 0. 5	4. 2 ± 0. 5**	4. 1 ± 0. 4**	4. 3± 0. 4	4. 3± 0. 5	4. 1 ± 0. 5	4. 2± 0. 6	
Significant difference ;	* : P ≦ 0.05	<b>**</b> : P ≤ 0.01		Test of Dunnett		-		

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : MALE

Group Name	Administrati	on week		
	102	104		
Control	4. 3 ± 0. 7	4. 2 ± 0. 7		
1250 ppm	4. 0 ± 0. 8	4. 2 ± 0. 6		
2500 ppm	4. 3 ± 0. 6	4. 4± 0. 7		
E000	4.1.1 0.0	4.1 : 0.5		
5000 ppm	4. 1 ± 0. 6	4. 1 ± 0. 5		
Significant differenc	ce; * : P ≦ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HAN260)				BAIS 5

# TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

1 3. 6 ± 0. 4	2 3. 4 ± 0. 3	3 3. 3 ± 0. 4	2.41.0.4	5	6	7
3.6± 0.4	3. 4 ± 0. 3	3. 3 ± 0. 4	2.4.1.0.4			
			3. 4± 0. 4	3. 5 ± 0. 4	3. 4± 0. 4	3. 6 ± 0. 4
3.5± 0.3	3. 3 ± 0. 4	3.5± 0.4	3. 5± 0. 4	3. 6± 0. 3	3.5± 0.4	3. 6 ± 0. 6
3. 4± 0. 4**	3. 2 ± 0. 2**	3. 2 ± 0. 3	3. 2± 0. 4*	3. 5± 0. 3	3. 3 ± 0. 4	3. 4± 0. 5*
3. 3 ± 0. 5**	3. 4± 0. 5	2. 9 ± 0. 4**	3. 1 ± 0. 3**	3. 3 ± 0. 4**	3. 1 ± 0. 4**	3. 3 ± 0. 4**
3.	4± 0.4**	4± 0.4** 3.2± 0.2**	4± 0.4** 3.2± 0.2** 3.2± 0.3	4± 0.4** 3.2± 0.2** 3.2± 0.3 3.2± 0.4*	4± 0.4** 3.2± 0.2** 3.2± 0.3 3.2± 0.4* 3.5± 0.3	4± 0.4** 3.2± 0.2** 3.2± 0.3 3.2± 0.4* 3.5± 0.3 3.3± 0.4

(HAN260)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

(HAN260)

PAGE: 8

Group Name	Administration	week					
	8	9	10	11	12	13	14
Control	3.7± 0.3	3.8± 0.4	3.8± 0.3	3. 7± 0. 4	3.6± 0.5	3.8± 0.5	3. 7 ± 0. 4
2500 ppm	3.7± 0.4	4.0± 0.3	3.8± 0.4	3.8± 0.3	3. 7± 0. 3	3.8± 0.4	3.6± 0.4
5000 ppm	3.6± 0.4	3.6± 0.3**	3.6± 0.3**	3.5± 0.3**	3. 5 ± 0. 4	3.6± 0.4	3. 5 ± 0. 4
10000 ppm	3. 4± 0. 4**	3. 6± 0. 4**	3. 5 ± 0. 4**	3. 4± 0. 4**	3. 3± 0. 3**	3. 4± 0. 3**	3. 4± 0. 4*
Significant differe	ence ; * : P ≦ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	Administration week													
	18	22	26	30	34	38	42								
ontrol	3. 8± 0. 4	3. 7 ± 0. 5	3.9± 0.5	4. 0± 0. 5	4. 0± 0. 5	4. 0 ± 0. 5	4. 1 ± 0. 5								
500 ppm	3.8± 0.4	3. 7 ± 0. 6	3. 9 ± 0. 7	3.9± 0.5	4. 0± 0. 4	3. 9± 0. 5	4. 0± 0. 6								
000 ppm	3.7± 0.3	3. 6± 0. 3*	3. 7 ± 0. 5	3.6± 0.4**	3. 6± 0. 4**	3. 7± 0. 4**	3.9± 0.5**								
0000 ppm	3. 4± 0. 3**	3. 3± 0. 4**	3. 5 ± 0. 6**	3. 4± 0. 3**	3. 4± 0. 3**	3. 5 ± 0. 4**	3. 4± 0. 3**								

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$ 

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	Administration week												
	46	50	54	58	62	66	70							
Control	4. 0 ± 0. 6	4. 0 ± 0. 5	3. 8 ± 0. 6	4. 0± 0. 4	4. 2 ± 0. 5	4. 1 ± 0. 5	4. 1 ± 0. 8							
2500 ppm	4. 0 ± 0. 6	4.1± 0.6	3. 9 ± 0. 5	4. 0 ± 0. 4	4. 0± 0. 7	4. 1 ± 0. 6	4. 1 ± 0. 7							
maq 0005	3. 7± 0. 6**	3.9± 0.5	3. 7 ± 0. 5	3. 6 ± 0. 4**	3. 9± 0. 6**	3. 9± 0. 5	3.8± 0.4**							
10000 ppm	3. 4± 0. 4**	3.7± 0.5**	3.3± 0.4**	3. 4± 0. 5**	3.6± 0.4**	3.5± 0.4**	3.6± 0.4**							

Significant difference ;  $*: P \leq 0.05$  **:  $P \leq 0.01$ 

Test of Dunnett

(HAN260)

BAIS 5

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week					
	74	78	82	86	90	94	98
		Alt					
ontrol	4. 0 ± 0. 8	4. 1 ± 0. 6	4. 0 ± 0. 5	4. 0± 0. 7	4. 1 ± 0. 6	3.6± 0.8	4. 0± 0. 7
2500 ppm	3.8± 0.6	4.0± 0.7	3.8± 0.7	4. 0± 0. 6	4. 0± 0. 6	3.8± 0.7	3.7± 0.7
5000 ppm	3. 9 ± 0. 5	3. 7 ± 0. 6**	3. 6 ± 0. 6	3. 7± 0. 5	3. 7± 0. 8*	3.5± 0.6	3. 8 ± 0. 6
0000 ppm	3.5± 0.4**	3.7± 0.5**	3.6± 0.7	3.8± 0.5	3.6± 0.6*	3.6± 0.6	3.6± 0.4
			A-1000-1000-1000-100-100-100-100-100-100				
Significant differer	nce ;	* : P ≤ 0.01		Test of Dunnett			
HAN260)							BA

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	week	
	102	104	
	A. C.		
Control	3.9± 0.7	3.9± 0.7	
2500 ppm	3.9± 0.7	4.0± 0.6	
5000 ppm	3.9± 0.8	3. 9 ± 0. 5	
10000 ppm	3. 8 ± 0. 3	3. $9 \pm 0.7$	
Significant differen	co · * · P < 0.05	** · P < 0.01	Tast of Dunnatt
Significant differen	ce; *: P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett

(HAN260)

BAIS 5

# TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

Group Name	Adminis	tration	(weeks)											
	1		2		3		4		5		6		7	
Control	0±	0	<b>0</b> ±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0
1250 ppm	202±	14	187±	12	183±	14	178±	11	178±	13	169±	15	173±	17
2500 ppm	397±	30	379±	29	366±	29	357±	33	361 ±	35	341 ±	26	347±	36
5000 ppm	795±	73	802±	104	771 ±	86	756±	68	739±	87	704±	77	737±	76

(HAN300) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis 8	tration	(weeks)		10		11		12		13		14	
Control	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0	<b>0</b> ±	0
1250 ppm	172 ±	16	169±	15	165±	15	156±	17	150±	17	150±	17	145±	14
2500 ppm	345±	28	333±	30	329±	31	305±	48	$309\pm$	35	$303\pm$	35	299±	29
5000 ppm	718±	54	713±	64	697±	50	673±	61	664±	52	646±	57	649±	57

(HAN300)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name		tration							~ .				40	
	18		22		26		30		34		38		42	
Control	0±	0	0±	0	<b>0</b> ±	0	<b>0</b> ±	0	0 ±	0	0 ±	0	0±	0
250 ppm	132±	19	125±	14	122±	17	118±	14	123±	14	116±	15	115±	14
500 ppm	267 ±	24	258±	27	251 ±	32	242±	31	237 ±	27	232±	32	238 ±	35
5000 ppm	597±	71	554±	62	545±	67	550±	52	544±	46	$549\pm$	90	556±	71

(HAN300)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : MALE														PAGE: 4
Group Name	Adminis 46	tration	(weeks)50		54		58		62		66		70	
Control	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0
1250 ppm	116±	12	116±	13	111±	10	110±	15	115±	14	113±	12	113±	14
2500 ppm	231 ±	36	233±	28	226±	29	$226\pm$	32	229±	32	223±	27	217±	31
5000 ppm	548 ±	53	538±	69	499±	68	518±	52	532 ±	54	529±	55	533±	66

(HAN300) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : MALE														P	AGE: 5
Group Name	Adminis 74	tration	(weeks) 78		82		86		90		94		98		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0	0 ±	0	
1250 ppm	111 ±	17	116±	18	115±	28	110±	24	117±	22	119±	21	125±	24	
2500 ppm	$225\pm$	38	233±	33	226±	35	236±	35	252±	37	243±	37	251 ±	67	
5000 ppm	507±	48	521 ±	56	523±	68	550±	69	$559\pm$	77	548±	88	579±	99	

(HAN300)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

SEX : MALE				
Group Name	Adminis 102	stration	(weeks) 104	
ontrol	0±	0	0±	0
1250 ppm	121±	25	128±	20
2500 ppm	262±	59	264±	64
5000 ppm	575±	92	580±	73
(HAN300)				

# TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : FEMALE															PAGE: 7
Group Name	Adminis 1	stration	(weeks)2		3		4		5		6		7		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
2500 ppm	<b>455</b> ±	32	416±	50	431 ±	45	$419\pm$	38	428±	33	399±	40	411 ±	57	
5000 ppm	$\textbf{885}\pm$	96	820±	59	813±	75	797 ±	76	$837\pm$	58	781 ±	77	$799\pm$	114	
10000 ppm	1794±	222	1785±	254	1546±	171	1596±	141	1674±	181	1558±	154	1621±	148	

(HAN300)

ANIMAL : MOUSE B6D2F1/Crij [Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE														i	PAGE: 8
Group Name	Admini: 8	stration	(weeks)9		10		11		12		13		14		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
2500 ppm	415±	43	430±	39	409±	39	402±	37	393±	28	399±	35	376±	42	
5000 ppm	824±	61	812±	65	792±	58	769±	62	760±	63	775±	68	742 ±	76	
10000 ррт	1635±	181	1676±	157	1633±	145	1577±	153	1511±	124	1559±	126	1543±	172	

(HAN300)

ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	tration														
	18		22		26		30		34		38		42			
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0	0±	0		
2500 ppm	375±	42	344±	49	$346\pm$	48	330±	36	334 ±	36	313±	41	315±	46		
5000 ppm	753±	64	700±	60	699±	74	664±	63	661 ±	69	655±	60	$669\pm$	67		
10000 ppm	1508±	135	1411±	139	1445±	194	1383±	117	1387±	106	1387 ±	144	1363±	112		

(HAN300)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration (weeks)														
	46		50		54		58		62		66		70		
Control	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
2500 ppm	$307\pm$	47	309±	47	288±	36	293±	33	298±	50	293±	45	302±	48	
5000 ppm	644±	71	656±	74	618±	82	$599\pm$	57	643±	85	627±	66	625±	69	
10000 ppm	1362±	131	1443±	161	1303±	150	1339±	182	1394±	147	1329±	125	1357±	135	

PAGE: 10

BAIS 5 (HAN300)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

Group Name	Adminis	stration	(weeks)											
	74		78		82		86		90		94		98	
Control	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0
2500 ppm	281 ±	49	289±	49	281 ±	51	296±	45	300 ±	51	288±	52	283±	55
000 ppm	636±	78	606±	69	610±	101	625±	91	635±	97	588±	87	652±	90
10000 ppm	1330±	164	1410±	191	1410±	261	1450±	188	1442±	363	1438±	347	1443±	241

PAGE: 11

(HAN300) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	tration	(weeks)	
	102		104	
			· · · · · · · · · · · · · · · · · · ·	
Control	0±	0	0±	0
2500 ppm	297±	50	316±	56
5000 ppm	651 ±	136	649±	66
10000 ppm	1478±	130	1546±	255

(HAN300) BAIS 5

# TABLE F 1

HEMATOLOGY: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

40

9.63± 1.31

MEASURE. TIME : 1 SEX : MALE

5000 ppm

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

43. 3 ± 4. 5

Group Name	NO. of Animals	RED BLOOD CELL 1 O⁵∕µl	HEMOGLOB∣N g∕dl	HEMATOCRIT %	MCV f &	MCH pg	MCHC g∕dl	PLATELET 1 O³/μl
Control	31	9. 39± 1. 69	13. 0± 2. 4	41. 7± 7. 0	44. 6 ± 2. 0	13.8± 0.6	31. 1 ± 1. 2	1990± 626
1250 ppm	31	9.36± 1.90	13. 0± 2. 4	41. 6± 7. 4	44. 8± 2. 3	13.9± 0.6	31. 2± 0. 8	2120± 503
2500 ppm	32	9. 44± 0. 91	13. 1 ± 1. 3	42. 0± 3. 7	44. 6± 2. 4	13.9± 0.8	31. 3 ± 0. 5	2099± 354

PAGE: 1

2288 ± 576**

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Dunnett

13.5± 1.5

(HCL070) BAIS 5

45. 2 ± 2. 6

14.1± 0.7

31. 2 ± 0. 9

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	RETICULOCYTE %		
Control	31	3. 2± 2. 9		
250 ppm	31	3. 3± 3. 1		
2500 ppm	32	2. 9± 1. 6		
mqq 000	40	3. 5± 3. 6		
Significar	t difference ;	* : P ≤ 0.05	Test of Dunnett	

(HCL070)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1
SEX : MALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	WBC 1 Օ³ ∕ µℓ	Diffe NEUTRO	erential	WBC (% LYMPHO	()	MONO		EOSINO		BAS0		OTHER		
Control	31	3. 71 ± 1. 81	35±	13	59±	13	3 ±	2	3±	2	<b>0</b> ±	0	0±	0	
1250 ppm	31	3. 24 ± 1. 15	37 ±	15	57±	16	3 ±	1	3±	1	0 ±	0	0±	0	
2500 ppm	32	3. 70 ± 1. 79	30±	10	64±	10	3 ±	2	3±	1	0 ±	0	<b>0</b> ±	0	
5000 ppm	40	3. 81 ± 2. 01	29±	11	66±	12	<b>3</b> ±	2	2±	1**	0 ±	0	0±	1	
Significan	t difference ;	<b>‡</b> : P ≤ 0.05	** : P ≤ 0.	01			Test	of Dunr	nett						

(HCL070)

BAIS 5

# TABLE F 2

HEMATOLOGY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

21

9.77± 0.49*

MEASURE, TIME : 1 SEX : FEMALE

10000 ppm

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

43. 9 ± 2. 1

Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ ∕µℓ	HEMOGLOB∣N g∕dl	HEMATOCRIT %	MCV f &	MCH pg	MCHC g∕dl	PLATELET 1 O³ / μℓ
Control	19	8. 62 ± 1. 93	12.6± 2.2	41. 0± 5. 8	49. 5 ± 9. 4	15.0± 1.8	30.6± 1.8	1075± 551
2500 ppm	29	8.81± 1.81	12.5± 2.4	40. 3± 6. 9	46. 5± 5. 0	14. 3± 0. 9	30.9± 1.4	1143± 511
5000 ppm	22	9. 02± 2. 09	12.8± 2.8	41. 2± 7. 9	46. 5± 4. 5	14. 3± 0. 8	30.9± 1.7	1233± 466

PAGE: 4

1551 ± 583*

13.4± 0.8

(HCL070)

45.0± 1.9*

13.7± 0.6**

30.6± 0.8

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1
SEX : FEMALE REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RETICULOCYTE %	
Control	19	7. 9 ± 12. 5	
2500 ppm	29	4. 7 ± 4. 9	
5000 ppm	22	4. 7 ± 4. 6	
10000 ppm	21	3. 8± 1. 6	

PAGE: 5

(HCL070) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name NO. of WBC Differential WBC (%) Animals  $10^{3}/\mu l$ NEUTRO LYMPH0 MONO EOSINO BAS0 OTHER Control 19 4. 32 ± 3. 99 37± 17 2 4±  $0\pm$ 0 1 ±  $56\pm$ 18  $3\pm$ 2500 ppm 29 4.86 ± 6.94  $27 \pm$ 15  $66\pm$ 17  $3\pm$  $3\pm$ 2  $0\pm$ 0 1 ± 1 5000 ppm 22 3. 44 ± 2. 10  $25\,\pm\,$ 13*  $68\,\pm$ 13  $3\pm$  $2\pm$ 1 1 ± 2 2 ± 10000 ppm 21 2. 30 ± 1. 42  $33 \pm$ 13  $62 \pm$ 13  $3\pm$ 1  $2\pm$ 2  $0\pm$ 0 1 ± Significant difference ;  $*: P \leq 0.05$ ** :  $P \leq 0.01$ Test of Dunnett

PAGE: 6

(HCL070) BAIS 5

# TABLE G 1

BIOCHEMISTRY: MALE

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

TRIGLYCERIDE GLUCOSE T-CHOLESTEROL Group Name NO. of TOTAL PROTEIN ALBUMIN A/G RATIO T-BILIRUBIN g/dl mg/dl mg/dl mg/dl Animals g/dl mg/dl 62 ± 42 Control 31 5.0± 0.7 2. 3 ± 0. 4 0.9 $\pm$ 0. 1 0. 10 ± 0. 02 183± 30 119± 31 1250 ppm 31 5.  $2\pm$ 0. 9 0.9± 131± 52  $58 \pm$ 26 2.4± 0.4 0. 1 0. 11 ± 0. 07  $165 \pm$ 34 2500 ppm 32 5. 1 ± 0. 8 2.5± 0.4 1.0± 0.1 0. 10 ± 0. 02  $187\,\pm$ 35  $131\,\pm$ 48  $66 \pm$ 41 5000 ppm 39 4.9± 0.6 2. 4 ± 0. 3 0.9± 0.1 0. 12 ± 0. 17 181± 38 131± 57  $61 \pm$ 36

PAGE: 1

(HCL074)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1
SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 2

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST U/L		ALT U/L		LDH U∕L		ALP U/L		G−GTP U∕L		CK U/L	
Control	31	210±	42	94±	107	60±	107	318±	310	172±	47	$0\pm$	1	83±	96
1250 ppm	31	219±	70	146±	359	85±	214	419±	633	202±	108	1±	1	73±	47
2500 ppm	32	229±	67	76±	73	42±	74	229±	112	227±	132	0 ±	0	81 ±	74
5000 ppm	39	234±	88	126±	347	55±	129	333±	763	299±	530	0±	1	73±	44

(HCL074) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1
SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	UREA NITROGEN mg∕d£	SODIUM mEq∕£	POTASSIUM mEq∕ℓ	CHLORIDE mEq∕£	CALCIUM mg∕dℓ	INORGANIC PHOSPHORUS mg/dl
Control	31	24. 6± 5. 5	153± 2	4. 3± 0. 3	122± 2	8.9± 0.4	6. 0± 0. 8
250 ppm	31	26. 0± 8. 2	154± 2	4. 3± 0. 2	122 ± 2	9.0± 0.6	5.9± 1.1
500 ppm	32	27.8± 12.1	153± 2	4. 4± 0. 4	122± 3	9. 1± 0. 6	5. 9 ± 1. 0
i000 ppm	39	27. 4± 13. 8	154± 2	4. 2 ± 0. 3	122± 3	8.9± 0.6	6. 0± 0. 8

(HCL074)

BAIS 5

# TABLE G 2

BIOCHEMISTRY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 4

Group Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g∕dl		A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg/dl		T−CHOLE mg∕dl	STEROL	TRIGLYCE mg∕d£	ERIDE
Control	19	4.9±	1. 2	2.5±	0. 4	1.1±	0. 2	0.15±	0. 11	143±	41	85±	38	46±	43
2500 ppm	29	4.8±	1. 1	2.4±	0. 3	1. 0±	0. 2	0.10±	0. 04	139±	26	83±	28	44±	27
5000 ppm	21	5. 1 ±	1. 2	2.4±	0. 2	1.0±	0. 3	0.09±	0. 03	131±	27	93±	29	<b>45</b> ±	31
10000 ppm	21	4.6±	0. 4	2.3±	0. 2	1.0±	0. 2	0. 08±	0. 02**	118±	31	96±	24	21 ±	8*

(HCL074) BAIS 5

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 5

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST U/L		ALT U/L	***************************************	LDH U/L		ALP U/L		G-GTP U∕L		CK U/L	
Control	19	148±	58	187±	318	62±	114	486±	680	289±	176	0±	1	199±	267
2500 ppm	29	152±	43	125±	142	54±	72	309±	287	$359\pm$	214	0±	1	178±	279
5000 ppm	21	169±	48	93±	49	39±	46	255±	142	325±	94	<b>0</b> ±	0	223±	403
10000 ppm	21	177±	44	116±	58	44±	25	362 ±	171	381±	154	0±	1	485±	496*

(HCL074) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 6 INORGANIC PHOSPHORUS Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM mg/dl mEq/l mg/dl mg∕dl Animals mEq/l mEq/l Control 19 24. 4± 12. 4  $153\pm$ 2 4.3± 0. 5 122± 2 9.4± 0.7 6.6± 1.5 2500 ppm 29 24.2± 13.4  $153 \pm$ 2 4.3± 0.4 123± 2 9. 2 ± 0. 7 6. 4 ± 1. 4 5000 ppm 21 24. 2 ± 12. 3  $153\,\pm\,$ 4. 4± 0. 7  $123\,\pm$ 4 9. 1 ± 0. 6 6.6± 1.5 10000 ppm 21 27.8± 13.2 154± 3 4. 4± 0. 4 124± 3 9.3± 0.4 6.8± 1.7 Significant difference;  $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HCL074) BAIS 5

# TABLE H 1

URINALYSIS: MALE

URINALYSIS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of Animals	рН_ 5. 0		6. 5	7. 0	7. 5	8. 0	8. 5	СНІ	Prote - ±						Glu				4+ CHI	Ket				4+ CH	I	0cc —			od !+ 3+	- Cł
										······································		**********	***************************************		***************************************																
Control	32	0	8	17	5	0	2	0		2 18	7	5	0 0			32	0	0	0 0	0	9	8	4 1	0	0		29	2	0	0 1	
1250 ppm	33	0	15	11	2	3	2	0		0 23	7	3	0 0			33	0	0	0 0	0	11	7	5 0	0 0	0		30	1	0	0 2	
500 ppm	33	0	13	6	2	4	6	2	**	5 18	10	0	0 0			33	0	0	0 0	0	12	2	8 1	0	0		32	0	0	0 1	
5000 ppm	40	0	11	16	4	5	4	0		10 25	5	0	0 0	,	*	40	0	0	0 0	0	8	21 1	1 0	) 0	0		39	1	0	0 (	)

(HCL101)

BAIS 5

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : MALE

REPORT TYPE : A1

PAGE: 2

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI	
Control	32	32 0 0 0 0	
1250 ppm	33	33 0 0 0 0	
2500 ppm	33	33 0 0 0 0	
5000 ppm	40	40 0 0 0 0	
Significan	t difference	* : $P \le 0.05$ ** : $P \le 0.01$	Test of CHI SQUARE

(HCL101)

BAIS 5

# TABLE H 2

URINALYSIS: FEMALE

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of Animals	pH_ 5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5 C	Protei - ±				CHI				+ 3+		Ket —				4+ CH1			blo + 2		СНІ
Control	21	0	5	11	2	1	0	2	4 12	2	3 (	0		21	0	0	0 0	0	10	7	4 0	0	0	19	0	0	2 0	
2500 ppm	30	0	10	9	3	7	1	0	9 11	6	3 1	0		30	0	0	0 0	0	10	11	8 1	0	0	30	0	0	0 0	
5000 ppm	22	0	10	5	1	4	2	0	10 11	1	0 (	0 (		22	0	0	0 0	0	8	6	7 1	0	0	22	0	0	0 0	
10000 ppm	22	0	13	4	1	1	1	2	15 7	0	0 (	) ()	**	22	0	0	0 0	0	14	7	1 0	0	0	21	0	0	1 0	

Significant difference ;  $*: P \leq 0.05$ 

lest of CHI SQUARE

(HCL101)

BAIS 5

URINALYSIS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	21	21 0 0 0 0		
2500 ppm	30	30 0 0 0 0		
5000 ppm	22	22 0 0 0 0		
10000 ppm	22	22 0 0 0 0		
Significan	t difference	; *: P ≤ 0.05 **: P ≤ 0.01	Test of CHI SQUARE	

(HCL101)

BAIS 5

# TABLE I 1

GROSS FINDINGS: MALE: ALL ANIMALS

: MOUSE B6D2F1/Crlj[Crj:BDF1] ANIMAL

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

Organ	Findings	Group Name Control NO. of Animals 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)	5000 ppm 50 {%}
skin/app	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 2)
	erosion	0 ( 0)	3 ( 6)	2 ( 4)	1 ( 2)
	scab	1 ( 2)	3 ( 6)	0 ( 0)	0 ( 0)
subcutis	edema	2 ( 4)	0 ( 0)	0 ( 0)	0 ( 0)
	mass	1 ( 2)	2 ( 4)	0 ( 0)	1 ( 2)
lung	white zone	0 ( 0)	2 ( 4)	1 (2)	0 ( 0)
	red zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	nodule	10 (20)	4 ( 8)	8 (16)	9 (18)
	nodular	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
lymph node	enlarged	5 (10)	11 (22)	9 (18)	3 ( 6)
thymus	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	atrophic	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
spleen	enlarged	3 ( 6)	6 (12)	4 ( 8)	1 ( 2)
	white zone	0 ( 0)	0 ( 0)	2 ( 4)	0 ( 0)
	black zone	2 ( 4)	0 ( 0)	1 ( 2)	0 ( 0)
	nodu l e	0 ( 0)	0 ( 0)	1 (2)	0 ( 0)
	deformed	0 ( 0)	0 ( 0)	1 (2)	0 ( 0)
	accentuation of white pulp	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)

1 (2)

0 (0)

1 (2)

0 ( 0)

stomach

tongue

salivary gl

nodule

nodule

forestomach:nodule

enlarged

0 ( 0)

1 (2) 0 ( 0)

5 (10)

0 ( 0)

0 ( 0)

0 (0)

4 (8)

0 ( 0)

0 ( 0)

0 ( 0)

1 (2)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

)rgan	Findings	Group Name Control NO. of Animals 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)	5000 ppm 50 (%)
stomach	glandular stomach:ulcer	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	glandular stomach:thick	3 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
small intes	nodu i e	1 ( 2)	2 ( 4)	0 ( 0)	0 ( 0)
arge intes	black zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	thick	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	invagination	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
iver	glandular stomach:ulcer glandular stomach:thick  l intes nodule  te intes black zone	0 ( 0)	0 ( 0)	2 ( 4)	2 ( 4)
	white zone	3 (6)	3 ( 6)	3 (6)	4 ( 8)
	red zone	0 ( 0)	2 ( 4)	1 ( 2)	0 ( 0)
i	nodule	19 (38)	17 ( 34)	17 ( 34)	13 ( 26)
	rough	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
idney	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 2)
	white zone	1 ( 2)	0 ( 0)	2 ( 4)	3 ( 6)
	nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	cyst	0 ( 0)	0 ( 0)	0 ( 0)	1 (2)
	deformed	2 ( 4)	2 ( 4)	4 ( 8)	2 ( 4)
	hydronephrosis	3 ( 6)	6 (12)	7 (14)	4 ( 8)
rin bladd	brown	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	red zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	yellow zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	brown zone	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	urine:marked retention	1 ( 2)	4 ( 8)	3 (6)	3 (6)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

rgan	Findings	Group Name Control NO. of Animals 50 (%)	1250 ppm 50 (%)	2500 ppm 50 (%)	5000 ppm 50 (%)
ituitary	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	red zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
estis	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
pididymis	nodule	1 ( 2)	0 ( 0)	0 ( 0)	1 ( 2)
arder gl	enlarged	1 ( 2)	2 ( 4)	1 ( 2)	1 ( 2)
	nodule	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
iscle	nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
ne	nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
eura	thick	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
diastinum	mass	1 ( 2)	2 ( 4)	1 ( 2)	0 ( 0)
ritoneum	thick	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
troperit	mass	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
odominal c	hemorrhage	0 ( 0)	1 ( 2)	1 ( 2)	1 ( 2)
	ascites	3 ( 6)	1 ( 2)	1 ( 2)	0 ( 0)
oracic ca	pleural fluid	4 ( 8)	4 ( 8)	3 ( 6)	2 ( 4)
her	ear:nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	lower jaw:nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
ole body	anemíc	1 ( 2)	0 ( 0)	2 ( 4)	0 ( 0)

# TABLE I 2 GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

gan	Findings	Group Name Control NO. of Animals 18 (%)	1250 ppm 18 (%)	2500 ppm 17 (%)	5000 ppm 10 (%)
in/app	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
	erosion	0 ( 0)	1 (6)	1 (6)	1 (10)
	scab	1 ( 6)	2 (11)	0 ( 0)	0 ( 0)
cutis	edema	2 (11)	0 ( 0)	0 ( 0)	0 ( 0)
	mass	0 ( 0)	2 (11)	0 ( 0)	1 (10)
g	white zone	0 ( 0)	1 ( 6)	0 ( 0)	0 ( 0)
	red zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	nodu l e	5 (28)	0 ( 0)	3 (18)	1 (10)
	nodular	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
ph node	enlarged	3 (17)	3 (17)	7 (41)	1 (10)
mus	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
	atrophic	1 ( 6)	1 (6)	0 ( 0)	0 ( 0)
een	enlarged	3 (17)	4 (22)	4 (24)	1 (10)
	white zone	0 ( 0)	0 ( 0)	2 (12)	0 ( 0)
	black zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	nodule	0 ( 0)	0 ( 0)	1 ( 6)	0 ( 0)
igue	nodu l e	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
ivary gl	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
nach	forestomach: nodule	0 ( 0)	1 (6)	1 (6)	2 ( 20)
	glandular stomach:ulcer	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
II intes	nodule	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
ge intes	black zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

### GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

)rgan	Findings	Group Name Control NO. of Animals 18 (%)	1250 ppm 18 (%)	2500 ppm 17 (%)	5000 ppm 10 (%)
large intes	thick	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	invagination	0 ( 0)	0 ( 0)	1 (6)	0 ( 0)
liver	enlarged	0 ( 0)	0 ( 0)	2 (12)	2 (20)
	white zone	3 (17)	0 ( 0)	3 (18)	4 (40)
	red zone	0 ( 0)	1 ( 6)	0 ( 0)	0 ( 0)
	nodule	6 (33)	7 (39)	9 (53)	3 (30)
	rough	0 ( 0)	0 ( 0)	1 ( 6)	0 ( 0)
cidney	enlarged	0 ( 0)	0 ( 0)	1 ( 6)	1 (10)
	white zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (10)
	hydronephrosis	2 (11)	2 (11)	4 (24)	1 (10)
ırin bladd	red zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	urine:marked retention	1 ( 6)	4 (22)	3 (18)	2 (20)
epididymis	nodule	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
larder gl	enlarged	0 ( 0)	1 (6)	0 ( 0)	0 ( 0)
nuscle	nodu l e	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
leura	thick	0 ( 0)	0 ( 0)	1 (6)	0 ( 0)
nediastinum	mass	1 ( 6)	2 (11)	1 (6)	0 ( 0)
eritoneum	thick	0 ( 0)	0 ( 0)	1 (6)	0 ( 0)
etroperit	mass	0 ( 0)	0 ( 0)	1 (6)	0 ( 0)
ıbdominal c	hemorrhage	0 ( 0)	1 (6)	1 (6)	1 (10)
	ascites	3 (17)	0 ( 0)	1 (6)	0 ( 0)
horacic ca	pleural fluid	4 (22)	4 (22)	3 (18)	2 (20)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name NO. of Animals	Control 18 (%)	1250 ppm 18 (%)	2500 ppm 17 (%)	5000 ppm 10 (%)
other	lower jaw:nodule		0 ( 0)	1 ( 6)	0 ( 0)	0 ( 0)
whole body	anemic		1 (6)	0 ( 0)	2 (12)	0 ( 0)
(HPT080)						BAIS 5

# TABLE I 3

GROSS FINDINGS: MALE: SACRIFICED ANIMALS

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

gan	Findings	Group Name Control NO. of Animals 32 (%)	1250 ppm 32 (%)	2500 ppm 33 (%)	5000 ppm 40 (%)
in/app	nodule	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)
	erosion	0 ( 0)	2 ( 6)	1 ( 3)	0 ( 0)
	scab	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
ocutis	mass	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
g	white zone	0 ( 0)	1 ( 3)	1 ( 3)	0 ( 0)
	nodule	5 (16)	4 (13)	5 (15)	8 (20)
ıph node	enlarged	2 ( 6)	8 (25)	2 ( 6)	2 ( 5)
een	enlarged	0 ( 0)	2 ( 6)	0 ( 0)	0 ( 0)
	black zone	1 ( 3)	0 ( 0)	1 ( 3)	0 ( 0)
	deformed	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)
	accentuation of white pulp	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
ivary gl	nodu l e	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
mach	forestomach:nodule	0 ( 0)	0 ( 0)	3 (9)	3 ( 8)
	glandular stomach:thick	3 ( 9)	0 ( 0)	0 ( 0)	0 ( 0)
II intes	nodu l e	0 ( 0)	2 ( 6)	0 ( 0)	0 ( 0)
er	white zone	0 ( 0)	3 (9)	0 ( 0)	0 ( 0)
	red zone	0 ( 0)	1 ( 3)	1 ( 3)	0 ( 0)
	nodule	13 (41)	10 (31)	8 (24)	10 (25)
ney	white zone	1 ( 3)	0 ( 0)	2 ( 6)	2 ( 5)
	nodule	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	cyst	0 ( 0)	0 ( 0)	0 ( 0)	1 (3)
	deformed	2 ( 6)	2 ( 6)	4 (12)	2 (5)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 2

rgan	Findings	Group Name Control NO. of Animals 32 (%)	1250 ppm 32 (%)	2500 ppm 33 (%)	5000 ppm 40 (%)
idney	hydronephrosis	1 ( 3)	4 (13)	3 ( 9)	3 (8)
rin bladd	brown	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
yellow zone	yellow zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
	brown zone	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)
	urine:marked retention	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
tuitary	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
	red zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
stis	enlarged	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)
ididymis	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
rder gl	enlarged	1 ( 3)	1 ( 3)	1 ( 3)	1 ( 3)
	nodule	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)
ne	nodule	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
ominal c	ascites	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
her	ear:nodule	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)

(HPT080)

BAIS 5

# TABLE I 4

GROSS FINDINGS: FEMALE: ALL ANIMALS

STUDY NO. : 0740 ANIMAL : MOUSE

: MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 50 (%)	2500 ppm 50 (%)	5000 ppm 50 (%)	10000 ppm 50 (%)
in/app	scab	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
bcutis	edema	4 ( 8)	3 ( 6)	6 (12)	2 ( 4)
	dry	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	mass	3 ( 6)	1 ( 2)	1 (2)	3 ( 6)
ing	red	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	white zone	1 ( 2)	1 ( 2)	1 ( 2)	0 ( 0)
	red zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	brown zone	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	nodu l e	5 (10)	2 ( 4)	1 ( 2)	2 ( 4)
mph node	enlarged	16 (32)	15 ( 30)	13 ( 26)	6 (12)
leen	enlarged	19 (38)	13 (26)	10 (20)	5 (10)
	white zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	nodu l e	2 ( 4)	1 ( 2)	1 ( 2)	0 ( 0)
	accentuation of white pulp	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
art	white zone	0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)
ngue	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
livary gl	nodu l e	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
omach	forestomach:nodule	0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)
	glandular stomach:black zone	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	glandular stomach:red zone	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
all intes	gas	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
ver	enlarged	8 (16)	6 (12)	6 (12)	5 (10)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

)rgan	Findings	Group Name Control NO. of Animals 50 (%)	2500 ppm 50 (%)	5000 ppm 50 (%)	10000 ppm 50 (%)
liver	white zone	9 (18)	6 (12)	8 (16)	3 ( 6)
	red zone	2 ( 4)	1 ( 2)	3 ( 6)	3 ( 6)
	nodule	11 ( 22)	8 (16)	4 ( 8)	5 (10)
	rough	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
gall bladd	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
pancreas	nodule	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
cidney	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	atrophic	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	small	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	white	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	white zone	0 ( 0)	2 ( 4)	1 ( 2)	0 ( 0)
	deformed	3 ( 6)	2 ( 4)	8 (16)	0 ( 0)
	hydronephrosis	2 ( 4)	3 ( 6)	2 ( 4)	0 ( 0)
ırın bladd	urine:marked retention	0 ( 0)	0 ( 0)	0 ( 0)	3 ( 6)
ituitary	enlarged	2 ( 4)	2 ( 4)	1 ( 2)	0 ( 0)
	white zone	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	red zone	1 ( 2)	3 ( 6)	1 ( 2)	0 ( 0)
	nodu l e	3 ( 6)	1 (2)	0 ( 0)	1 ( 2)
drenal	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 2)
vary	enlarged	8 (16)	3 ( 6)	8 (16)	5 (10)
	nodu l e	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	cyst	7 (14)	7 (14)	4 ( 8)	8 (16)

STUDY NO. : 0740
ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

Organ	Findings	Group Name Control NO. of Animals 50 (%)	2500 ppm 50 (%)	5000 ppm 50 (%)	10000 ppm 50 (%)
uterus	nodul e	16 ( 32)	10 (20)	8 (16)	13 ( 26)
Harder gl	enlarged	3 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	nodule	0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)
muscle	nodu i e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
bone	nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
pleura	nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	thick	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
mediastinum	mass	2 ( 4)	3 ( 6)	2 ( 4)	2 ( 4)
peritoneum	nodu l e	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
	mass	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	thick	2 ( 4)	2 ( 4)	1 ( 2)	3 (6)
retroperit	mass	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
abdominal c	hemorrhage	2 ( 4)	1 ( 2)	0 ( 0)	0 ( 0)
	ascites	7 (14)	6 (12)	6 (12)	11 ( 22)
thoracic ca	hemorrhage	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	pleural fluid	10 (20)	11 (22)	8 (16)	4 ( 8)
other	hindlimb:nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)

TABLE I 5
GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

gan	Findings	Group Name Control NO. of Animals 30 (%)	2500 ppm 21 (%)	5000 ppm 28 (%)	10000 ppm 29 (%)
ocutis	edema	4 (13)	3 (14)	6 (21)	2 ( 7)
	dry	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
	mass	2 ( 7)	1 ( 5)	1 (4)	1 ( 3)
ıg	red	0 ( 0)	1 ( 5)	0 ( 0)	0 ( 0)
	white zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
	red zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
	brown zone	0 ( 0)	1 ( 5)	0 ( 0)	0 ( 0)
	nodule	3 (10)	0 ( 0)	0 ( 0)	0 ( 0)
ph node	enlarged	9 (30)	7 (33)	7 (25)	3 (10)
een	enlarged	14 ( 47)	7 (33)	7 (25)	4 (14)
	white zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
	nodule	0 ( 0)	1 (5)	0 ( 0)	0 ( 0)
rt	white zone	0 ( 0)	1 (5)	1 ( 4)	0 ( 0)
gue	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
ivary gl	nodule	0 ( 0)	1 ( 5)	0 ( 0)	0 ( 0)
mach	glandular stomach:black zone	0 ( 0)	0 ( 0)	1 (4)	0 ( 0)
	glandular stomach:red zone	0 ( 0)	1 (5)	0 ( 0)	0 ( 0)
II intes	gas	0 ( 0)	1 ( 5)	0 ( 0)	0 ( 0)
er	enlarged	7 (23)	6 (29)	6 (21)	4 (14)
	white zone	7 (23)	4 (19)	6 (21)	3 (10)
	red zone	2 ( 7)	0 ( 0)	2 ( 7)	1 (3)
	nodule	6 (20)	8 (38)	3 (11)	4 (14)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control NO. of Animals 30 (%)	2500 ppm 21 (%)	5000 ppm 28 (%)	10000 ppm 29 (%)
liver	rough	1 ( 3)	1 ( 5)	0 ( 0)	0 ( 0)
pancreas	nodule	0 ( 0)	0 ( 0)	1 (4)	0 ( 0)
kidney	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 (3)
K ( dire)	atrophic	1 (3)	0 ( 0)	0 ( 0)	0 ( 0)
	sma	0 ( 0)	0 ( 0)	1 (4)	0 ( 0)
	white zone	0 ( 0)	1 ( 5)	1 (4)	0 ( 0)
	deformed	0 ( 0)	1 ( 5)	6 (21)	0 ( 0)
	hydronephrosis	2 (7)	2 (10)	2 ( 7)	0 ( 0)
urin bladd	urine:marked retention	0 ( 0)	0 ( 0)	0 ( 0)	3 (10)
oituitary	enlarged	1 (3)	1 ( 5)	0 ( 0)	0 ( 0)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nodule	1 (3)	0 ( 0)	0 ( 0)	0 ( 0)
adrenal	enlarged	0 ( 0)	0 ( 0)	1 (4)	1 ( 3)
ovary	enlarged	8 (27)	3 (14)	8 (29)	5 (17)
JV 41 J	nodule	0 (0)	1 (5)	0 ( 0)	0 ( 0)
	cyst	4 (13)	2 (10)	2 ( 7)	3 (10)
uterus	nodule	11 (37)	7 (33)	7 (25)	10 (34)
larder gl	enlarged	1 (3)	0 ( 0)	0 ( 0)	0 ( 0)
iui uci gi	nodule	0 ( 0)	1 ( 5)	1 (4)	0 ( 0)
oone	nodule	1 (3)	0 ( 0)	0 ( 0)	0 ( 0)
leura	nodule	1 (3)	0 ( 0)	0 ( 0)	0 ( 0)
ricul d				1 (4)	0 ( 0)
	thick	0 ( 0)	0 (0)		
mediastinum	mass	2 ( 7)	2 (10)	1 ( 4)	0 ( 0)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

PAGE: 6

Organ	Findings	Group Name Control NO. of Animals 30 (%)	2500 ppm 21 (%)	5000 ppm 28 (%)	10000 ppm 29 (%)
peritoneum	nodule	1 ( 3)	1 ( 5)	0 ( 0)	0 ( 0)
	mass	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
	thick	1 ( 3)	1 (5)	1 ( 4)	3 (10)
abdominal c	hemorrhage	2 ( 7)	1 (5)	0 ( 0)	0 ( 0)
	ascites	7 (23)	5 (24)	5 (18)	11 ( 38)
horacic ca	hemorrhage	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
	pleural fluid	10 (33)	10 (48)	7 (25)	4 (14)
other	hindlimb:nodule	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)

(HPT080)

BAIS 5

## TABLE I 6

GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 20 (%)	2500 ppm 29 (%)	5000 ppm 22 (%)	10000 ppm 21 (%)
cin/app	scab	0 ( 0)	0 ( 0)	1 ( 5)	0 ( 0)
bcutis	mass	1 ( 5)	0 ( 0)	0 ( 0)	2 (10)
ıg	white zone	0 ( 0)	1 ( 3)	1 (5)	0 ( 0)
	nodule	2 (10)	2 ( 7)	1 (5)	2 (10)
nph node	enlarged	7 (35)	8 (28)	6 (27)	3 (14)
leen	enlarged	5 ( 25)	6 (21)	3 (14)	1 ( 5)
	nodule	2 (10)	0 ( 0)	1 (5)	0 ( 0)
	accentuation of white pulp	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
livary gl	nodule	1 ( 5)	0 ( 0)	0 ( 0)	0 ( 0)
omach	forestomach:nodule	0 ( 0)	1 ( 3)	1 ( 5)	0 ( 0)
ver .	enlarged	1 ( 5)	0 ( 0)	0 ( 0)	1 ( 5)
	white zone	2 (10)	2 ( 7)	2 ( 9)	0 ( 0)
	red zone	0 ( 0)	1 ( 3)	1 (5)	2 (10)
	nodule	5 ( 25)	0 ( 0)	1 ( 5)	1 ( 5)
li bladd	enlarged	0 ( 0)	0 ( 0)	1 ( 5)	0 ( 0)
dney	white	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	white zone	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	deformed	3 (15)	1 ( 3)	2 ( 9)	0 ( 0)
	hydronephrosis	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
uitary	enlarged	1 ( 5)	1 ( 3)	1 ( 5)	0 ( 0)
	white zone	0 ( 0)	0 ( 0)	1 ( 5)	0 ( 0)
	red zone	1 ( 5)	3 (10)	1 ( 5)	0 ( 0)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

PAGE: 4

rgan	Findings	Group Name Control NO. of Animals 20 (%)	2500 ppm 29 (%)	5000 ppm 22 (%)	10000 ppm 21 (%)
ituitary	nodul e	2 (10)	1 ( 3)	0 ( 0)	1 ( 5)
vary	cyst	3 (15)	5 (17)	2 ( 9)	5 ( 24)
terus	nodule	5 (25)	3 (10)	1 ( 5)	3 (14)
larder gl	enlarged	2 (10)	0 ( 0)	0 ( 0)	0 ( 0)
iscle	nodu l e	0 ( 0)	0 ( 0)	1 ( 5)	0 ( 0)
diastinum	mass	0 ( 0)	1 ( 3)	1 (5)	2 (10)
eritoneum	thick	1 ( 5)	1 ( 3)	0 ( 0)	0 ( 0)
etroperit	mass	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
odominal c	ascites	0 ( 0)	1 ( 3)	1 ( 5)	0 ( 0)
oracic ca	pleural fluid	0 ( 0)	1 ( 3)	1 ( 5)	0 ( 0)

(HPT080)

BAIS 5

# TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	Body Weight	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS	
Control	32	41. 7 ± 7. 5	0. 013± 0. 003	0. 217± 0. 036	0. 206 ± 0. 027	0. 232± 0. 156	0. 589 ± 0. 079	
1250 ppm	31	37.8± 7.8	0. 012± 0. 002	0. 224± 0. 031	0. 201 ± 0. 022	0. 219± 0. 058	0. 961 ± 2. 099	
2500 ppm	32	39. 3± 9. 0	0. 011± 0. 002	0. 249 ± 0. 137	0. 206± 0. 024	0. 212± 0. 040	0. 888± 1. 528	
5000 ppm	40	32. 5 ± 4. 4**	0. 012± 0. 003	0. 221 ± 0. 027	0. 189± 0. 020**	0. 224± 0. 099	0. 687± 0. 506	
Significan	t difference ;	* : P ≤ 0.05 ** :	P ≤ 0.01	Test	of Dunnett			

BAIS 5 (HCL040)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : MALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

UNIT: g					PAGE : 2
Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	32	0. 088± 0. 033	1. 643 ± 0. 340	0. 460± 0. 015	
1250 ppm	31	0. 205 ± 0. 649	1. 672 ± 0. 630	0. 459 ± 0. 014	
2500 ppm	32	0. 093± 0. 045	1. 675± 0. 499	0. 460± 0. 016	
5000 ppm	40	0. 090± 0. 047	1. 545 ± 0. 551	0. 465 ± 0. 017	
Significan	t difference ;	* : P ≤ 0.05 **	: P ≤ 0. 01	Test of Dunnett	

(HCL040)

BAIS 5

# TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	Body Weight	ADRENALS	OVAR	IES	HEAR	T	LUNG	S	KIDN	EYS
Control	19	30. 1 ± 5. 2	0. 014± 0. 00	3 0.057±	0. 034	0. 156±	0. 022	0. 212±	0. 078	0. 403±	0. 040
2500 ppm	29	28. 6± 3. 5	0. 015± 0. 00	3 0. 057±	0. 034	0. 158±	0. 023	0. 210±	0. 052	0. 478±	0. 339
mqq 000	22	26.6± 4.2*	0. 015± 0. 00	4 0. 054±	0. 053	0. 143±	0. 015	0. 221±	0. 078	0. 374±	0. 040
10000 ppm	21	23. 0± 1. 5**	0. 012 ± 0. 00	2* 0. 046±	0. 026	0. 123±	0. 010**	0.182±	0. 019	0. 320±	0. 029**

(HCL040)

BAIS 5

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

PAGE: 4

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	19	0. 303± 0. 242	1. 888± 1. 168	0. 466 ± 0. 019	
2500 ppm	29	0. 295± 0. 335	1.569± 0.517	0. 476± 0. 025	
5000 ppm	22	0. 231 ± 0. 274	1. 415± 0. 309	$0.471 \pm 0.020$	
10000 ppm	21	0. 110± 0. 105**	1. 587 ± 0. 428	0. 456 ± 0. 017	
Significan	nt difference ;	* : P ≤ 0.05 **	: P ≤ 0.01	Test of Dunnett	

(HCL040)

BAIS 5

# TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE

UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	Body Weight (g)	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS	
Control	32	41. 7± 7. 5	$0.032\pm\   0.012$	0. 537± 0. 137	0. 510± 0. 119	0. 606± 0. 587	1. 455± 0. 336	
1250 ppm	31	37.8± 7.8	0. 033± 0. 009	0. 611± 0. 121*	0. 553 ± 0. 123	0. 622± 0. 325	2. 524 ± 5. 125*	
2500 ppm	32	39. 3± 9. 0	0. 031 ± 0. 009	0. 667± 0. 392	0. 546 ± 0. 116	0. 570± 0. 166	2. 365 ± 4. 076	
5000 ppm	40	32.5± 4.4**	0. 037± 0. 008	0.690± 0.113**	0. 588± 0. 072**	0. 716± 0. 405**	2. 095± 1. 382**	

(HCL042)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

011111					
Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	32	0. 221± 0. 108	4. 075± 1. 174	1. 143± 0. 240	
1250 ppm	31	0. 571± 1. 800	4. 606 ± 2. 053	1. 264± 0. 265	
2500 ppm	32	0. 257± 0. 165	4. 494± 1. 877	1. 237± 0. 310	
5000 ppm	40	0. 284± 0. 168	4. 872± 2. 219 <b>*</b> *	1. 456± 0. 195**	
Significan	t difference ;	* : P ≤ 0.05 ** :	P ≤ 0.01	Test of Dunnett	
(HCI 042)					BAIS 5

PAGE: 2

(HCL042)

## TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

PAGE: 3

30. 1 ± 5. 2 28. 6 ± 3. 5	0. 048± 0. 011 0. 054± 0. 010	0. 194± 0. 129 0. 200± 0. 114	$\begin{array}{cccc} 0.\ 536 \pm & 0.\ 141 \\ \\ 0.\ 558 \pm & 0.\ 092 \end{array}$	0.739± 0.377	1. 374± 0. 277 1. 701± 1. 301	
28. 6± 3. 5	0. 054± 0. 010	0. 200± 0. 114	0 558+ 0 092	0 745+ 0 206	1 701 ± 1 201	
			0. 000 = 0. 002	0. 170 0. 200	1. 101 == 1. 301	
26.6± 4.2*	0. 056± 0. 012	0. 192± 0. 145	0. 547 ± 0. 069	0. 872± 0. 448	1. 429± 0. 224	
23. 0± 1. 5**	0. 054± 0. 007	0. 200± 0. 116	0. 536± 0. 059	0. 791 ± 0. 084	1.391± 0.118	
	23. 0± 1. 5**	23. 0± 1. 5** 0. 054± 0. 007	23. 0± 1. 5** 0. 054± 0. 007 0. 200± 0. 116	23. 0 ± 1. 5** 0. 054 ± 0. 007 0. 200 ± 0. 116 0. 536 ± 0. 059	23. 0± 1. 5** 0. 054± 0. 007 0. 200± 0. 116 0. 536± 0. 059 0. 791± 0. 084	23. 0 ± 1. 5** 0. 054 ± 0. 007 0. 200 ± 0. 116 0. 536 ± 0. 059 0. 791 ± 0. 084 1. 391 ± 0. 118

(HCL042)

BAIS 5

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

NO. of Animals	SPLEEN	LIVER	BRAIN .
19	1. 033± 0. 821	6. 282± 3. 609	1. 597 ± 0. 309
29	1. 048± 1. 197	5. 513± 1. 790	1. 684± 0. 202
22	0. 900± 1. 084	5. 409 ± 1. 405	1. 806± 0. 273*
21	0. 474± 0. 438≠	6. 882 ± 1. 705*	1. 986± 0. 129**
	An imals  19  29  22	19 1. 033 ± 0. 821 29 1. 048 ± 1. 197 22 0. 900 ± 1. 084	Animals  19 1. 033± 0. 821 6. 282± 3. 609  29 1. 048± 1. 197 5. 513± 1. 790  22 0. 900± 1. 084 5. 409± 1. 405

Significant difference ;  $*: P \leq 0.05$ 

** : P ≤ 0.01

Test of Dunnett

PAGE: 4

BAIS 5 (HCL042)

#### TABLE L 1

## HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-

REPORT TYPE : A1 SEX : MAL

TPE : AI : MALE

		up Name Control of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Integumentar	/ system/appandage)				
skin/app	ulcer	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 3 0 0 (0) (6) (0) (0)	<50> 0 2 0 0 ( 0) ( 4) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)
	erosion	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	scab	1 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
subcutis	inflammation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
(Respiratory :	system)				
nasal cavit	eosinophilic change:olfactory epithelium	<50> 11 0 0 0 (22) (0) (0) (0)	<50> 15 1 0 0 (30) (2) (0) (0)	<50> 13 0 0 0 (26) (0) (0) (0)	<50> 10 0 0 0 (20) (0) (0) (0)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : MALE

PAGE: 2

	Group N	lame Control Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
rgan	Findings	1+ 2+ 3+ 4+ (%) (%) (%) (%)			
Respiratory s	system)				
asal cavit	eosinophilic change:respiratory epithelium	<50> 13 1 0 0 (26) (2) (0) (0)	<50> 14 2 0 0 (28) (4) (0) (0)		<50> 13 1 0 0 (26) (2) (0) (0)
	inflammation:respiratory epithelium	0 0 1 0 (0) (2) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	0 1 0 0 ( 0) ( 0)
	respiratory metaplasia:olfactory epithelium	6 0 0 0 0 (12) (0) (0) (0)	8 0 0 0 (16) ( 0) ( 0) ( 0)	4 0 0 0 0 (8) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)
	respiratory metaplasia:gland	10 2 0 0 (20) (4) (0) (0)	13 4 0 0 (26) (8) (0) (0)	10 2 0 0 (20) (4) (0) (0)	7 0 0 0 (14) (0) (0) (0)
	hyperplasia:transitional epithelium	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	exudate:olfactory region	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
asopharynx	eosinophilic change	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2 1 0 0 ( 4) ( 2) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
ung	edema	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \)
 \( b \)
 \( a \)
 \( a \)
 \( a \)
 \( a \)
 \( b \)
 \( a \)
 \( b \)
 \( a \)
 \( a \)
 \( b \)
 \( a \)
 \( a \)
 \( b \)
 \( a \)
 \( b \)
 \( a \)

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

PAGE: 3

REPORT TYPE : A1 SEX

: MALE

		Group Name No. of Animals on Si		ontrol 50	1			1250	ppm 50					25	00 р	om 50				50	000 pg	pm 50		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	(	2+ %)	3+ (%)		4+ %) 		1+ (%)	2+ (%)			4+ (%)		1+ %)	2+ (%)			4+ (%)
{Respiratory	system)																							
lung	deposit of amyloid		6 ( 12)	<50 2 ( 4)	)> 0 ( 0)	0 ( 0)	4 ( 8)	( 1	<50 5 0) (	0	(	0 0)	( 1	5 (0)		50> 0 ( 0	) (	0 0)	1 ( 2	0 0)	6	50> 0 ( 0)		0 0)
	inflammatory infiltration		1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)	1 ( 2)	(	4 8) (	0 0)	(	0 0)	(	3 6) (	2 4)	( 0	) (	0 0)	(	2 4)	1 ( 2)	0 ( 0)	i (	0 0)
	lymphocytic infiltration		0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	0 0) (	0 0)	(	0 0)	(	1 2) (	0 0)	( 0	) (	0 0)	(	0 0)	0 ( 0)	( 0)	ı (	0 0)
	bronchiolar-alveolar cell hyperplasi	a	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	0 0) (	0 0)	(	0 0)	(	3 6) (	0 0)	( 0	) (	0 0)	(	1 2)	0 ( 0)	( 0)	, (	0 0)
	eosinophilic change:bronchial epithe	lium	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)	(	1 2) (	0 0)	(	0 0)	(	1 2) (	0 0)	( 0	) (	0 0)	(	0 0)	0 ( 0)	0 ( 0)	ı (	0 0)
	accumulation:macrophage		0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	3 6) (	0 0)	(	0 0)	(	0 0) (	1 2)	( 0	) (	0 0)	(	0 0)	0 ( 0)	( 0)	(	0 0)
(Hematopoieti	c system)																							
bone marrow	congestion		1 ( 2)	<50 0 ( 0)	0	0 ( 0)	0 ( 0)	(	<50 0 0) (	0 0 0)	(	0 0)	(	0 0) (	0 0 0)	50> 0 ( 0	) (	0 0)		0 0)	0	50> 0 ( 0)		0 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

		Group Name Control No. of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoieti	c system}				
bone marrow	increased hematopoiesis	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 6 0 0 0 (12) ( 0) ( 0) ( 0)	<50> 5 0 0 0 (10) (0) (0) (0)	<pre></pre>
	granulopoiesis:increased	5 0 0 0 (10) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	6 0 0 0 (12) (0) (0) (0)	3 0 0 0 0 (6) (6) (7)
lymph node	lymphadenitis	(50) 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<pre></pre>	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>
thymus	atrophy	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<pre></pre>	<pre></pre>	<pre></pre>
spleen	atrophy	(50) 0 2 1 0 ( 0) ( 4) ( 2) ( 0)	<50> 0 2 1 0 ( 0) ( 4) ( 2) ( 0)	<50> 0 1 1 0 ( 0) ( 2) ( 2) ( 0)	(50) 0 0 1 0 (0) (0) (2) (0)
	deposit of amyloid	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
	deposit of melanin	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX

: MALE

PAGE: 5

Organ	Findings_	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoiet	ic system)				
spleen	fibrosis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 1 0 0 0 0 ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	extramedullary hematopoiesis	4 8 2 0 ( 8) ( 16) ( 4) ( 0)	9 5 2 0 (18) (10) (4) (0)	8 6 0 0 (16) (12) (0) (0)	6 6 0 0 (12) (12) (0) (0)
	follicular hyperplasia	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)
(Circulatory	system)				
heart	deposit of amyloid	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	<pre></pre>	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	<50> 6 0 0 0 (12) ( 0) ( 0) ( 0)
	mineralization	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)
	arteritis	1 3 0 0 (2) (6) (0) (0)	1 0 0 0 (2) (0) (0)	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 6

		Group Name Control No. of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sy	stem)				
tooth	dysplasia	<50> 2 1 0 0 ( 4) ( 2) ( 0) ( 0)	<50> 3 1 0 0 ( 6) ( 2) ( 0) ( 0)	<50> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)	<50> 0 2 0 0 ( 0) ( 4) ( 0) ( 0)
	odontogenic cyst	0 0 0 0 0 (0) (0) (0)	0 1 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (7) (7)
tongue	arteritis	<50> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
salivary gl	fibrosis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
stomach	deposit of amyloid	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	(50) 6 0 0 0 (12) (0) (0) (0)	(50) 6 2 0 0 (12) (4) (0) (0)	<pre></pre>
	erosion:forestomach	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)
	hyperplasia:forestomach	1 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	3 1 0 0 ( 6) ( 2) ( 0) ( 0)	1 0 0 0 0 (2) (3) (6)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a \]
 \[
 a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1

SEX

: MALE

PAGE: 7

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sys	steml				
stomach	erosion:ġlandular stomach	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	<pre></pre>	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)
	hyperplasia:glandular stomach	22 4 0 0 ( 44) ( 8) ( 0) ( 0)	26 10 2 0 * (52) (20) (4) (0)	23 13 2 0 * ( 46) ( 26) ( 4) ( 0)	30 10 2 0 ** (60) (20) (4) (0)
small intes	deposit of amyloid	<50> 32 0 0 0 (64) (0) (0) (0)	35 2 0 0 (70) (4) (0) (0)	<50> 34 3 0 0 (68) (6) (0) (0)	<pre></pre>
	inflammatory infiltration	1 0 0 0 0 (2) (3) (4)	0 1 0 0 ( 0) ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	0 0 0 0 0 ( 0) ( 0)	0 1 0 0 ( 0) ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
large intes	foreign body granuloma	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>
	hyperplasia	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (2) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

PAGE: 8

		Group Name Control No. of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive s	system)				
liver	angiectasis	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	necrosis:central	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	1 0 0 0 (2) (2) (0) (0)
	necrosis:focal	3 0 0 0 0 (6) (6) (7)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
	fatty change:central	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammatory cell nest	8 0 0 0 (16) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	6 0 0 0 0 (12) (0) (0) (0)
	clear cell focus	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

(a) a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX

: MALE

PAGE: 9 Group Nama Control 1250 nnm 2500 nom 5000 nnm

	Group Name Control No. of Animals on Study 50	1250 ppm 2500 ppm 5000 50 50		5000 ppm 50	
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	system)				
liver	acidophilic cell focus	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	basophilic cell focus	0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)
	bile ductular proliferation	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Urinary sys	stem)				
kidney	atrophy	(50) 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)
	hyaline droplet	2 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 (2) (3) (4)
	hyaline cast	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (6)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

PAGE: 10

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ (%) (%) (%)	4+ (%)	1250 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary sys	stem)					
kidney	inflammatory infiltration	<50> 0 0 0 ( 0) ( 0) ( 0) (	0 ( 0)	<pre></pre>	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	lymphocytic infiltration	0 0 0 ( 0) ( 0) (	0 ( 0)	0 0 0 0 0 ( 0) ( 0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	scar	1 3 0 ( 2) ( 6) ( 0) (	0 ( 0)	2 4 0 0 (4) (8) (0) (0)	2 3 2 0 (4) (6) (4) (0)	1 2 2 0 ( 2) ( 4) ( 4) ( 0)
	inflammatory polyp	2 1 0 ( 4) ( 2) ( 0) (	0 ( 0)	1 1 0 0 (2) (2) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	3 0 0 0 0 (6) (6) (7)
	arteritis	0 1 0 ( 0) ( 2) ( 0) (	0 ( 0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hydronephrosis	0 1 2 ( 0) ( 2) ( 4) (	0 ( 0)	0 4 2 0 ( 0) ( 8) ( 4) ( 0)	1 4 2 0 ( 2) ( 8) ( 4) ( 0)	0 3 1 0 ( 0) ( 6) ( 2) ( 0)
	papillary necrosis	2 0 0 ( 4) ( 0) ( 0) (	0 ( 0)	3 0 0 0 0 (6) (6) (0) (0)	2 1 0 0 (4) (2) (0) (0)	3 0 0 0 0 (6) (6) (7)
	mineralization:pelvis	1 0 0 ( 2) ( 0) ( 0) (	0 ( 0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

(a) a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

1] ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

LLI UKI	1316	•	V.I
SEX		:	MALE

1250 ppm 2500 ppm 5000 ppm Group Name Control 50 50 50 No. of Animals on Study 50 Grade 1+ 2+ 3+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ___ Findings_ (Urinary system) kidnev 8 1 0 0 5 0 0 0 4 1 0 0 2 1 0 0 regeneration:proximal tubule (16) (2) (0) (0) (10) (0) (0) (0) (8) (2) (0) (0) (4) (2) (0) (0) urin bladd <50> **〈50〉** <50> <50> 0 3 0 0 0 1 0 0 0 4 0 0 0 4 0 0 dilatation (0) (8) (0) (0) (0) (8) (0) (0) (0)(6)(0)(0) (0) (2) (0) (0) hemorrhage 0 (2) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 1 0 0 xan thogranu I oma 0 1 0 0 0 0 0 0 (0)(2)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) (0) (0) (0) (0) (Endocrine system) pituitary 1 0 0 0 0 0 0 cyst 0 0 0 (6) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) (2) (0) (0) (0) 0 0 0 Rathke pouch 4 0 0 0 1 0 0 0 3 0 0 0 (8) (0) (0) (0) (2) (0) (0) (0) (6) (0) (0) (0) (0)(0)(0)(0) Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

⁽a) a: Number of animals examined at the site

b : Number of animals with lesion

⁽c) c:b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

		Group Name Control	1250 ppm	2500 ppm	5000 ppm
Organ	No. of An Grade Findings	lo. of Animals on Study 50  Srade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Endocrine s	ystem)				
adrenal	spindle-cell hyperplasia	\( \langle 50 \rangle \) 19	\( \langle 50 \rangle \) 15	\( \langle 50 \rangle \) 15	<pre></pre>
	hyperplasia:cortical cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (6)
	focal hypertrophy:cortex	1 0 0 0 (2) (3) (3)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
(Reproductiv	re system)				
estis	deposit of amyloid	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 9 0 0 0 ** (18) (0) (0) (0)
	mineralization	12 0 0 0 ( 24) ( 0) ( 0) ( 0)	12 0 0 0 ( 24) ( 0) ( 0) ( 0)	4 0 0 0 0 ( 8) ( 0) ( 0) ( 0)	2 0 0 0 ***
epididymis	spermatogenic granuloma	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
Grade (a > b (c) Gignificant	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

Group Name Control 1250 ppm 2500 ppm 5000 ppm 50 No. of Animals on Study 50 50 50 1+ 2+ 3+ 1+ 2+ Grade 1+ 2+ 3+ 2+ 3+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ_ Findings (Nervous system) ⟨50⟩ <50> brain 0 0 0 0 0 0 hemorrhage 0 0 (2) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) mineralization 17 0 0 0 15 0 19 0 0 (34) (0) (0) (0) (30) (0) (0) (0) (38) (0) (0) (0) (38) (0) (0) (0) (Special sense organs/appendage) Harder gl **<50>** degeneration 0 0 1 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(2)(0)(0) (0)(0)(0)(0) hyperplasia 0 0 0 0 2 1 0 0 0 1 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (4) (2) (0) (0) (0) (2) (0) (0) (Musculoskeletal system) muscle mineralization 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (2) (0) (0) (0) (0) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

4+ : Severe

(HPT150)

BA1S5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 14

		Group Name No. of Animals on St	tudv	Con	troi 5					12	50 p	pm 50				2	500	ppr 50							00 p	50			
Organ	Findings	Grade	1 (%	+ )	2+ (%)		3+ 6)	4+ (%)	 1 (%)	+ ) 	2+ (%)		3+ (%)	4+ (%)		1+ (%)	(	2+ %)	3 (%	+	4+ (%)		1· (%)	+ ) 	2+ (%)	+	3+ (%)		4+ (%)
{Musculoskelet	al system)																												
bone	hyperplasia		0 )	) (	<5 0 0)	0> ( (	) ))	0 ( 0)	1 ( 2)	) (	0 0 0)	50> (	0 0)	0 ( 0)	(	0 0)	(	<5( 0 0)	0> 0 ( 0	) (	0 0)	(	0	) )) (	0 ( 0)	(50> (	0 0)	(	0 0)
	osteosclerosis		1 ( 2	) (	0 0)	( (	) ))	0 ( 0)	0 ( 0)	) (	0 0)	(	0 0)	0 ( 0)	(	1 2)	(	0 0)	( O	) (	0 0)	(	0 0	) )) (	0 0)	(	0 0)	(	0 0)
(Body cavities	3															-													
mediastinum	inflammatory infiltration		0 ( 0	) (	<5 0 0)	0> (	) ))	0 ( 0)	1 ( 2)	) (	0 0 0)	50> (	0 0)	0 ( 0)	(	0 0)	(	<50 0 0)	0> 0 ( 0	) (	0 0)	(	0	) )) (	0 (0)	(50>	0 0)	(	0 0)

Grade < a >

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS5

# TABLE L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

PAGE: 1 Group Name 1250 ppm 2500 ppm 5000 ppm Control No. of Animals on Study 18 17 10 2+ 3+ Grade 1+ 2+ 3+ 2+ 3+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_ {Integumentary system/appandage} <18> skin/app ulcer 0 0 0 0 1 0 0 0 1 0 (0)(6)(0)(0) (0) (10) (0) (0) (0)(0)(0)(0) (0) (6) (0) (0) 0 0 0 0 0 erosion (0) (6) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 scab 0 (0)(0)(0)(0) (6) (0) (0) (0) (6) (0) (0) (0) (0)(0)(0)(0) {Respiratory system} nasal cavit <18> <18> ⟨17⟩ 0 0 eosinophilic change:olfactory epithelium 2 0 0 4 1 0 0 3 (18) (0) (0) (0) (11) (0) (0) (0) (22) (6) (0) (0) (0) (0) (0) (0) eosinophilic change:respiratory epithelium (28) (0) (0) (0) (24) (0) (0) (0) (30) (0) (0) (0) (28) (0) (0) (0) inflammation:respiratory epithelium (0)(0)(6)(0) (0)(0)(0)(0) (6) (0) (0) (0) (0) (10) (0) (0) respiratory metaplasia:olfactory epithelium (10) (0) (0) (0) (11) (0) (0) (0) (0)(0)(0)(0) (6) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 18	1250 ppm 18	2500 ppm 17	5000 ppm 10
Organ		Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory s	system)				
nasal cavit	respiratory metaplasia:gland	3 0 0 0 (17) (0) (0) (0)	<18> 3 1 0 0 (17) (6) (0) (0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	exudate:olfactory region	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)
asopharynx	eosinophilic change	(18) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<18> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)
ung	edema	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 1 0 0 ( 0) ( 6) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	deposit of amyloid	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration	1 1 0 0 (6) (6) (0) (0)	1 2 0 0 (6) (11) (0) (0)	3 1 0 0 (18) (6) (0) (0)	0 1 0 0 (0) (10) (0) (0)
	eosinophilic change:bronchial epitheli	um 0 0 0 0 0 (0) (0) (0)	1 0 0 0 (6) (6) (7)	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site b : Number of animals with lesion < a >

b

⁽c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE

#### HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

1250 ppm 2500 ppm 5000 ppm Group Name Control No. of Animals on Study 18 17 10 1+ 2+ 3+ 4+ Grade 1+ 2+ 3+ 4+ 1+ 2+ 3+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Findings_ (%) (%) (%) Organ___ {Respiratory system} lung 0 1 0 0 accumulation:macrophage 0 0 0 0 0 1 0 0 0 0 0 0 (0) (6) (0) (0) (0) (6) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) {Hematopoietic system} bone marrow 0 0 0 0 0 0 0 0 0 0 0 0 congestion 0 0 0 (6) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) 4 0 0 0 5 0 0 0 increased hematopoiesis 5 0 0 0 (29) (0) (0) (0) (40) (0) (0) (0) (22) (0) (0) (0) (28) (0) (0) (0) 3 0 0 0 granulopoiesis: increased 3 0 0 0 4 0 0 0 (17) (0) (0) (0) (17) (0) (0) (0) (24) (0) (0) (0) (0)(0)(0)(0) <18> <17> lymph node <18> 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 lymphadenitis (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) (6) (0) (0) (0) thymus <18> <18> (17) 0 0 1 0 0 0 0 0 0 0 0 0 atrophy 0 1 0 0 (0)(0)(6)(0) ( 0) ( 0) ( 0) ( 0) (0)(0)(0)(0) (0) (6) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

⁽a) a: Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

PAGE: 4

Organ	Findings	Group Name Control  No. of Animals on Study 18  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1250 ppm 18 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoiet	ic system}				
spleen	atrophy	<18> 0 2 1 0 ( 0) ( 11) ( 6) ( 0)	<18> 0 2 1 0 ( 0) ( 11) ( 6) ( 0)	<17> 0 1 1 0 ( 0) ( 6) ( 6) ( 0)	<10> 0 0 1 0 ( 0) ( 0) ( 10) ( 0)
	fibrosis	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	2 5 2 0 ( 11) ( 28) ( 11) ( 0)	3 3 2 0 (17) (17) (11) (0)	3 4 0 0 (18) (24) (0) (0)	1 4 0 0 (10) (40) (0) (0)
(Circulatory	systemi				
heart	deposit of amyloid	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	<10> 1 0 0 0 (10) (0) (0) (0)
	mineralization	1 0 0 0 ( 6) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	3 0 0 0 (18) (0) (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (10) (0)
	arteritis	0 1 0 0 (0) (0)	1 0 0 0 0 (6) (7) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a \]
 \[
 a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c: b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

: MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 : MALE SEX

ANIMAL

Findings	Group Name Control No. of Animals on Study 18 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%)	1250 ppm 18 1+ 2+ 3+ 4+ (%) (%) (%)	2500 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)
11101165	[44] [44] [44] [44]	(4) (4)	(4)	(4)
ystem)				
dysplasia	<18> 0 1 0 0 0 0 6 0 0	<18> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<10> 0 1 0 0 ( 0) ( 10) ( 0) ( 0)
odontogenic cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (10) (10)
arterítis	<pre></pre>	<18> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
deposit of amyloid	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
hyperplasia:forestomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	1 0 0 0 0 (10) (10) (10)
erosion:glandular stomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10)
hyperplasia:glandular stomach	0 0 0 0 0 (0) (0)	8 0 0 0 ** ( 44) ( 0) ( 0) ( 0)	6 0 1 0 ** (35) (0) (6) (0)	3 0 0 0 (30) (30) (0) (0)
•	odontogenic cyst  arteritis  deposit of amyloid  hyperplasia:forestomach  erosion:glandular stomach	No. of Animals on Study Grade	No. of Animals on Study	No. of Animals on Study

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

3LA .	MACE				PAGE . U
		Group Name Control No. of Animals on Study 18	1250 ppm 18	2500 ppm 17	5000 ppm 10
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sys	stem}				
small intes	deposit of amyloid	<18> 6 0 0 0 ( 33) ( 0) ( 0) ( 0)	\$ 0 0 0 ( 44) ( 0) ( 0) ( 0)	<17> 3 1 0 0 (18) (6) (0) (0)	<10> 3 0 0 0 (30) (0) (0) (0)
large intes	foreign body granuloma	0 0 0 0 0 0 ( 0) ( 0) ( 0)	(18) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 1 0 0 ( 0) ( 6) ( 0) ( 0)	<pre></pre>
	hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0	0 0 0 0 0 (0) (0)
liver	necrosis:central	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 1 0 0 ( 0) ( 6) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	necrosis:focal	1 0 0 0 ( 6) ( 0) ( 0) ( 0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	fatty change:central	1 0 0 0 ( 6) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammatory infiltration	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

: MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

ANIMAL

SEX : MALE

		Group Name Control No. of Animals on Study 18	1250 ppm 18	2500 ppm 17	5000 ppm 10
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sy	ystem)				
liver	inflammatory cell nest	(18) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	basophilic cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (7)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
{Urinary syst	tem)				
kidney	hyaline droplet	2 0 0 0 0 (11) (0) (0) (0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<10> 1 0 0 0 (10) (0) (0) (0)
	inflammatory infiltration	0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)
	inflammatory polyp	1 1 0 0 (6) (6) (0) (0)	0 1 0 0 (0) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)
	hydronephrosis	0 0 2 0 ( 0) ( 11) ( 0)	0 1 1 0 ( 6) ( 6) ( 0)	0 3 1 0 ( 0) ( 18) ( 6) ( 0)	0 0 1 0 (0) (10) (0)
	papillary necrosis	1 0 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : MALE SEX

PAGE : 8

Organ	Findings	Group Name Control  No. of Animals on Study 18  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1250 ppm 18 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 10 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary syst	em}				
cidney	regeneration:proximal tubule	<18> 1 1 0 0 ( 6) ( 6) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
rin bladd	dilatation	<18> 0 1 0 0 0 0 0 0 0 0 6 0 0 0	<pre></pre>	0 4 0 0 ( 0) ( 24) ( 0) ( 0)	( 0) ( 20) ( 0) ( 0)
	hemorrhage	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Endocrine sy	vstem)				
ituitary	cyst	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<10> 1 0 0 0 (10) (0) (0) (0)
adrenal	spindle-cell hyperplasia	\$\\ 5 0 0 0 \\ ( 28) ( 0) ( 0) ( 0)	<18> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	<10> 1 0 0 0 (10) (0) (0) (0)
(Reproductive	e system)				
testis	deposit of amyloid	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0) ( 0) ( 0) ( 0)	<10> 1 0 0 0 (10) (0) (0) (0)

c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

SEX

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 : MALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 18	1250 ppm 18	2500 ppm 17	5000 ppm 10
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4 (%) (%) (%) (%)
Reproductiv	e system)				
estis	mineralization	<18> 2 0 0 0 (11) (0) (0) (0)	3 0 0 0 (17) (0) (0) (0)	<17> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0
(Nervous sys	tem)				
orain	hemorrhage	<18> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(10) 0 0 0 0 (0) (0) (0) (0
	mineralization	3 0 0 0 (17) ( 0) ( 0) ( 0)	5 0 0 0 (28) ( 0) ( 0) ( 0)	7 0 0 0 (41) (0) (0) (0)	3 0 0 (
Special sen	se organs/appendage)				
larder gl	degeneration	<18> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<18> 0 1 0 0 ( 0) ( 6) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0
(Musculoskel	etal system)				
nuscie	mineralization	<18> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<18> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 ( 0) ( 0) ( 0) ( 0

b : Number of animals with lesion

c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 10

DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 SEX : MALE

rgan	Findings	Group Name No. of Animals o Grade			ntrol 18 2+ (%)	3+ (%)	4- (%)	1 <del>1</del> (%)	+	18 2+ (%)	3+ (%)	4+ (%)	1 + (%)		0 ppm 17 2+ (%)	3+ (%)	4+ (%)		1+ (%)	1000 p +2 (%)	10		4+ (%)
								 ***************************************					THE PARTY OF THE P										
ody cavities	1																						
diastinum	inflammatory infiltration			0 0) (	<18 0 0) (	0	0 ( 0)	1 ( 6)	(	<18> 0 0) (	0 0 0)	0 ( 0)	0 ( 0)	(	<17 0 0) (	) 0 ( 0)	0 ( 0)	(	0 0)	0		(	0 0)
a >	+ : Slight 2+ : Moderate a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100		+ : Sev	ere				 Attornation of the state of the							***************************************								
	fference;	≦ 0.01 Test of	Chi Sc	uare																			

# TABLE L 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: SACRIFICED ANIMALS

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SACRIFICED ANIMALS (1)

REPORT TYPE : A1

SEX : MALE

	Group Name	Control	1250 ppm	2500 ppm	5000 ppm
rgan	Findings	als on Study 32 1+ 2+ 3+ 4+ (%) (%) (%) (%)	32 1+ 2+ 3+ 4+ (%) (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4 (%) (%) (%) (%)
[Integumenta:	ry system/appandage)				
skin/app	ulcer	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<333> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	erosion	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
ubcutis	inflammation	<32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<33> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	<40> 0 0 0 0 0 0 0 0 0 0 0
Respiratory	system)				
asal cavit	eosinophilic change:olfactory epithelium	32> 9 0 0 0 (28) (0) (0) (0)	32> 11 0 0 0 (34) (0) (0) (0)	<pre></pre>	<0><40> 10 0 0 0 (25) (0) (0) (0)
	eosinophilic change:respiratory epithelium	8 1 0 0 (25) (3) (0) (0)	9 2 0 0 (28) (6) (0) (0)	8 0 0 0 (24) (0) (0) (0)	10 1 0 0 (25) (3) (0) (0
<a>&gt; b (c)</a>	1+: Slight 2+: Moderate 3+: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a $*$ 100 difference; $*$ : P $\leq$ 0.05 **: P $\leq$ 0.01 Te	4+ : Severe			

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

: MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

ANIMAL

SEX : MALE

		Group Name No. of Animals on Study	Control 3			1	250 ppr 32			25	500 pp 3	m 3		!	5000 pr	om 10	
Organ		Grade 1+ (%)		3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
(Respiratory s	system)																
nasal cavit	respiratory metaplasia:olfactory epith		( 0)	0	0 ( 0)	6 ( 19)	<32 0 ( 0)	2> 0 ( 0)	0 ( 0)	4 ( 12)	<3 0 ( 0)	3> 0 ( 0)	0 ( 0)	1 ( 3)	( 0)	0 ( 0)	0 ( 0)
	respiratory metaplasia:gland	7 ( 22)	2 ( 6)	0 ( 0)	0 ( 0)	10 ( 31)	3 ( 9)	0 ( 0)	0 ( 0)	9 ( 27)	2 ( 6)	0 ( 0)	0 ( 0)	7 ( 18)	0 ( 0)	0 ( 0)	0 ( 0)
	hyperplasia:transitional epithelium	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	( 0)	0 ( 0)
nasopharynx	eosinophilic change	( 0)	( 0)	0	0 ( 0)	1 ( 3)	<32 1 ( 3)	2> 0 ( 0)	0 ( 0)	0 ( 0)		3> 0 ( 0)	0 ( 0)	1 ( 3)	( 0)	0 ( 0)	0 ( 0)
lung	deposit of amyloid	5 ( 16)	<3 2 ( 6)	2> 0 ( 0)	0 ( 0)	4 ( 13)	<32 5 ( 16)		0 ( 0)	4 ( 12)	<3 4 ( 12)	3> 0 ( 0)	0 ( 0)	10 ( 25)		( 0)	0 ( 0)
	inflammatory infiltration	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)	2 ( 5)	0 ( 0)	0 ( 0)	0 ( 0)
	lymphocytic infiltration	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	( 0)	0 ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

⁽c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : MALE			
	CEY - MAI	AT E	
		ALE	

		roup Name Control o. of Animals on Study 32	1250 ppm 32	2500 ppm 33	5000 ppm 40
Organ		rade	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	system)				
lung	bronchiolar-alveolar cell hyperplasia	<32> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<32> 0 0 0 0 0 0 0 0 0 0 0	<333> 3 0 0 0 ( 9) ( 0) ( 0) ( 0)	<40> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)
	eosinophilic change:bronchial epitheliu	0 0 0 0 0 (0) (0) (0)	1 1 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	accumulation:macrophage	0 0 0 0 (0) (0)	0 2 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
(Hematopoieti	c system)				
bone marrow	increased hematopoiesis	<pre></pre>	<32> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<33> 0 0 0 0 (0) (0) (0) (0)	<40> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)
	granulopoiesis:increased	2 0 0 0 (6) (6) (7)	0 0 0 0 0 ( 0) ( 0)	2 0 0 0 (6) (6) (7)	3 0 0 0 0 (8) (0) (0) (0)
lymph node	lymphadenitis	<32> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	32> 2 1 0 0 ( 6) ( 3) ( 0) ( 0)	<pre></pre>	<40> 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<pre></pre>	1+: Slight 2+: Moderate 3+: a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 lifference ; $*: P \le 0.05$ ** : $P \le 0.05$				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

JLA	· MALL				· Auc ·
Organ	Findings_	Group Name Control  No. of Animals on Study 32  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1250 ppm 32 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Hematopoiet	tic system}				
pleen	deposit of amyloid	<pre></pre>	<32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<pre></pre>
	deposit of melanin	1 0 0 0 ( 3) ( 3) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	2 3 0 0 (6) (9) (0) (0)	6 2 0 0 (19) { 6} ( 0) ( 0)	5 2 0 0 (15) (6) (0) (0)	5 2 0 0 (13) (5) (0) (0)
	follicular hyperplasia	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Circulatory	/ system}				
eart	deposit of amyloid	<32> 4 0 0 0 (13) (0) (0) (0)	<32> 4 0 0 0 (13) (0) (0) (0)	<33> 3 0 0 0 ( 9) ( 0) ( 0) ( 0)	<40> 5 0 0 0 (13) (0) (0) (0)
	arteritis	1 2 0 0 ( 3) ( 6) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 ( 0) ( 0)
(Digestive s	system)				
ooth	dysplasia	<pre></pre>	<32> 2 1 0 0 ( 6) ( 3) ( 0) ( 0)	33> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	<pre></pre>

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b: Number of animals with lesion b

⁽c) c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE SEX

PAGE: 5

		Group Name No. of Animals on Study		ntrol 32			1	250 pp 3	2	***************************************			33				10	
Organ	Findings		1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)			4+ (%)	1+ (%)	2+ (%)	+ 3+ 4+ ) (%) (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
(Digestive sy	steml																	
tooth	odontogenic cyst	(	0 0) (	<32 0 0 0)	0 (0)	0 ( 0)	0 ( 0)	<3 1 ( 3)	2> 0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	33> 0 ( 0)	0 ( 0)	2 ( 5)	( 0)	0 ( 0)	0 ( 0)
tongue	arteritis	ţ	1 3) (	<32 0 0 0)	;> 0 ( 0)	0 ( 0)	1 ( 3)	<3 0 ( 0)	2> 0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)	33> 0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	10> 0 ( 0)	0 ( 0)
salivary gl	fibrosis	(	0 (	<32 0 0 0)	(0)	0 ( 0)	0 ( 0)	<3 0 ( 0)	2> 0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)	33> 0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	( 0)	0 ( 0)
stomach	deposit of amyloid	ţ	2 6) (	<32 0 0 0)		0 ( 0)	6 ( 19)	( 0)	2> 0 ( 0)	0 ( 0)	6 ( 18)	2 ( 6)	33> 0 ( 0)	0 ( 0)	19 ( 48)	0 ( 0)	( 0)	0 **
	erosion:forestomach	(	0 (	0 (0)	0 (0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)
	hyperplasia:forestomach	(	1 3) (	0 (	0 (0)	0 ( 0)	2 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 6)	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)
	erosion:glandular stomach	(	1 3) (	0 (0)	0 (0)	0 ( 0)	3 ( 9)	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)	3 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site b: Number of animals with lesion

c:b/a * 100 (c)

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

: MOUSE B6D2F1/Crij[Crj:BDF1]

PAGE: 6

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 32 Grade 1+ 2+ 3+ 4+	1250 ppm 32 1+ 2+ 3+ 4+	2500 ppm 33 1+ 2+ 3+ 4+	5000 ppm 40 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
{Digestive sy	vsteml				
stomach	hyperplasia:glandular stomach	<32> 22	<32> 18 10 2 0 (56) (31) (6) (0)	<pre></pre>	<pre></pre>
small intes	deposit of amyloid	26 0 0 0 (81) (0) (0) (0)	32> 27 2 0 0 (84) (6) (0) (0)	33> 31 2 0 0 * (94) (6) (0) (0)	35 1 0 0 (88) (3) (0) (0)
	inflammatory infiltration	1 0 0 0 0 (3) (0) (0)	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	hyperplasia	0 0 0 0 0 ( 0) ( 0) ( 0)	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
liver	angiectasis	<32> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	necrosis:central	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	necrosis:focal	2 0 0 0 (6) (6) (7) (7)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX

: MALE

		Group Name Control No. of Animals on Study 32	1250 ppm 32	2500 ppm 33	5000 ppm 40		
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%) (%)		
Digestive	system)						
iver	deposit of amyloid	<32> 0 0 0 0 0 (0) (0) (0)	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)		
	inflammatory cell nest	8 0 0 0 (25) (0) (0) (0)	5 0 0 0 (16) (0) (0) (0)	4 0 0 0 (12) (0) (0) (0)	6 0 0 0 (15) ( 0) ( 0) ( 0)		
	clear cell focus	1 0 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 0 (0) (0) (0)		
	acidophilic cell focus	2 0 0 0 (6) (6) (7)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)		
	basophilic cell focus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 1 0 0 (3) (3) (0) (0)		
	bile ductular proliferation	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)		
Urinary sy	steml						
idney	atrophy	<pre></pre>	<pre></pre>	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)		

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

		y	32					32					3	3					40		
Findings			2+ (%)	3+ (%)	4+ (%)	1+ (%)				4+ (%)				3+ (%)	4+ (%)						4+ (%)
em)																					
cyst	t	0 (	0	0	0 ( 0)	0 ( 0)	0 ( 0)	<32> (	) ()	0 0)	(	O) (	<3 0 0)	3> 0 ( 0)	0 ( 0)	(	0 0)	1 ( 3)	(40> (	0	0 ( 0)
hyaline cast	(	0 (	0 0) (	0 0)	0 ( 0)	1 ( 3)	( 0)	(	) ) (	0 0)	( (	D D) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	( 0)	(	0 0) (	0 ( 0)
lymphocytic infiltration	(	0 0) (	0 0) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	) )) (	0 0)	( 3	1 3) (	1 3)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	(	0 0) (	0 (0)
scar	(	1 3) (	3 9) (	0 0)	0 ( 0)	2 ( 6)	4 ( 13)	(	) )) (	0 0)	( 6	2 6) (	3 9)	2 ( 6)	0 ( 0)	(	1 3)	2 ( 5)	(	2 5) (	0 (0)
inflammatory polyp	(	1 3) (	0 0) (	0 0)	0 ( 0)	1 ( 3)	( 0)	( (	) )) (	0 0)	( 6	2 6) (	0 0)	0 ( 0)	0 ( 0)	(	3 8)	0 ( 0)	(	0 0) (	0 (0)
arteritis		0 0) (	1 3) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	( (	) )) (	0 0)	(	) )) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	( 0)	(	0 0) (	0 0)
hydronephrosis	(	0 (	1 3) (	0 0)	0 ( 0)	0 ( 0)	3 ( 9)	1 ( 3	l 3) (	0 0)	( 3	l 3) (	1 3)	1 ( 3)	0 ( 0)	(	0 0)	3 ( 8)	{	0 0) (	0 . 0)
papillary necrosis	(	1 (	0 0) (	0 0)	0 ( 0)	3 ( 9)	0 ( 0)	( (	) )) (	0 0)	( €	2 5) (	1 3)	0 ( 0)	0 ( 0)	(	3 8)	0 ( 0)	(	0 0) (	0 (0)
	cyst  hyaline cast  lymphocytic infiltration  scar  inflammatory polyp  arteritis  hydronephrosis	No. of Animals on Stud Grade  Findings  em)  Cyst  ( hyaline cast  ( lymphocytic infiltration  ( scar  ( inflammatory polyp  ( arteritis  ( hydronephrosis  ( papillary necrosis	No. of Animals on Study Grade	No. of Animals on Study Grade	No. of Animals on Study   32   32   32   32   32   32   32   3	No. of Animals on Study   32   3+ 4+ 2+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 4+ 3+ 3+ 4+ 3+ 4+ 3+ 3+ 4+ 3+ 3+ 4+ 3+ 3+ 3+ 4+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+	No. of Animals on Study   32   1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+	No. of Animals on Study   32   1+ 2+ 3+ 4+ 1+ 2-   2+ 3+ 4+	No. of Animals on Study   32   32   32   32   32   32   32   3	No. of Animals on Study   32   32   32   32   32   33   34   34	No. of Animals on Study   32   32   34   4+	No. of Animals on Study   32   32   33   34   4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+ 1+ 2+ 1+ 2+ 3+	No. of Animals on Study   32   32   32   34   4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	No. of Animals on Study   32   32   32   34   4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	No. of Animals on Study   32   33   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   34   44   14   24   34   34   34   34   34   34   3	No. of Animals on Study   32   33   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   14   14   14   14   14   14   1	No. of Animals on Study   33   32   33   33   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   44   44   44   44   4	No. of Animals on Study   32   33   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   44   14   24   34   34   44   14   24   34   34   34   34   34   34   3	No. of Animals on Study   32   32   33   34   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   2   3   4   1   1   2   3   3   3   3   3   3   3   3   3	No. of Animals on Study   32   32   33   44   1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+	No. of Animals on Study   32

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : MALE

		Group Name Control	1250 ppm	2500 ppm 33	5000 ppm 40
rgan	Findings	No. of Animals on Study 32 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	32 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Urinary systo	em)				
idney	mineralization:pelvis	\( \lambda 32 \rangle \) \[ 1  0  0  0  \text{(3)}  (0)  (0)  (0)  \text{(0)} \]	<pre></pre>	33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	regeneration:proximal tubule	7 0 0 0 (22) (0) (0) (0)	5 0 0 0 (16) ( 0) ( 0) ( 0)	3 1 0 0 (9) (3) (0) (0)	2 1 0 0 (5) (3) (0) (0)
rin bladd	dilatation	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(40) 0 1 0 0 (0) (3) (0) (0)
	xanthogranuloma	0 1 0 0 (0) (0)	0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Endocrine sys	stem)				
tuitary	cyst	32> 3 0 0 0 ( 9) ( 0) ( 0) ( 0)	32> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	33> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	Rathke pouch	4 0 0 0 (13) (0) (0) (0)	1 0 0 0 ( 3) ( 0) ( 0)	3 0 0 0 ( 9) ( 0) ( 0) ( 0)	0 0 0 0 (0) (0)

(HPT150)

ANIMAL

. 0140

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

5000 ppm Group Name Control 1250 ppm 2500 ppm No. of Animals on Study 32 33 2+ 1+ 2+ 3+ 2+ 3+ 4+ 2+ 3+ 4+ Grade 1+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ_ Findings_ (Endocrine system) adrenal ⟨32⟩ spindle-cell hyperplasia 0 0 0 0 0 15 1 0 0 16 0 0 0 (44) (0) (0) (0) (44) (0) (0) (0) (45) (3) (0) (0) (40) (0) (0) (0) 0 hyperplasia:cortical cell (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0) focal hypertrophy:cortex 0 (3) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (Reproductive system) testis <32> deposit of amyloid 0 0 (0)(0)(0)(0) (20) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 ** mineralization (28) (0) (0) (0) (12) (0) (0) (0) (5) (0) (0) (0) (31) (0) (0) (0) <32> ⟨33⟩ **epididymis** 2 0 0 0 0 0 0 0 0 0 0 spermatogenic granuloma (6) (0) (0) (0) (6) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0) Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe < a > a: Number of animals examined at the site b b: Number of animals with lesion (c) c:b/a * 100

Test of Chi Square

(HPT150)

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$ 

BAIS5

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE PAGE: 11

		1250 ppm 32	2500 ppm 33	5000 ppm 40
		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
em)				
mineralization	\( \langle 32 \rangle \) 14	32> 10 0 0 0 (31) (0) (0) (0)	33> 12 0 0 0 (36) (0) (0) (0)	<40> 16 0 0 0 (40) (0) (0) (0)
e organs/appendage)				
hyperplasia	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 2 1 0 0 ( 6) ( 3) ( 0) ( 0)	<pre></pre>
etal system)				
hyperplasia	32> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	32> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<40> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
osteosclerosis	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)
a : Number of animals examined at the sit b : Number of animals with lesion c : b / a * 100	e			
	Findings  em)  mineralization  e organs/appendage)  hyperplasia  tal system)  hyperplasia  osteosclerosis  1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100	No. of Animals on Study   32   3+ 4+ 2+ 3+ 4+ 4+   2+ 3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 4+   3+ 4+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+	No. of Animals on Study   32   32   34   1+ 2+ 3+ 4+   1+ 2+ 3+ 4+   3+ 4+   1+ 2+ 3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3	No. of Animals on Study   32

(HPT150)

BAIS5

# TABLE L 4

HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC

LESIONS: FEMALE: ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : FEMALE

PAGE: 15

Organ	N	roup Name Co lo. of Animals on Study trade 1+ (%)	ontrol 50 2+ (%)	3+ (%)	4+ (%)	1+ (%)	500 ppr 50 2+ (%)		4÷ (%)	5( 1+ (%)	000 pp 5 2+ (%)	om 60 3+ (%)	4+ (%)	1 1+ (%)	0000 p 5 2+ (%)	opm 0 3+ (%)	4+ (%)
{Integumentar	y system/appandage)																
skin/app	scab	0 ( 0)	<50) 0 ( 0) (	0	0 ( 0)	0 ( 0)	<50 0 ( 0)	)> 0 ( 0)	0 ( 0)	0 ( 0)	<5 1 ( 2)	( 0)	0 ( 0)	0 ( 0)	<5 0 ( 0)	0 ( 0)	0 ( 0)
{Respiratory	system)																
nasal cavit	eosinophilic change:olfactory epitheliu		<50) 0 ( 0) (	0	0 ( 0)	6 ( 12)	<50 0 ( 0)	)> 0 ( 0)	0 ( 0)	4 ( 8)	<5 0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)	<5 0 ( 0)	0 ( 0)	0 ( 0)
	eosinophilic change:respiratory epithel		7 ( 14) (	1 2)	0 ( 0)	18 ( 36)	6 ( 12)	1 ( 2)	0 ( 0)	16 ( 32)	4 ( 8)	0 ( 0)	0 ( 0)	12 ( 24)	3 ( 6)	0 ( 0)	0 ( 0)
	respiratory metaplasia:olfactory epithe	lium 0 ( 0)	0 ( 0) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)
	respiratory metaplasia:gland	5 ( 10)	0 ( 0) (	0 0)	0 ( 0)	2 ( 4)	0 ( 0)	0 ( 0)	0 ( 0)	4 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)	9 ( 18)	0 ( 0)	0 ( 0)	0 ( 0)
	atrophy:olfactory epithelium	2 ( 4)	0 ( 0) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 (0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)
nasopharynx	eosinophilic change	2 ( 4)	<50) 3 ( 6) (	0	0 ( 0)	2 ( 4)	<50 3 ( 6)	0	0 ( 0)	6 ( 12)	<5 2 ( 4)	0	0 ( 0)	0 ( 0)	0	0 ( 0)	0 ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

(a) a: Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 16

		up Name Control of Animals on Study 50		2500 ppm 50	5000 ppm 50	10000 ppm 50
rgan	Findings		4+ (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Respiratory s	system)					
ung	congestion	<50> 0 0 0 ( 0) ( 0) ( 0) (	0 ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	edema	0 0 0 0 (0) (0) (	0 ( 0)	0 0 0 0 0 (0) (0)	0 2 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
	deposit of amyloid	4 2 0 ( 8) ( 4) ( 0) (	0 ( 0)	5 2 0 0 (10) (4) (0) (0)	5 5 0 0 (10) (10) (0) (0)	7 10 1 0 (14) (20) (2) (0)
	inflammatory infiltration	2 1 0 ( 4) ( 2) ( 0)	0 ( 0)	1 2 0 0 ( 2) ( 4) ( 0) ( 0)	0 1 1 0 ( 0) ( 2) ( 2) ( 0)	0 0 0 0 0 (0) (0)
	squamous cell metaplasia	0 0 0 (0) (0) (	0 ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)
	eosinophilic change:bronchial epithelium	0 1 0 (0) (2) (0) (	0 ( 0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
	accumulation:macrophage	0 1 0 ( 0) ( 2) ( 0) (	0 ( 0)	0 0 0 0 0 (0) (0)	0 3 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Hematopoietic	c system)					
one marrow	congestion	<50> 1 0 0 ( 2) ( 0) ( 0)	0 ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a : Number of animals examined at the site
 \]

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

b

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

Irgan	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
[Hematopoietic	c system)				
one marrow	granulation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	increased hematopoiesis	8 0 0 0 ( 16) ( 0) ( 0) ( 0)	6 0 0 0 (12) ( 0) ( 0) ( 0)	4 0 0 0 0 (8) (0) (0)	3 0 0 0
	granulopoiesis:increased	4 0 0 0 0 ( 8) ( 0) ( 0)	3 0 0 0 0 (6) (0) (0)	7 0 0 0 (14) (0) (0) (0)	7 0 0 0 0 (14) (0) (0) (0)
ymph node	lymphadenitis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
pleen	atrophy	<50> 0 2 0 0 ( 0) ( 4) ( 0) ( 0)	<pre></pre>	<pre></pre>	(50) 0 5 1 0 ( 0) ( 10) ( 2) ( 0)
	extramedullary hematopoiesis	9 10 1 0 (18) (20) (2) (0)	10 1 0 0 * (20) (2) (0) (0)	13 1 0 0 * (26) (2) (0) (0)	9 5 0 0 (18) (10) ( 0) ( 0)
	follicular hyperplasia	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 18

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Circulatory	system)				
heart	thrombus	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	deposit of amyloid	4 0 0 0 0 (8) (9) (9)	5 0 0 0 (10) (0) (0) (0)	6 0 0 0 (12) ( 0) ( 0) ( 0)	9 0 0 0 0 (18) (0) (0) (0)
	mineralization	3 0 0 0 0 (6) (6) (7)	0 1 0 0 (0) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
{Digestive s	system)				
tooth	dysplasia	(50) 1	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	odontogenic cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
tongue	squamous cell hyperplasia	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<49> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sy	vstem)				
tongue	arteritis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0) ·	<49> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
salivary gl	xanthogranuloma	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 0 (2) (0) (0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
stomach	deposit of amyloid	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	<pre></pre>	(50) 10 4 0 0 * (20) (8) (0) (0)	<pre></pre>
	erosion:forestomach	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:forestomach	5 0 0 0 (10) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	2 2 0 0 (4) (4) (0) (0)
	erosion:glandular stomach	2 0 0 0 0 (4) (0) (0) (0)	4 0 0 0 0 (8) (0) (0)	4 0 0 0 0 (8) (0) (0)	4 0 0 0 (8) (0) (0)
	hyperplasia:glandular stomach	16 15 0 0 ( 32) ( 30) ( 0) ( 0)	20 10 0 0 (40) (20) (0) (0)	17 5 0 0 * (34) (10) (0) (0)	15 7 3 0 (30) (14) (6) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site b : Number of animals with lesion < a >

b

⁽c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50			
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)			
{Digestive sy	stem							
small intes	deposit of amyloid	<50> 27	<50> 28 2 0 0 (56) (4) (0) (0)	<50> 30 2 0 0 (60) (4) (0) (0)	31 4 0 0 (62) (8) (0) (0)			
large intes	deposit of amyloid	<50> 7 0 0 0 (14) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 10 0 0 0 (20) (0) (0) (0)	(34) (0) (0) (0)			
liver	congestion	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	(50) (0) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)			
	angiectasis	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 3 0 0	1 1 0 0 (2) (2) (0) (0)	0 1 0 0 ( 0) ( 0)			
	necrosis:focal	3 0 0 0 0 (6) (7) (7)	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)			
	fatty change	0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)			
	fatty change:central	0 1 0 0 ( 0) ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)			

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

⁽ c ) c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive s	system)				
liver	deposit of amyloid	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	lymphocytic infiltration	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	inflammatory cell nest	9 1 0 0 (18) (2) (0) (0)	13 1 0 0 (26) (2) (0) (0)	6 0 0 0 (12) ( 0) ( 0) ( 0)	6 0 0 0 (12) ( 0) ( 0) ( 0)
	clear cell focus	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	acidophilic cell focus	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	biliary cyst	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	intestinal metaplasia:bile duct	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b: Number of animals with lesion b

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

00° 1 (0... 1 : 10... : ... DDC 1 ) ALL AN

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

		Group Name C No. of Animals on Study	Control 50			2500 ppm 50				5000 ppm 50					10000 ppm 50						
rgan	Findings	Grade 1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+	(%)		1+ (%)	2 (%		3+ (%)	4+ (%)		1+ (%)	2+ (%)	;	3+ %)	4 (%
Digestive sy	vstem)																				
iver	hyperplasia:Ito-cell	0 ( 0)	(50) 1 ( 2) (	, 0 0) (	0 ()	0 ( 0)	(0) (0)	50> 0 ( 0)	0 ( 0)	) (	0 0)	( 0	<50> ) )) (	0	0 ( 0)	(	0	( 2)	50> (	) )) (	0
all bladd	dilatation	0 ( 0)	<50) 0 ( 0) (	0	0 ()	0 ( 0)	( 0)	50> 0 ( 0)	0 ( 0)	) (	0 0)	1 ( 2	<50>	0 0) (	0 ( 0)	(	0 0) (	( 0 ( 0)	50> (	) )) (	0
rinary syst	em)																				
dney	atrophy	0 ( 0)	(50) 0 ( 0) (	0	0 ()	0 ( 0)	( 0) ( 0)	50> 0 ( 0)	0 ( 0)	) (	0 0)	2 ( 4	<50> ! i) (	0	0 ( 0)	(	0	0 ( 0)	50> (	) )) (	0
	hyaline droplet	14 ( 28)	0 ( 0) (	0 0) (	0 (0)	6 ( 12)	0 ( 0)	0 ( 0)	( 0)	) (	9 18)	( 0	) )) (	0 (0)	0 ( 0)	( 1	9 18) (	0 ( 0)	( )	O) (	0
	lymphocytic infiltration	1 ( 2)	0 ( 0) (	0 0) (	0 0)	1 ( 2)	1 ( 2)	0 ( 0)	( 0)	(	0 0)	( 0	) )) (	0	0 ( 0)	(	0 0) (	0 ( 0)	( (	) )) (	0
	scar	4 ( 8)	2 ( 4) (	1 2) (	0 ()	2 ( 4)	3 ( 6)	2 ( 4)	( 0)	) (	0 0)	6 ( 12	; !) (	4 8)	0 * ( 0)	(	2 4) (	0 (0)	( )	) )) (	0

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \)
 \( a : Number of animals examined at the site \)

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE

PAGE: 23

		Group Name Control	2500 ppm	5000 ppm 50	10000 ppm 50
Organ		No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	em)				
kidney	inflammatory polyp	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	hydronephrosis	0 3 1 0 ( 0) ( 6) ( 2) ( 0)	0 3 1 0 ( 0) ( 6) ( 2) ( 0)	0 2 1 0 ( 0) ( 4) ( 2) ( 0)	0 0 0 0 0 ( 0) ( 0)
	papillary necrosis	2 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (7)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 ( 0) ( 0)
	mineralization:cortico-medullary junct	ion 1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)
	glomerulosclerosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)
	regeneration:proximal tubule	0 1 0 0 (0) (2) (0) (0)	0 1 1 0 (0) (2) (2) (0)	1 1 0 0 (2) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)
urin bladd	dilatation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 2 0 0 ( 0) ( 4) ( 0) ( 0)
(Endocrine sy	stem)				
pituitary	angiectasis	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

(a) a: Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

STUDY NO. : 0740 ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

	Group N		2500 ppm	5000 ppm 50	10000 ppm 50
rgan	NO. OF Grade Findings	Animals on Study 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Endocrine s	system)				
oituitary	cyst	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	hyperplasia	2 2 0 0 (4) (4) (0) (0)	1 2 0 0 (2) (4) (0) (0)	0 1 0 0 (0) (0)	1 1 0 0
	Rathke pouch	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
drenal	spindle-cell hyperplasia	<50> 25 18 0 0 (50) (36) (0) (0)	<50> 22 17 0 0 (44) (34) ( 0) ( 0)	<50> 28 12 0 0 (56) (24) (0) (0)	<pre></pre>
	fatty change:corticomedullary junction	1 0 0 0 0 (2) ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  Reproductiv	ve system)				
ovary	cyst	(12) (0) (0) (0)	50> 5 0 0 0 (10) (0) (0) (0)	3 2 0 0 ( 6) ( 4) ( 0) ( 0)	<50> 6 1 0 0 (12) (2) (0) (0)
Grade ( a > b ( c )	1+: Slight 2+: Moderate 3+: Marke a: Number of animals examined at the site b: Number of animals with lesion c: b/a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.01	d 4+ : Severe  Test of Chi Square			

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50				
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)				
{Reproductiv	e system)								
uterus	inflammatory infiltration	<50> 1	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)				
	hyperplasia:epithelium	0 0 0 0 0 ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)				
	cystic endometrial hyperplasia	13 1 0 0 ( 26) ( 2) ( 0) ( 0)	16 0 0 0 (32) (0) (0) (0)	14 0 0 0 (28) ( 0) ( 0) ( 0)	6 1 0 0 (12) (2) (0) (0)				
(Nervous sys	tem)								
rain	mineralization	<50> 14 0 0 0 (28) (0) (0) (0)	(50) 12 0 0 0 (24) (0) (0) (0)	<50> 10 0 0 0 0 (20) (0) (0) (0)	<50> 11 0 0 0 (22) (0) (0) (0)				
	gliosis	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)				
(Special sen	se organs/appendage)								
Harder gl	hyperplasia	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)				

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square (HPT150)

c : b / a * 100

BA1S5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 26

		Group Name	Group Name Control No. of Animals on Study 50		;	2500 ppm 50		5000 ppm 50		10000 ppm 50											
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2 (%	+ 3+		1 (%)		2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	+	3+ (%)	4+ (%)
(Musculoske	letal system}																				
nuscle	mineralization		0 ( 0) (	<50> 0 0) (	, 0 0) (	0 0)	0 ( 0)	0	<50> 0 0 0 ( 0)	0 )	1 ( 2)	) (	<50) 0 0) (	0 0 0)	0 ( 0)		0 0)	( ( 0)	(50) (	0	0 ( 0)
bone	osteosclerosis		0 ( 0) (	<50> 0 0) (	, 0 0) (	0 0)	0 ( 0)	0	<50> 0 0	0 (	2 ( 4)		<50) 0 0) (	> 0 0)	0 ( 0)		0 0)	( 0 ( 0)		0 0)	0 ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Ma <a> a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

## TABLE L 5

# HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

SEX : FEMALE

Organ		p Name Control of Animals on Study 30 e 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 21 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 28 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 29 1+ 2+ 3+ 4+ (%) (%) (%) (%)
		(4) (4) (4)	(10) (10) (10)	(4) (4)	
Respiratory asal cavit	system) eosinophilic change:olfactory epithelium	<30> 3 0 0 0	<21> 1 0 0 0	<28> 2 0 0 0	<29> 2 0 0 0
		(10) (0) (0) (0)	1 0 0 0 (5) (6) (6)	2 0 0 0 (7) (0) (0)	( 7) ( 0) ( 0) ( 0)
	eosinophilic change:respiratory epithelium	10 3 1 0 (33) (10) (3) (0)	3 1 0 0 (14) (5) (0) (0)	6 1 0 0 (21) (4) (0) (0)	4 0 0 0 0 (14) (0) (0) (0)
	respiratory metaplasia:gland	3 0 0 0 (10) (0) (0) (0)	2 0 0 0 (10) (10) (10)	2 0 0 0 (7) (0) (0)	4 0 0 0 0 (14) (0) (0) (0)
	atrophy:olfactory epithelium	2 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
asopharynx	eosinophilic change	<30> 1 1 0 0 ( 3) ( 3) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 3 1 0 0 (11) (4) (0) (0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
ung	congestion	30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	21> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<28> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	edema	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 ( 0) ( 4) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)

1+: Slight 2+: Moderate 3+: Marked Grade 4+ : Severe

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

⁽ c ) c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE

PAGE: 12

21 4+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%) 0 2 0 0 0 0 10) (0) (0) (0) (0) 0 0 1 0 0 0 0 1 0 0 0 0 5) (0) (5) (0) (0)	(%) (%) (%) (%) (28) 0 3 0 0 ( 0) ( 11) ( 0) ( 0)	29 1+ 2+ 3+ 4+ (%) (%) (%) (%) <29> 2 7 0 0 ** (7) (24) (0) (0) 0 0 0 0 (0) (0) (0) (0)
0 2 0 0 0 0) (10) (0) (0) (0) 0 0 1 0 0 0) (5) (0) (0)	0 3 0 0 0 (11) (0) (0)	2 7 0 0 ** ( 7) ( 24) ( 0) ( 0)
0 2 0 0 0 0) (10) (0) (0) (0) 0 0 1 0 0 0) (5) (0) (0)	0 3 0 0 0 (11) (0) (0)	2 7 0 0 ** ( 7) ( 24) ( 0) ( 0)
0) (0) (5) (0) (0)	0 1 0 0 ( 0) ( 0)	
0 0 0 0 0 0	1 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 0 0 (0) (7) (0) (0)	0 0 0 0 0 (0) (0) (0)
0 0 0 0 0 0) ( 0) ( 0) ( 0) ( 0)	28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 2 0 0 0 ( 7) ( 0) ( 0) ( 0)
0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 (14) (0) (0) (0)	3 0 0 0 (10) ( 0) ( 0) ( 0)
0 0 0 0 0	3 0 0 0 0 (11) (0) (0) (0)	7 0 0 0 (24) ( 0) ( 0) ( 0)
	0 0 0 0 0 0 0) (0) (0) (0) (0) 0 6 0 0 0 0 0) (29) (0) (0) (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

PAGE: 13

		Group Name Control No. of Animals on Study 30	2500 ppm 21	5000 ppm 28	10000 ppm 29
gan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
lematopoie1	ic system)				
ol een	atrophy	<30> 0 2 0 0 ( 0) ( 7) ( 0) ( 0)	<21> 0 2 0 0 ( 0) ( 10) ( 0) ( 0)	<28> 0 4 0 0 ( 0) ( 14) ( 0) ( 0)	<pre></pre>
	extramedullary hematopoiesis	4 6 1 0 (13) (20) (3) (0)	6 1 0 0 (29) (5) (0) (0)	11 1 0 0 * (39) (4) (0) (0)	5 5 0 0 (17) (17) (0) (0)
Circulatory	/ system)				
eart	thrombus	<30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 1 0 0 0 ( 4) ( 0) ( 0) ( 0)	<pre></pre>
	deposit of amyloid	0 0 0 0 0 (0) (0)	2 0 0 0 0 (10) (0) (0)	3 0 0 0 (11) (0) (0) (0)	3 0 0 0 (10) ( 0) ( 0) ( 0)
	mineralization	3 0 0 0 (10) (0) (0) (0)	0 1 0 0 (0) (5) (0) (0)	1 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
	myocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
Digestive s	system)				
ooth	dysplasia	<30> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site < a >

b : Number of animals with lesion b

⁽c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crij[Crj:BDF1]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE

		Group Name Control No. of Animals on Study 30	2500 ppm 21	5000 ppm 28	10000 ppm 29	
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
(Digestive sy	stem)					
tongue	squamous cell hyperplasia	<30> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 1 0 0 0 ( 4) ( 0) ( 0) ( 0)	
salivary gl	xanthogranuloma	30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 1 0 0 ( 0) ( 5) ( 0) ( 0)	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 0 0 0 0 0 0 0	
stomach	deposit of amyloid	30> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<pre></pre>	3 0 0 0 (11) (0) (0) (0)	<pre></pre>	
	erosion:forestomach	1 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	
	hyperplasia:forestomach	3 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (3) (0) (0)	
	erosion:glandular stomach	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (5) (6) (6)	1 0 0 0 0 (4) (0) (0)	4 0 0 0 0 (14) (0) (0) (0)	
	hyperplasia:glandular stomach	9 2 0 0 (30) (7) (0) (0)	3 1 0 0 (14) (5) (0) (0)	6 0 0 0 0 (21) (0) (0)	7 1 0 0 (24) (3) (0) (0)	

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \rightarrow
 \)
 \( a \rightarrow
 \)

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

PAGE: 15

		Group Name Control No. of Animals on Study 30	2500 ppm 21	5000 ppm 28	10000 ppm 29
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sys	stem)				
small intes	deposit of amyloid	<30> 11 0 0 0 ( 37) ( 0) ( 0) ( 0)	<21> 4 0 0 0 ( 19) ( 0) ( 0) ( 0)	<28> 10 1 0 0 (36) (4) (0) (0)	<29> 14 0 0 0 (48) (0) (0) (0)
large intes	deposit of amyloid	<30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	28> 1 0 0 0 ( 4) ( 0) ( 0) ( 0)	<pre></pre>
liver	congestion	<pre></pre>	<pre></pre>	<28> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	angiectasis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (5) (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	necrosis:focal	3 0 0 0 (10) (0) (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
	fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	fatty change:central	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

⁽c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 : FEMALE SEX

PAGE: 16

Organ	Findings	Group Name Control  No. of Animals on Study 30  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	2500 ppm 21 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 28 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 29 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive	system)				
liver	deposit of amyloid	30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	3 6 0 0 ** (10) (21) (0) (0)
	inflammatory cell nest	2 0 0 0 0 (7) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	acidophilic cell focus	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (5) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
(Urinary sy	vstem)				
kidney	atrophy	<30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 2 0 0 0 7) ( 0) ( 7) ( 0)	<pre></pre>
	hyaline droplet	11 0 0 0 ( 37) ( 0) ( 0) ( 0)	6 0 0 0 0 (29) (0) (0) (0)	9 0 0 0 (32) (0) (0) (0)	9 0 0 0 (31) (0) (0)
	scar	1 0 0 0 ( 3) ( 0) ( 0) ( 0)	1 3 1 0 (5) (14) (5) (0)	0 6 2 0 *	1 0 0 0 (3) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE PAGE: 17

		oup Name Control	2500 ppm	5000 ppm	10000 ppm
Organ		. of Animals on Study 30 ade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	21 1+ 2+ 3+ 4+ (%) (%) (%) (%)	28 1+ 2+ 3+ 4+ (%) (%) (%) (%)	29 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	t em)				
kidney	inflammatory polyp	30> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<21> 0 0 0 0 0 0 0 0 0 0 0 0	<28> 0 0 0 0 0 0 0 0 0 0 0	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	hydronephros i s	0 2 1 0 (0) (7) (3) (0)	0 1 1 0 (0) (5) (5) (0)	0 2 1 0 ( 0) ( 7) ( 4) ( 0)	0 0 0 0 0 (0) (0) (0)
	papillary necrosis	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:cortico-medullary junctio	n 1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	glomerulosclerosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
	regeneration:proximal tubule	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (4) (0) (0)	1 0 0 0 (3) (3) (0) (0) (0)
urin bladd	dilatation	30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 2 0 0 ( 0) ( 7) ( 0) ( 0)
{Endocrine sy	vstem				
pituitary	angiectasis	<pre></pre>	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 0 0 0 0 0 0 0 0 0	<29> 0 0 0 0 0 0 0 0 0 0 0

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site < a >

b b: Number of animals with lesion

c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX FEMALE

PAGE: 18

Organ	Findings	Group Name Control No. of Animals on Study 30 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 21 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 28 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 29 1+ 2+ 3+ 4+ (%) (%) (%)
{Endocrine sy	ystem)				
pituitary	cyst	30> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 0 0 0 0 0 0 0 0 0
adrenal	spindle-cell hyperplasia	\( \langle 30 \rangle \) 19	<21> 10 2 0 0 (48) (10) (0) (0)	<28> 16 2 0 0 (57) (7) (0) (0)	<29> 18 5 0 0 (62) (17) ( 0) ( 0)
{Reproductive	e system)				
ovary	cyst	30> 3 0 0 0 (10) (0) (0) (0)	<21> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<28> 1 2 0 0 ( 4) ( 7) ( 0) ( 0)	<pre></pre>
uterus	cystic endometrial hyperplasia	30> 3 0 0 0 (10) (0) (0) (0)	<21> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<28> 4 0 0 0 (14) ( 0) ( 0) ( 0)	29> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)
{Nervous syst	tem)				
brain	mineralization	30> 7 0 0 0 (23) (0) (0) (0)	<21> 5 0 0 0 (24) (0) (0) (0)	<28> 4 0 0 0 (14) ( 0) ( 0) ( 0)	6 0 0 0 (21) (0) (0) (0)

(c)

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

		Group Name Control No. of Animals on Study 30	2500 ppm 21	5000 ppm 28	10000 ppm 29		
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4 (%) (%) (%) (%)		
Vervous sy	stem)						
rain	gliosis	30> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 0 0 0 0 0 0 0		
Musculoske	letal system)						
uscle	mineralization	<30> 0 0 0 0 0 0 0 0 0 0 0	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<28> 1 0 0 0 ( 4) ( 0) ( 0) ( 0)	<pre></pre>		

(HPT150)

BA1S5

## TABLE L 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: SACRIFICED ANIMALS

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 SACRIFICED ANIMALS (105W)

SEX

: FEMALE

		roup Name Control	2500 ppm	5000 ppm	10000 ppm	
gan		o. of Animals on Study 20 irade 1+ 2+ 3+ 4+	29 1+ 2+ 3+ 4+ (%) (%) (%) (%)	22 1+ 2+ 3+ 4+ (%) (%) (%) (%)	21 1+ 2+ 3+ 4+ (%) (%) (%) (%)	
ntegumentar	y system/appandage)					
kin/app	scab	<20> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<22> 0 1 0 0 ( 0) ( 5) ( 0) ( 0)	<pre></pre>	
Respiratory	system}					
asal cavit	eosinophilic change:olfactory epitheliu	m 4 0 0 0 0 (20) (0) (0) (0)	5 0 0 0 ( 17) ( 0) ( 0) ( 0)	222> 2 0 0 0 ( 9) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	
	eosinophilic change:respiratory epithel	ium 9 4 0 0 (45) (20) (0) (0)	15 5 1 0 (52) (17) (3) (0)	10 3 0 0 (45) (14) (0) (0)	8 3 0 0 (38) (14) (0) (0)	
	respiratory metaplasia:olfactory epithe	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	
	respiratory metaplasia:gland	2 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	2 0 0 0 ( 9) ( 0) ( 0)	5 0 0 0 (24) (0) (0) (0)	
asopharynx	eosinophilic change	<20> 1 2 0 0 ( 5) ( 10) ( 0) ( 0)	<29> 2 3 0 0 ( 7) ( 10) ( 0) ( 0)	3 1 0 0 (14) (5) (0) (0)	<21> 0 0 0 0 0 0 0 0 0	
a > b c )	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤					

(HPT150)

BAIS5

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crij[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE

PAGE: 13

Organ	N	roup Name Control o. of Animals on Study 20 rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2500 ppm 29 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 22 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 21 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	system)				
lung	ed ema	<pre></pre>	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<22> 0 1 0 0 ( 0) ( 5) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	deposit of amyloid	4 2 0 0 (20) (10) (0) (0)	3 2 0 0 (10) (7) (0) (0)	5 2 0 0 (23) (9) (0) (0)	5 3 1 0 (24) (14) (5) (0)
	inflammatory infiltration	0 1 0 0 (0) (5) (0) (0)	1 1 0 0 (3) (3) (0) (0)	0 0 1 0 ( 0) ( 5) ( 0)	0 0 0 0 0 ( 0) ( 0)
	squamous cell metaplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)
	eosinophilic change:bronchial epitheliu	m 0 1 0 0 ( 0) ( 5) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)
	accumulation:macrophage	0 1 0 0 ( 5) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)
(Hematopoieti	c system)				
bone marrow	granulation	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<22> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\[} a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 14

		Group Name Control No. of Animals on Study 20	2500 ppm 29	5000 ppm 22	10000 ppm 21
rgan	Findings	NO. OF ANIMALS ON Study 20  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoieti	c system)				
bone marrow	increased hematopoiesis	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<22> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	granulopoiesis:increased	1 0 0 0 0 (5) ( 0) ( 0)	3 0 0 0 (10) ( 0) ( 0) ( 0)	4 0 0 0 (18) (0) (0) (0)	0 0 0 0 0 (0) (0)
lymph node	lymphadenitis	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<22> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<21> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spleen	extramedullary hematopoiesis	<20> 5 4 0 0 ( 25) ( 20) ( 0) ( 0)	<pre></pre>	22> 2 0 0 0 * ( 9) ( 0) ( 0) ( 0)	<21> 4 0 0 0 ( 19) ( 0) ( 0) ( 0)
	follicular hyperplasia	1 0 0 0 0 (5) ( 0) ( 0)	2 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
{Circulatory	system}				
heart	deposit of amyloid	<20> 4 0 0 0 ( 20) ( 0) ( 0) ( 0)	3 0 0 0 (10) (0) (0) (0)	<22> 3 0 0 0 (14) (0) (0) (0)	<21> 6 0 0 0 (29) ( 0) ( 0) ( 0)

(c)

c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

SEX

: FEMALE

		Group Name Control No. of Animals on Study 20	2500 ppm 29	5000 ppm 22	10000 ppm 21
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
{Digestive	system)				
tooth	dysplasia	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>
	odontogenic cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (5) (0) (0)	0 0 0 0 0 (0) (0)
tongue	arteritis	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<22> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 0 0 0 0 0 0 0 0 0
stomach	deposit of amyloid	3 0 0 0 ( 15) ( 0) ( 0) ( 0)	<pre></pre>	7 4 0 0 * (32) (18) (0) (0)	<pre></pre>
	hyperplasia:forestomach	2 0 0 0 ( 10) ( 0) ( 0) ( 0)	2 0 0 0 0 (7) (0) (0) (0)	3 0 0 0 (14) (0) (0) (0)	2 1 0 0 (10) (5) (0) (0)
	erosion:glandular stomach	2 0 0 0 (10) (0) (0) (0)	3 0 0 0 0 (10) (10) (10)	3 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:glandular stomach	7 13 0 0 (35) (65) (0) (0)	17 9 0 0 * (59) (31) (0) (0)	11 5 0 0 ** (50) (23) (0) (0)	8 6 3 0 <del>*</del> (38) (29) (14) (0)

Grade 3+ : Marked 1+ : Slight 2+ : Moderate 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

: MOUSE B6D2F1/Crlj[Crj:BDF1] SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 20	2500 ppm 29	5000 ppm 22	10000 ppm 21
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sys	stem)				
small intes	deposit of amyloid	<20> 16 0 0 0 (80) (0) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
large intes	deposit of amyloid	(20) 7 0 0 0 (35) (0) (0) (0)	<pre></pre>	9 0 0 0 ( 41) ( 0) ( 0) ( 0)	21> 12 0 0 0 (57) (0) (0) (0)
liver	angiectasis	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	(29) 0 2 0 0 (0) (7) (0) (0)	22> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>
	necrosis:focal	0 0 0 0 (0) (0) (0)	1 0 0 0 ( 3) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	deposit of amyloid	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	7 2 2 0 ** (33) (10) (10) (0)
	lymphocytic infiltration	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (0) (0) (0)
	inflammatory cell nest	7 1 0 0 (35) (5) (0) (0)	13 1 0 0 (45) (3) (0) (0)	6 0 0 0 (27) (0) (0) (0)	6 0 0 0 (29) ( 0) ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site b : Number of animals with lesion < a >

b

⁽c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1

SEX : FEMALE PAGE: 17

		Group Name		trol				2500	ppm				50	nga OC				1	0000			
rgan	Findings		1+	20 2+ (%)	3+ (%)	4+ (%)	1+ (%)	. !	29 2+ (%)	3+ (%)	4+ (%)		1+ %)	2; 2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	21	3+ %)	4+ (%)
Digestive sy	stem																					
iver	clear cell focus	(	0 0) (	<20 0 0) (	> 0 0)	0 ( 0)	1 ( 3)	(	<29) 0 0) (	) 0 0)	0 ( 0)	(	0 0) (	<22 0 0)	2> 0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	(21) ( ( (	} )) (	0 0)
	basophilic cell focus	(	1 5) (	0 (	0 0)	0 ( 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( 1	) )) (	0 0)
	biliary cyst	(	0 0) (	0 (	0 0)	0 ( 0)	1 ( 3)	(	0 0) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( 1	) )) (	0 0)
	intestinal metaplasia:bile duct		0 0) (	0 (	0 0)	0 ( 0)	1 ( 3)	(	0 0) (	0 0)	0 ( 0)	(	D) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( )	) )) (	0 0)
	hyperplasia:Ito-cell		0 0) (	1 5) (	0 0)	0 ( 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	(	D D) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	1 ( 5)	(	) )} (	0 0)
all bladd	dilatation	(	0 0) (	<20 0 0) (	0	0 ( 0)	0 ( 0)	(	<29) 0 0) (	> 0 0)	0 ( 0)	(	D D) (	<22 1 5)	?> 0 ( 0)	0 ( 0)	(	0 0)	( 0 ( 0)		D D) (	0 0)
Urinary syst	em)																					
idney	hyaline droplet		3 5) (	<20 0 0) (	0	0 ( 0)	0 ( 0)	(	<29) 0 0) (		0 ( 0)	(	D D) (	<22 0 0)		0 ( 0)	(	0 0)		(21) ( ( (	) (	0 0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0740 : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

SEX : FEMALE PAGE: 18

		Group Name Control No. of Animals on Study 20	2500 ppm 29	5000 ppm 22	10000 ppm 21
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
Urinary syst	tem}				
cidney	lymphocytic infiltration	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<29> 1 1 0 0 ( 3) ( 3) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	scar	3 2 1 0 (15) (10) (5) (0)	1 0 1 0	0 0 2 0 ( 0) ( 9) ( 0)	1 0 0 0 0 (5) (0) (0) (0)
	inflammatory polyp	1 0 0 0 ( 5) ( 0) ( 0) ( 0)	0 1 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
	hydronephrosis	0 1 0 0 ( 0) ( 5) ( 0) ( 0)	0 2 0 0 ( 7) ( 0) ( 0)	( 0) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)
	papillary necrosis	2 0 0 0 (10) (10) (10)	3 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	regeneration:proximal tubule	0 0 0 0 0 (0) (0) (0)	0 1 1 0 ( 0) ( 3) ( 0)	0 1 0 0 (0) (5) (0) (0)	0 1 0 0 (0) (5) (0) (0)
(Endocrine sy	vstem)				
oituitary	cyst	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<29> 2 0 0 0 (7) (0) (0) (0)	<22> 0 0 0 0 0 0 0 0 0 0 0	\( \langle 21 \rangle \) \( 1  0  0 \\ (5)  (0)  (0)  (0) \)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

Significant difference ;  $*: P \leq 0.05$  ** :  $P \leq 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]
REPORT TYPE : A1

SEX : FEMALE

PAGE : 19

		roup Name Control	2500 ppm	5000 ppm 22	10000 ppm 21
Organ		o. of Animals on Study 20 rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	29 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Endocrine	system)				
ituitary	hyperplasia	<20> 2 2 0 0 ( 10) ( 10) ( 0) ( 0)	<pre></pre>	<22> 0 1 0 0 ( 0) ( 5) ( 0) ( 0)	<21> 1 1 0 0 ( 5) ( 5) ( 0) ( 0)
	Rathke pouch	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (5) ( 0) ( 0)	0 0 0 0 0 (0) (0)
drenal	spindle-cell hyperplasia	<20> 6 14 0 0 ( 30) ( 70) ( 0) ( 0)	<pre></pre>	<22> 12 10 0 0 ( 55) ( 45) ( 0) ( 0)	<21> 7 14 0 0 ( 33) ( 67) ( 0) ( 0)
	fatty change:corticomedullary junction	1 0 0 0 0 (5) (0) (0)	1 0 0 0 0 (3) (0) (0)	1 0 0 0 0 (5) (5) (6) (6)	0 0 0 0 0 0 (0) (0)
Reproducti	ve system)				
vary	cyst	<20> 3 0 0 0 ( 15) ( 0) ( 0) ( 0)	<29> 4 0 0 0 (14) (0) (0) (0)	222> 2 0 0 0 ( 9) ( 0) ( 0) ( 0)	<21> 4 1 0 0 (19) (5) (0) (0)
terus	inflammatory infiltration	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<29> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<22> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 0 0 0 0 0 0 0
Grade (a > b (c) Significant	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

(HPT150)

SEX

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 : FEMALE HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

		Group Name Control No. of Animals on Study 20	2500 ppm 29	5000 ppm 22	10000 ppm 21
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Reproductiv	ve system)				
uterus	hyperplasia:epithelium	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<22> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	cystic endometrial hyperplasia	10 1 0 0 (50) (5) (0) (0)	15 0 0 0 (52) (0) (0) (0)	10 0 0 0 (45) (0) (0) (0)	5 1 0 0 (24) (5) (0) (0)
(Nervous sys	stem}				
brain	mineralization	20> 7 0 0 0 (35) (0) (0) (0)	7 0 0 0 ( 24) ( 0) ( 0) ( 0)	<22> 6 0 0 0 ( 27) ( 0) ( 0) ( 0)	<21> 5 0 0 0 (24) ( 0) ( 0) ( 0)
(Special sen	nse organs/appendage)				
Harder gl	hyperplasia	<20> 1 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>	<22> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<21> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
{Musculoske}	letal system}				
bone	osteosclerosis	<20> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<29> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>
Grade <a>&gt; b (c)</a>	1+: Slight 2+: Moderate a: Number of animals examined at th b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:				

## TABLE M 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 : MALE

Time-related Weeks	tems	Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		3	1	0	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		1 1 0	0 0 0	0 0 0	1 1 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 1 1	0 0 0	0 0 0	0 1 1	
53 - 78	NO. OF EXAMINED ANIMALS		5	5	7	2	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		1 1 0	3 3 0	3 2 1	1 1 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 1 1	3 0 3	2 2 4	1 0 1	
79 - 104	NO. OF EXAMINED ANIMALS		10	12	10	7	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		9 5 4	9 5 4	8 2 6	6 2 4	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		4 10 14	7 9 16	4 12 16	5 7 12	
105 - 105	NO. OF EXAMINED ANIMALS		32	32	33	40	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		17 8 9	21 11 10	21 9 12	20 13 7	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		13 16 29	16 16 32	22 12 34	16 13 29	

(HPT070)

#### NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : MALE

PAGE: 2

Time-related Weeks	I tems	Group Name	Control	1250 ppm	2500 ррт	5000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		28	33	32	28	
	NO. OF ANIMALS WITH SINGLE TUMORS		15	19	13	17	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		13	14	19	11	
	NO. OF BENIGN TUMORS		17	26	28	22	
	NO. OF MALIGNANT TUMORS		28	25	26	21	
	NO. OF TOTAL TUMORS		45	51	54	43	
(HPT070)				******			BA

(HPT070)

BA155

## TABLE M 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE PAGE : 3

Time-related Weeks	I tems	Group Name	Control	2500 ppm	5000 ppm	10000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		2	1	1	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		2 2 0	1 0 1	0 0 0	0 0 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 2 2	1 1 2	0 0 0	0 0 0	
53 - 78	NO. OF EXAMINED ANIMALS		5	4	1	8	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		4 4 0	4 4 0	0 0 0	7 7 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		1 3 4	0 4 4	0 0 0	0 7 7	
79 - 104	NO. OF EXAMINED ANIMALS		23	16	26	20	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		23 15 8	12 8 4	19 18 1	11 11 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		10 22 32	3 13 16	1 19 20	1 10 11	
105 - 105	NO. OF EXAMINED ANIMALS		20	29	22	21	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		18 7 11	18 12 6	15 13 2	9 7 2	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		15 16 31	12 15 27	7 10 17	4 9 13	

(HPT070)

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : FEMALE

PAGE: 4

Time-related Weeks	l tems	Group Name	Control	2500 ppm	5000 ppm	10000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		47	35	34	27	
	NO. OF ANIMALS WITH SINGLE TUMORS		28	24	31	25	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		19	11	3	2	
	NO. OF BENIGN TUMORS		26	16	8	5	
	NO. OF MALIGNANT TUMORS		43	33	29	26	
	NO. OF TOTAL TUMORS		69	49	37	31	
(UDTOTO)							

(HPT070)

BAIS5

## TABLE N 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE SEX

Organ	Findings	Group Name Control No. of animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
{Integumenta	ry system/appandage)				
skin/app	squamous cell papilloma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
	trichoepithelioma	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
subcutis	fibroma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	leiomyoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	xanthoma	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
	histiocytic sarcoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
	sarcoma:NOS	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
(Respiratory	system)				
ung	bronchiolar-alveolar adenoma	<50> 5 ( 10%)	<50> 5 ( 10%)	<50> 8 ( 16%)	<50> 4 ( 8%)
	bronchiolar-alveolar carcinoma	4 ( 8%)	1 ( 2%)	4 ( 8%)	3 ( 6%)
	hemangiosarcoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
(Hematopoieti	ic system)				
bone marrow	hemangioma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
<a>&gt;</a> b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a *	100			
(UDTAGE)					

(HPT085)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
(Hematopoietic	system)				
ymph node	malignant lymphoma	<50> 3 ( 6%)	<50> 8 (16%)	<50> 7 ( 14%)	<50> 2 ( 4%)
	mastcytoma:malignant	0 ( 0%)	2 ( 4%)	0 ( 0%)	0 ( 0%)
ol een	hemangioma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 (2%)
Digestive sys	tem)				
ooth	histiocytic sarcoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
ongue	squamous cell carcinoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
tomach	squamous cell papilloma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 2 ( 4%)	<50> 5 ( 10%)
	carcinoid tumor	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
	squamous cell carcinoma	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	adenocarcinoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
mall intes	adenoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
	adenocarcinoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
iver	hemang i oma	<50> 2 ( 4%)	<50> 4 ( 8%)	<50> 1 ( 2%)	<50> 1 ( 2%)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

)rgan	Findings	Group Name Control No. of animals on Study	50	1250 p	50	2500 ppm 50	5000 ppm 50
(Digestive sys	tem)						
iver	hepatocellular adenoma		<50> ( 14%)	12	<50> ( 24%)	<50> 11 ( 22%)	<50> 8 ( 16%)
	histiocytic sarcoma	3	( 6%)	0	( 0%)	2 ( 4%)	4 ( 8%)
	hemangiosarcoma	1	( 2%)	0	( 0%)	1 ( 2%)	1 ( 2%)
	hepatocellular carcinoma	12	( 24%)	10	( 20%)	7 (14%)	5 (10%)
ancreas	ductal adenocarcinoma		<50> ( 0%)	0	<50> ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
Urinary syste	em)						
idney	renal cell adenoma	0	<50> ( 0%)	0	<50> ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
	transitional cell carcinoma	0	( 0%)	0	( 0%)	1 ( 2%)	0 ( 0%)
	renal cell carcinoma	0	( 0%)	1	( 2%)	0 ( 0%)	0 ( 0%)
rin bladd	transitional cell carcinoma		<50> ( 0%)	0	<50> ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
Endocrine sys	tem)						
ituitary	adenoma	1	<50> ( 2%)	0	<50> ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
Reproductive	system}						
estis	histiocytic sarcoma		<50> ( 0%)	0	<50> ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
{Reproductive	system				
epididymis	histiocytic sarcoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
(Special sense	e organs/appendage}				
Harder gl	adenoma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 2 ( 4%)	<50> 1 ( 2%)
	adenocarcinoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
(Musculoskele	tal system)				
nuscle	hemangiosarcoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
one	osteosarcoma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
(Body cavities	(2				
retroperit	histiocytic sarcoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
<a>&gt;</a> b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c:b/a	<b>*</b> 100			

(HPT085)

BAIS5

## TABLE N 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
{Integumenta	ry system/appandage)				
subcutis	fibrosarcoma	<50> 3 ( 6%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
	liposarcoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
	histiocytic sarcoma	0 ( 0%)	1 ( 2%)	1 ( 2%)	1 ( 2%)
	sarcoma:NOS	2 ( 4%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
(Respiratory	system)				
lung	bronchiolar-alveolar adenoma	<50> 5 ( 10%)	<50> 0 ( 0%)	<50> 2 ( 4%)	<50> 1 ( 2%)
	bronchiolar-alveolar carcinoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
Hematopoieti	ic system)				
one marrow	hemangioma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
ymph node	malignant lymphoma	<50> 16 ( 32%)	<50> 19 ( 38%)	<50> 17 ( 34%)	<50> 9 ( 18%)
pleen	mastcytoma:benign	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	hemang i oma	1 ( 2%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
	malignant lymphoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
<a>&gt;</a>	a: Number of animals examined at the site b: Number of animals with neoplasm c: b/a	<b>*</b> 100			

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50	
{Digestive sy	stem)					
stomach	squamous cell papilloma	<50> 0 ( 0%)	<50> 2 ( 4%)	<50> 1 ( 2%)	<50> 0 ( 0%)	
liver	hemangioma	<50> 2 ( 4%)	<50> 1 ( 2%)	<50> 2 ( 4%)	<50> 2 ( 4%)	
	hepatocellular adenoma	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)	
	histiocytic sarcoma	3 ( 6%)	0 ( 0%)	1 ( 2%)	0 ( 0%)	
	hemangiosarcoma	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)	
	hepatocellular carcinoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)	
{Endocrine sy	stem)					
pituitary	adenoma	<50> 5 ( 10%)	<50> 6 ( 12%)	<50> 2 ( 4%)	<50> 0 ( 0%)	
thyroid	C-cell adenoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<49> 0 ( 0%)	
adrenal	pheochromocytoma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	
	pheochromocytoma:malignant	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)	
{Reproductive	system					
ovary	cystadenoma	<50> 4 ( 8%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 ( 2%)	
<a>&gt;</a>	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a *	100	,			WASHENING VERHAMMANING

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

Organ	Findings	Group Name Control No. of animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
{Reproductive	e system)				
ovary	hemang i oma	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
uterus	endometrial stromal polyp	<50> 2 ( 4%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	histiocytic sarcoma	15 ( 30%)	10 (20%)	8 (16%)	12 ( 24%)
	hemangiosarcoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
(Special sens	e organs/appendage)				
larder gl	adenoma	<50> 3 ( 6%)	<50> 3 ( 6%)	<50> 0 ( 0%)	<50> 0 ( 0%)
Musculoskele	tal system)				
one	fibroma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
Body cavitie	ls				
leura	histiocytic sarcoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
eri toneum	histiocytic sarcoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
etroperit	hemangiosarcoma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
<a>&gt;</a>	a : Number of animals examined at the site b : Number of animals with neoplasm	c:b/a * 100			

## TABLE O 1

# NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

(HPT360A)

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0740
ANIMAL : MOUSE B6D2F1/Cr[j[Crj:BDF1]
SEX : MALE PAGE: 1

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : lung	an alaman			
Tumor rate	TUMOR : bronchiolar-alveol	ar adenoma			
Overall rates (a)	5/50 ( 10. 0)	5/50 ( 10. 0)	8/50 ( 16. 0)	4/50 ( 8. 0)	
Adjusted rates (b)	15. 63	12. 50	19. 51	8. 70	
Terminal rates (c)	5/32 ( 15. 6)	4/32 ( 12. 5)	5/33 ( 15. 2)	3/40 ( 7. 5)	
Statistical analysis					
Peto test Standard method (d)	P =				
Prevalence method (d)	P = 0. 6953				
Combined analysis (d)	P =				
Cochran-Armitage test (e)	P = 0. 8187				
Fisher Exact test(e)		P = 0.6297	P = 0.2768	P = 0. 5000	
	SITE : lung TUMOR : bronchiolar-alveol	ar carcinoma			
Tumor rate	(/50/ 0.0)	. (50 ( . 0.0)	4/50 / 0.0	0.450.4 . 0. 0)	
Overall rates (a) Adjusted rates (b)	4/50 ( 8. 0) 8. 11	1/50 ( 2. 0) 3. 13	4/50 ( 8. 0) 11. 11	3/50 ( 6. 0) 7. 50	
Terminal rates (c)	2/32 ( 6. 3)	1/32 ( 3. 1)	3/33 ( 9. 1)	3/40 ( 7. 5)	
Statistical analysis	2, 02 (	17021 0.17	0,000	3, 13 ( ). 3,	
Peto test					
Standard method(d)	P = 0. 9295 ?				
Prevalence method (d)	P = 0. 4505	•			
Combined analysis (d) Cochran-Armitage test (e)	P = 0.5966 P = 1.0000				
Fisher Exact test(e)	1 - 1. 0000	P = 0.1811	P = 0.6425	P = 0.5000	
	SITE : lung TUMOR : bronchiolar-alveol	ar adenoma, bronchiolar—alveolar carcinom	a		
Tumor rate Overall rates(a)	9/50 ( 18. 0)	6/50/ 13 0)	11/50 ( 22. 0)	7/50 ( 14. 0)	
Adjusted rates (b)	9/50 ( 18. 0)	6/50 ( 12. 0) 15. 63	27. 03	7/50 ( 14. u) 15. 22	
Terminal rates (c)	7/32 ( 21. 9)	5/32 ( 15. 6)	7/33 ( 21. 2)	6/40 ( 15. 0)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0. 9295 ?				
Prevalence method(d)	P = 0. 6699				
Combined analysis (d)	P = 0.7496				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.8217	P = 0.2883	P = 0.4016	P = 0.3929	
		1 0. 2000	1 0. 7010	1 0.0020	

BAIS5

STUDY No. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : MALE PAGE: 2

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : lymph node TUMOR : malignant lymphoma				
Tumor rate	TOMOR . mailghant tymphoma				
Overall rates (a)	3/50 ( 6.0)	8/50 ( 16. 0)	7/50 ( 14. 0)	2/50 ( 4. 0)	
Adjusted rates(b)	3. 13	15. 63	9. 09	2. 50	
Terminal rates (c)	1/32 ( 3. 1)	5/32 ( 15. 6)	3/33 ( 9. 1)	1/40 ( 2. 5)	
Statistical analysis					
Peto test Standard method(d)	P = 0.7657				
Prevalence method (d)	P = 0. 7900				
Combined analysis (d)	P = 0.8653				
Cochran-Armitage test(e)	P = 0.4256				
Fisher Exact test(e)		P = 0.0999	P = 0.1589	P = 0.5000	
, , , , , , , , , , , , , , , , , , ,	CLTC	· · · · · · · · · · · · · · · · · · ·			
	SITE : stomach TUMOR : squamous cell papillon	12			
Tumor rate	Tomost . Squamous cert papirion	ia			
Overall rates (a)	0/50 ( 0.0)	0/50 ( 0. 0)	2/50 ( 4. 0)	5/50 ( 10. 0)	
Adjusted rates(b)	0. 0	0. 0	6. 06	10. 87	
Terminal rates (c)	0/32 ( 0. 0)	0/32 ( 0. 0)	2/33 ( 6. 1)	3/40 ( 7. 5)	
Statistical analysis Peto test					
Standard method(d)	P =				
Prevalence method (d)	P = 0. 0026**				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0.0022**				
Fisher Exact test(e)		P = N. C.	P = 0.2475	P = 0. 0281*	
	SITE : stomach TUMOR : squamous cell papillor	a squamous call carsinoma			
Tumor rate	TOMON . Squamous Cell papilitos	a, squamous cerr caremona			
Overall rates (a)	0/50 ( 0. 0)	1/50 ( 2. 0)	2/50 ( 4. 0)	5/50 ( 10. 0)	
Adjusted rates(b)	0. 0	0. 0	6. 06	10. 87	
Terminal rates (c)	0/32 ( 0. 0)	0/32 ( 0. 0)	2/33 ( 6. 1)	3/40 ( 7. 5)	
Statistical analysis					
Peto test Standard method(d)	P = 0. 5990				
Prevalence method (d)	P = 0.0027**				
Combined analysis (d)	P = 0.0090**				
Cochran-Armitage test(e)	P = 0. 0073**				
Fisher Exact test(e)		P = 0.5000	P = 0.2475	P = 0. 0281*	

(HPT360A)

STUDY No. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : MALE PAGE: 3

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : liver TUMOR : hemangioma				
Tumor rate	-	4/50 / 0.0	1 (50 ( 0.0)	1/50/ 0.0	
Overall rates (a) Adjusted rates (b)	2/50 ( 4. 0) 2. 50	4/50 ( 8. 0) 6. 82	1/50 ( 2. 0) 3. 03	1/50 ( 2. 0) 2. 50	
Terminal rates(c) Statistical analysis	0/32 ( 0. 0)	0/32 ( 0. 0)	1/33 ( 3. 0)	1/40 ( 2. 5)	
Peto test Standard method(d)	P = 0.8892				
Prevalence method(d)	P = 0.6889				
Combined analysis (d)	P = 0. 8569				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 3291	P = 0.3389	P = 0.5000	P = 0.5000	
	SITE : liver TUMOR : hepatocellular adenoma				
umor rate	,				
Overall rates (a)	7/50 ( 14. 0)	12/50 ( 24. 0)	11/50 ( 22. 0)	8/50 ( 16. 0)	
Adjusted rates (b) Terminal rates (c)	18. 42 5/32 ( 15. 6)	33. 33 10/32 ( 31. 3)	24. 32 8/33 ( 24. 2)	16. 33 6/40 ( 15. 0)	
Statistical analysis Peto test	3/ 32 ( 13. 0)	10/32 ( 31. 3)	0/33 ( 24. 2/	07 40 ( 13. 0)	
Standard method(d)	P = 0.4067				
Prevalence method(d) Combined analysis(d)	P = 0.7177 P = 0.6942				
Cochran-Armitage test (e)	P = 0. 9514				
Fisher Exact test(e)	,	P = 0. 1540	P = 0.2178	P = 0.5000	
	SITE : liver				
	TUMOR: histiocytic sarcoma				
umor rate		- ( ()	2 (72 ( ) 2)		
Overall rates (a) Adjusted rates (b)	3/50 ( 6. 0) 0. 0	0/50 ( 0. 0) 0. 0	2/50 ( 4. 0) 0. 0	4/50 ( 8. 0) 2. 33	
Terminal rates (c)	0.0	0. 0	0/33 ( 0. 0)	0/40 ( 0. 0)	
Statistical analysis	2 , 0. 0,	0, 02 ( 0. 0)	3, 33 ( 3. 3,	0, ,0 , 0,	
Peto test					
Standard method (d)	P = 0. 3857				
Prevalence method(d) Combined analysis(d)	P = 0. 1273 P = 0. 2328				
Cochran-Armitage test(e)	P = 0. 2320 P = 0. 3270				
Fisher Exact test(e)		P = 0. 1212	P = 0.5000	P = 0.5000	

STUDY No. : 0740 ANIMAL : MOUSE B6D2F1/Cr[j[Crj:BDF1] SEX : MALE

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : liver	•			
Tuman waka	TUMOR : hepatocellular carc	inoma			
Tumor rate Overall rates(a)	12/50 ( 24. 0)	10/50 ( 20. 0)	7/50 ( 14. 0)	5/50 ( 10. 0)	
Adjusted rates (b)	31. 25	21. 88	17.50 ( 14. 0)	7. 50	
Terminal rates (c)	10/32 ( 31. 3)	7/32 (21.9)	3/33 ( 9. 1)	3/40 ( 7. 5)	
Statistical analysis	10/32 ( 31. 3/	1/32 ( 21. 3)	3/33 ( 3.1)	3/40 ( 1. 3)	
Peto test					
Standard method (d)	P = 0. 5032				
Prevalence method (d)	P = 0. 9943				
Combined analysis (d)	P = 0. 9878				
Cochran-Armitage test(e)	P = 0. 0485*				
Fisher Exact test(e)		P = 0.4048	P = 0.1540	P = 0.0542	
	SITE : liver				
	TUMOR: hemangioma, hemangio	carcoma			
Tumor rate	tomon . Hemangroma, Hemangro	Sai Colla			
Overall rates (a)	3/50 ( 6.0)	4/50 ( 8. 0)	2/50 ( 4. 0)	2/50 ( 4. 0)	
Adjusted rates (b)	5. 00	6. 82	3. 03	5. 00	
Terminal rates (c)	1/32 ( 3. 1)	0/32 ( 0. 0)	1/33 ( 3. 0)	2/40 ( 5. 0)	
Statistical analysis				<u> </u>	
Peto test					
Standard method(d)	P = 0.8161				
Prevalence method(d)	P = 0.6333				
Combined analysis(d)	P = 0.7879				
Cochran-Armitage test(e)	P = 0.4955				
Fisher Exact test(e)		P = 0.5000	P = 0.5000	P = 0.5000	

(HPT360A)

BA1S5

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : liver				
	TUMOR : hepatocellular ade	noma hepatocellular carcinoma			
Tumor rate					
Overall rates(a)	16/50 ( 32. 0)	20/50 ( 40. 0)	16/50 ( 32. 0)	10/50 ( 20. 0)	
Adjusted rates(b)	39. 39	48. 48	32. 43	17. 50	
Terminal rates (c)	12/32 ( 37. 5)	15/32 ( 46. 9)	10/33 ( 30. 3)	7/40 ( 17. 5)	
Statistical analysis					
Peto test					
Standard method (d)	P = 0.4649				
Prevalence method (d)	P = 0. 9920				
Combined analysis (d)	P = 0. 9841				
Cochran-Armitage test (e)	P = 0. 0881				
Fisher Exact test (e)	1 - 0. 0001	P = 0.2661	P = 0.5848	P = 0.1271	
FISHEL EXACT (621 (6)		r - u. 2001	r - u. 3040	r = 0. 12/1	
(HPT360A)	W. III. A.				BAIS

PAGE :

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis. Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$ 

N.C.:Statistical value cannot be calculated and was not significant.

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

(HPT360A)

Group Name	Control	1250 ppm	2500 ppm	5000 ppm	
	SITE : ALL SITE TUMOR : histiocytic sarcoma				
Tumor rate	TOMOR . HIStrocytic Sarcoma				
Overall rates (a)	4/50 ( 8. 0)	0/50 ( 0. 0)	5/50 ( 10. 0)	6/50 ( 12. 0)	
Adjusted rates (b)	0. 0	0. 0	6. 06	4. 76	
Terminal rates (c)	0/32 ( 0. 0)	0/32 ( 0.0)	2/33 ( 6. 1)	1/40 ( 2. 5)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.3748				
Prevalence method(d)	P = 0.0699				
Combined analysis(d)	P = 0.1487				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.1595	P = 0.0587	P = 0.5000	P = 0.3703	
Trailer LAUCE (CST (C)				1 0.0100	
	SITE : ALL SITE TUMOR : malignant lymphoma				
Tumor rate	. (72.4			0 (70 ( ) 0)	
Overall rates (a)	3/50 ( 6. 0)	8/50 ( 16. 0)	7/50 ( 14. 0)	2/50 ( 4. 0)	
Adjusted rates(b) Terminal rates(c)	3. 13 1/32 ( 3. 1)	15. 63 5/32 ( 15. 6)	9. 09 3/33 ( 9. 1)	2. 50 1/40 ( 2. 5)	
Statistical analysis	1/32 ( 3. 1)	5/32 ( 15. 6)	3/33 ( 9. 1)	1/40 ( 2. 5)	
Peto test					
Standard method (d)	P = 0.7657				
Prevalence method(d)	P = 0. 7900				
Combined analysis(d)	P = 0.8653				
Cochran-Armitage test(e)	P = 0.4256				
Fisher Exact test(e)		P = 0.0999	P = 0. 1589	P = 0.5000	

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

-----: There is no data which should be statistical analysis. Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$ 

N.C.: Statistical value cannot be calculated and was not significant.

PAGE: 1

BAIS5

## TABLE O 2

# NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

STUDY No. : 0740 ANIMAL : MOUSE_B6D2F1/Crlj[Crj:BDF1]

: FEMALE PAGE: 6 SEX

Group Name	Control	2500 ppm	5000 ppm	10000 ppm	
	SITE : subcutis				
-	TUMOR : fibrosarcoma				
Tumor rate Overall rates(a)	3/50 ( 6. 0)	0/50 ( 0. 0)	0/50 ( 0. 0)	1/50 ( 2. 0)	
Adjusted rates (b)	5. 00	0.0	0. 0	4. 76	
Terminal rates (c)	1/20 ( 5. 0)	0/29 ( 0. 0)	0/22 ( 0. 0)	1/21 ( 4. 8)	
Statistical analysis	7, 20 ( 0. 0)	0,201 0,0,	0, 22 (	,, =, , , , ,	
Peto test					
Standard method(d)	P = 0.9783 ?				
Prevalence method(d)	P = 0.3673				
Combined analysis (d)	P = 0.8326				
Cochran-Armitage test (e)	P = 0.3056	0 4040	0 4040	0.0007	
Fisher Exact test(e)		P = 0. 1212	P = 0. 1212	P = 0. 3087	
	SITE : lung				
_	TUMOR : bronchiolar-alveolar	adenoma			
Tumor rate	5 (50 ( 40 0)	0/50/ 0.0	0.750 / 4.01	1 (50 ( 0.0)	
Overall rates (a) Adjusted rates (b)	5/50 ( 10. 0) 15. 00	0/50 ( 0. 0) 0. 0	2/50 ( 4. 0) 9. 09	1/50 ( 2. 0) 4. 76	
Terminal rates (c)	3/20 ( 15. 0)	0/29( 0.0)	2/22 ( 9. 1)	1/21 ( 4. 8)	
Statistical analysis	37 20 ( 13. 0)	0/23( 0.0)	L/ LL ( 3. 1/	1721 ( 4.0)	
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0.9253				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0. 1432				
Fisher Exact test(e)		P = 0. 0281*	P = 0. 2180	P = 0. 1022	
	SITE : lung				
	TUMOR : bronchiolar-alveolar	adenoma, bronchiolar-alveolar carcinom	a		
Tumor rate	0 (50 / 40 0)	. (50 ( 0 0)	0 (50 (	. (50 / . 0. 0)	
Overall rates (a)	6/50 ( 12. 0)	1/50 ( 2. 0)	2/50 ( 4. 0)	1/50 ( 2. 0)	
Adjusted rates(b) Terminal rates(c)	15. 00 3/20 ( 15. 0)	3. 45 1/29 ( 3. 4)	9. 09 2/22 ( 9. 1)	4. 76 1/21 ( 4. 8)	
Statistical analysis	3/ 20 ( T3. U)	1/23 ( 3.4)	2/22 3. 11	1/21 \ 4. 0/	
Peto test					
Standard method(d)	P = 0.9349 ?				
Prevalence method(d)	P = 0. 9409				
Combined analysis (d)	P = 0.9713				
Cochran-Armitage test(e)	P = 0.0622				
Fisher Exact test(e)		P = 0.0559	P = 0.1343	P = 0.0559	

(HPT360A)

STUDY No. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE

PAGE: 7

Group Name	Control	2500 ppm	5000 ppm	10000 ppm
	SITE : lymph node TUMOR : malignant lymphoma			
Tumor rate Overall rates(a)	16/50 ( 32. 0)	19/50 ( 38. 0)	17/50 ( 34. 0)	9/50 ( 18. 0)
Adjusted rates (b)	35. 00	34. 48	40. 91	23. 81
Terminal rates(c) Statistical analysis Peto test	7/20 ( 35. 0)	10/29 ( 34. 5)	9/22 ( 40. 9)	5/21 ( 23. 8)
Standard method(d)	P = 0.8964			
Prevalence method(d) Combined analysis(d)	P = 0.7738 P = 0.9278			
Cochran-Armitage test (e)	P = 0.9270 P = 0.0653			
Fisher Exact test(e)		P = 0.3377	P = 0. 5000	P = 0.0826
	SITE : liver TUMOR : histiocytic sarcoma			
Tumor rate Overall rates(a)	3/50 ( 6. 0)	0/50 ( 0. 0)	1/50 ( 2. 0)	0/50 ( 0. 0)
Adjusted rates(b)	5. 00	0. 0	0. 0	0. 0
Terminal rates(c) Statistical analysis Peto test	1/20 ( 5. 0)	0/29 ( 0. 0)	0/22 ( 0. 0)	0/21 ( 0.0)
Standard method(d)	P = 0.8886			
Prevalence method(d) Combined analysis(d)	P = 0. 9622 ? P = 0. 9626			
Cochran-Armitage test(e)	P = 0. 0877			
Fisher Exact test(e)		P = 0. 1212	P = 0. 3087	P = 0. 1212
Tunnen	SITE : liver TUMOR : hemangioma, hemangiosarcoma			
Tumor rate Overali rates(a)	3/50 ( 6. 0)	1/50 ( 2.0)	2/50 ( 4. 0)	2/50 ( 4. 0)
Adjusted rates(b)	15. 00	3. 45	4. 55	9. 52
Terminal rates(c) Statistical analysis Peto test	3/20 ( 15. 0)	1/29 ( 3. 4)	1/22 ( 4. 5)	2/21 ( 9. 5)
Standard method(d)	P = 0.3719			
Prevalence method(d) Combined analysis(d)	P = 0. 5880 P = 0. 5479			
Cochran-Armitage test (e)	P = 0. 8073			
Fisher Exact test(e)		P = 0.3087	P = 0.5000	P = 0.5000

(HPT360A)

STUDY No. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE PAGE: 8

Group Name	Control	2500 ppm	5000 ppm	10000 ppm	
	SITE : pituitary gland TUMOR : adenoma				
Tumor rate	tomor . adenoma				
Overall rates (a)	5/50 ( 10. 0)	6/50 ( 12. 0)	2/50 ( 4. 0)	0/50 ( 0. 0)	
Adjusted rates (b)	15. 00	17. 24	9. 09	0. 0	
Terminal rates(c) Statistical analysis	3/20 ( 15. 0)	5/29 ( 17. 2)	2/22 ( 9. 1)	0/21 ( 0. 0)	
Peto test Standard method(d)	P = 0.9203 ?				
Prevalence method(d)	P = 0.9904				
Combined analysis (d)	P = 0. 9958				
Cochran-Armitage test(e)	P = 0. 0134*	D 0 E000	D = 0 0100	P = 0. 0281*	
Fisher Exact test(e)		P = 0. 5000	P = 0. 2180	P = U. U281*	
	SITE : ovary				
Tumor rate	TUMOR : cystadenoma				
Overall rates (a)	4/50 ( 8. 0)	1/50 ( 2. 0)	0/50 ( 0.0)	1/50 ( 2. 0)	
Adjusted rates (b)	10. 53	2. 44	0. 0	3. 70	
Terminal rates (c)	2/20 ( 10. 0)	0/29 ( 0. 0)	0/22 ( 0. 0)	0/21 ( 0.0)	
Statistical analysis					
Peto test	P =				
Standard method(d) Prevalence method(d)	P = 0. 9322				
Combined analysis (d)	P =				
Cochran-Armitage test (e)	P = 0. 1232				
Fisher Exact test(e)		P = 0. 1811	P = 0.0587	P = 0. 1811	
	SITE : uterus				
	TUMOR : histiocytic sarcoma				
Tumor rate					
Overall rates (a)	15/50 ( 30. 0)	10/50 ( 20. 0)	8/50 ( 16. 0)	12/50 ( 24. 0)	
Adjusted rates (b)	15. 00	10. 34	6. 67	4. 76	
Terminal rates (c)	3/20 ( 15. 0)	3/29 ( 10. 3)	1/22 ( 4. 5)	1/21 ( 4. 8)	
Statistical analysis Peto test					
Standard method (d)	P = 0. 3462				
Prevalence method (d)	P = 0. 9112				
Combined analysis (d)	P = 0. 5986				
Cochran-Armitage test(e)	P = 0.5866				
Fisher Exact test(e)		P = 0.1779	P = 0.0765	P = 0.3264	

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1] SEX

: FEMALE

Group Name	Control	2500 ppm	5000 ppm	10000 ppm	
	SITE : Harderian gland				
Turner	TUMOR : adenoma				
Tumor rate	2/50/ 0.0	2 (50 (	0/50/ 0.0/	0/50 ( 0. 0)	
Overall rates (a)	3/50 ( 6. 0)	3/50 ( 6. 0)	0/50 ( 0. 0)		
Adjusted rates (b)	10. 00	6. 00	0. 0	0. 0	
Terminal rates (c)	2/20 ( 10. 0)	1/29 ( 3. 4)	0/22 ( 0. 0)	0/21 ( 0.0)	
Statistical analysis					
Peto test					
Standard method(d)	P =				
Prevalence method(d)	P = 0. 9881				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0. 0356*				
Fisher Exact test(e)		P = 0.6611	P = 0.1212	P = 0.1212	
HPT360A)					BAIS

PAGE: 9

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis. Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$ 

N.C.:Statistical value cannot be calculated and was not significant.

(HPT360A)

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : FEMALE

OEA . TEMPSEE					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Group Name	Control	2500 ррт	5000 ppm	10000 ppm	
	SITE : ALL SITE				
T	TUMOR : histiocytic sarcoma				
Tumor rate	10/50/ 20 0)	11 (50 ( 99 0)	11/50 ( 22. 0)	13/50 ( 26. 0)	
Overall rates (a)	19/50 ( 38. 0) 25. 00	11/50 ( 22. 0) 10. 34	6. 90	9. 52	
Adjusted rates(b) Terminal rates(c)	5/20 ( 25. 0)	3/29 ( 10. 3)	1/22 ( 4. 5)	2/21 ( 9. 5)	
Statistical analysis	3/20 ( 23. 0)	3/29 ( 10. 3)	1/22 ( 4. 3)	2/21 ( 9. 5)	
Peto test					
Standard method (d)	P = 0.4864				
Prevalence method (d)	P = 0. 9275				
Combined analysis (d)	P = 0. 7413				
Cochran-Armitage test(e)	P = 0.3063				
Fisher Exact test(e)		P = 0.0630	P = 0.0630	P = 0.1419	
	SITE : ALL SITE TUMOR : malignant lymphoma				
Tumor rate					
Overall rates(a)	16/50 ( 32. 0)	19/50 ( 38. 0)	17/50 ( 34. 0)	10/50 ( 20. 0)	
Adjusted rates(b)	35. 00	34. 48	40. 91	23. 81	
Terminal rates (c)	7/20 ( 35. 0)	10/29 ( 34. 5)	9/22 ( 40. 9)	5/21 ( 23. 8)	
Statistical analysis					
Peto test	D 0.000				
Standard method (d)	P = 0. 8286				
Prevalence method(d) Combined analysis(d)	P = 0. 7738 P = 0. 8889				
Cochran-Armitage test(e)	P = 0. 8889 P = 0. 1091				
Fisher Exact test(e)	r - v. 1031	P = 0.3377	P = 0.5000	P = 0. 1271	
TISHEL EXACT TEST (C)	•	1 - 0. 0011	i – 0. 3000	1 - U. 1211	

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$ 

N.C.: Statistical value cannot be calculated and was not significant.

Z

BAIS5

# TABLE P 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 1 2500 ppm 5000 ppm 1250 ppm Group Name Control 50 No. of Animals on Study 50 Organ_ Findings_ {Respiratory system} ⟨50⟩ ⟨50⟩ **<50>** lung ⟨50⟩ leukemic cell infiltration metastasis:liver tumor metastasis:subcutis tumor metastasis:muscle tumor metastasis:retroperitoneum tumor metastasis:kidney tumor (Hematopoietic system) **<50>** bone marrow ⟨50⟩ **<50> <50>** leukemic cell infiltration metastasis:liver tumor lymph node <50> ⟨50⟩ <50> **<50>** metastasis:liver tumor metastasis:retroperitoneum tumor metastasis:stomach tumor metastasis:epididymis tumor 0 0 ⟨50⟩ (50) thymus <50> **<50>** leukemic cell infiltration 0 <50> ⟨50⟩ (50) <50> spleen leukemic cell infiltration 3 2 < a > a : Number of animals examined at the site b: Number of animals with lesion

(JPT150)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)  $\,$ 

PAGE: 2 SEX : MALE

	_	Group Name Control No. of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	Findings				
{Hematopoietic	system)				
spleen	metastasis:liver tumor	<50> 0	<50> 0	<50> 1	<50> 1
	metastasis:lymph node tumor	0	2	0	0
(Circulatory sy	ystem)				
heart	metastasis:liver tumor	<50> 1	<50⟩ 1	<50> 0	<50> 0
(Digestive syst	tem)				
salivary gl	leukemic cell infiltration	<50> 0	<50> 1	<50> 2	<50> 0
	metastasis:liver tumor	0	0	0	1
	metastasis:subcutis tumor	1	0	0	0
stomach	metastasis:liver tumor	<50> 1	<50> 0	<50> 0	<50> 0
	metastasis:pancreas tumor	0	0	1	0
small intes	leukemic cell infiltration	<50> 1	<50> 1	<50> 0	<50> 0
large intes	metastasis:liver tumor	<50> 1	<50> 0	<50> 0	<50> 0
liver	leukemic cell infiltration	<50> 1	<50> 0	<50> 4	<50> 1
	metastasis:epididymis tumor	1	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE

PAGE: 3 2500 ppm 5000 ppm 1250 ppm Group Name Control 50 No. of Animals on Study Organ_ Findings_ (Digestive system) ⟨50⟩ <50> pancreas ⟨50⟩ <50> leukemic cell infiltration 2 2 0 metastasis:liver tumor (Urinary system) kidney **<50>** <50> ⟨50⟩ **<50>** leukemic cell infiltration 2 1 0 metastasis:liver tumor metastasis:subcutis tumor 0 0 0 1 ⟨50⟩ urin bladd <50> <50> <50> leukemic cell infiltration (Endocrine system) thyroid <50> **<50> <50>** ⟨50⟩ leukemic cell infiltration adrenal <50> <50> ⟨50⟩ **<50>** leukemic cell infiltration (Reproductive system) epididymis **<50>** <50> <50> **<50>** leukemic cell infiltration semin ves <50> **〈50〉** ⟨50⟩ ⟨50⟩ leukemic cell infiltration 0 1 < a > a: Number of animals examined at the site b : Number of animals with lesion

(JPT150)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)  $\,$ 

SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 50	1250 ppm 50	2500 ppm 50	5000 ppm 50
Organ	FINGINGS				
(Reproductive	system				
prostate	leukemic cell infiltration	<50> 0	<50> 1	<50> 1	<50> 0
(Body cavitie	sl				
pleura	metastasis:retroperitoneum tumor	<50> 0	<50> 0	<50> 1	<50> 0
mediastinum	leukemic cell infiltration	<50> 1	<50> 1	<50> 0	<50> 1
	metastasis:liver tumor	1	0	0	0
	metastasis:retroperitoneum tumor	0	0	1	0
peritoneum	metastasis:pancreas tumor	<50> 0	<50> 0	<50> 1	<50> 0
< a > b	a : Number of animals examined at the si b : Number of animals with lesion	te			
( IPT150)					RA

(JPT150)

BAIS5

## TABLE P 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
				.,	
(Integumentar	y system/appandage}				
skin/app	leukemic cell infiltration	<50> 0	<50> 2	<50> 1	<50> 0
(Respiratory	system)				
nasal cavit	leukemic cell infiltration	<50> 0	<50> 2	<50> 1	<50> 0
	metastasis:uterus tumor	1	1	0	0
larynx	leukemic cell infiltration	<50> 0	<50> 1	<50> 1	<50> 0
rachea	leukemic cell infiltration	<50> 0	<50> 1	<50> 2	<50> 0
ung	leukemic cell infiltration	<50> 11	<50> 13	<50≻ 13	<50> 5
	metastasis:liver tumor	3	0	1	0
	metastasis:uterus tumor	9	2	2	3
	metastasis:subcutis tumor	0	0	0	1
	metastasis:pleura tumor	0	0	1	0
(Hematopoieti	c system}				
one marrow	leukemic cell infiltration	<50> 4	<50> 3	<50> 7	<50> 4
	metastasis:liver tumor	1	0	1	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 6 Group Name Control 2500 ppm 5000 ppm 10000 ppm No. of Animals on Study Organ_ Findings_ (Hematopoietic system) bone marrow ⟨50⟩ <50> ⟨50⟩ <50> 2 3 2 metastasis:uterus tumor lymph node ⟨50⟩ <50> <50> **<50>** metastasis:liver tumor metastasis:uterus tumor 0 3 0 metastasis:subcutis tumor 0 spleen <50> <50> **<50>** <50> leukemic cell infiltration 13 15 14 metastasis:liver tumor metastasis:uterus tumor 3 0 0 (Circulatory system) ⟨50⟩ ⟨50⟩ <50> heart **<50>** leukemic cell infiltration (Digestive system) tongue ⟨50⟩ **<50>** ⟨50⟩ ⟨50⟩ leukemic cell infiltration 0 salivary gl ⟨50⟩ ⟨50⟩ **<50> <50>** leukemic cell infiltration metastasis:subcutis tumor 0 esophagus **<50>** <50> **〈50〉** <50> leukemic cell infiltration 0 < a > a: Number of animals examined at the site b: Number of animals with lesion

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)  $\,$ 

REPORT TYPE : A1 : FEMALE SEX

		Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
gan	Findings				
igestive sy	rstem)				
tomach	leukemic cell infiltration	<50> 1	<50> 5	<50> 3	<50> 0
all intes	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
rge intes	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
iver		<50> 8	<50> 14	<50> 11	<50> 5
	metastasis:uterus tumor	12	9	7	8
	metastasis:subcutis tumor	0	1	1	0
ancreas	leukemic cell infiltration	<50> 3	<50> 4	<50> 7	<50> 2
	metastasis:uterus tumor	0	1	0	1
rinary syst	em)				
dney	leukemic cell infiltration	<50> 1	<50> 10	<50> 11	<50> 2
	metastasis:uterus tumor	0	1	0	1
rin bladd	leukemic cell infiltration	<50> 0	<50> 3	<50> 3	<50> 1
	metastasis:uterus tumor	0	1	0	1
Endocrine sy	stem)				
nyroid	leukemic cell infiltration	<50⟩ 0	<50> 1	<50> 2	<50> 0

b : Number of animals with lesion

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

ANIMAL REPORT TYPE : A1

SEX : FEMALE

2500 ppm 5000 ppm 10000 ppm Group Name Control 50 No. of Animals on Study Organ_ Findings_ {Endocrine system} ⟨50⟩ adrenal <50> <50> <50> leukemic cell infiltration 0 metastasis:subcutis tumor (Reproductive system) <50> <50> <50> <50> ovary leukemic cell infiltration 6 metastasis:uterus tumor metastasis:subcutis tumor 0 ⟨50⟩ **<50>** <50> uterus **<50>** leukemic cell infiltration (Nervous system) brain **<50> <50>** ⟨50⟩ **〈50〉** leukemic cell infiltration (Special sense organs/appendage) eye ⟨50⟩ ⟨50⟩ **<50>** ⟨50⟩ leukemic cell infiltration 2 Harder gl **<50> <50> <50>** ⟨50⟩ leukemic cell infiltration (Musculoskeletal system) muscle **〈50〉 <50> <50> <50>** 

0

2

2

(JPT150)

1

leukemic cell infiltration < a > a: Number of animals examined at the site b b: Number of animals with lesion

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)  $\,$ 

STUDY NO. : 0740 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 50	2500 ppm 50	5000 ppm 50	10000 ppm 50
(Musculoskelet	al system)				
muscle	metastasis:subcutis tumor	<50> 1	<50⟩ 0	<50> 0	<50⟩ 0
(Body cavities	3				
pleura	metastasis:subcutis tumor	<50> 1	<50> 0	<50> 0	<50> 0
mediastinum	leukemic cell infiltration	<50> 1	<50> 4	<50> 5	<50≻ 2
	metastasis:subcutis tumor	1	0	0	0
peritoneum	leukemic cell infiltration	<50> 4	<50> 1	<50> 1	<50> 1
	metastasis:uterus tumor	0	2	0	1
	metastasis:subcutis tumor	2	0	0	0
< a > b	a : Number of animals examined at the si b : Number of animals with lesion	te			

(JPT150)

BA1S5

# TABLE Q

# HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $B6D2F1/Crlj\ MALE\ MICE$

TABLE Q HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE

Organs Tumors	No. of animals examined	No. of animals bearing tumor	Incidence (%)	Min Max. (%)
Stomach	2445			
Squamous cell papilloma 1)		7	0.3	0 - 2
Squamous cell carcinoma 2)		1	0.0	0 - 2
1) + 2)		8	0.3	0 - 2
Adenocarcinoma		0	0.0	0 - 0

49 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0044,\,0060,\,0062,\,0064,\,0066,\,0068,\,0096,\,0105,\,0116,\,0140,\,0159,\,0163,\,0190,\,0206,\\0211,\,0225,\,0243,\,0268,\,0270,\,0279,\,0285,\,0297,\,0319,\,0329,\,0343,\,0348,\,0366,\,0372,\\0402,\,0406,\,0418,\,0422,\,0438,\,0449,\,0458,\,0462,\,0498,\,0515,\,0561,\,0580,\,0611,\,0613,\\0642,\,0676,\,0685,\,0705,\,0712,\,0732,\,0754$ 

# TABLE R 1

CAUSE OF DEATH: MALE

COUSE OF DEATH (SUMMARY) (0-105W)

STUDY NO. : 0740
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
SEX : MALE

PAGE: 1

Group Name	Control	1250 ppm	2500 ppm	5000 ppm
Number of Dead and Moribund Animal	18	18	17	10
no microscop confirm	3	3	2	1
digestive sy les	0	0	1	0
urinary retention	1	3	1	1
arteritis	1	0	0	0
hydronephrosis	2	2	2	1
tumor d:leukemia	2	3	4	1
tumor d:subcutis	0	1	0	1
tumor d:lung	1	0	0	0
tumor d:tongue	1	0	0	0
tumor d:stomach	0	1	0	0
tumor d:liver	5	4	5	5
tumor d:pancreas	0	0	1	0
tumor d:epididymis	1	0	0	0
tumor d:muscle	1	0	0	0
tumor d:bone	0	1	0	0
tumor d:retroperit	0	0	1	0

(B10120)

BA1S5

# TABLE R 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0740 ANIMAL

: MOUSE B6D2F1/Crij[Crj:BDF1]

COUSE OF DEATH (SUMMARY)

(0-105W)

: FEMALE SEX

Group Name 2500 ppm 5000 ppm 10000 ppm Control Number of Dead and 30 29 21 28 Moribund Animal no microscop confirm 3 3 3 renal lesion 0 3 thrombosis urinary retention 0 0 amyloidosis 0 0 hydronephrosis tumor d:leukemia tumor d:subcutis tumor d:lung 0 tumor d:liver 0 tumor d:pituitary 0 tumor d:adrenal 0 0 0 tumor d:uterus 11 11 tumor d:bone 0 0 0 0 0 tumor d:pleura

PAGE: 2

(B10120) BAIS5