4-クロロ-2-ニトロアニリンのマウスを用いた 経口投与による13週間毒性試験(混餌試験)報告書

試験番号:0746

TABLES

TABLES

TABLE A 1	SURVIVAL ANIMAL NUMBERS: MALE
TABLE A 2	SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE B 1	CLINICAL OBSERVATION: MALE
TABLE B 2	CLINICAL OBSERVATION: FEMALE
TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	CHEMICAL INTAKE CHANGES: MALE
TABLE E 2	CHEMICAL INTAKE CHANGES: FEMALE
TABLE F 1	HEMATOLOGY: MALE
TABLE F 2	HEMATOLOGY: FEMALE
TABLE G 1	BIOCHEMISTRY: MALE
TABLE G 2	BIOCHEMISTRY: FEMALE

TABLES (CONTINUED)

TABLE H 1	URINALYSIS: MALE
TABLE H 2	URINALYSIS: FEMALE
TABLE I 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE I 2	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE J 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: ALL ANIMALS
TABLE L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: ALL ANIMALS

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Group Name	Animals	Administ	tration (Wee	ks)											
y out name	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	. 10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100. 0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
250 ppm	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100. 0	100.0	. 100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0
500 թթա	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
000 ppm	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ազգ 0000	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
0000 ppm	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
ove bhu		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(IIAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 13 SEX : FEMALE

PAGE: 2

SEX : FEMALE	****				•										TAGE · 2
Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8 .	9	10	11	12	13
Control	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0
1250 ppm	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
Pp		100.0	100.0	100.0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2500 թթա	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
5000 ppm	01	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100. 0
10000 ррт	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
••	•	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
20000 ppm	10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Clinical sign	Group Name	Admini	stration W												
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0 .	0	0	0	5	5	9	9	9	10	10	
	2500 ррт	0	9	9	9	10	10	10	10	10	10	10	10	10	
	5000 ppm	0	10	10	10	10	10	10	10	10	10	10	10	10	
•	10000 թթա	0	10	10	10	10	10	10	10	10	10	10	10	10	
	20000 ррт	0	10	10	10	10	10	10	10	10	10	10	10	10	*
LOERECTION	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	, 0	0	0	0	0	0	
	2500 թթա	. 0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 -	
	1250 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	. 0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 թթտ	0	0	0	0	1	1	1	1	. 1	1	1	1	1	
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 թթա	10	10	10	10	10	10	10	10	10	10	10	10	10	
	2500 թթա	10	10	10	10	10	10	10	10	10	10	10	10	10	
	5000 թթո	10	10	10	10	10	10	10	10	10	10	10	10	10	
	10000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
	20000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 թթա	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
	2500 ррт	0	0	0	0	0	0	0	0	0	. 0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ррт	10	Ĺ	0	0	0	0	0,	0	0	0	0	0	0	
ON REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10	
	1250 ppm	0	0	0	0	0	.0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 руш	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ррт	0	0	0	0	0	0	0	0	0	0	0	0	0	

TABLE B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0746

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 13

linical sign	Group Name	Admini	stration W	eek-dav											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	
<u></u>															
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 թթա	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	10	10	10	10	10	10	10	10	10	10	10	10	
OSS OF HAIR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	1	1	1	1	1	1	1	1	2	
	2500 բթա	0	0	0	0	0	0	Ĺ	1	2	2	2	2	2	
	5000 ррш	0	0	0	0	1	1	L	1	1	1	1	2	3	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	1	Ĺ	1	0	0	0 .	0	0	
	10000 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	
	20000 թթա	0	0	0	0	0	0-	0	0	0	0	0	0	0	
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 թթա	10	10	10	10	10	10	10	10	10	10	10	10	10	
	2500 ppm	10	1 0	10	10	10	10	10	10	10	10	10	10	10	
	5000 թթա	10	10	10	10	10	10	10	10	10	10	10	10	10	
	10000 ррш	10	10	10	10	10	10	10	10	10	10	10	10	10	
	20000 ppm	10	10	10	10	10	10	10	10	10	10	10	10	10	
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1250 ррш	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	. 0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ррт	1	0	0	0	0	0	0	1	0	0	0	0	0	
	10000 ррт	1	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ррт	7	4	1	0	0	0	0	0	0	0	0	0	0	
ON REMARKABLE	Control	10	10	10	10	10	10	10	10	10	10	10	10	10	
	1250 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0 .	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0746

ANIMAL : MOUSE BGD2F1/Cr1j[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 13

: MALE

	Control		1250	ppm		2500	ppm		5000	ppm		10000) բբա		20000	ppm	
Week-Day on Study	Av. Wt.	No. of Surviv. <10>	Av. Wt.	% of cont. <10>	No. of Surviv.	Av. Wt.	% of cont. <10>	No. of Surviv.	Av. Wt.	% of cont. <10>	No. of Surviv.	Av. Wt.	% of cont.	No. of Surviv.	Av. Wt.	% of cont. <10>	No. of Surviv.
0-0	23.7 (10) 10/10	23.7 (10)	100	10/10	23.7 (10)	100	10/10	23.7 (10)	100	10/10	23.7 (10)	100	10/10	23.7 (10)	100	10/10
1-7	23.7 (10) 10/10	23.9 (10)	101	10/10	24.3 (10)	103	10/10	23.5 (10)	99	10/10	22.2 (10)	94	10/10	20.3 (10)	86	10/10
2-7	25.4 (10) 10/10	25.1 (10)	99	10/10	25.5 (10)	100	10/10	25.1 (10)	99	10/10	24.2 (10)	95	10/10	21.8 (10)	86	10/10
3-7	26.2 (10) 10/10	26.2 (10)	100	10/10	26.1 (10)	100	10/10	25.3 (10)	97	10/10	25.1 (10)	96	10/10	23.5 (10)	90	10/10
4-7	27.4 (10) 10/10	27.1 (10)	99	10/10	26.8 (10)	98	10/10	26.8 (10)	98	10/10	25.9 (10)	95	10/10	25.0 (10)	91	10/10
57	28.1 (10) 10/10	27.5 (10)	98	10/10	27.2 (10)	97	10/10	27.3 (10)	97	10/10	26.5 (10)	94	10/10	24.9 (10)	89	10/10
6-7	28.8 (10) 10/10	28.3 (10)	98	10/10	28.4 (10)	99	10/10	28.2 (10)	98	10/10	26.9 (10)	93	10/10	26.0 (10)	90	10/10
7-7	29.5 (10) 10/10	28.9 (10)	98	10/10	28.6 (10)	97	10/10	28.9 (10)	98	10/10	27.3 (10)	93	10/10	26.5 (10)	90	10/10
8-7	30.1 (10) 10/10	29.5 (10)	98	10/10	29.8 (10)	99	10/10	29.1 (10)	97	10/10	27.8 (10)	92	10/10	26.8 (10)	89	10/10
9-7	30.6 (10) 10/10	30.3 (10)	99	10/10	30.3 (10)	99	10/10	29.4 (10)	96	10/10	28.3 (10)	92	10/10	26.7 (10)	87	10/10
10-7	31.5 (10) 10/10	30.9 (10)	98	10/10	31.0 (10)	98	10/10	30.0 (10)	95	10/10	28.7 (10)	91	10/10	27.5 (10)	87	10/10
11-7	30.8 (10) 10/10	31.3 (10)	102	10/10	30.7 (10)	100	10/10	30.5 (10)	99	10/10	28.8 (10)	94	10/10	27.0 (10)	88	10/10
12-7	32.2 (10) 10/10	32.3 (10)	100	10/10	31.9 (10)	99	10/10	31.5 (10)	98	10/10	29.7 (10)	92	10/10	28.0 (10)	87	10/10
13-7	33.4 (10) 10/10	33.3 (10)	100	10/10	32.8 (10)	98	10/10	31.5 (10)	94	10/10	29.4 (10)	88	10/10	28.2 (10)	84	10/10

< >:No. of effective animals, ():No. of measured animals Av.

Av. Wt.: g

(BI0040)

BAIS 4

PAGE: 1

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0746

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g REPORT TYPE : A1 13 : FEMALE

PAGE: 2

	Control		1250	րիա		2500	ppm		5000	mqu		10000	րրա		20000	ppm	
leek-Day on Study	Λv. Wt.	No. of Surviv.	Av. Wt.	% of cont. <10>	No. of Surviv.	Λv.¥t.	% of cont. <10>	No. of Surviv.	Av. Wt.	% of cont. <10>	No. of Surviv.	Λv. Wt.	% of cont. <10>	No. of Surviv.	Λv. Wt.	% of cont. <10>	No. of Surviv.
0-0	18.9 (10) 10/10	18.9 (10)	100	10/10	18.9 (10)	100	10/10	18.9 (10)	100	10/10	18.9 (10)	100	10/10	18.9 (10)	100	10/10
1-7	19.0 (10) 10/10	19.4 (10)	102	10/10	19.0 (10)	100	10/10	18.6 (10)	98	10/10	19.0 (10)	100	10/10	17.2 (10)	91	10/10
2-7	19.6 (10) 10/10	20.2 (10)	103	10/10	19.8 (10)	101	10/10	19.3 (10)	98	10/10	19.4 (10)	99	10/10	19.0 (10)	97	10/10
3-7	20.3 (10) 10/10	20.5 (10)	101	10/10	20.3 (10)	100	10/10	20.3 (10)	100	10/10	19.7 (10)	97	10/10	20.5 (10)	101	10/10
4-7	20.8 (10) 10/10	21.0 (10)	101	10/10	20.7 (10)	100	10/10	20.3 (10)	98	10/10	20.3 (10)	98	10/10	20.9 (10)	100	10/10
5-7	20.9 (10) 10/10	21.4 (10)	102	10/10	21.3 (10)	102	10/10	21.2 (10)	101	10/10	20.1 (10)	96	10/10	21.0 (10)	100	10/10
6-7	21.5 (10) 10/10	22.0 (10)	102	10/10	21.5 (10)	100	10/10	21.7 (10)	101	10/10	21.5 (10)	100	10/10	21.4 (10)	100	10/10
7-7	22.4 (10) 10/10	22.5 (10)	100	10/10	21.6 (10)	96	10/10	22.2 (10)	99	10/10	21.9 (10)	98	10/10	21.8 (10)	97	10/10
8-7	22.6 (10	01/01 (0	22.5 (10)	100	10/10	22.4 (10)	99	10/10	22.2 (10)	98	10/10	22.4 (10)	99	10/10	22.6 (10)	100	10/10
9-7	22.6 (10) 10/10	22.9 (10)	101	10/10	23.3 (10)	103	10/10	22.9 (10)	101	10/10	22.4 (10)	99	10/10	22.5 (10)	100	10/10
10-7	23.0 (10) 10/10	22.8 (10)	99	10/10	22.5 (10)	98	10/10	22.7 (10)	99	10/10	22.5 (10)	98	10/10	22.5 (10)	98	10/10
11-7	23.1 (10		23.4 (10)	101	10/10	23.0 (10)	100	10/10	23.1 (10)	100	10/10	22.3 (10)	97	10/10	22.6 (10)	98	10/10
12-7	23.1 (10) 10/10	23.9 (10)	103	10/10	23.5 (10)	102	10/10	23.8 (10)	103	10/10	23.7 (10)	103	10/10	23.2 (10)	100	10/10
13-7	23.9 (10		24.4 (10)	102	10/10	24.0 (10)	100	10/10	24.0 (10)	100	10/10	23.6 (10)	99	10/10	23.5 (10)	98	10/10

< >:No. of effective animals, ():No. of measured animals

Av. Wt.: g

(BI0040)

TABLE C 3

BODY WEIGHT CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

roup Name	Administratio	n week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
ntrol /	23.7± 0.7	23.7 ± 2.1	25.4 ± 2.2	26. 2± 1. 3	27.4± 1.3	28.1 ± 1.3	28.8± 1.7
50 ррт	23.7± 0.8	23.9± 0.8	25. 1± 1. 0	26.2± 0.8	27.1± 1.1	27.5± 1.1	28.3± 1.5
00 ppm	23.7± 0.8	24.3± 0.8	25.5± 0.8	26.1± 1.0	26.8± 1.2	27.2± 1.5	28.4± 1.2
	23.7± 0.8	23.5± 1.7	25. t ± 1.0	25.3± 1.1	26.8± 1.3	27.3± 1.5	28.2± 1.6
000 ppm	23.7± 0.7	22. 2± 2. 0*	24.2± 1.1**	25.1生 0.8	25.9± 1.0∗	26.5± 0.8*	26.9± 0.9*
000 ppm	23.7± 0.7	20.3± 1.4**	21.8± 2.4**	23.5± 0.9**	25.0± 1.3**	24.9± 2.5**	26.0± 1.8**
Significant differen	ce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

oup Name	Administration	week-day					
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
ntrol	29. 5 ± 1.6	30.1 \pm 1.6	30.6 \pm 1.9	31.5± 2.0	30.8± 2.1	32.2 ± 2.5	33.4 \pm 1.9
50 ppm	28.9± 1.5	29.5± 1.9	30.3± 1.8	30.9± 1.9	31.3± 1.6	32.3± 1.7	33.3± 1.8
00 ppm	28.6± 2.5	29.8± 1.4	30.3± 1.8	31.0± 1.9	30.7± 2.7	31.9± 2.0	32.8± 1.9
00 թխո	28.9± 1.7	29. 1 ± 2. 2	29.4± 1.9	30.0± 2.3	30.5± 2.5	31.5± 2.7	31.5± 2.4
000 ppm	27.3± 0.9*	27.8± 1.0∗	28.3± 1.1*	28.7± 1.2**	28.8生 1.4	29.7± 1.5*	29.4± 1.8**
mgg 000	26.5± 1.7**	26.8± 1.6**	26.7± 2.2**	27.5± 2.0**	27.0± 2.6**	28.0± 2.0**	28.2± 1.2**
	-						
				27.5± 2.0 * *	27.0± 2.6**		28.0± 2.0**
Significant differe	ence; *: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g

REPORT TYPE : A1 13 SEX : FEMALE

PAGE: 3

Group Name	Administration	week-day						
	00	1-7	. 2-7	3-7	4-7	5-7	6-7	
Control	18.9± 0.5	19.0生 1.2	19.6± 0.7	20.3± 0.5	20.8± 0.5	20.9± 0.7	21.5± 1.4	
250 ppm	18.9± 0.5	19.4± 0.8	20.2± 1.0	20.5± 0.9	21.0± 0.9	21.4± 1.0	22.0± 1.2	
2500 ppm	18.9± 0.5	19.0 ± 0.6	19.8± 0.9	20.3 \pm 0.7	20.7± 0.6	21.3± 0.8	21.5± 0.6	
5000 ррш	18.9± 0.5	18.6± 1.3	19.3± 1.6	20.3 ± 0.5	20.3± 1.1	21.2± 1.0	21.7± 0.7	
0000 ppm	18.9± 0.5	19.0生 1.5	19.4± 1.1	19.7± 0.9	20.3± 1.1	20.1± 1.3	21.5± 0.8	
2000 ppm	18.9± 0.5	17.2± 1.0**	19.0± 1.7	20.5± 1.3	20.9± 1.0	21.0± 0.8	21.4± 1.0	
			· · ·					
Significant difference	$*: P \leq 0.05$	** : P ≤ 0.01		Test of Dunnett				

(HAN260)

BODY WEIGHT CHANGES . (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

UNIT : g

REPORT TYPE : A1 13 SEX : FEMALE

PAGE: 4

Group Name	Administration	n week-day					
	7–7	8-7	9-7	10-7	11-7	12-7	13-7
Control	22. 4± 0. 8	22.6生 0.7	22.6 ± 0.5	23.0± 1.1	23. 1± 0. 5	23.1± 1.0	23.9± 1.2
250 ррт	22.5± 0.8	22.5± 1.2	22.9± 1.1	22.8± 1.3	23.4± 0.9	23.9± 1.3	24.4± 1.1
2500 ppm	21.6± 1.1	22. 4± 1. 2	23.3 ± 1.4	22.5 ± 1.7	23.0± 1.1	23.5± 1.1	24.0± 1.0
5000 ppm	22.2± 0.5	22.2± 1.7	22.9± 1.2	22.7± 0.8	23.1± 1.4	23.8 ± 0.6	24.0± 0.7
.0000 ppm	21.9± 1.0	22.4± 0.8	22.4± 0.8	22.5 ± 1.2	22. 3生 1. 4	23.7± 0.9	23.6± 0.9
20000 ppm	21.8± 1.1	22.6± 0.9	22.5± 1.5	22.5± 1.1	22.6± 0.8	23.2± 0.9	23.5± 0.6
Significant difference		** : P ≤ 0.01		Test of Dunnett	<u> </u>		

(HAN260)

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0746

: MOUSE BGD2F1/Cr1j[Crj:BDF1] AN1MAL

UNIT : g REPORT TYPE : A1 13 : MALE

PAGE: 1

	Control		1250	ppiii		2500]	ılıqı		5000	mqq		10000	րրո		20000	ppm	
Veek-Day on Study	Av. FC.	No. of Surviv.	Av. FC.	% of cont. <10>	No. of Surviv.	Λv. FC.	% of cont. <10>	No. of Surviv.	Av. FC.	% of cont. <10>	No. of Surviv.	Av. FC.	% of cont. <10>	No. of Surviv.	Av. FC.	% of cont. <10>	No. of Surviv.
1-7	3.7 (10) 10/10	3.8 (10)	103	10/10	4.0 (10)	108	10/10	3.5 (10)	95	10/10	3.4 (10)	92	10/10	2.7 (10)	73	10/10
2-7	4.0 (10) 10/10	3.8 (10)	95	10/10	4.0 (10)	100	10/10	4.0 (10)	100	10/10	4.1 (10)	103	10/10	3.9 (10)	98	10/10
3-7	3.8 (10) 10/10	3.8 (10)	001	10/10	3.7 (10)	97	10/10	3.5 (10)	92	10/10	3.7 (10)	97	10/10	3.7 (10)	97	10/10
4-7	3.8 (10) 10/10	3.7 (10)	97	10/10	3.7 (10)	97	10/10	3.9 (10)	103	10/10	3.6 (10)	95	10/10	3.5 (10)	92	10/10
5-7	3.9 (10) 10/10	3.7 (10)	95	10/10	3.8 (10)	97	10/10	3.7 (10)	95	10/10	3.8 (10)	97	10/10	3.5 (9)	90	10/10
6-7	3.9 (10) 10/10	3.8 (10)	97	10/10	4.0 (10)	103	10/10	3.9 (10)	100	10/10	3.8 (10)	97	10/10	3.8 (10)	97	10/10
7-7	3.9 (10) 10/10	3.7 (10)	95	10/10	3.8 (10)	97	10/10	3.8 (10)	97	10/10	3.8 (10)	97	10/10	3,6 (10)	92	10/10
8-7	3.9 (10) 10/10	3.7 (10)	95	10/10	4.1 (10)	105	10/10	3.7 (10)	95	10/10	3.8 (10)	97	10/10	3.5 (10)	90	10/10
9-7	3.6 (10) 10/10	3.7 (10)	103	10/10	3.8 (9)	106	10/10	3.6 (10)	100	10/10	3.8 (10)	106	10/10	3.4 (10)	94	10/10
10-7	4.0 (10) 10/10	3.8 (10)	95	10/10	4.1 (10)	103	10/10	3.9 (10)	98	10/10	3.7 (10)	93	01\01	3.7 (10)	93	10/10
11-7	3.2 (10) 10/10	3.8 (10)	119	10/10	3.7 (10)	116	10/10	3.8 (10)	119	10/10	3.8 (10)	119	10/10	3.3 (10)	103	10/10
12-7	3.9 (10) 10/10	3.9 (10)	100	10/10	4.2 (10)	108	10/10	3.9 (10)	100	10/10	3.9 (10)	100	10/10	3.8 (10)	97	10/10
13-7	4.0 (10) 10/10	3.9 (10)	98	10/10	4.1 (10)	103	10/10	3.6 (10)	90	10/10	3.6 (10)	90	10/10	3.6 (10)	90	10/10

(BI0040)

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0746

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

4.0 (10) 10/10

UNIT : g

REPORT TYPE: A1 13 SEX

: FEMALE

10000 ррв 20000 թթա 1250 ppm 2500 ppm 5000 թթո Control Av. FC. % of No. of Av. FC. % of No. of % of % of No. of Av. FC. No. of Av. FC. % of No. of Av. FC. No. of Av. FC. cont. Surviv. cont. Surviv. cont. Surviv. Surviv. Surviv. cont. Surviv. Week-Day cont. <10> <10> <10> <10> on Study <10> <10> 10/10 3.3 (10) 10/10 3.0 (10) 1-7 3.4 (10) 10/10 3.6 (10) 106 10/10 3.7 (10) 109 10/10 3.2 (10) 94 10/10 97 88 3.3 (10) 10/10 3.0 (10) 86 10/10 4.0 (10) 114 10/10 3.5 (10) 10/10 3.5 (10) 10/10 3.6 (10) 103 10/10 94 2-7 100 94 3.4 (10) 94 10/10 3.5 (9) 97 10/10 3.4 (10) 10/10 3-7 3.6 (10) 10/10 3.6 (10) 100 10/10 3.7 (10) 103 10/10 10/10 3. 2 (10) 91 10/10 3.3 (10) 94 4-73.5 (10) 10/10 3.6 (10) 103 10/10 3.6 (10) 103 10/10 3.3 (10) 94 10/10 3.6 (10) 10/10 103 10/10 3.7 (10) 103 10/10 3.6 (10) 100 10/10 3.2 (10) 89 10/10 3,4 (9) 10/10 5-7 3.7 (10) 3.5 (10) 10/10 3.7 (10) 3.6 (10) 100 10/10 3.6 (10) 100 10/10 97 3.6 (10) 10/10 10/10 103 10/10 6-7 3.7 (10) 103 3.5 (10) 10/10 92 90 7-7 3.9 (10) 10/10 4.0 (10) 103 10/10 3.8 (10) 97 10/10 3.7 (10) 95 10/10 3.6 (10) 10/10 3.7 (10) 97 10/10 8-7 3.8 (10) 10/10 3.8 (10) 100 10/10 3.8 (10) 100 10/10 3.6 (10) 95 10/10 3.7 (10) 97 10/10 3.7 (9) 95 10/10 3.4 (10) 87 10/10 3.7 (10) 95 10/10 3.9 (10) 10/10 3.8 (9) 10/10 3.9 (10) 100 10/10 9-7 97 92 3.4 (10) 89 10/10 3.4 (10) 3.5 (10) 10/10 10-7 3.8 (10) 10/10 3.7 (10) 97 10/10 3.5 (10) 92 10/10 10/10 4.0 (10) 3.6 (10) 10/10 3.5 (10) 10/10 3.6 (9) 10/10 11-7 3.9 (10) 10/10 103 10/10 3.9 (10) 100 10/10 92 10/10 3.8 (10) 103 10/10 3.7 (10) 100 10/10 3.6 (10) 97 10/10 12-7 3.7 (10) 10/10 3.9 (10) 105 10/10 3.8 (10) 103 10/10

3.5 (10)

10/10

88

3.4 (10)

85

10/10

3.6 (10)

90

< >:No. of effective animals, ():No. of measured animals

98

10/10

3.8 (10)

3.9 (10)

Av. FC. : g

10/10

95

BAIS 4

PAGE: 2

13-7

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Group Name	Administration 1-7(7)	week-day(effective) 2-7(7)	3-7 (7)	4-7 (7)	5–7 (7)	6-7(7)	7–7 (7)
Control	3.7± 0.8	4.0± 0.6	3.8± 0.4	3.8生 0.3	3.9± 0.2	3.9± 0.3	3.9± 0.2
250 ррш	3.8± 0.3	3.8± 0.3	3.8± 0.4	3.7± 0.2	3.7± 0.2	3.8± 0.2	3.7生 0.4
2500 ppm	4.0± 0.3	4.0± 0.2	3.7± 0.1	3.7± 0.2	3.8± 0.3	4.0± 0.3	3.8± 0.6
000 him	3.5± 0.6	4.0± 0.5	3.5± 0.4	3.9± 0.3	3.7 ± 0.4	3.9± 0.3	3.8± 0.3
0000 ppm	3.4± 0.8*	4.1± 0.6	3.7 ± 0.3	3.6± 0.4	3.8 ± 0.3	3.8± 0.3	3.8± 0.3
20000 ppm	2.7± 0.7**	3.9± 0.8	3.7± 0.5	3.5± 0.6	3.5± 0.6	3.8± 0.2	3.6± 0.2
Significant differen	ce; *: P ≦ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

STUDY NO. : 0746 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 13 SEX : MALE

PAGE: 2

Group Name	Administratio 8-7(7)	on week-day(effective)_ 9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7 (7)	
Control	3.9± 0.3	3.6土 0.4	4.0± 0.2	3.2± 0.7	3.9生 0.5	4.0± 0.5	
.250 ppm	3.7± 0.4	3.7± 0.4	3.8± 0.2	3.8± 0.3	3.9± 0.3	3.9± 0.2	
2500 ppm	4.1± 0.5	3.8± 0.5	4.1± 0.4	3.7± 0.7*	4.2± 0.4	4.1± 0.2	
5000 թթա	3.7± 0.3	3.6± 0.5	3.9± 0.4	3.8± 0.3	3.9± 0.2	3.6± 0.5	
0000 ppm	3.8± 0.3	3.8± 0.4	3.7± 0.4	3.8± 0.3	3.9± 0.3	3.6生 0.6	
20000 ppm	3.5± 0.2	3.4± 0.4	3.7± 0.4	3.3 ± 0.7	3.8± 0.5	3.6± 0.5	
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE

PAGE: 3

Group Name	Administration 1-7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7 (7)	5-7(7)	6-7 (7)	7-7(7)
Control	3.4± 0.6	3.5± 0.3	3.6 ± 0.4	3.5± 0.4	3.6± 0.3	3.6± 0.5	3.9± 0.4
50 ppm	3.6± 0.2	3.5± 0.4	3.6± 0.2	3.6± 0.2	3.7± 0.2	3.7± 0.3	4.0± 0.2
00 ppm	3.7± 0.2	3.6± 0.4	3.7± 0.3	3.6± 0.2	3.7± 0.3	3.7± 0.4	3.8± 0.4
	3.2± 0.4	3.3± 0.4	3.4± 0.4	3.3± 0.3	3.6± 0.3	3.6± 0.2	3.7± 0.2
000 ppm	3.3± 0.5	3.0 ± 0.3*	3.4± 0.4	3.2± 0.3	3.2± 0.6	3.6± 0.3	3.6± 0.5
mqq 0000	3.0± 0.6*	4.0± 0.3*	3.5± 0.6	3.3± 0.5	3.4± 0.2	3.5± 0.2	3.5± 0.2*

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

(HAN260)

PAGE: 4

roup Name	Administration 8-7(7)	week-day(effective) 9-7(7)	10-7 (7)	11-7(7)	12-7(7)	13-7 (7)	
ontrol	3.8 ± 0.2	3.9± 0.3	3.8± 0.3	3.9生 0.3	3.7± 0.5	4.0± 0.4	
250 ppm	3.8± 0.5	3.8± 0.2	3.7± 0.5	4.0± 0.3	3.9± 0.2	3.9± 0.3	
2500 ppm	3.8± 0.5	3.9 ± 0.4	3.5± 0.4	3.9± 0.2	3.8± 0.3	3.8 ± 0.4	
900 ppm	3.6± 0.5	3.7± 0.2	3.4± 0.2**	3.6± 0.6	3.8± 0.4	3.5± 0.1**	
0000 ppm	3.7± 0.3	3.4± 0.5	3.5 ± 0.6	3.5± 0.9	3.7± 0.3	3.4± 0.4**	
20000 ppm	3.7± 0.3	3.7± 0.4	3.4± 0.2★★	3.6± 0.3	3.6± 0.3	3.6± 0.7	
					÷		
Significant differen	rce; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

Group Name	Adminis	stration	(weeks)													
	1	1		3		2 3		3 4 5 6		4		5		7		
Control	0±	0	0±	0	0生	0	0±	0	0 ±	0	0±	0	0 土	0		
1250 ppm	198±	9	188±	11	182±	16	· 170±	6	167±	5	167±	8	160±	15		
2500 ppm	407±	22	395±	17	357±	12	347±	13	345±	19	353±	25	330±	42		
5000 ppm	739±	92	788±	80	692±	69	721±	45	678±	57	692±	44	661±	40		
1000 0 ppm	1500±	265	1684±	216	1468生	112	1380±	122	1425生	97	1 426 ±	101	1400±	84		
20000 ppm	2640±	640	3545±	665	3188±	450	2782±	385	2803±	315	2966±	260	2750±	180		

(HAN300)

CHEMICAL INTAKE CHANGES (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

Group Name	Adminis	stration	(weeks)											
	8		9		10		11		12		13			
•								-						
Control	0 -1-	0	0±	0	0±	0	0±	0	0±	0	0±	0 .		
.250 ppm	157±	13	154±	19	155±	10	150±	12	151±	12	145±	7		
500 ppm	340±	44	309±	35	328±	29	296±	47	327±	34	313±	23		
	643±	42	605±	79	648±	53	616±	44	623±	50	570±	78		
0000 ppm	1375士	98	$1325\pm$	127	1305生	119	1314±	113	1325±	124	1205±	188		
20000 ppm	2632±	128	2547±	291	2704±	276	2452±	439	2720±	356	2527±	413		

(HAN300)

TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

UNIT : mg/kg/day
REPORT TYPE : A1 13
SEX : FEMALE

PAGE: 3

Administration (weeks)													
1 ·		2		3		4		5		6		7	
0 -!-	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	0 -1-	0
230±	13	218±	17	221±	10	216±	11	217±	7	212±	8	222±	9
486±	24	452±	45	450±	33	436±	26	431±	34	428±	40	438±	34
846±	67 ·	849±	72	832±	109	804±	56	854±	53	824±	51	836±	45
1700±	194	1534±	133	1717±	162	1555±	143	1574±	231	1675±	81	1656±	199
3457±	575	4191±	499	3388±	599	3143±	446	3227±	254	3223±	144	3255±	276
	230 ± 486 ± 846 ± 1700 ±	230± 13 486± 24 846± 67 1700± 194	$0\pm$ 0 $0\pm$ $230\pm$ 13 $218\pm$ $486\pm$ 24 $452\pm$ $846\pm$ 67 $849\pm$ $1700\pm$ 194 $1534\pm$	$0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 13 $218\pm$ 17 $486\pm$ 24 $452\pm$ 45 $846\pm$ 67 $849\pm$ 72 $1700\pm$ 194 $1534\pm$ 133	$0\pm$ 0 $0\pm$ 0 $0\pm$ 230± 13 218± 17 221± 486± 24 452± 45 450± 846± 67 849± 72 832± 1700± 194 1534± 133 1717±	$0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 10 $0\pm$ 13 $218\pm$ 17 $221\pm$ 10 $0\pm$ 1486 \pm 24 $0\pm$ 25 $0\pm$ 15 $0\pm$ 16 $0\pm$ 1700 \pm 194 $0\pm$ 1534 \pm 133 $0\pm$ 1717 \pm 162	$0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ $230\pm$ 13 $218\pm$ 17 $221\pm$ 10 $216\pm$ $486\pm$ 24 $452\pm$ 45 $450\pm$ 33 $436\pm$ $846\pm$ 67 $849\pm$ 72 $832\pm$ 109 $804\pm$ $1700\pm$ 194 $1534\pm$ 133 $1717\pm$ 162 $1555\pm$	$0\pm$ 0 $0\pm$ 11 $0\pm$ 12 $0\pm$ 12 $0\pm$ 12 $0\pm$ 13 $0\pm$ 14 $0\pm$ 15 $0\pm$ 15 $0\pm$ 16 $0\pm$ 16 $0\pm$ 17 $0\pm$ 194 15 $0\pm$ 17 $0\pm$ 180 17 $0\pm$ 180 180 180 180 180 180 180 180 180 180	$0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ 0 $0\pm$ $230\pm$ 13 $218\pm$ 17 $221\pm$ 10 $216\pm$ 11 $217\pm$ $486\pm$ 24 $452\pm$ 45 $450\pm$ 33 $436\pm$ 26 $431\pm$ $846\pm$ 67 $849\pm$ 72 $832\pm$ 109 $804\pm$ 56 $854\pm$ $1700\pm$ 194 $1534\pm$ 133 $1717\pm$ 162 $1555\pm$ 143 $1574\pm$	$0\pm$ 0 $0\pm$ 13 $218\pm$ 17 $221\pm$ 10 $216\pm$ 11 $217\pm$ 7 $0\pm$ 186 $0\pm$ 24 $0\pm$ 452 $0\pm$ 45 $0\pm$ 33 $0\pm$ 436 $0\pm$ 26 $0\pm$ 431 $0\pm$ 34 $0\pm$ 846 $0\pm$ 67 $0\pm$ 849 $0\pm$ 72 $0\pm$ 832 $0\pm$ 109 $0\pm$ 804 $0\pm$ 56 $0\pm$ 854 $0\pm$ 53 $0\pm$ 1700 $0\pm$ 194 $0\pm$ 1534 \pm 133 $0\pm$ 1717 \pm 162 $0\pm$ 1555 \pm 143 $0\pm$ 1574 \pm 231	$0\pm$ 0 $0\pm$ 216± 11 $0\pm$ 217± 7 $0\pm$ 212± 486± 24 $0\pm$ 452± 45 $0\pm$ 450± 33 $0\pm$ 436± 26 $0\pm$ 431± 34 $0\pm$ 428± 846± 67 $0\pm$ 849± 72 $0\pm$ 832± 109 $0\pm$ 804± 56 $0\pm$ 53 $0\pm$ 824± 1700± 194 $0\pm$ 1534± 133 $0\pm$ 1717± 162 $0\pm$ 1555± 143 $0\pm$ 1574± 231 $0\pm$ 1675±	$0\pm$ 0 $0\pm$ 13 $218\pm$ 17 $221\pm$ 10 $216\pm$ 11 $217\pm$ 7 $212\pm$ 8 $0\pm$ 486 $0\pm$ 24 $0\pm$ 452 $0\pm$ 450 $0\pm$ 33 $0\pm$ 436 $0\pm$ 26 $0\pm$ 431 $0\pm$ 34 $0\pm$ 428 $0\pm$ 40 $0\pm$ 846 $0\pm$ 67 $0\pm$ 849 $0\pm$ 72 $0\pm$ 832 $0\pm$ 109 $0\pm$ 804 $0\pm$ 56 $0\pm$ 854 $0\pm$ 53 $0\pm$ 824 $0\pm$ 51 $0\pm$ 1700 $0\pm$ 194 $0\pm$ 1534 \pm 133 $0\pm$ 1717 \pm 162 $0\pm$ 1555 \pm 143 $0\pm$ 1574 \pm 231 $0\pm$ 1675 \pm 81	$0 \pm$ 0 $0 \pm$

(HAN300)

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 4

roup Name	Adminis	stration	(weeks)										 	
	8		9		10		11		12		13			
ontrol	0±	0	0±	0	0土	0	0±	0	0±	0	0±	0		
250 ppm	208±	21	210±	8	200±	24	213±	14	205±	11	200±	11		
500 ppm	419±	49	418±	27	385±	34	423±	37	405±	30	394±	41		
000 իհա	815±	81	806±	53	755±	63	784±	102	795±	90	736±	27		
0000 ppm	1632±	145	1524土	207	1558土	204	1547±	304	1559土	101	1 45 2±	150		
0000 ppm	3255±	346	3289±	270	3036±	199	3157±	270	3128±	375	3091±	642		

(HAN300)

TABLE F 1

HEMATOLOGY: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	RED BL00 1 0 5/มใ		HEMOGLO g/dl	DBIN	HEMATOC	CRIT	MCV f &		MCII pg		MCHC g∕dl		PLATELE 1 0 ³ /1	
ontrol	10	10.88±	0. 22	15.6±	0. 4	50.0±	0. 9	46.0±	0. 4	14.4±	0.1	31.3±	0.4	1357±	84
250 ppm	10	11. 14±	0. 29	15.8±	0.4	51.1±	1. 4	45.9±	0.5	14.2±	0.1	30.9±	0.4	1330±	52
500 ppm	10	10.69±	0. 33	15.4±	0. 4	49.8±	1.5	46.6±	0.5	14.5±	0. 2	31.1±	0.3	1318±	128
000 ppm	10	10.74±	0. 36	15.5±	0. 3	50.1±	1. 2	46.7±	1. 1	14.5±	0.3	31.0±	0.4	1320±	81
mqq 0000	10	10.71±	0. 50	15.6±	0.7	50.0±	2. 2	46. 7 <u>-1</u> -	0.6*	14.5±	0. 1	31.1±	0.3	1335±	67
.0000 ppm	10	10.65±	0. 33	15.6±	0. 4	49.5±	1. 1	46.5±	0. 4	14.6±	0. 2*	31.5±	0.4	1436±	101

(HCL070)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1 HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	RETICULOCYTE %	METHEMOGLOBIN %		
Control	10	1.9± 0.2	0.4± 0.1		
1250 ppm	10	2.1± 0.2	0.3± 0.1		
2500 ррт	10	2.5± 0.2**	0.4± 0.1		
5000 ppm	10	2.6± 0.5**	0.5± 0.1		
10000 ррт	10	2.5± 0.4**	0.6± 0.2**	•	
20000 թթա	10	3.0± 0.7**	0.9± 0.2**		
Significan	t difference ;	*: P ≤ 0.05	* : P ≤ 0.01	Test of Dunnett	
(IICL070)					 BAIS

(IICL070)

PAGE: 2

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

SEX : MALE		r type : Ai														PAGE: 3
Group Name	NO. of Animals	₩BC 1 0³/		Di: NEUTRO	fferentia	1 WBC (9 LYMPHO	%)	MONO		EOSINO		BAS0		OTHER		
Control	10	2. 49 ±	1. 27	16±	8	78±	11	2±	1	4±	3	0 ±	ı	1±	1	
1250 ppm	10	2. 73±	0.85	15±	3	79±	3	2±	. 1	3±	2	0± .	0	1±	1	
2500 ррт	10	2.64±	0.80	14±	4	80±	6	2±	1	3±	1	0±	0	1±	1	
5000 ppm	10	2. 23±	1.06	14±	5	80±	6	1±	0	3±	2	1±	1	2±	1	
10000 ppm	10	1.64生	0.63	16生	6	77±	6	2±	2	3±	2	1±	0	2±	1	
20000 թթա	10	2. 24±	1. 29	13±	4	81±	7	1±	1	3±	3	1±	1	2±	1	
Significan	nt difference	; *:P:	≤ 0.05	** : P ≦	0. 01			Test	of Dunn	ett	*					
(IICL070)							<u> </u>									BAIS 4

TABLE F 2

HEMATOLOGY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1 SEX: FEMALE

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	RED BL	OOD CELL µl	HEMOGLO g∕dl	DBIN	HEMATOC	CRIT	MCV f l		MCH pg		MCIIC g/dl		PLATELE 1 0³/μ	
Control	10	10.88生	0. 31	15.8±	0. 4	50.0±	1.3	46.0±	0. 5	14. 5土	0. 2	31.5 <u>+</u>	0. 4	1193±	71
250 ppm	10	10.92±	0. 18	16.0±	0.4	50.1±	1.0	45.9±	0.4	14.6±	0. 2	31.9±	0.4	1202±	59
2500 ppm	10	10.96±	0. 26	16.1±	0.4	51.2±	1. 0	46.7±	0.7*	14.7±	0.2	31. 4±	0.4	1231±	58
000 ppm	10	10.91±	0. 45	16.0±	0.6	50.8±	1. 5	46.5±	1. 0	14.7±	0.1	31.6±	0. 5	1319±	52**
0000 ppm	10	10.70±	0. 34	15. 9土	0.5	50.1±	1.7	46.9±	1.1*	14.8±	0.4*	31.7±	0.4	1329±	**18
ակգ 0000	10	10.49±	0. 38*	15.8±	0. 4	49.3±	1.1	47. 1±	1.0**	15.0±	0. 3**	31.9±	0. 5	1301±	69**
Significant	difference;	* : P ≦	0.05 *	k* : P ≦ 0.0)1			Test of Dur	nett						

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1 SEX: FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	RETICULOCY %	ҮТЕ	METHEMOGLOBIN %	
Control	10	2. 2± 0	0. 4	0.3± 0.1	
1250 ppm	10	2.6± 0	0. 6	0.3± ,0.1	
2500 ррт	10	2.7± 0	0.6	0.4± 0.1*	
5000 ppm	10	2.9±	0. 7	0.6± 0.1**	
10000 ppm	10	3.8±	0.8**	0.8± 0.2**	
20000 ապգ	10	4.4± (0. 7**	1.1± 0.4**	
Significan	difference;	* : P ≤ 0.05	5 **	* : P ≦ 0.01	Test of Dunnett
(HCL070)			****		BA

PAGE: 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (14W)

					•										
Group Name	NO. of Animals	WBC 1 O³∕µl	Dif NEUTRO	ferential	WBC (% LYMPHO	o)	MONO		EOSINO		BAS0		OTHER		
Control	10	2.71± 1.01	14±	4	81±	5	1±	. 1	2±	1	0 -l-	0	1±	0	
1250 ppm	10	2.55± 1.47	15±	5	80±	7	i±	1 .	3±	2	0±	0	土1	1	
2500 ppm	10	1.78± 0.83	14±	5	81±	4	1±	0	$2\pm$	1	0±	1	1±	1	
5000 ppm	10	2.28± 0.82	14±	5	83±	6	1±	0	2±	1	0±	0	1±	1	
10000 ррш	10	2. 25生 1. 48	15 <u>-1</u> -	8	81±	7	1±	0	2±	1	1±	1	2:1:	1	
20000 ррш	10	2. 25± 1. 59	11 <u></u> ±	4	83±	6	1±	0	3±	2	0±	1	2±	1	•
Significan	t difference ;	; *: P ≤ 0.05	**: P ≦	0. 01			Test	of Duni	nett .						
(HCL070)			MANAGEMENT OF THE PARTY OF THE								۸	,			BAIS 4

PAGE: 6

TABLE G 1

BIOCHEMISTRY: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 1 GLUCOSE T-CHOLESTEROL TRIGLYCERIDE NO. of TOTAL PROTEIN ALBUMIN A/G RATIO T-BILIRUBIN Group Name mg/dl g/dl mg/dl mg/dl mg/dl Animals g/dl 91土 5 $43\pm$ 16 $2.8 \pm$ 1.2 ± 0.1 0.11 ± 0.01 227 ± 23 Control 10 5.1 ± 0.2 0.1 $60\pm$ 28 5.2± 0.1 0.12± 0.01 $233 \pm$ 108生 13** 1250 ppm 10 $2.8 \pm$ 1.1 \pm 0.0 27 0.12± 0.01 $209 \pm$ 37 107± 10** $47\pm$ 13 2500 ppm 10 5.1± 0.2 2.7 ± 0.1 1.1 \pm 0.0 113± 11** 61± 32 10 $2.8 \pm$ 0.1 1.1± 0.1 0.12± 0.01 216± 25 5000 ppm 5.2 ± 0.2 0.12± 0.01 209 ± 27 120± 11** 55± 29 10000 ppm 10 5.2 ± 0.2 2.8± 0.1 1.2 \pm 0.1 25 10 5.3 ± 0.1 2.8 ± 0.1 $1.2\pm$ 0.1 0.13± 0.01* $219 \pm$ 31 148± 14** $51 \pm$ 20000 ppm ** : P ≦ 0.01 Test of Dunnett Significant difference; $*: P \leq 0.05$

(HCL074)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	PHOSPHOI mg/dl	LIPID	AST IU/A		ALT I U/l		LDH IU/A	2	ALP IU/s	2	G-GTP I U/l		CK IU/A	!
Control	10	181土	9	41±	3	17±	1	143±	29	222±	10	. 1±	1	43±	15
250 ррт	10	208±	**61	43±	. 4	18生	4	164±	33	198±	15**	1±	0	45±	9
:500 ppm	10	202±	17*	42±	11	19±	2	149±	37	195±	12**	0±	1	46±	22
000 ppm	10	205±	13**	41±	4	20±	3*	141±	23	197±	17**	1±	1	50土	18
0000 ppm	10	215土	15 **	41 土	.6	19±	2	155士	25	201生	16*	1±	0	51±	17
	10	244±	19**	46±	12	24±	8**	171±	64	236±	22	1±	1	87±	91

(HCL074)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 3

Group Name	NO. of Animals	UREA NITROGEN mg∕d£	SODIUM m Eq / L	POTASSIUM mEq/l	CHLORIDE m Eq / L	CALCIUM mg/dl	INORGANIC PHOSPHORUS mg/dl	
Control	10	27.9± 5.9	151± 1	4.4± 0.3	120± 2	8.6± 0.2	5.7± 0.8	
250 թթm	10	26.9± 3.4	151± 1	4.1± 0.3	119± 1	8.6± 0.2	5.5± 1.0	
2500 ppm	10	25.7± 4.2	151± 1	4.2± 0.2	120± 1	8.6± 0.2	6.4± 0.6	
mqq 000	10	31.4± 4.2	151± 1	4.0± 0.2**	120± 2	8.5± 0.6	6.2± 1.0	
0000 ppm	10	32.5± 4.4	151± 1	3.9± 0.3**	119± 2	8.7± 0.2	6.3± 1.0	
mqq 0000	10	31.5± 6.0	151± 2	3.9± 0.3**	119± 2	8.7± 0.1	6.1± 0.8	
Significant	t difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(IICL074)

TABLE G 2

BIOCHEMISTRY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : AI

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 4 TRIGLYCERIDE TOTAL PROTEIN ALBUMIN A/G RATIO T-BILIRUBIN GLUCOSE T-CHOLESTEROL Group Name NO. of mg/dl g/dl g/dl mg/dl mg/dl mg/dl Animals 174土 20 73± 10 19土 9 1.4 \pm 0.1 0.12 ± 0.01 Control 10 5. 1 生 0. 1 3.0土 0. 1 $23\pm$ $1.3\pm$ 0.1 0.11± 0.01 171± 23 87± 8 9 10 $5.1\pm$ 2.9± '0.1 1250 ppm 0. 1 0.11± 0.01 176± 36 $90 \pm$ 12 $21\pm$ 10 5.2 ± 0.2 $3.0\pm$ 0.1 1.4± 0.1 2500 ppm 10 10 $3.0\pm$ 0.1 1.3± 0.1 0.12± 0.01 $172 \pm$ 25 111± 18** $22\pm$ 11 5000 ppm $5.2 \pm$ 0.2 120土 22土 10 5.4± 0.3* $3.0\pm$ 0.1 $1.3\pm$ 0.2 0.12 ± 0.02 $161 \pm$ 23 18** 6 10000 ppm 1.4 \pm 0.1 0.12 ± 0.01 177± 30 $155 \pm$ 18** $35\pm$ 18 20000 ppm 10 $5.2 \pm$ 0. 1 3.0± 0.1 Significant difference ; $*: P \le 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(IICL074)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST I U / A	2	ALT IU/£		LDH I U / J	2	ALP IU/s	<u>,</u>	G-GTP I U / L	٠	CK IU/A	!
Control	10	146生	19	50±	4	19土	2	135士	11	328±	19	1±	0.	50土	9
1250 ppm	10	171±	15*	53±	12	18±	3	137±	22	$292\pm$	14*	1±	1	53±	13
2500 ppm	10	170±	19	52±	9 . ′	19±	2	158±	42	292±	33*	1±	0	74±	45
5000 ppm	10	201±	28**	50±	7	20±	4	135±	16	303±	28	1±	. 1	53±	11
0000 ppm	10	209土	24**	53±	8	21 -1·	3	175±	40**	321±	50	1±	1	64±	14
:0000 ppm	10	248±	21**	60±	15	24±	6**	172±	34**	288±	24**	1±	0	75±	44

(HCL074)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

REPORT TYPE : A1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (14W)

PAGE: 6

Group Name	NO. of Animals	UREA NI mg∕d£	TROGEN	SODIUM m Eq / L		POTASSI mEq/		cilloridi m ^{Eq} / l		CALCIUM mg/dl		INORGAN mg/dl	IIC PHOSPHORUS
Control	10	18.2±	2. 8	151±	1	4. 2±	0. 3	119±	1	8.5±	0.2	5. 4±	1.0
1250 ррт	10	19.0±	2. 6	151±	1	4.3±	0. 2	120±	2	8.6±	0.2	5.2±	0.7
2500 ррт	10	19.8±	3. 3	151±	1	4.1±	0. 2	121±	2	8.6±	0.1	5.7±	0.6
5000 ppm	10	21.1±	2. 7	151±	1	4.1±	0. 2	121±	2	8.7±	0. 1	5.7±	0.8
10000 ppm	10	23. 1±	2. 8**	152±	2	4.0±	0.3	120±	3	8.9±	0.5	6. 4±	0.9*
20000 թթա	10	21.6±	0.8*	152±	2	3.9±	0. 2*	120±	2	8.8±	0. 2	6.2±	0.5

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(IICL074)

TABLE H 1

URINALYSIS: MALE

Urinalysis of male mice

In the dosed groups, pH, protein and ketone body could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items and number of animals that could not be measured are shown as followed.

pH: 5000 ppm(2), 10000 ppm(3), 20000 ppm(10)

Protein: 2500 ppm(5), 5000 ppm(9), 10000 ppm and 20000 ppm(10)

Ketone body: 2500 ppm(1), 10000 ppm(4), 20000 ppm(10)

Therefore, pH and ketone body in 20000 ppm dosed group, protein in 5000 ppm and above dosed groups could not be evaluated.

URINALYSIS

STUDY NO. : 0746 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of	_Ilu							Protein	Glucose	Ketone body	Occult blood
	Animals			6.5	7.0	7.5	8.0	8.5 CHI	- ± + 2+ 3+ 4+ CI	HI - ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ 4+ CHI	- ± + 2+ 3+ CHI
1	10	0	0	0	0	1	4	5	0 1 5 4 0 0	10 0 0 0 0 0	1 5 4 0 0 0	10 0 0 0 0
ontrol	10	U	U	0	0	1	1	Э	0 1 5 4 0 0	10 0 0 0 0	1 5 4 0 0 0	10 0 0 0
250 ррт	10	0	0	0	0	0	5	5	0 3 7 0 0 0	10 0 0 0 0 0	1 4 5 0 0 0	10 0 0 0 0
2500 ppm	10	0	0	0	1	5	2	2	0 2 3 0 0 0	10 0 0 0 0 0	1 1 7 0 0 0	10 0 0 0 0
5000 ppm	10	0	0	0	1	1	2	4	0 1 0 0 0 0	? 10 0 0 0 0 0	0 1 8 1 0 0	10 0 0 0 0
10000 ppm	10	0	0	0	0	3	2	2	0 0 0 0 0 0	10 0 0 0 0 0	0 1 5 0 0 0	10 0 0 0 0
9000 ppm	10	0	0	0	0	0	0	0	0 0 0 0 0 0	10 0 0 0 0 0	0 0 0 0 0 0	10 0 0 0 0
	,										:	
Significan	t difference	; *:	: P ≦	0.05	;	** :	Р≦	0. 01	1	Cest of CHI SQUARE		

^{?:} Significant test is not applied, because No. of data in this group is less than 3.

(IICL101)

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1;[Crj:BDF1]

MEASURE. TIME: 1

SEX: MALE

(HCL101)

REPORT TYPE : A1

PAGE: 2 NO. of Urobilinogen Group Name \pm + 2+ 3+ 4+ CHI Animals Control 10 10 0 0 0 0 10 1250 ppm 10 0 0 0 0 2500 ppm 10 10 0 0 0 0 5000 ppm 10 10 0 0 0 0 10000 ppm 10 10 0 0 0 0 20000 ррп 10 10 0 0 0 0 Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of CH1 SQUARE

TABLE H 2

URINALYSIS: FEMALE

Urinalysis of female mice

In the dosed groups, pH, protein and ketone body could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items and number of animals that could not be measured are shown as followed.

pH: 10000 ppm(2), 20000 ppm(8)

Protein: 5000 ppm(4), 10000 ppm and 20000 ppm(10)

Ketone body: 2500 ppm(1), 5000 ppm(6), 10000 ppm(9), 20000 ppm(10)

Therefore, pH in 20000 ppm dosed group, protein and ketone body in 10000 ppm and above dosed groups could not be evaluated.

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of	llu					Protein			Gluc	Glucose			Ket	Ketone body			Occult blood		bloo	d							
	Animals			6. 5	7. 0	7. 5	8.0	8.5	CHI	±	+	2+ 3	+ 4+	CHI	- ±	- +	2+ 3	+ 4+ CllI	_	± +	2+ 3	3+ 4+	CHI		±	+ 2+	3+	CHI
Control	10	0	0	0	1	3	3	0		0 0	6	4	0 0		10	0 0	0	0 0	0	9 1	0	0 0		10	0	0 0	0	
1250 ррт	10	0	0	1	4	2	3	0		0 5	5	0	0 0	*	10	0 0	0	0 0	1	7 2	0	0 0		10	0	0 0	0	
2500 ррт	10	0	1	1	1	3	4	0 -		0 4	6	0	0 0	*	10	0 0	0	0 0	0	8 1	0	0 0		10	0	0 0	0	
5000 ppm	10	0	0	0	0	1	7	2	*	0 5	1	0	0 0	**	10	0 0	0	0 0	0	3 1	0 -	0 0		10	0	0 0	0	
10000 ppm	10	0	0	1	0	0	4	3	*	0 0	0	0	0 0		10	0 0	0	0 0	0	1 0	0	0 0	?	10	0	0 0	0	
. mgg 0000	10	0	0	0	0	1	1	0	?	0 0	0	0	0 0		10	0 0	0	0 0	0	0 0	0	0 0		10	0	0 0	0	

^{?:} Significant test is not applied, because No. of data in this group is less than 3.

(HCL101)

URINALYSIS

ANIMAL : MOUSE B6D2F1/Cr1 i[Cr j:BDF1]

MEASURE. TIME: 1

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI	
Control	10	10 0 0 0 0	
1250 ppm	10	10 0 0 0 0	
2500 ppm	10	10 0 0 0 0	
5000 ppm	10	10 0 0 0 0	
10000 ppm	10	10 0 0 0 0	
20000 թթա	10	10 0 0 0 0	
Significan	t difference	; *: P ≤ 0.05 **: P ≤ 0.01	Test of CHI SQUARE
(DATE

(HCL101)

TABLE I 1

GROSS FINDINGS: MALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

gan	Findings		Group Name NO. of Animals	Control 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
						,,	
dney	white zone	•		0 (0)	0 (0)	0 (0)	0 (0)
	deformed			0 (0)	0 (0)	0 (0)	0 (0)
tis	small			0 (0)	1 (10)	0 (0)	0 (0)

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

: MALE

PAGE: 2

Organ	Findings	Group Name 10000 ppm NO. of Animals 10 (%)	20000 ppm 10 (%)	
kidney	white zone	0 (0)	1 (10)	
	deformed	1 (10)	0 (0)	
testis	smal1	0 (0)	0 (0)	
(HPT080)				BAIS

TABLE I 2

GROSS FINDINGS: FEMALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 3

Organ	Findings	Group Name Control NO. of Animals 10 (%)	1250 ppm 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)
kidney	small	0 (0)	0 (0)	0 (0)	1 (10)
	white zone	0 (0)	0 (0)	0 (0)	1 (10)
	hydronephrosis	0 (0)	0 (0)	0 (0)	0 (0)
(HPT080)					BAIS 4

STUDY NO. : 0746 ANIMAL : MOUSE

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX

: FEMALE

PAGE: 4.

Organ	Findings.	Group Name 10000 ppm NO. of Animals 10 (%)	20000 ppm 10 (%)	
kidney	small	0 (0)	0 (0)	•
	white zone	0 (0)	0 (0)	
	hydronephrosis	1 (10)	0 (0)	
(HPT080)				BAIS 4

TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 1

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART .	LUNGS
Control	10	30.6± 1.8	0.039± 0.007	0.011 ± 0.001	0.220± 0.044	0.143生 0.013	0.140± 0.012
250 ppm	10	30.5± 1.7	0.041± 0.006	0.011± 0.002	0.219± 0.042	0.142± 0.009	0.141± 0.009
500 ppm	10	30.4± 1.9	0.037± 0.005	0.010± 0.002	0.205± 0.036	0.146± 0.008	0.143± 0.008
ովգ 000	10	28.7± 2.2	0.034± 0.006	0.010± 0.002	0.213± 0.027	0.143± 0.011	0.141± 0.006
0000 ppm	10	26.6生 1.5**	0.030± 0.006**	0.010± 0.001	0.235± 0.022	0.142± 0.011	0.140± 0.009
.0000 ppm	10	25.4± 1.5**	0.032± 0.004	0.011± 0.002	0. 192± 0. 035	0.133± 0.013	0.134± 0.008

(HCL040)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

JNIT: g Group Name	NO. of Animals	KIDNE	YS	SPLI	EEN	LIV	ER	BRA	IN		
Control	10	0.412士 (0. 035	0.050±	0. 003	1. 103±	0. 049	0. 434土	0. 015		
250 ppm	10		0. 027	0.054±	0.008	1. 153±	0. 067	0.442±	0. 020		
500 ppm	10	0.420± (0. 030	0.060±	0. 006**	1. 196±	0. 052**	0.440±	0. 011		
000 թիա	10	0.420± 0	0. 026	0.058±	0.006*	1.239±	0. 065≉≉	0.428±	0. 009	•	w
0000 ppm	10	0.427土 (0. 033	0.059±	0.010*	1. 290 ±	0. 094**	0.435±	0.013		
0000 ppm	10	0.397± 0	0. 019	0.063±	0.011**	1.317±	0.047**	0.423±	0. 011		

(HCL040)

TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (14W)

UNIT: g								PAGE: 3
Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.1生 0.9	0.040± 0.003	0.013± 0.001	0.033± 0.011	0.117生 0.006	0. 132± 0. 007	
1250 ррт	10	21.6± 1.0	0.044± 0.006	0.014± 0.002	0.029± 0.010	0.123± 0.009	0.133± 0.017	
2500 ppm	10	21.2± 1.0	0.039± 0.007	0.013± 0.001	0.028± 0.004	0.117± 0.006	0.129± 0.005	
5000 ррш	10	21.0± 0.7	0.041± 0.007	0.014± 0.002	0.028± 0.006	0.118± 0.008	0.134± 0.010	
10000 ppm	10	20.8± 0.9	0.040± 0.004	0.013± 0.001	0.028生 0.005	0.116± 0.008	0.127± 0.007	
20000 ррв	10	20.6± 0.7	0.039± 0.003	0.013± 0.001	0.028± 0.008	0.114± 0.005	0.126± 0.007	
Significa	nt difference ;	* : P ≤ 0.05 **	: P ≤ 0.01	_ Test	t of Dunnett			
(HCI 040)								BATS 4

(HCL040)

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: g

(HCL040)

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 4

Group Name	NO. of Animals	KIDNI	EYS	SPL	EEN	LIV	ER	BRA	IN .		
Control	10	0.286 \pm	0.014	0.059±	0. 004	0.850±	0.063	0.446±	0. 011		
1250 ррт	10	0.289±	0.014	0.064±	0.006	0.919±	0.057*	0.444±	0. 013		
2500 ррш	10	0.285±	0.014	0.065±	0.009	0.914±	0.060	0.443±	0.018		
5000 руш	10	0.290±	0.012	0.066±	0.005*	0.932±	0. 043**	0.437±	0.008		
10000 ррж	10	0.515±	0.717	0.079±	0. 023**	0. 957±	0. 055**	0. 436 ±	0.010		
20000 ррш	10	0.296±	0. 013	0.092±	0.013**	1.077±	0. 056**	0.432±	0.009		
Significan	t difference;	* : P ≤ 0.0	5 **	: P ≤ 0.01			Tes	t of Dunnet	t		

TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

STUDY NO. : 0746
ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : MALE
UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

Group Name	NO. of Animals	Body Weight (g)	TIIYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	30.6± 1.8	0.126± 0.019	0.035± 0.004	0.715± 0.133	0.466± 0.038	0.455± 0.021
1250 ppm	10	30.5± 1.7	0.135± 0.016	0.037± 0.006	0.717± 0.136	0.467± 0.028	0.463± 0.032
2500 ppm	10	30.4± 1.9	0.121± 0.015	0.034± 0.006	0.679± 0.131	0.483± 0.036	0.471± 0.033
5000 ррш	10	28.7± 2.2	0.120± 0.019	0.035± 0.005	0.752± 0.132	0.503± 0.052	0.494± 0.040
10000 ppm	10	26.6生 1.5**	0.112± 0.021	0.039± 0.005	0.882± 0.073*	0.534± 0.038**	0.527± 0.037**
20000 ppm	10	25.4± 1.5**	0.127± 0.013	0.044± 0.009**	0.755± 0.139	0.526± 0.069*	0.528± 0.042**

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HCL042)

BAIS 4

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN		
ontrol	10	1.344生 0.078	0.163生 0.007	3.606± 0.146	1.421± 0.088		
250 ppm	10	1.299± 0.066	0.177± 0.025	3.781 ± 0.179	1.451± 0.079		
500 ррш	10	1.383± 0.092	0.198± 0.024**	3.944± 0.158**	1.451± 0.097		
ուզգ 000	10	1.472± 0.133*	0.204± 0.019**	4.339± 0.282**	1.502± 0.108		
0000 ppm	10	1.605生 0.086**	0.221± 0.030**	4.843± 0.244**	1.638± 0.089**		
mqq 0000	10	1.565± 0.095**	0.249± 0.041**	5. 187± 0. 243**	1.667± 0.120**		

TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

STUDY NO. : 0746
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14W)

PAGE: 3

ONTI · 76				-				Thou -
Group Name	NO. of Animals	Body Weight (g)	TIIYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.1± 0.9	0.188± 0.010	0.063 ± 0.007	0. 154± 0. 046	0.555± 0.037	0.625± 0.030	
1250 ррт	10	21.6± 1.0	0.203± 0.023	0.063 ± 0.007	0.136± 0.045	0.568± 0.022	0.614± 0.065	
2500 ррш	10	21.2± 1.0	0.185± 0.037	0.063± 0.008	0.131± 0.019	0.553± 0.033	0.610± 0.043	
5000 ppm	10	21.0± 0.7	0.193± 0.027	0.065± 0.008	0.134± 0.027	0.563± 0.033	0.637± 0.050	
10000 ррт	10	20.8± 0.9	0.194± 0.017	0.063 ± 0.006	0.135± 0.027	0.555± 0.028	0.612± 0.030	
20000 ppm	10	20.6± 0.7	0.190± 0.015	0.064± 0.007	0.133± 0.037	0.553± 0.034	0.612± 0.037	
Significa	ıt difference ;	* : P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			
(HCL042)						and a realized Market		BAIS 4

(HCL042)

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (14W)

UNIT: %								PAGE: 4
Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN			
							-	
Control	10	$1.354\pm\ 0.083$	0.279 ± 0.018	4.016± 0.180	2.112± 0.100			,
1250 ppm	10	1.339± 0.027	0.297± 0.020	4. 251 ± 0. 166*	2.059 ± 0.067			
2500 ppm	10	1.346± 0.100	0.308± 0.037*	4.312± 0.213**	2.094± 0.133			
5000 ррш	. 10	1.380± 0.050	0.313± 0.024**	4.433± 0.166**	2. 078± 0. 052			
10000 ppm	10	2. 415± 3. 233	0.378± 0.098**	4.600± 0.227**	2.099± 0.099			
20000 ррт	10	1.439± 0.065	0.447± 0.065**	5. 239± 0. 180**	2.102± 0.088			
Significan	t difference ;	* : P ≤ 0.05 **:	: P ≤ 0.01	Test	of Dunnett	р	(A)	
		*						DATE 4

(HCL042)

TABLE L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS: MALE: ALL ANIMALS

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL REPORT TYPE : A1

SEX : MALE ALL ANIMALS (0- 14W)

Organ		Group Name Control No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%) (%)	1250 ррш 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
Hematopoiet	tic system)				
oone marrow	erythropoiesis: increased	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<10> 0 0 0 0 (0) (0) (0) (0)
spleen	deposit of hemosiderin	(10) (0) (0) (0)	(10) (0) (0) (0)	<pre></pre>	10 0 0 0 set
	deposit of melanin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (20) (0) (0)	2 0 0 0 0 (20) (0) (0)
	extramedullary hematopoiesis	1 0 0 0 0 (10) (10) (10)	1 0 0 0 (10) (0) (0) (0)	3 0 0 0 0 (30) (0) (0) (0)	4 0 0 0 0 (40) (0) (0) (0)
Circulatory	y system)		•		
ieart	mineralization	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Digestive s	svstem				
liver	inflammatory cell nest	<10> 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	2 0 0 0 (20) (0) (0)	2 0 0 0 (20) (0) (0) (0)
Grade < a > b (c)	1: Slight 2: Moderate 3 a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100	: Marked 4: Severe te			

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

ANIMAL REPORT TYPE : A1

SEX

: MALE

Organ	Findings	Group Name No. of Animals on Grade	10000 ppm Study 10 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
{Hematopoiet	ic system)				
bone marrow	erythropoiesis:increased		0 0 0 0 (0) (0) (0) (0)	(10) 2 0 0 0 (20) (0) (0) (0)	
spleen	deposit of hemosiderin		(10) 10 0 0 0 0 *** (100) (0) (0) (0)	<10> 10 0 0 0 *** (100) (0) (0) (0)	
	deposit of melanin		0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	extramedullary hematopoiesis		6 0 0 0 (60) (60) (60)	8 0 0 0 ***	
{Circulatory	system)				
liear t	mineralization		0 0 0 0 (0) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)	
Digestive s	ystem)				
liver	inflammatory cell nest		<10> 1 0 0 0 (10) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)	
Grade <a>> b (c) Significant	1: Slight 2: Moderate : a: Number of animals examined at the: b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P	site	: Severe Chi Square		

(HPT150)

BAIS4

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1 SEX

ANIMAL

: MALE

PAGE: 3

		Group Name No. of Animals o		1250 ppm 10	2500 אועס 10 1 2 3 4	5000 ppm 10 1 2 3 4
Organ	Findings	Grade		$\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$ $\frac{4}{(\%)}$	$\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$ $\frac{4}{(\%)}$	1 2 3 4 (%) (%) (%) (%)
{Digestive s	system)					
liver	hepatocellular hypertrophy:central		(10) 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)	2 0 0 0 (20) (0) (0) (0)	7 0 0 0 *** (70) (0) (0) (0)
{Urinary sys	stem)					
k i dney	hydronephrosis		(10) 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)	<10>
{Reproductiv	ve system)				·	
testis	atrophy		0 0 0 0 (0) (0) (0) (0)	(10) 0	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P	site	4 : Severe			
(IIPT150)	difference; *: P ≤ 0.05 **: P	≦ 0.01 Test of	Chi Square			

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

ANIMAL REPORT TYPE : A1

SEX : MALE

Organ	Findings	No. of Animals on Study 10 Grade 1 2 3 4 (%) (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
ζ	·			
{Digestive :	system)			
liver	hepatocellular hypertrophy:central	<10> 9 1 0 0 *** (90) (10) (0) (0)	<10> 0 10 0 0 *** (0) (100) (0) (0)	
{Urinary sy	stem)			
kidney	hydronephrosis	1 0 0 0 (10) (10) (10) (10) (10) (10)	<10> 0 0 0 0 (0) (0) (0) (0)	
{Reproducti	ve system)			
testis	atrophy	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	
Grade <a> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P			

(IIPT150)

BAIS4

TABLE L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS: FEMALE: ALL ANIMALS

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE: A1 SEX

ANIMAL

: FEMALE

Organ	Findings	No. of Animals on Study	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 10 4 (%) (%) (%) (%) (%)
{Hematopoieti	c system)				
bone marrow	erythropoiesis:increased	(0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>
spleen	deposit of hemosiderin	<10> 10 0 0 0 (100) (0) (0) (0)	(100) (0) (0) (0) (100) (0) (0) (0)	(100) (0) (0) (0) (100) (0) (0) (0)	(100) (0) (0) (0) (100) (0) (0) (0)
	extramedullary hematopoiesis	1 0 0 0 0	2 0 0 0 0 (20) (0) (0) (0)	3 0 0 0 0 (30) (0) (0)	4 0 0 0 0 (40) (0) (0) (0)
{Digestive sy	stem)				
liver	inflammatory cell nest	3 0 0 0 (30) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)	(0) (0) (0) (0)	\(\langle 10 \rangle \) \(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ (10) & (0) & (0) & (0) \end{array} \)
	extramedullary hematopoiesis	1 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hepatocellular hypertrophy:central	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (20) (0) (0)
Grade <a>a> <a>c <a>c<	<pre>1: Slight 2: Moderate a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P</pre>				

STUDY NO. : 0746 AN1MAL

: MOUSE BGD2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1

SEX FEMALE

Organ	1	Froup Name 10000 ppm No. of Animals on Study 10 Frade 1 2 3 4 (%) (%) (%) (%)	20000 ppm 10 1 2 3 4 (%) (%) (%) (%)	
<u> </u>				
{Hematopoieti	c system)			
bone marrow	erythropoiesis increased	<10> 0 0 0 0 0 (0) (0) (0) (0)	<10> 5 0 0 0 * (50) (0) (0) (0)	
spleen	deposit of hemosiderin	2 8 0 0 *** (20) (80) (0) (0)	(0) (100) (0) (0) **	
	extramedullary hematopoiesis	5 1 0 0 (50) (10) (0) (0)	6 4 0 0 ** (60) (40) (0) (0)	
{Digestive sy	stem)			
liver	inflammatory cell nest	(10) 0 0 0 0 (0) (0) (0) (0)	3 0 0 0 (30) (0) (0) (0)	
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	
	hepatocellular hypertrophy:central	7 0 0 0 **** (70) (0) (0) (0)	10 0 0 0 ***	·
< a > b	a : Number of animals examined at the sib : Number of animals with lesion $c:b/a*100$			
(HPT150)	·			BAIS4

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1

ANIMAL

(HPT150)

SEX FEMALE PAGE: 7

Organ	Group Name No. of Anima Grade Findings	Control s on Study 10 1 2 3 4 (%) (%) (%) (%)	1250 ppm 10 1 2 3 4 (%) (%) (%) (%)	2500 ppm 10 1 2 3 4 (%) (%) (%) (%)	5000 ppm 10 1 2 3 4 (%) (%) (%) (%)
(Urinary sy	· · · · · · · · · · · · · · · · · · ·				•
kidney	inflammatory polyp	<10> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	hydronephrosis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (0)
Grade <a> b (c) Significant	I: Slight 2: Moderate 3: Marked a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: $P \le 0.05$ **: $P \le 0.01$ Test	4 : Severe		· .	

: MOUSE B6D2F1/Cr1j[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : FEMALE

ANIMAL

(HPT150)

PAGE: 8

Organ	Findings	Group Name 10000 ррл No. of Animals on Study 10 Grade 1 2 (%) (%)	3 4 (%) (%)	20000 ppm 10 10 (%) (%) (%) (%)		
{Urinary sys	tem}					
kidney	inflammatory polyp	(10) 0 1 (0) (10) (0 0	(10) 0 0 0 0 (0) (0) (0) (0)		
	hydronephrosis	0 0 (0) (1 0 10) (0)	0 0 0 0 0 (0) (0)		
Grade <a>> b (c) Significant	1: Slight 2: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:					·