4-クロロ-2-ニトロアニリンのラットを用いた 経口投与によるがん原性試験(混餌試験)報告書

試験番号:0759

TABLES

TABLES

TABLE A 1 SURVIVAL ANIMAL NU	MBERS: MALE
TABLE A 2 SURVIVAL ANIMAL NU	MBERS: FEMALE
TABLE B 1 CLINICAL OBSERVATION	ON: MALE
TABLE B 2 CLINICAL OBSERVATION	ON: FEMALE
TABLE C 1 BODY WEIGHT CHAN	IGES AND SURVIVAL ANIMAL NUMBERS
TABLE C 2 BODY WEIGHT CHAN FEMALE	IGES AND SURVIVAL ANIMAL NUMBERS
TABLE C 3 BODY WEIGHT CHANG	ES: MALE
TABLE C 4 BODY WEIGHT CHANG	ES: FEMALE
TABLE D 1 FOOD CONSUMPTION NUMBERS: MALE	N CHANGES AND SURVIVAL ANIMAL
TABLE D 2 FOOD CONSUMPTION NUMBERS: FEMALE	N CHANGES AND SURVIVAL ANIMAL
TABLE D 3 FOOD CONSUMPTION	CHANGES: MALE
TABLE D 4 FOOD CONSUMPTION	CHANGES: FEMALE
TABLE E 1 CHEMICAL INTAKE CH	IANGES: MALE
TABLE E 2 CHEMICAL INTAKE CH	IANGES: FEMALE
TABLE F 1 HEMATOLOGY: MALE	
TABLE F 2 HEMATOLOGY: FEMAL	Æ
TABLE G 1 BIOCHEMISTRY: MALE	
TABLE G 2 BIOCHEMISTRY: FEMA	LE

TABLES (CONTINUED)

TABLE H 1	URINALYSIS: MALE
TABLE H 2	URINALYSIS: FEMALE
TABLE I 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE I 2	GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
TABLE I 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
TABLE I 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE I 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE I 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
TABLE J 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: ALL ANIMALS
TABLE L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: DEAD AND MORIBUND ANIMALS
TABLE L 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: SACRIFICED ANIMALS
TABLE L 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: ALL ANIMALS
TABLE L 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: DEAD AND MORIBUND ANIMALS
TABLE L 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

TABLE M 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
TABLE M 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
TABLE N 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
TABLE N 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
TABLE O 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE O 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE P 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
TABLE P 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
TABLE Q	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrlj MALE RATS
TABLE R 1	CAUSE OF DEATH: MALE
TABLE R 2	CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

Group Name	Animals	Administ	ration (Wee	ks)				4-1							
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
280 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0
1400 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
7000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
"		100.0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Animals	Administ	tration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50 100. 0													
280 ppm	50	50/50 100. 0													
1400 ppm	50	50/50 100. 0													
7000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360) BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
ontrol	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0
280 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
1400 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Group Name	Animals	Administ	ration (Wee	ks)											······································
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	49/50 98. 0	49/50 98. 0	49/50 98. 0											
80 ppm	50	50/50 100. 0	49/50 98. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0									
400 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0											
7000 ppm	50	50/50 100. 0	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0

Number of survival/ Number of effective animals
Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Animals	Administ	ration (Wee	ks)								***************************************			
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0										
280 ppm	50	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0										
1400 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0										
7000 ppm	50	49/50 98. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0	48/50 96. 0								

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

Group Name	Animals	Administ	ration (Wee	ks)											****
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	48/50	48/50 96. 0	48/50	46/50	46/50 92. 0	46/50	46/50	46/50 92. 0	45/50 90. 0	45/50 90. 0				
000	F0	96. 0		96. 0	92. 0		92. 0	92. 0							
280 ppm	50	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0										
1400 ppm	50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
		98. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0
7000 ppm	50	47/50 94. 0	47/50 94. 0	46/50 92. 0	45/50 90. 0										

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 7

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	45/50 90. 0	45/50 90. 0	45/50 90. 0	43/50 86. 0	41/50 82. 0	40/50 80. 0	40/50 80. 0	38/50 76. 0						
280 ppm	50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	45/50	45/50	43/50	43/50
		94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	90. 0	90. 0	86. 0	86. 0
1400 ppm	50	48/50 96. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0	44/50 88. 0					
7000 ppm	50	45/50 90. 0	44/50 88. 0	43/50 86. 0	43/50 86. 0										

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 8

	Animals	Administ	tration (Wee	eks)				
	At start	98	99	100	101	102	103	104
Control	50	38/50	38/50	38/50	38/50	38/50	38/50	38/50
		76. 0	76. 0	76. 0	76. 0	76. 0	76. 0	76. 0
280 ppm	50	41/50	41/50	41/50	39/50	39/50	38/50	36/50
		82. 0	82. 0	82. 0	78. 0	78. 0	76. 0	72. 0
1400 ppm	50	43/50	43/50	43/50	43/50	43/50	43/50	41/50
		86. 0	86. 0	86. 0	86. 0	86. 0	86. 0	82. 0
7000 ppm	50	40/50	40/50	39/50	37/50	37/50	36/50	33/50
		80. 0	80. 0	78. 0	74. 0	74. 0	72. 0	66. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

Group Name	Animals	Administ	tration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
160 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
4000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100.0	100. 0	100.0	100. 0	100.0	100.0	100.0	100.0	100. 0	100.0	100. 0	100.0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360) BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

Group Name	Animals	Administ	ration (Wee	ks)									-11011		·····
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
160 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
4000 ppm	50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100.0	100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
160 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
300 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0
4000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 12

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
160 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
800 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
4000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 13

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100. 0	100. 0
160 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0
300 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
4000 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50
		98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	96. 0	96. 0	96. 0	96. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 14

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	50/50	50/50	50/50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50
		100. 0	100. 0	100. 0	100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	96. 0	96. 0	96. 0	96. 0
160 ppm	50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	47/50
		98. 0	98. 0	98. 0	98. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	94. 0
300 ppm	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	48/50	48/50	48/50	48/50	48/50	48/50
		100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0
4000 ppm	50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
		96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0	96. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 15

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	47/50 94. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	42/50 84. 0	42/50 84. 0				
60 ppm	50	47/50 94. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	43/50 86. 0	43/50 86. 0	42/50 84. 0				
00 ppm	50	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0
1000 ppm	50	47/50 94. 0	46/50 92. 0	46/50 92. 0	44/50 88. 0	43/50 86. 0	43/50 86. 0	38/50 76. 0	37/50 74. 0	35/50 70. 0	31/50 62. 0	26/50 52. 0	23/50 46. 0	22/50 44. 0	18/50 36. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 16

Group Name	Animals	Administ	tration (Wee	eks)				
	At start	98	99	100	101	102	103	104
Control	50	40/50 80. 0	39/50 78. 0	38/50 76. 0	38/50 76. 0	35/50 70. 0	34/50 68. 0	34/50 68. 0
160 ppm	50	42/50 84. 0	40/50 80. 0	40/50 80. 0	39/50 78. 0	39/50 78. 0	39/50 78. 0	39/50 78. 0
800 ppm	. 50	43/50 86. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	42/50 84. 0	42/50 84. 0	42/50 84. 0
4000 ppm	50	16/50 32. 0	12/50 24. 0	11/50 22. 0	8/50 16. 0	6/50 12. 0	5/50 10. 0	3/50 6. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE B 1

CLINICAL OBSERVATION: MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

TEX . HALL															TAGE .
Clinical sign	Group Name	Admini	stration W	eek-dav											
	-1117	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Õ	Õ	Õ	Ö	0	Ö	Õ	Ö	Ö	Ö	Ö	Ō	Ö	Ö
	1400 ppm	Õ	Ŏ	ŏ	ŏ	Ö	Ö	Õ	Õ	Ö	0	Ö	Õ	Õ	Õ
	7000 ppm	0	0	0	0	0	Ö	0	0	0	0	0	0	Õ	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	1	1	2	3	7	7	16	16	48
	1400 ppm	0	0	50	50	50	50	50	50	50	50	50	50	50	50
	7000 ppm	30	31	50	50	50	50	50	50	50	50	50	50	50	50
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	Û	0	0	0	Ō	ñ	Ō	0	0	n	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

EX . MALE															FAGE
linical sign	Group Name	Admini	stration W	leek-day _											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-AIN	280 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	260 ppm 1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0 .	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.ORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	48	49	49	49	49	49	49	49	49	50	50	50	50	50
	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	7000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
OERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

SEA . MALE															FAUL .
Clinical sign	Group Name	Admini	stration W	leek-day											
	v-1,	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EATH	Control	0	0	0	n	n	n	0	1	1	1	1	1	1	1
EAIN	280 ppm	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0	0
	200 ppm 1400 ppm	0	0	0		0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
	1400 ppm	0	Ō	Ō	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
•	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	7000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		437	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
A I II	280 ppm	Ó	Ó	Ó	Ó	Ö	Ó	Ó	Ö	Ö	1	i	i	1	i
	1400 ppm	0	0	0	0	0	0	0	0	0	ò	Ö	i	1	i
	7000 ppm	Ö	1	1	1	1	1	1	1	ĭ	1	1	i	1	i
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	50	50	36	48	48	49	49	50	50	49	48	48	48	48
	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	49	49	49
	7000 ppm	50	49	49	49	49	49	49	49	49	49	49	49	49	49
OERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	n	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

SEA . MALE															I AGE .
linical sign	Group Name	Admini	stration W	eek-day											
744		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EATH	280 ppm	1	1	1	i	1	1	i	1	i	1	1	1	1	1
	1400 ppm	1	1	1	i	1	i	i	1	i	1	i	i	1	1
	7000 ppm	1	1	1	i	1	i	1	i	2	2	2	2	2	3
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	48	48	48	48	46	48	48	48	48	48	48	48	48	48
	1400 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	7000 ppm	49	49	49	49	49	49	49	49	48	48	48	48	48	47
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name														
	Group Hamo	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	1	1	2	2	2	3	2	2	2	2	3	3	3	3
EATH	Control	1	1	3 1	3	3	ა 1	3 1	3	3	3 1		2		2
	280 ppm	1	•		1	1	•		1	1		2		2	
	1400 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	7000 ppm	3	4	5	5	5	5	5	5	5	5	5	5	5	5
ORIBUND SACRIFICE	Control	1	1	1	1	1	1	1	1	1	1	1	2	2	2
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ō	Ō	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Ō	Ō	Ō	0	0
	1400 ppm	Õ	Ö	Ö	Õ	Õ	Õ	Õ	Õ	Ō	Ō	Ö	Ö	0	0
	7000 ppm	ő	Ô	Ö	ő	0	Õ	Ö	ő	Ö	Õ	Ö	Ö	Õ	0
AXIC GAIT	Control	1	1	1	1	0	0	0	0	0	0	0	0	0	0
ANTO UNIT	280 ppm	'n	Ó	ò	ò	0	0	0	0	0	0	Û	Ö	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	Ō	Ö	Ō	Ō	Ö	Õ	Ö	Ö	0	Ō	Ō	Ō	0	0
	7000 ppm	Ō	0	Ō	Ö	0	Õ	Ô	0	Ō	Ö	0	Ö	Ō	Ō
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	וועע טטט ו	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
	280 ppm	48	48	46	46	48	48	48	48	48	48	47	47	38	47
	1400 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	48
	7000 ppm	47	46	45	45	45	45	45	45	45	45	45	45	45	45
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	1400 ppm	Ô	Ö	Ö	Ö	Õ	ő	Ö	Ö	Ö	ò	Ö	Õ	Õ	Ö
	7000 ppm	Ö	Õ	Õ	ŏ	0	Õ	Õ	Õ	Ô	Ô	Õ	Õ	Õ	Õ

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

DEX : MALE															PAGE
Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ATH	Control	3	3	5	5	5	5	5	5	5	5	6	6	7	7
АП	280 ppm	2	2	2	2	2	2	2	2	2	4	4	4	4	4
	1400 ppm	2	2	2	2	2	3	3	4	4	4	4	4	4	5
	7000 ppm	5	5	5	5	5	5	5	5	5	5	5	6	6	8
ORIBUND SACRIFICE	Control	2	2	2	4	4	4	4	4	4	4	4	4	5	5
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	3	3	5
	1400 ppm	0	0	0	0	0	1	1	1	1	1	2	2	2	2
	7000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	2
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	1	1	1	1	1	1	1	1	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	47	47	47	47	47	47	44	47	47	45	45	43	43	41
	1400 ppm	48	48	48	48	48	46	46	45	45	45	44	44	44	43
	7000 ppm	45	45	45	45	45	45	45	45	45	45	44	43	43	40
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration	Week-day	***************************************	***************************************	····
	or oup mand	99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	7	7	7	7	7	7
	280 ppm	4	4	4	4	4	6
	1400 ppm	5	5	5	5	5	7
	7000 ppm	8	9	11	11	12	14
MORIBUND SACRIFICE	Control	5	5	5	5	5	5
	280 ppm	5	5	7	7	8	8
	1400 ppm	2	2	2	2	2	2
	7000 ppm	2	2	2	2	2	3
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	2	1	0	0	0	0
ATAXIC GAIT	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0
ADMORMAL GATT	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
	7000 ppiii	Ü	Ū	Ü	Ū	Ū	· ·
WASTING	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	Ö
	7000 ppm	0	0	0	0	0	0
	, ccc bhu	v	Ü	v	v	Ü	v
COLORED	Control	0	0	0	0	0	0
	280 ppm	41	41	39	39	38	36
	1400 ppm	43	43	43	43	43	41
	7000 ppm	40	39	37	37	36	33
PILOERECTION	Control	0	0	0	0	0	0
	280 ppm	Ö	Ö	Ō	Ö	Ö	Ŏ
	1400 ppm	0	Ö	Ō	Ō	Ō	Õ
	7000 ppm	1	1	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

JEA . MALL															TAGE .
Clinical sign	Group Name	Adminis	stration We	ek-day											
_		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED TERT GERTTALIA	280 ppm	ő	0	0	0	Ö	0	0	0	Ô	Ö	Õ	Ŏ	ő	Ŏ
	1400 ppm	Ö	Ö	Ö	Ō	ō	Ö	Ō	Õ	Õ	Ō	0	Ō	Ō	0
	7000 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

SEX - MALE															rau.
Clinical sign	Group Name	Admini	stration We	ek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
COLLED DEDI CENTALIA	O-mt-m-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED PERI-GENITALIA	Control	0	0 0	0	0 0	0	0	0 0	0						
	280 ppm	0	0	0 0	0		0	0	0	0	0	0	0	0	0
	1400 ppm 7000 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS		0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXUPTITALMUS	Control 280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	Ů	0	'n	'n	'n	0
	roov ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ô	Õ	Ö	Ō	Ō	Ō	Ō	Ō	0	Ō	0	0	0	0
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	Ô	Ò	Ö	Ö	ò	ò	Ö	Ô	Ô	Ô	Ô	0	0	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTEKTOK GHAMDEK GLAGITI	280 ppm	n	0	0	0	0	0	0	0	0	0	Ô	Õ	0	Õ
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	roov ppili	U	U	U	U	U	U	U	U	U	U	U	U	U	U
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	1	1	0	0	0	0	0	0	1	1	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	Ô	0	Ô	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m noon	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vi. Eye	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

JLA . MALL															i Auc .
Clinical sign	Group Name	Admini	stration W	eek-day		***************************************									
_		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
0.1.50 0501 05017.1		•	•	•		•	•	•	•		•	•		•	•
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATARACT	Control	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	280 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
CORNEAL OPACITY	Control	n	0	0	0	0	n	0	0	0	0	0	0	0	n
JORNEAL GLAGITI	280 ppm	0	0	0	0	0	0	0	2	2	2	2	2	2	2
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	Ó	0	Ö	Ô	Ó	Ö	0	Ö	Ö	Ö	Ó	Ö	Ö	Ó
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
ANTENTON GHAMDEN OFACTTI	280 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	n
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	U N	0	0	0
	rouo ppm	Ü	U	U	U	U	U	U	U	U	U	U	U	U	U
EXTERNAL MASS	Control	1	1	1	1	1	1	1	0	1	1	0	0	0	0
	280 ppm	0	1	1	1	1	1	1	1	2	1	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	1	1	1	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	Ō	Ō	Õ	ō	Ō	Õ	Ō	Ŏ	Õ	Ö	Ō	Ō	Ō	0
	7000 ppm	0	0	0	0	Ō	0	0	Ō	Ō	0	0	0	Ō	0
1. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	ő	0	Ô	0	0	0	0	0	0	0	0	0	Õ	ñ
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. EYE	Control	0	0	0	0	0	n	0	n	0	٥	0	0	٥	n
1. L L		U N	0	0	0	0	0	0	0	0	0	0	0	0	U
	280 ppm	•	0	0	0	0	0	0	0	0	0	0	0	0	U
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

															i Auc.
linical sign	Group Name	Admini	stration W	eek-day											
······································		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	54-7 55-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56-7
OLIED DEDI CENTALIA	Ornhurl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0 0	0 0	0 0	0 0	0	0	0 0	0 0			0
	280 ppm	-	0	0					0	-	-	υ 0	-		0
	1400 ppm	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	•		0
	7000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
(OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	280 ppm	i	i	i	2	ż	3	3	4	4	3	3	3	3	3
	1400 ppm	'n	Ó	Ó	0	0	0	1	1	1	1	1	i		í
	7000 ppm	1	1	1	1	1	1	i	1	1	i	; 1	i	•	i
	7000 ppiii	1	1	'	ı	ı	ı	ı	,	'	ı	•	1	'	,
DRNEAL OPACITY	Control	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	2	2	2	2	1	1	1	0	0	0	0	0	0	0
	1400 ppm	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0		0
ITERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	Ö	0	0	Λ	0
TIERTOR GHAMDER GFACITI	280 ppm	n	0	0	0	0	0	0	0	0	0	0	-		n
	1400 ppm	n	0	0	0	0	0	0	0	0	0	0	-		0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0			0
	/VVV ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
(TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	-	0	0
	280 ppm	1	1	1	1	1	2	2	1	1	0	0	0	0	0
	1400 ppm	2	0	0	0	0	0	0	0	0	0	0			0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ITERNAL MASS	Control	0	0	0	0	0	0	0	0	n	0	0	0	0	0
	280 ppm	Ô	Ô	Ö	Ö	Ŏ	Ŏ	Õ	Õ	ŏ	ñ	Õ	-	-	ñ
	1400 ppm	ñ	Õ	ŏ	ŏ	Ö	Ö	ŏ	Õ	Õ	ñ	Õ	ő	Õ	ñ
	7000 ppm	Ŏ	Ö	Õ	Ö	Õ	Ö	Ö	Õ	Ö	ő	Ö	Ö	Ö	Ö
NOCE	0	0	•	•	•	٥	0	0	0	0		٥	•	•	0
NOSE	Control	U N	0	0	0	0	0	0	0	0	0	0	0	0	U
	280 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	U
	1400 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	U
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	Ô	0	0	Ō	0	0	0	Ō	0	Ō	0	0	0
	7000 ppm	Ō	Õ	Õ	Ö	Õ	Ō	Õ	Õ	Õ	ō	Ō	Õ	Ō	ñ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

OLX : MILEL															11.02
Clinical sign	Group Name	Admini	stration \	Week-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
								_							_
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATARACT	Control	1	1	1	1	1	1	1	1	1	2	2	2	2	2
	280 ppm	3	3	3	3	3	3	3	3	3	4	4	4	4	4
	1400 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	7000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Õ	Ö	Õ	Ō	Ö	Ō	Ö	Ö	Õ	Õ	0	Ō	Ō	Ō
	1400 ppm	Õ	Ö	Ö	0	Ö	Ö	Õ	0	Õ	0	Ö	Ō	Ö	Õ
	7000 ppm	Ö	ő	ŏ	Õ	ő	Ö	ŏ	Ö	ő	Ö	ő	Õ	Ö	Ö
XTERNAL MASS	Control	0	2	2	3	3	4	6	6	6	5	3	3	3	3
ATERIAL IIIAOO	280 ppm	0	0	0	1	1	1	2	2	2	1	1	1	1	1
	1400 ppm	1	2	2	3	3	3	3	3	4	4	4	4	4	5
	7000 ppm	'n	0	0	0	1	1	2	2	3	3	3	3	3	2
	1000 ppiii	U	U	U	U	1	Ī	2	2	J	J	J	J	J	L
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	1	1	1	1	1	1	1	1	1	0	0	0	0
	280 ppm	ŏ	ò	ò	Ö	Ö	ò	Ö	Ö	ò	ò	ő	Õ	Ö	Ö
	1400 ppm	ő	0	0	0	Ö	Ö	Õ	0	ő	0	Õ	Ö	Ö	Ö
	7000 ppm	Ö	Ö	Õ	Ö	Ö	Õ	Ö	0	Ö	ő	Ö	Õ	Ö	0
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	U	υ	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration We	ek-dav											
7,117,041 47,511	aroup mano	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
		· · · · · · · · · · · · · · · · · · ·						·				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TARACT	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	280 ppm	4	4	4	5	5	5	5	5	5	5	5	5	6	6
	1400 ppm	ż	ż	2	2	2	2	2	2	2	2	2	2	2	2
	7000 ppm	1	1	1	1	2	2	2	2	2	2	2	2	2	2
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	1	1	0	0	0	0	0	0	0	Ō	0	1
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	3	3	3	4	4	4	4	4	4	4	4	4	4	4
	280 ppm	1	1	1	1	2	2	2	2	3	3	2	3	4	5
	1400 ppm	5	5	5	5	5	5	5	6	7	8	8	9	10	11
	7000 ppm	2	2	2	2	2	2	4	4	3	3	3	3	3	3
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	Ō	Ō	0	Ō	Ō	Ō	0	Ō	ō	Ō	Ō	Ō
	7000 ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
IOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
	1400 ppm	0	0	0	Ō	0	Ō	0	Ō	Ō	Ō	Ō	0	Ō	0
	7000 ppm	0	Õ	Ō	Ö	0	0	0	Ö	Ō	Ö	0	0	Ö	0
:YE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	Ö	Ö	Ö	Ŏ	Õ	Ō	Ö	Õ	Ö	Ö	Ö	Ō	0
	1400 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	n	0	0	0	0	0	U	1	U	U	1	U	1	1

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

PAGE: 15 Clinical sign Group Name Administration Week-day 85-7 86-7 87-7 88-7 89-7 90-7 91-7 92-7 93-7 94-7 95-7 96-7 97-7 98-7 SOILED PERI-GENITALIA Control 280 ppm 1400 ppm 7000 ppm **EXOPHTHALMOS** Control 280 ppm 1400 ppm 7000 ppm CATARACT Control 280 ppm 1400 ppm 7000 ppm CORNEAL OPACITY Control 280 ppm 1400 ppm 7000 ppm ANTERIOR CHAMBER OPACITY Control 280 ppm 1400 ppm 7000 ppm EXTERNAL MASS Control 280 ppm 1400 ppm 7000 ppm INTERNAL MASS Control 280 ppm 1400 ppm 7000 ppm M. NOSE Control 280 ppm 1400 ppm 7000 ppm M. EYE Control 280 ppm 1400 ppm 7000 ppm

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign		Aumin	istration	meek-uay _			
		99-7	100-7	101-7	102-7	103-7	104-7
224 52 252 254 254		•	•		•	•	
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0
	280 ppm	Ō	0	Ô	Ō	Ö	1
	1400 ppm	1	1	1	1	1	1
		Ö	0	Ó	Ö	0	Ó
	7000 ppm	U	U	U	U	U	U
CATARACT	Control	2	2	4	4	4	4
	280 ppm	7	8	8	8	8	8
	1400 ppm	2	2	2	2	2	2
	7000 ppm	ī	1	1	1	Ō	ō
CORNEAL OPACITY	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	1	1	1	1	1	2
ANTERIOR OUTSIDE OF COM		•	•	•	•		
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
EVTERNAL MAGO	2	_	_	_	_		_
EXTERNAL MASS	Control	6	5	5	6	7	9
	280 ppm	7	7	7	7	6	6
	1400 ppm	16	16	15	16	17	17
	7000 ppm	5	7	6	6	5	5
INTERNAL MACC	0	0	•	•	0	0	•
INTERNAL MASS	Control	0	0	0	0	0	0
	280 ppm	1	1	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
M. NOSE	Control	0	0	0	0	0	0
III- HOUL	280 ppm	0	0	0	0	0	0
		•	_				
	1400 ppm	0	0 0	0	0	0	0
	7000 ppm	0	U	0	0	0	0
M. EYE	Control	0	0	0	0	0	0
	280 ppm	Õ	Ŏ	ŏ	Ŏ	Ö	Ö
	1400 ppm	0	Ö	Õ	0	0	0
•	7000 ppm	Ő	0	0	0	0	0
	. 000 ppm	v	v	v	Ū	U	U

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Adminis	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEDI MONTU	0		•	٥	•	•	0	•	0	0	0	0	0	0	•
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	_
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
DICAGI	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THE ENTRY DONOUN	280 ppm	ñ	ő	Ŏ	Õ	Ö	Õ	ŏ	Õ	Õ	Ŏ	Õ	ñ	Ö	Ŏ
	1400 ppm	ő	ŏ	Ö	Ö	Õ	0	Ö	Ö	Ö	Õ	Õ	Ö	0	Õ
	7000 ppm	n	Ö	0	0	0	0	0	0	0	0	0	0	0	n
	7000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	n	0	n	0	0
	280 ppm	ő	Õ	ő	Õ	Õ	Õ	Ŏ	0	Ô	Õ	ő	Õ	Ô	ñ
	1400 ppm	Ô	Ö	Õ	Õ	0	Õ	Õ	Õ	Ö	ñ	ñ	ñ	Ô	ñ
	7000 ppm	0	0	0	0	0	0	Ö	0	0	Ö	Ö	0	0	Ö
CCDOTINA	Cambual	٥	n	0	0	0	٥	0		0	n	0	0	0	0
SCROTUM	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	Ö	Ō	0	Ō	Ō	Ō	Õ	Ō	Ō	Ō	Ō	0	Ō
	1400 ppm	Õ	Õ	Ö	Õ	Ŏ	Ö	Ŏ	Ô	Ö	ŏ	Õ	Ö	Õ	Ö
	7000 ppm	ŏ	Ô	0	Ô	0	0	0	0	0	0	Ô	0	0	ŏ

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day								······			
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	1	1	0	0	0	0	0	0	1	1	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	Ô	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	Ö	Ö	Ō	0	0	Ō	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	Ō	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	n	0	0	0	0	0
	280 ppm	Õ	Õ	Ö	Ö	Ö	Ö	Ō	Ö	ñ	Õ	Õ	ñ	ō	Ō
	1400 ppm	Õ	Ö	0	0	ő	Ö	ő	0	Õ	ŏ	Õ	Ö	Ö	ő
	7000 ppm	Ô	Ô	0	0	Ô	0	0	0	n	0	ñ	Ô	0	n
	rood ppm	Ü	U	U	U	U	Ū		U	U	Ü	v	J	Ü	Ū
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ö	Õ	Ö	0	0	Ô	0	0	Ô	ő	0	Ö	Õ	Ő
	1400 ppm	Ö	0	0	0	Ö	0	0	Ö	0	Ô	n	Ö	0	0
	7000 ppm	Ô	Õ	0	0	0	0	Ö	Ö	Ö	Ô	0	n	ñ	ñ
		ŭ	Ū	-	U	U	U	Ü	U	U	•	U	Ū	v	v
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

SEX : MALE															PAGE .
Clinical sign	Group Name	Admini	istration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	1	1	0	0	0	0
M. PERI-MUUIN	280 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	200 ppm 1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	1	1	1	0	0	0	0	0
M. PERI EAR	Control	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

SEV - WALE															rauL .
Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
					_		_					•	•	•	•
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	1400 ppm	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ō	Ö	Ö	Õ	Ō	0	0	Ō	Ō	Ō	Ō	0	Ō	0
	1400 ppm	Õ	Ö	Ö	Ö	Ö	0	Ö	Ō	Ö	Ö	Ö	0	Õ	0
	7000 ppm	Õ	Õ	ő	ő	Õ	Ö	Õ	Õ	Ō	Õ	0	0	Ō	0
M. ABDOMEN	Control	n	n	0	0	0	0	0	0	a	O	0	0	0	0
I ADDOMEN	280 ppm	0	0	0	0	0	0	0	0	0	n	0	0	0	Ů
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A ANTERIAR DORONA	0.1.1	٥	•	•			0	•	•	0	0	•	0	0	٥
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	280 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	Ó	Ö	Ō	0	0	0	0	0	0	0	0
	1400 ppm	0	Ō	Ō	Ō	Ō	0	Ō	0	0	Ō	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. SCROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
III. OONO (ON	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	ก
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	n
	roos ppili	U	U	U	v	U	U	U	U	U	U	v	U	U	U
A TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ü	0	0	0	0	0	0	0	0	0	0	0	0	U
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE PAGE: 21

Clinical sign	Group Name	Admini	stration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
I. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	ñ	Õ	Õ	1	1	1	2	2	2	1	1	i	1	1
	1400 ppm	ñ	Õ	Ŏ	ò	Ö	Ö	Õ	Õ	Ō	Ò	'n	'n	Ö	'n
	7000 ppm	ő	Õ	Õ	0	Õ	Õ	Õ	Ö	Õ	Õ	Ô	ŏ	Õ	Ö
		Ü		v	_	-	-	v	·	_	-	•	ŭ	v	Ü
L PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ď	0	Ö	Õ	0	Ö	Õ	ñ	Õ	Ŏ	Õ	Õ	Õ	Ō
	1400 ppm	Ô	Õ	ŏ	ŏ	Ö	Ô	ŏ	Õ	Ö	Õ	Õ	Ö	Õ	Õ
	7000 ppm	Ö	Ö	Ö	Ö	Ö	Ö	1	1	1	1	ĺ	1	1	1
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERTOR. BORSON	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7000 ppm	1	0	0	0	0	'n	0	Ó	;	! 1	;	1	1	1
	ilidd ooo i	U	U	U	U	U	U	U	U	'	,	i	1	1	1
I POSTERIOR DORSUM	Control	0	0	0	1	1	2	3	3	3	2	2	2	2	2
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	1	1	2	2	2	2	2	2	2	2	2	2	2
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SCROTUM	Control	0	0	0	0	0	0	1	1	1	1	0	0	0	0
	280 ppm	Õ	ŏ	Ö	Ö	Õ	Õ	Ö	Ö	Ö	ò	Õ	Õ	Ö	0
	1400 ppm	Õ	Ö	0	0	ő	0	0	0	0	0	0	0	0	0
	7000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
		v	U	U	U	U	U	Ü	U	U	U	U	U	U	U
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day		***************************************						······			The state of the s
	a. our name	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
I. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	2
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PER! EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1400 ppm	1	1	1	1	1	1	1	2	2	2	3	4	4	4
	7000 ppm	Ö	Ô	Ö	ò	Ó	ò	Ô	0	0	Ō	Õ	ó	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Õ	Õ	Ö	Õ	Ö	Ö	Ō	Õ	Ō	Ō	Ō	Ō	Ō	Ō
	1400 ppm	Ô	Õ	0	0	0	Ö	0	Ö	0	1	1	1	1	1
	7000 ppm	1	1	1	1	1	1	1	1	1	i	1	i	i	i
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARTERTOR: BORGOM	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	1	1	1	1	1	1	1	1	1	1	0	0	1	1
	7000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	roov ppm	1	•	1	ı	ı	1	ı	l	1	'	ŀ	1	ı	1
POSTERIOR DORSUM	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	280 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	1400 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	1	1	1	1	1	1	1	1	1	1	1	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	1400 ppm	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	7000 ppm	0	0	0	0	0	0	1	1	0	Ō	0	0	0	0
CROTUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ō	Õ	Ŏ	Ö	Ö	Ō	Ō	Õ	Ö	Õ	Ö	Õ	Ö	Ö
	1400 ppm	Ö	Õ	Ö	Ö	Ö	Õ	Ö	Ö	Õ	Õ	Õ	0	Ö	ñ
	7000 ppm	n	0	0	0	0	0	0	0	0	Ô	0	0	0	ñ
	1000 իիա	U	U	U	U	U	υ	U	U	U	U	v	U	U	U
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	1	1	1	1	1	1	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0759
ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]
REPORT TYPE : A1 104

SEX : MALE

OEX . MITEE															,,,,,,,
Clinical sign	Group Name	Admini	stration W	eek-dav											······································
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
M. PERI-MOUTH	Control	1	1	0	0	1	1	0	0	1	0	0	1	0	0
	280 ppm	2	2	1	1	1	1	1	1	2	2	1	1	1	1
	1400 ppm	0	2	1	1	1	1	1	1	1	1	2	2	2	1
	7000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. BREAST	Control	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	1400 ppm	5	5	5	5	5	5	5	5	6	6	6	6	6	6
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	1	1	1	1	1	0	0	0	2	2	2	2	2	2
	7000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	2
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	1	1	1	0	0	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1400 ppm	1	1	1	1	1	2	2	2	2	3	3	3	3	3
	7000 ppm	1	1	1	1	1	2	2	2	2	2	2	2	2	2
M. POSTERIOR DORSUM	Control	1	2	2	1	1	1	1	1	1	1	1	1	1	1
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	2
	1400 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	1
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1400 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	7000 ppm	0	0	0	0	0	1	1	1	1	1	1	0	0	0
M. SCROTUM	Control	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	Ō	Ō	Ō	0	Ō	Ō	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE: A1 104

SEX : MALE

RI-MOUTH Control 280 ppm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Clinical sign	Group Name	Admin	istration	Week-day	***************************************		
RI-MOUTH Control 1			99-7	100-7	101-7	102-7	103-7	104-7
280 ppm						**************************************		·
280 ppm								
280 ppm	M DEDI MOUTU	Onntural				٥		0
1400 ppm	M. PERI-MUUTH		!					
TOOL Depth Control			ı	•	•	•		
Control 0 0 0 0 0 0 0 0 0								
280 ppm		/000 ppm	U	1	U	Ü	0	U
280 ppm	M. PER! EAR	Control	0	n	n	n	Λ	n
1400 ppm	M. I ERI LAK							
TALIA Control 1			-					
AST								
280 ppm		ruuu ppm	U	U	U	U	U	U
280 ppm	M. BREAST	Control	3	3	3	3	3	3
1400 ppm			1					
TOMEN			,	•	•			
CONTROL								
280 ppm		rooo ppm	U	U	U	U	U	U
280 ppm	M. ABDOMEN	Control	n	0	n	n	1	1
1400 ppm	m ADDUNCH			-				
TERIOR DORSUM				•				<u>د</u> د
ERIOR DORSUM Control 1 1 1 1 2 2 4 4 280 ppm 1 1 1 1 1 1 1 1 1400 ppm 3 3 3 3 3 3 4 7000 ppm 2 2 2 2 1 1 1 1 ETERIOR DORSUM Control 1 1 1 1 1 1 1 1 1 280 ppm 2 2 2 2 1 1 1 1400 ppm 1 1 1 1 1 1 1 1 1400 ppm 0 0 0 0 0 0 0 ETALIA Control 280 ppm 1 1 1 1 1 1 1 1 1 1400 ppm 2 2 2 2 2 2 1 TOUM Control 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA Control 0 0 0 0 0 0 0 0 ETALIA CONTROL ETALIA ETALIA ETALIA CONTROL ETALIA ETALIA								
1		mad non	ა	ა	3	4	3	3
1	M. ANTERIOR. DORSUM	Control	1	1	1	2	2	4
1400 ppm			i					1
TERIOR DORSUM		1400 ppm	3					i
Control 1								
280 ppm 2 2 2 2 1 1 1 1 1 1		1000 ppm	-	L	_	į	i	'
280 ppm 2 2 2 2 1 1 1 1 1 1	M. POSTERIOR DORSUM	Control	1	1	1	1	1	1
1400 ppm			2	2				1
TALIA								i
Control								
280 ppm		1000 ppm	Ü	U	U	U	U	U
280 ppm	M. GENITALIA	Control	0	0	0	0	0	0
1400 ppm								
7000 ppm 0 1 1 1 1 1 1 1 OTUM Control 0 0 0 0 0 0 0 0 0 280 ppm 0 0 0 0 0 0 0 0 0 1400 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•					
COTUM Control 280 ppm 0 0 0 0 0 0 0 0 1400 ppm 0 0 0 0 0 0 0 7000 ppm 0 0 0 0 0 0 0 Control 280 ppm 1 1 1 1 1 1 1 1400 ppm 0 0 0 0 0 0 0								
280 ppm 0 0 0 0 0 0 0 0 1400 ppm 0 0 0 0 0 0 0 0 0 0 7000 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1000 hhiii	υ	1	'	ī	1	I
280 ppm 0 0 0 0 0 0 0 0 1400 ppm 0 0 0 0 0 0 0 0 0 0 7000 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M. SCROTUM	Control	0	0	0	0	0	0
1400 ppm 0 0 0 0 0 0 0 0 7000 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
7000 ppm 0 0 0 0 0 0 0 L Control 0 0 0 0 0 0 0 280 ppm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_					
L Control 0 0 0 0 0 0 0 0 280 ppm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
280 ppm 1 1 1 1 1 1 1400 ppm 0 0 0 0 0								•
1400 ppm 0 0 0 0 0 0	M. TAIL		0					
			1	1	1	1	1	1
			0	0	0	0		0
			0	0	0			

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrICrij [F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

SEX . MALE															FAUL .
Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
NEMIA	Cantural	0	0	0	0	0	0	0	0	0	0	0	0	0	n
NEMIA	Control 280 ppm	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0
	200 ppm 1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

LA . MALL															i nuc.
Hinical sign	Group Name	Admini	stration W	eek-day											
•		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
- Andrews - Andr					***************************************										
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ô	Õ	Ö	Ö	ō	Ō	Õ	Ö	Ô	Õ	Ō	Ō	Ō	Ō
	1400 ppm	Ô	Õ	Ö	Ö	Õ	Ŏ	Õ	Õ	Õ	Õ	Ö	Ö	Ō	ñ
	7000 ppm	Ō	Ö	Õ	Ö	Õ	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Õ
REGULAR BREATHING	Cantual	n	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR DREATHING	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	U
	280 ppm	0	0	0	0	0	0	0	0	0		0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	7000 ppm	U	U	U	0	0	0	U	U	U	U	U	U	U	U
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini 29-7	stration W 30-7	eek-day 31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_CER	Control	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	Ō	Ō	Ō	Ō	Ō	Ō	0	0	0	Ō	0
	1400 ppm	0	Ō	Ō	Ō	Õ	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ö
	7000 ppm	0	0	0	0	Ö	Ö	Ö	0	Ö	Ō	0	0	Ō	Ō
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ō	Õ	Ö	ŏ	ŏ	Ŏ	. 0	Õ	Ŏ	Õ	Õ	Ŏ	Ö	Ö
	1400 ppm	Ô	Ô	0	Õ	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	n	0	0	0	n	0	0	0
		v	ŭ	-	_		-	Ü	·		Ū	v	ŭ	•	_
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

linical sign	Group Name		stration We		40.7	47 7	40.7	40.7		r1 7	F0 7	F1 7	54-7	FF 7	56-7
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-1	55-7	56-7
JEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FLMIA	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	Ő	ő	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	Ō	Ö	Ō	Õ	Õ	Ö	Ö	Õ	0	Ō	Õ	Õ	Ö	Ō
	7000 ppm	Ō	Õ	Õ	Ō	Ō	Õ	Õ	Õ	Ď	Õ	ñ	Ō	Ō	Ô

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-dav			***************************************	***************************************							
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
TEMIA	280 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	ò	n
	1400 ppm	0	Ö	Ö	Ö	0	0	ŏ	Õ	Ö	0	Ö	Õ	ő	ñ
	7000 ppm	0	ő	Ö	Ö	0	Ö	0	ő	ő	Õ	Ö	Õ	0	Ô
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm 1400 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	•
	7000 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	1	1	0 1	0 0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ö	Õ	Ö	Ö	Ŏ	ŏ	Õ	Õ	ŏ	ŏ	Õ	Ö	Ö	Õ
	1400 ppm	ŏ	Ö	ő	0	Õ	Õ	Õ	Õ	ő	Õ	Ö	Ö	Ö	Ö
	7000 ppm	Ö	0	0	0	Ö	Õ	Ö	Ö	Õ	Ö	1	Ö	Ö	Ö
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	280 ppm	Ô	Ŏ	Ö	Õ	Ŏ	ŏ	Õ	Õ	ŏ	ŏ	Ö	ŏ	Ö	Ö
	1400 ppm	0	Õ	Ö	Ö	Ŏ	Õ	Ö	Õ	Õ	Ö	Õ	Ö	Ö	Õ
	7000 ppm	ñ	Ö	Ö	Õ	Õ	ň	Õ	Õ	Õ	Õ	ñ	Ŏ	Õ	Ō

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration We	ek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
NEW A		•	•						•	•		•	•	•	•
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0
	1400 ppm	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	U N	U N	U N	0
	7000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LCER	Control	0	0	0	0	1	1	1	1	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALCOLA	280 ppm	0	0	0	0	0	0	0	0	0	n	0	0	0	0
	1400 ppm	0	0	0			0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0
	rooo ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
IEMORRHAGE	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OKTTOOLLTO	280 ppm	0	0	0	0	0	0	0	0	0	0	0	Ö	0	Ö
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	1000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	280 ppm	0	Ö	Õ	Ö	Ö	Ö	ŏ	1	1	i	ó	Ö	Ö	n
	1400 ppm	Ô	Ö	Õ	Ö	Õ	Ŏ	ŏ	ò	ò	ò	ñ	ŏ	Ö	Ô
	7000 ppm	Ö	Õ	0	Ö	Õ	Ö	Ö	Ö	Ö	Ö	0	Ö	Ö	Ö
CCDIDATORY COUNT ADMOS	Combined	n	0	0	0	0	0	0	0	0	0	0	0	0	0
ESPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ō	Ö	Ŏ	Ö	Ö	ŏ	Õ	Ö	Ö	Õ	Õ	Õ	Õ	Õ
	1400 ppm	Õ	Õ	Õ	Ô	Ŏ	Õ	0	Õ	Ö	Ö	0	Ö	Ö	Ô
	7000 ppm	ő	Ô	Õ	0	Õ	Õ	Ô	0	Õ	Ô	Õ	Õ	0	Ô

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

DEA . MALE															TAUL .
Clinical sign	Group Name	Admini	stration We	ek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
NEMIA	Control	0	1	0	1	1	1	1	0	0	0	1	1	0	0
VENTA	280 ppm	0	0	0	Ó	Ó	0	0	0	1	0	Ó	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	Ô	0	0	0	0	Ő	Ö	0	ő	Ô	Ô	Ö	0	Ö
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	1	1	0	0	1	1	1	0	2
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0
	280 ppm	0	0 0	0	0	0	0	0	0 0	0	0	0 0	0	0	0
	1400 ppm	_	0	0 0	0	0	-	0 0	0	0 0	0	0	0	0	0
	7000 ppm	0	U	U	0	0	0	U	U	U	U	U	U	U	U
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	1	0	0	0	0	0	0	0	0	1	1	0	0
	280 ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
	1400 ppm	0	0	0	0	0	0	1	0	0	1	0	0	1	1
	7000 ppm	0	0	0	0	0	0	0	0	1	2	1	0	0	0
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 104

SEX : MALE

SEX : MALE								PAGE :
Clinical sign	Group Name	Adminis	stration V	Week-day				
	-	99-7	100-7	101-7	102-7	103-7	104-7	
NEMIA	Control	0	0	0	0	0	0	
TEMIA	280 ppm	1	1	0	0	0	1	
	1400 ppm	Ó	Ó	0	0	2	i	
	7000 ppm	0	1	1	1	2	1	
.CER	Control	0	0	0	0	0	0	
	280 ppm	0	0	0	0	0	0	
	1400 ppm	2	1	1	1	1	0	
	7000 ppm	0	0	0	0	0	0	
RUSTA	Control	0	0	0	0	0	0	
	280 ppm	0	0	0	0	0	0	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	0	1	1	1	
EMORRHAGE	Control	0	0	0	0	0	0	
	280 ppm	0	0	0	0	0	1	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	0	0	0	0	
ORTICOLLIS	Control	1	1	1	1	1	1	
	280 ppm	0	0	0	0	0	0	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	0	0	0	0	
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	
	280 ppm	1	1	0	0	0	0	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	0	0	0	0	
REGULAR BREATHING	Control	0	0	0	0	0	0	
	280 ppm	1	1	1	1	0	0	
	1400 ppm	1	1	1	1	1	2	
	7000 ppm	3	3	1	1	1	4	
SPIRATORY SOUND ABNOR	Control	0	0	0	0	0	0	
	280 ppm	0	0	0	0	0	0	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	0	0	0	0	
RADYPNEA	Control	0	0	0	0	0	0	
	280 ppm	0	0	0	0	0	0	
	1400 ppm	0	0	0	0	0	0	
	7000 ppm	0	0	1	1	0	0	

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
D URINE	Control	0	0	n	0	0	0	0	n	0	n	n	n	0	0
U UKINL	280 ppm	n	0	n	Ö	0	0	0	n	0	n	ñ	ñ	Õ	n
	1400 ppm	n	n	n	Ö	0	0	Õ	0	Ö	0	n	ñ	0	ñ
	7000 ppm	0	Õ	0	ő	Ô	0	Ö	Ö	0	Ö	0	ő	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
LLOW OKTHE	280 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1400 ppm	50	50 50	50	50	50 50	50	50	50	50	50	50	50	50	50
	7000 ppm	50	50 50	50	50 50	50 50	50	50	50 50	50	50	50	50	50	50
	7 000 ppiii	30	00	70	00	00	00	00	00	00	•	00	00	00	00
ROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

ALL ANIMALS

SEX : MALE

JLA - MALL															TAGE . O
Clinical sign	Group Name	Admin	istration W	leek-day _											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	Ŏ	Õ	Õ	Õ	Ö	Ö	Ō	Ō	Ō	Ö	Ō	Ō	Ō	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	7000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	49	49	49	49	49
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
	or out want	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ND (NE		•	•	•	•	•	•		•	•		•			0
URINE	Control	0	U	0	0	0	0	0	Ü	0	0	0	U	0	0
	280 ppm 1400 ppm	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0	0	0	0
	7000 ppm	0	O N	0	0	0 0	0	0	0	0	0	0	0	0	0
	rooo ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	7000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I REMARKABLE	Control	49	49	49	49	48	48	48	48	47	47	48	48	48	48
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 36

OLA . MALL															111aL . 0
Clinical sign	Group Name	Admin	istration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NED ONTHE	280 ppm	Ő	Ô	ñ	Ö	Ô	Õ	0	Õ	0	ŏ	Ô	Õ	Õ	Ö
	1400 ppm	0	Ō	0	Ō	Ō	0	0	Ō	0	Ō	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	50	50	50	50	50	50	50	50	50	49	48	48	48	48
	1400 ppm	50	50	50	50	50	50	50	50	50	50	50	49	49	49
	7000 ppm	50	49	49	49	49	49	49	49	49	49	49	49	49	49
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	1	1	1	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	48	48	48	48	48	48	48	48	48	48	48	48	48	48
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

PAGE: 37

linical sign	Group Name	Admini	stration V	Veek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ED UDUME	0	٥	•	•	•	•		4				•	4		
ED URINE	Control	U	0	0	0	0	ı	0	1	l 0	1	ı	l n	0	1
	280 ppm 1400 ppm	U	0	0 0	0	0	0	0	0 0	0	0	U	0	0 N	0
		U	0	0	0	0 0	0	0	0	0	0	0	0	0 N	0
	7000 ppm	U	U	U	U	U	U	U	υ	U	U	U	U	U	U
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	48
	1400 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	7000 ppm	49	49	49	49	49	49	49	49	48	48	48	48	48	47
OWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	Õ	Ō	Ō	0	Ō	0	0	Ō	Ō	Ō	Ō	Ō	0
	1400 ppm	Ô	Ô	Ö	Ö	Õ	Õ	Õ	Õ	Ö	Õ	Õ	Õ	Õ	Õ
	7000 ppm	Ô	ñ	Õ	Õ	Ô	0	Õ	Õ	Õ	Õ	ň	ñ	Ô	Õ
	rood ppiii	ŭ	v	•	•	Ū	Ü	·	v	•	·	ŭ	·	·	•
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	1	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	Ō	Ō	Ō	Ō	0	Ö	Ō	Ō	Ō	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
N REMARKABLE	Control	48	46	46	45	45	43	41	41	41	41	42	42	41	41
	280 ppm	0	Ô	Ô	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	Õ	Ö	Ö	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Õ	Ō	Ŏ	Ō
	7000 ppm	Õ	n	Ô	0	0 0	0	Ö	Ô	Ô	0	ñ	0	n	ñ

(HAN190)

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

PAGE: 38

Clinical sign	Group Name	Admini	stration W	leek-day											
		71-7	72-7	73-7	74-7	75–7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ED URINE	Control	1	0	0	0	0	0	0	0	0	0	0	1	1	1
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	48	48	48	48	48	48	48	48	48	48	47	47	47	47
	1400 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	48
	7000 ppm	47	46	45	45	45	45	45	45	45	45	45	45	45	45
ROWN URINE	Control	0	1	1	1	1	1	1	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	280 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	280 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	41	41	39	38	39	39	39	40	40	40	40	38	38	38
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : MALE

JLA . WINLL															
Clinical sign	Group Name	Admini	istration V	leek-day _											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
RED URINE	Control	1	1	1	1	1	1	1	0	0	n	0	1	1	1
KED OKTHE	280 ppm	ċ	'n	'n	ò	Ö	Ö	ò	n	Õ	Õ	Ô	ò	ò	O
	1400 ppm	Ô	Õ	Ö	Ö	Ô	Õ	Õ	0	Ō	Ō	Ō	Õ	Õ	0
	7000 ppm	Ô	Ö	Ö	0	Ö	Õ	Ō	0	Ö	0	0	0	0	0
YELLOW URINE	Control	0	1	0	0	0	0	0	0	0	1	1	1	0	. 0
	280 ppm	47	47	47	47	47	47	47	47	47	45	45	43	43	41
	1400 ppm	48	48	48	· 48	48	46	46	45	45	45	44	44	44	43
	7000 ppm	45	45	45	45	45	45	45	45	45	45	44	43	43	40
BROWN URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMALL STOOL	Control	0	2	1	0	0	0	0	0	0	1	1	1	0	0
	280 ppm	0	0	0	0	0	0	0	0	1	0	0	0	1	0
	1400 ppm	0	1	1	0	0	0	1	0	0	0	0	0	1	0
	7000 ppm	0	0	0	0	0	0	2	2	1	1	0	0	0	0
OLIGO-STOOL	Control	0	2	1	0	0	0	0	0	0	0	1	1	0	0
	280 ppm	0	0	0	0	0	0	0	0	1	0	1	0	1	0
	1400 ppm	0	1	0	0	0	0	1	0	0	1	0	0	1	0
	7000 ppm	0	0	0	0	0	0	2	1	1	1	0	0	0	0
NON REMARKABLE	Control	38	35	35	35	35	33	34	35	35	35	32	30	30	31
	280 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 40

Clinical sign	Group Name	Admin	istration	Week-day			
		99-7	100-7	101-7	102-7	103-7	104-7
RED URINE	Control	,	1	1	4	0	0
KED OKINE	Control 280 ppm	1	1	1	1	0 0	0 0
		U	U	0	0		
	1400 ppm	U	U	0	0	0	0
	7000 ppm	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0
	280 ppm	41	41	39	39	38	36
	1400 ppm	43	43	43	43	43	41
	7000 ppm	40	39	37	37	36	33
	7000 ppm	70	00	01	0,	00	00
BROWN URINE	Control	0	0	0	0	0	0
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0	0	0	0
	7000 ppm	0	0	0	0	0	0
014111 07001							
SMALL STOOL	Control	0	0	0	0	0	0
	280 ppm	2	2	1	1	0	0
	1400 ppm	0	0	0	0	0	1
	7000 ppm	2	1	2	2	3	3
OLIGO-STOOL	Control	0	0	0	0	n	0
02100 01002	280 ppm	2	2	1	2	0	0
	1400 ppm	Õ	0	'n	2	0	2
	7000 ppm	1	1	1	1	6	9
	roo ppm	ì	ı	1	1	ь	9
NON REMARKABLE	Control	29	30	28	27	27	25
	280 ppm	0	0	0	0	0	0
	1400 ppm	0	0	0		0	0
	7000 ppm	0	0	0	0 0	0	0

(HAN190)

TABLE B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

SEA . FEMALE															FAUL .
Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,,,,,,,,	160 ppm	Õ	0	Ö	Õ	ŏ	Ŏ	Ö	Õ	Õ	Õ	Õ	Õ	Õ	Õ
	800 ppm	Ô	Õ	Õ	Õ	ŏ	Ö	Ö	Õ	Õ	Õ	Ô	Ô	Õ	Ö
	4000 ppm	0	Ö	0	Ö	Ö	Ö	Ö	ő	ő	ŏ	ő	ő	Ö	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	3	3	3	3	4	6	9	9	9	11	13	13	13
	800 ppm	0	5	5	6	8	8	12	16	19	19	28	27	32	32
	4000 ppm	1	16	19	21	30	30	36	37	42	44	46	42	49	49
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

LA . I LWALL															TAUL .
linical sign	Group Name		stration W												
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	Ô	Ö	1	1	1	1	1	1	1	1	1	1	i	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	13	14	17	18	19	19	19	19	19	19	21	21	23	23
	800 ppm	39	31	38	40	46	46	46	46	46	46	47	39	44	45
	4000 ppm	50	50	49	49	49	49	49	49	49	49	49	49	49	49
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	Ō	Ö	0	Ō	Ō	Ō	0	0	0	0	Ō	0
	4000 ppm	Ô	Ō	Ō	Ö	Õ	Õ	Ô	Ö	Õ	Ô	ñ	ñ	Ō	2

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLATII	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	24	24	31	32	32	28	36	40	41	39	42	42	44	44
	800 ppm	49	48	49	50	50	47	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	U	0	0	0	0	0	0	0	0	0	0.	0	0	0
ROG BELLY	Control	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	2	1	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-day										·····	
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-7111	160 ppm	n	0	0	0	0	0	0	0	0	Ö	Ô	0	Õ	Ô
	800 ppm	Ő	0	0	0	0	0	0	Ö	0	Ô	Õ	Õ	Ö	Ö
	4000 ppm	1	1	ĭ	1	ĭ	1	ĭ	1	1	1	1	1	1	1
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0 0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0 0	0	0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	44	44	45	45	46	46	46	46	46	46	46	46	47	47
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED PERI-GENITALIA	Control	0	0	0	0	0	1	0	0	0	0	0	1	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
	0.00p	57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EATH	160 ppm	ñ	Ô	0	Ö	Ö	Õ	0	1	1	1	1	1	1	1
	800 ppm	Ď	0	ő	Õ	0	Õ	Ŏ	Ö	O	Ö	ò	Ö	Ö	Ó
	4000 ppm	1	1	1	1	1	1	1	1	1	2	2	2	2	2
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	48	47	47	47	47	47	46	45	45	45	45	45	42	41
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	48	48	48	48	48
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 104

PAGE: 46 SEX : FEMALE

linical sign	Group Name	Admini	stration W	leek-dav											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
FATU	Control	0	0	0	0	1	,	•	1	1	2	2	2	2	3
EATH	Control	0 1	0	0	0	1	1	1	1	1	2 2	2 2	2 2	2	3
	160 ppm	•	1	1	2	2	2	2	2	2		1	1	3 1	3
	800 ppm	0	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	2	2	2	3
	4000 ppm	2	2	2	2	2	2	2	2	۷	2	2	2	2	3
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	Ō	Ō	Ō	0	0	Ō	Ō	0	Ō	0	Ō	0	0
	800 ppm	Ō	Ö	Ö	ŏ	Ö	Õ	Õ	Õ	Õ	Ö	Ö	Õ	Õ	Ö
	4000 ppm	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ô	Õ	Ö	Õ	0
ACTINO		•			•	•	•		•						•
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
201120	160 ppm	41	41	41	40	40	40	40	41	41	41	40	40	40	40
	800 ppm	50	49	49	49	49	49	49	48	48	48	48	48	48	48
	4000 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	47
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLICOTION	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	0
00 BELLY	0	•	•		•	•	•	•	•		•	•	•	•	•
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LED PERI-GENITALIA	Control	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	Ö	Ô	0	0	0	1	0	0	0
	4000 ppm	0	0	Ō	Ö	0	Ō	Ō	0	Ō	Ō	Ô	0	Ō	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

DLA . FLMALL															I AGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
_		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEATH	Canhual		4		4	4	c	E	7	7	7	7	0	8	9
JEATH	Control	4	4	4	4	4	5 4	5 6	l C	7	7	7	8 7	o 7	9 7
	160 ppm	4	4	4	4	4			6				5	5	
	800 ppm	2	2	2	2	3	3	3	4	4 17	4	4 23	24	27	6 29
	4000 ppm	3	3	5	6	6	11	12	14	17	21	23	24	21	29
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	160 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	4000 ppm	1	1	1	1	1	1	1	1	2	3	4	4	5	5
OCOMOTOR MOVEMENT DECR	Control	0	ρ	0	0	0	0	0	0	0	0	0	0	0	0
COOMOTOR MOTERILITY DEGR	160 ppm	n	0	0	Õ	0	1	Ŏ	Õ	Õ	Õ	Õ	Ö	Ŏ	Õ
	800 ppm	0	0	0	Ö	0	Ö	Ô	Ő	0	0	0	Ô	Õ	ő
	4000 ppm	0	0	0	0	0	1	0	1	0	n	0	ñ	Ô	Ö
	4000 PPIR	U	U	U	v	U	,	v	,	U	v	v	v	U	v
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	1	0	0	0	0	1	1
OILED	Control	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0,625	160 ppm	ň	Õ	Ö	ő	ò	í	ŏ	Õ	Õ	Õ	Ŏ	Õ	Ö	Õ
	mag 001	Ô	0	0	0	Ö	Ö	Ŏ	Ö	ő	Ö	Ö	Ô	Õ	Ö
	4000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppili	U	U	U	U	U	U	U	U	U	U	U	v	U	U
OLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	40	33	32	31	31	31	30	30	29	29	31	31	31	31
	mqq 008	47	47	47	47	46	46	46	45	45	45	45	44	44	43
	4000 ppm	46	46	44	43	43	38	37	35	31	26	23	22	18	16
ILOERECTION	Control	. 0	0	0	0	0	0	1	0	0	0	0	0	0	0
	160 ppm	Ö	Ö	Õ	Ö	Õ	Õ	0	Õ	ŏ	Ö	Õ	0	Ö	Õ
	mqq 008	Ö	Ö	Ö	Ö	Õ	Õ	ŏ	ő	ŏ	Õ	ŏ	Õ	Ŏ	Ö
	4000 ppm	Õ	1	1	Ö	ŏ	ŏ	Ö	Ö	Õ	Õ	Õ	Ö	0	Õ
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOG DELET	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm mag 008	•	0	0				-	-		0	0	0	0	0
		0	υ 0	0	0 0	0	0	0	0 0	0	0	0	U N	0	0
	4000 ppm	U	U	υ	U	υ	0	0	U	0	U	U	U	U	U
OILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	160 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day			
	a, 545 ,, and	99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	9	10	10	12	12	12
DEATH	160 ppm	7	7	8	8	8	8
	800 ppm	6	6	6	7	7	° 7
	4000 ppm	33	34	37	39	40	
	4000 ppm	აა	34	31	งช	40	41
MORIBUND SACRIFICE	Control	2	2	2	3	4	4
	160 ppm	3	3	3	3	3	3
	800 ppm	1	1	1	1	1	Ĭ
	4000 ppm	5	5	5	5	5	6
	1000 pp.m	•	·	•	•	•	•
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
001150	0 1	•	•	•	•	•	•
SOILED	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
COLORED	Control	0	0	0	0	0	0
OULGINED	160 ppm	31	30	29	27	27	28
	maq 008	31 43	43	43	42	42	28 42
	ουυ ρρπ 4000 ppm	43 12	43 11	43 8	42 6	42 5	3
	4000 ppm	14	11	0	0	ð	ა
PILOERECTION	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0
	800 ppm	Õ	0	Ö	0	Õ	0
	4000 ppm	0	0	0	0	0	0
	4000 ppiii	U	U	U	U	U	υ
FROG BELLY	Control	0	0	0	0	0	0
**	160 ppm	0	Ō	Ō	0	Õ	1
	800 ppm	Ō	Ö	Õ	Õ	Õ	ò
	4000 ppm	Ō	Ö	Ö	0	0	Õ
SOILED PERI-GENITALIA	Control	1	1	1	1	1	1
	160 ppm	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

DEX : FEMALE															PAGE
Clinical sign	Group Name		stration We	ek-day											
		1-7	2-7	3-7	4-7	5–7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT ARAOT	160 ppm	Ö	Ö	Ö	Õ	0	Ö	Õ	Ö	Ŏ	Õ	Õ	Õ	Ö	0
	800 ppm	ñ	Ö	0	Õ	Ö	Ö	Ö	Õ	Ŏ	Õ	Õ	ĭ	1	1
	4000 ppm	Ö	0	Ö	Õ	Ö	0	0	0	0	Õ	Ö	i	i	i
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
	4000 ppm	Ô	Ō	Ō	Ō	Ō	0	Ō	Ö	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	istration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
7.10.107		•	•	•		•	•		•			•			0
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0 1	0	0
	160 ppm	0	0	0	0	0	1	1	1	1	1	1	•	1	l •
	800 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	Ô	Ô	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	Ō	Ō	Ō	0	Ō	Ō	0	0	0	0	0	0	0
TERNAL MASS	Control	n	n	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	n	0	0	0	0	0	0	0	0	0	0	Õ	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		U N	0	0	0	0	0	0	0	0	1	1	2	2	2
	4000 ppm	U	U	U	U	U	Ü	Ü	U	0	1	1	2	2	2
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	Ö	0	0	Ō	Ō	Ō	0	Õ	0	0	0	0	0	0
EYE	Control	n	0	0	0	0	0	0	0	0	0	n	0	0	0
	160 ppm	ñ	0	0	0	0	0	0	0	0	Ö	0	Ö	Ö	ñ
	800 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	ñ
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	n	0	0	0
reki-muuin	Control	0	-	0	0	0	0		0	-		•	-	-	
	160 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	Ô	Ô	Ō	0	Ō	0	Ō	Ō	0	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

DEA . FEMALE															FAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
ATARAGI	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	mag 008	1	1	1	i	1	i	i	i	1	i	1	1	1	1
	4000 ppm	1	1	1	1	1	1	1	i	1	i	1	1	1	1
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	2	2	2	3	2	2	2	2	2	2	2	2	2	2
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

JEA : I LMIALL															TAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	mag 008	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	1	2	2	2	2	2	2	2	2	2	2
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	3	3	4	4	4	4	4	4	4	4	4	4	4	4
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	Ö	Ö	0	Ō	Ō	Ō	Ō	Ō	ñ	Ō	0	Ô	Ō
	4000 ppm	0	0	Ö	0	Ō	Ō	Ö	0	Ō	Ö	Ö	0	Õ	Õ
I. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	O
	160 ppm	ñ	Õ	Ö	Õ	1	1	1	1	1	1	1	1	1	1
	800 ppm	ŏ	Ö	Ö	Ö	Ö	Ö	Ó	ò	ò	Ö	ò	Ó	ò	ò
	4000 ppm	Ö	Ô	1	1	1	1	1	ĭ	1	1	1	1	1	1
. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
	160 ppm	ŏ	Õ	Ö	Ö	0	0	Õ	Õ	Õ	Õ	ñ	Õ	Õ	Õ
	800 ppm	ő	Õ	0	0	0	0	0	0	0	0	0	n	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
FILE HOUTH	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	4000 ppm	1	1	1	υ 1	1	1	1	U 1	1	1	1	1	1	1
	4000 PPIII	i	ı	1	1	ı	1	1	ı	i	ı	ı	ı	i	1
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

						.,,									
Clinical sign	Group Name	Admini	istration V	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	mqq 008	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	Ð	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Õ	Ö	Ö	Ö	Ŏ	Ö	0	Ö	Ö	Ö	Ö	Ŏ	Õ	Ö
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	1	2	2	2	2
	160 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	800 ppm	Õ	0	0	Õ	1	0	Õ	Õ	0	Ō	0	ō	Ō	ō
	4000 ppm	4	4	4	4	4	4	4	4	5	4	5	5	5	5
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THIERMAL MASS	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	mqq 008	0					0	0			0	0	0	_	0
		_	0	0	0	0		-	0	0	U	•	-	0	
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	ő	Ô	Ö	Ö	Ö	Ô	Õ	0	Ô	Õ	Õ	Õ	ő	ő
	800 ppm	ő	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED MOUTH			_	_	_	_	_	_	_	_		_	_		
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
. EAR	Control	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	ປ 1	1	ປ 1	1	1	1	1	1
	4000 իիա	Ţ	1	ı	i	1	ı	1	ı	1	ı	ı	1	i	1

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

SEA . PEMALE															r Auc.
Clinical sign	Group Name	Admini	stration We	ek-day											***************************************
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
CATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GATAKACI	160 ppm	1	1	1	1	1	1	1	1	2	2	2	2	3	3
	mag 008	2	2	3	3	3	3	3	3	3	3	3	3	3	3
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	2	2	2	3	3	3	3	3	3	3	3	3	4	4
	160 ppm	2	2	1	0	0	1	2	2	2	2	2	3	2	2
	800 ppm	0	0	0	0	0	0	0	0	0	2	2	1	1	1
	4000 ppm	5	5	4	4	4	4	4	5	5	5	5	7	10	10
INTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	1	1	0	0	0	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	4000 ppm	0	0	0	0	0	0	0	1	1	1	1	0	1	1
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAUL .
Clinical sign	Group Name		stration W												
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ATARACT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ATAMAOT	160 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	800 ppm	3	3	3	3	3	3	3	2	2	2	2	2	3	3
	4000 ppm	ĭ	1	1	i	1	1	1	Ō	0	Ō	0	Õ	Ö	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	1	0	0	0	0	0	0	1	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
EXTERNAL MASS	Control	4	4	6	6	6	9	8	7	8	9	10	10	10	9
	160 ppm	2	2	2	3	3	3	3	4	4	4	4	6	6	6
	mqq 008	1	1	2	2	2	4	5	6	6	8	9	9	9	8
	4000 ppm	10	10	11	11	11	8	7	7	6	4	4	4	4	2
NTERNAL MASS	Control	0	0	0	1	1	0	0	0	0	0	0	1	1	0
	160 ppm	0	0	0	0	0	1	1	1	0	1	1	1	1	1
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	1	1	1	1	1	0	0	0	0
. EYE	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

JLA . ILNIALL									
Clinical sign	Group Name	Admini	stration V	Veek-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
								MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND	***************************************
CATARACT	Control	1	1	1	1	1	1		
GATAKAGT	160 ppm	3	3	3	3	3	3		
	mqq 008	3	3	3	3	3	3		
	4000 ppm	ő	Ô	ő	Õ	Ö	Õ		
CORNEAL OPACITY	Control	0	0	0	0	0	0		
	160 ppm	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	4000 ppm	0	0	0	0	0	1		
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0		
	160 ppm	0	0	0	0	0	0		
	800 ppm	0	Õ	Ō	0	Ō	0		
	4000 ppm	0	1	1	1	Ō	2		
EVTERNAL MACC	0 1 1	10			40		10		
EXTERNAL MASS	Control	12	11	11	12	14	13		
	160 ppm	6	6	6	7	7	9		
	800 ppm	8	9	9	10	12	12		
	4000 ppm	1	1	1	1	1	2		
INTERNAL MASS	Control	1	2	2	0	0	0		
	160 ppm	0	0	0	0	1	2		
	800 ppm	0	0	0	0	0	1		
	4000 ppm	Ö	ō	Õ	Ō	Õ	Ô		
u Noer	0	Δ.	0	0	0	•			
M. NOSE	Control	0	0	0	0	0	0		
	160 ppm	1	1	1	1	1	1		
	800 ppm	0	0	0	0	0	0		
	4000 ppm	0	0	0	0	0	0		
M. EYE	Control	1	1	1	1	1	1		
	160 ppm	Ô	Ö	Ò	Ö	Ö	0		
	800 ppm	Ō	Ō	Ō	Ō	Ō	Ō		
	4000 ppm	0	0	0	Ō	0	Ō		
I DEDI MOUTU	0 1 1	^	_	•			_		
M. PERI-MOUTH	Control	0	0	0	0	0	0		
	160 ppm	0	0	0	0	0	0		
	800 ppm	0	0	0	0	0	0		
	4000 ppm	0	0	0	0	0	1		
M. EAR	Control	0	0	0	0	0	0		
	160 ppm	0	0	0	1	1	0		
	800 ppm	0	0	0	0	0	0		
	4000 ppm	1	1	1	1	1	1		

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

DEX : FEMALE															PAUC .
Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TENT EIN	160 ppm	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	0	Õ	Ō
	800 ppm	Ō	Ō	Ō	Ō	Ō	Ō	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0 0	, 0 0	0 0	0 0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	U	· U	U	U
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	mag 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	4000 ppm	0	0	0	0	0	0	0	0	0	U	0	U	0	U
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
I DEDI EAD	Control	0	0	0	0	0	n	0	0	0	0	0	0	0	0
I. PERI EAR	Control	0	0 0	0 0	0	0	0	0	0		0	0 0	0	0	0
	160 ppm	•			0	0	0			0	0	0	0		0
	800 ppm	0	0	0	0	0	0	0 0	0	0	0	0	U N	0 0	
	4000 ppm	0	0	0	0	0	0	U	0	0	U	U	U	U	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	Ō	Ö	0	Ō	Ō	Ō	0	Ō	0	Ō	Ō	Ō	Ō
	800 ppm	Õ	Õ	Õ	ō	Õ	Õ	Ö	Ö	Õ	Ö	Õ	Ō	Ō	Ō
	4000 ppm	0	0	0	0	Ö	0	0	Ō	Õ	0	Ō	0	0	Ō
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silenot	160 ppm	Õ	Ö	Ö	ő	Õ	ő	Ö	Õ	Õ	ŏ	Ŏ	ŏ	Ö	Ö
	800 ppm	n	0	0	0	0	0	0	0	0	0	0	Õ	Ö	Ö
	4000 ppm	0	0	0	0	0	0	n	0	0	0	0	0	0	0
	4000 ppiii	U	U	U	U	U	U	v	U	v	U	U	U	U	Ü
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	Ô	Ö	Ö	Ö	Õ	Õ	Õ	Õ	Ö	Ö	Õ	Ö	Ö	Ō
	800 ppm	0	0	0	Ö	Ö	0	Ö	Ö	Ô	Õ	Õ	Ö	Ô	Ő
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dent theth	160 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	mag 008	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
IFEEL A	0	0	0	0	0	٥	0	0	0	0	•	0	0	0	0
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCr!Cr!j[F344/DuCrj]

REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE :
Clinical sign	Group Name		stration W												
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	Õ	Ŏ	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ŏ	Ö	0	Ö	0
	mag 008	Ō	Õ	Ō	Ö	Ö	Ō	Ō	Ō	0	Ō	Ō	0	Ō	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration We	ek-day				***************************************	·····						
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERT LAK	160 ppm	0	0	0	0	0	0	0	0	0	0	Ö	0	0	Ô
	mqq 008	Ö	0	0	0	Ö	0	0	0	0	0	0	Õ	Ŏ	0
	4000 ppm	ő	ő	0	ő	Ô	Õ	ő	Ö	Ö	ő	Ö	Ô	Ö	Ö
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	1	1	1	1	1	į .	1	1	1	1	ļ
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	1	1	1	1	2	2

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE :
Clinical sign	Group Name		stration W												
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERT EAR	160 ppm	ŏ	Õ	Õ	Ö	0	Ô	Õ	Ö	0	Õ	ŏ	ŏ	ő	Ö
	800 ppm	ő	Õ	0	0	0	0	0	Ö	Ö	Ô	0	Õ	Õ	0
	4000 ppm	ő	Ö	0	0	Ö	0	Ö	Ö	Ö	Ö	Ö	Ö	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	2	2	2	2
	160 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
IEMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	0	1	2	1	1	1	1	1	0	1	1	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	0	2	2	0	0	0	2	2	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

SEX . FEMALE															FAGE .
Clinical sign	Group Name	Admini	stration We	ek-day		***********************									
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W. FERT EAR	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	Ô	0	0	Ô	Ö	ĭ	1	1
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
M. FORELIMB	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. BREAST	Control	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	160 ppm	1	1	1	0	0	0	1	1	1	1	1	1	1	1
	800 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	4000 ppm	1	1	1	1	1	1	1	1	1	1	1	2	2	2
A. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	1	1	1	1	1	1	1	1	2	2
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	2	2	2	2	2	2	2	2	2	2	2	2	4	4
NEMIA	Control	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	800 ppm	0	0	0	. 0	0	0	0	0	0	0	0	0	0	1
	4000 ppm	0	0	0	0	0	0	1	1	1	1	1	1	1	1
JLCER	Control	0	0	0	0	0	0	0	1	1	0	0	0	1	1
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	1	1	1	0	0	0	0	1	1

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-dav											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DED. 510		•		•	•	•		•	•	•	•	•		•	٥
I. PERT EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	mag 008	0	0	0	0	0	1	1	2	2	2	2	1	1	1
	4000 ppm	1	1	1	1	1	1	1	1	1	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	0
FORELIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	2	2	2	3	3	4	4	3	4	5	5	5	5	5
	160 ppm	1	1	1	2	2	2	2	2	2	2	2	3	3	3
	800 ppm	1	1	1	1	1	2	2	2	2	3	3	4	4	3
	4000 ppm	2	ż	2	2	2	2	2	2	2	2	2	2	ż	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
712-51121	160 ppm	Ô	ő	ŏ	ŏ	Ö	Õ	Ŏ	1	1	1	1	1	1	1
	800 ppm	ñ	Ŏ	ŏ	ŏ	Ö	ŏ	ŏ	O	Ö	i	i	i	i	i
	4000 ppm	1	1	2	2	2	1	1	1	Õ	o O	Ö	Ö	0	ò
ANTERIOR. DORSUM	Control	0	0	0	0	n	0	٥	0	0	0	,	1	1	
ANTERIOR DORSOM	Control	0	-	-	0	0	0	0	-	-	-	1	1	1	1
	160 ppm	0	0	0	0	0	0	•	0	0	0	0	0	0	0
	800 ppm 4000 ppm	U N	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
GENITALIA	Control	1	1	2	2	2	4	3	3	3	3	3	3	3	2
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	mqq 008	0	0	1	1	1	1	2	2	2	2	4	4	4	4
	4000 ppm	3	3	3	3	3	1	1	1	1	1	1	1	1	1
IEMIA	Control	1	1	1	1	1	0	2	1	1	1	1	1	1	1
	160 ppm	1	1	1	0	0	0	1	1	1	1	1	1	2	2
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	1	1	1	1	1	1	1	1	1	1	1	1	1	0
	160 ppm	Ö	ò	ò	ò	Ö	Ö	ò	Ö	O	Ö	ò	Ö	Ö	Ö
	mqq 008	Ö	Õ	0	Ö	Ö	Ö	Ö	Ö	ŏ	Ö	0	Ö	ŏ	ő
	4000 ppm	Ö	Õ	Õ	ő	ő	0	Õ	0	ŏ	ő	Õ	Õ	Õ	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admin	istration	Week-day _			
-		99-7	100-7	101-7	102-7	103-7	104-7
M. PERI EAR	Control	0	0	0	0	0	0
	160 ppm	1	1	1	0	0	1
	800 ppm	1	1	1	1	1	1
	4000 ppm	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	160 ppm	Ö	Õ	Õ	Ö	Ō	0
	800 ppm	0	Õ	ŏ	Ö	Ô	ő
	4000 ppm	ő	0	0	0	0	ŏ
		U	Ū	v	Ū	v	
M. FORELIMB	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
M. BREAST	Control	5	4	4	6	8	8
	160 ppm	3	3	3	3	3	3
	800 ppm	3	3	3	4	6	6
	4000 ppm	Õ	0	0	0	Õ	Ô
M. ABDOMEN	Control	0	0	0	0	0	0
	160 ppm	1	1	1	2	2	3
	800 ppm	1	2	2	2	2	2
	4000 ppm	0	0	0	0	0	0
M. ANTERIOR. DORSUM	Control	1	1	1	1	1	0
AP ANTENTON DUNGUM	160 ppm	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
		v	v	v	v	v	v
M. GENITALIA	Control	5	5	5	5	5	4
	160 ppm	1	1	1	1	1	2
	800 ppm	4	4	4	4 0	4	4
	4000 ppm	0	0	0	0	0	0
ANEMIA	Control	1	1	1	1	0	0
VIITINIA	160 ppm	0	0	0	0	0	0
	maq 001 maq 008	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0
	4000 իիլլլ	U	U	U	U	U	U
ULCER	Control	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	. 0
	800 ppm	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

2EY : LEWALE															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
***************************************		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JNOS IA	160 ppm	0	0	0	0	0	0	Õ	0	0	0	Ö	0	0	Ö
	mqq 008	0	0	0	0	0	0	0	0	Ö	0	0	Õ	0	Ö
	4000 ppm	ŏ	Ö	Ö	Ő	Ö	ő	Ö	Ö	ő	ő	Ö	Ő	Ö	Ö
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	-	0	-	0
	800 ppm	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0 0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0
	800 ppm 4000 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO SIOUL	160 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	100 ppm mag 008	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 քիլո	v	·	U	U	U	U	U	-	-	•	•	•	Ť	v
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

SEX : FEMALE															PAGE : C
Clinical sign	Group Name	Admini	stration W	eek-day					***************************************		***************************************				
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KUSTA	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	ő	ő	Ö	0	Ö	Ö	Ö	ő	ő	Ö	Ö	ő	0	0
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	mqq 008	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	50	50	49	49	49	49	49	49	49	49	49	49	49	49
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ION REMARKABLE	Control	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini 29-7	stration W 30-7	leek-day 31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
															
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mag 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIGO-STÓOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	50	50	50	50	50	50	50	48	49	50	50	50	50	50
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

EX : FEMALE															PAGE :
Clinical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45~7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOJIA	160 ppm	ő	Ô	Õ	0	Ö	0	0	0	Õ	0	Ö	Ő	Ŏ	ŏ
	800 ppm	ñ	Ô	0	Õ	Ö	0	Õ	Õ	Ö	Ô	Ô	Ő	Ô	ŏ
	4000 ppm	Ö	ő	Ö	Õ	ő	Õ	Ö	ő	ő	ő	Õ	Ö	Ö	0
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0
	160 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.1GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	50	50	50	50	50	49	50	50	50	50	50	49	50	50
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE :
Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SKOOTA	160 ppm	0	0	0	0	0	0	0	0	0	0	Ô	0	0	Ö
	800 ppm	ő	Ö	ŏ	Ö	Ö	Ö	Ö	0	Õ	Õ	Õ	Õ	Õ	Ö
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	4000 ppm	0	1	1	0	0	0	0	0	0	0	1	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0
	4000 ppm	0	0	0	0	0	0	0	Ü	0	0	U	U	U	0
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	50	50	50	50	50	50	50	49	49	49	49	49	49	49
	800 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	4000 ppm	49	49	49	49	49	49	49	49	49	48	48	48	48	48
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	800 ppm 4000 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,00 0,002	160 ppm	0	n	0	0	0	0	1	0	0	n	0	0	0	0
	800 ppm	Ő	0	0	0	0	0	Ö	0	0	Õ	0	0	0	ő
	4000 ppm	Ö	Ö	0	Ő	Ö	Ö	Ö	ő	Ô	ő	ő	0	Ö	Ö
ON REMARKABLE	Control	50	50	50	50	50	50	50	50	50	49	48	48	48	48
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	Ô	Ô	Ô	Õ	Ö	Ö	Ö	ŏ	Õ	ő	Õ	ő	0	Õ
	4000 ppm	ŏ	Ô	Õ	Õ	Õ	Õ	0	Õ	Ŏ	ő	Õ	ŏ	Õ	ő

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

SEV . LEMATE															FAGE .
Clinical sign	Group Name	Admini	stration W	eek-day		***************************************	*****************			· · · · · · · · · · · · · · · · · · ·					
_		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ODUCTA	Occident	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm 4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	1	1	0	0	0	0	0	0	0	0	0	0	1
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	1	1	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	U	0	U	0
BRADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	49	49	49	48	48	48	48	48	48	48	48	48	47	47
	800 ppm	50	49	49	49	49	49	49	48	48	48	48	48	48	48
	4000 ppm	48	48	48	48	48	48	48	48	48	48	48	48	48	47
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	1
	mqq 008	0	0	0	0	0	0	1	0	0	0	0	0	0	1
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DL1G0-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	800 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	1
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VON REMARKABLE	Control	48	48	47	47	46	46	46	46	46	45	45	45	44	43
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 104

SEX : FEMALE

OLA . I LIMILE															17102
Clinical sign	Group Name	Admini	stration W	leek-day	,										
		85-7	86-7	87~7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95–7	96-7	97-7	98-7
DUCTA	Oznakoval	0	0	0	0	0	0	0	٥	0	0	0	0	0	0
RUSTA	Control	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	160 ppm	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
	800 ppm 4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
EMORRHAGE	Control	0	0	1	0	0	0	0	1	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	2	0
WEGGETH BREATHING	160 ppm	ő	Õ	Õ	Õ	Õ	1	1	1	0	Ô	Õ	Õ	Õ	1
	mag 008	ŏ	Õ	Ő	Ö	ő	Ö	Ö	ò	0	Õ	Õ	Õ	Õ	'n
	4000 ppm	ő	0	Õ	0	1	0	Õ	1	2	2	Õ	Ô	Õ	Õ
		·	v	v	•	,	v	Ū	•	-	-	v	ŭ	ŭ	ŭ
RADYPNEA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	160 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D URINE	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	160 ppm	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0
	800 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	1	1	0
cccow on the	160 ppm	46	46	46	46	45	45	43	43	42	42	42	42	42	42
	800 ppm	47	47	47	47	46	46	46	45	45	45	45	44	44	43
	4000 ppm	46	46	44	43	43	38	37	35	31	26	23	22	18	16
	4000 ppm	70	40	77	40	40	50	01	00	01	20	20		10	10
IALL STOOL	Control	0	0	0	1	1	0	0	0	0	0	0	1	2	0
	160 ppm	0	0	0	0	0	1	0	1	0	0	0	1	1	1
	800 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	4000 ppm	0	0	0	0	0	2	0	0	0	2	1	2	1	2
.1GO-STOOL	Control	0	0	0	1	1	0	0	0	0	0	0	0	1	1
	160 ppm	0	0	0	Ô	Ö	1	0	1	0	0	Ō	1	1	1
	800 ppm	0	Ō	Ō	1	0	Ó	Ō	Ó	Ō	Ō	Ō	Ö	0	1
	4000 ppm	Ō	Ö	Õ	Ö	1	2	1	1	1	1	Ö	Ö	0	1
N REMARKABLE	Control	42	42	40	39	39	36	36	36	35	34	33	31	30	27
W WENNINADER	160 ppm	42 0	0	40 0	0	39 0	30 0	30 0	30 0	39 0	0	აა 0	0	30 0	0
	maq 008	0	0					0					0	0	
	4000 ppm	0	0	0 0	0 0	0 0	0	0	0	0 0	0	0 0	0	0	0 0
	4000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]
REPORT TYPE : A1 104

SEX : FEMALE

JEA . I LINALL								
Clinical sign	Group Name	Admin	istration	Week-day			************	
T VIGH	a. Jap Hamo	99-7	100-7	101-7	102-7	103-7	104-7	
							,	
							_	
CRUSTA	Control	0	0	0	0	0	0	
	160 ppm	0	0	0	0	0	0	
	mqq 008	0	0	0	1	1	1	
	4000 ppm	0	0	0	0	0	0	
HEMORRHAGE	Control	0	0	0	0	0	0	
HEMORRIAGE	160 ppm	0	0	0	0	0	0	
	800 ppm	0	0	Ö	Õ	0	Ŏ	
	4000 ppm	Ö	Ö	ő	Ö	Ö	Ö	
	4000 bhii	v	Ü	v	v	Ü	J	
IRREGULAR BREATHING	Control	0	1	2	3	2	2	
	160 ppm	0	Ö	Ō	0	0	0	
	mqq 008	0	0	0	0	0	0	
	4000 ppm	0	2	0	0	2	1	
BRADYPNEA	Control	0	0	0	0	0	0	
	160 ppm	0	0	0	0	0	0	
	800 ppm	0	0	0	0	0	0	
	4000 ppm	0	1	0	0	0	0	
RED URINE	Control	۸	Λ	0	n	n	n	
KEU UKINE	Control 160 ppm	0 0	0 0	0 0	0 0	0 0	0 0	
	maq 008	0	0	0	0	0	0	
	4000 ppm	0	0	0	0	0	0	
	4000 ppm	U	U	U	U	U	U	
YELLOW URINE	Control	0	0	1	0	0	0	
	160 ppm	40	40	39	39	39	39	
	mqq 008	43	43	43	42	42	42	
	4000 ppm	12	11	8	6	5	3	
SMALL STOOL	Control	0	1	4	3	2	2	
	160 ppm	0	0	0	0	1	1	
	mag 008	0	0	0	1	2	2	
	4000 ppm	0	0	2	1	0	0	
ALLCO CTOOL	0	0	0		2			
OLIGO-STOOL	Control	0	0	4	3	1	1	
	160 ppm	0	0	0	0	0	0	
	800 ppm	0 0	0 0	0 2	0	0	0	
	4000 ppm	U	U	۷	1	0	0	
NON REMARKABLE	Control	24	23	23	20	19	20	
The second secon	160 ppm	0	0	0	0	0	0	
	800 ppm	Õ	Ö	0	Ô	Ö	Ö	
	4000 ppm	0	Ō	0	Õ	Õ	Ö	

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104 : MALE SEX

PAGE: 1

	Control		280	ppm		1400	ppm		7000	ppm	
Week-Day on Study	Av. Wt.	No. of Surviv. (50)	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.
0-0	124 (50)	50/50	124 (50)	100	50/50	124 (50)	100	50/50	124 (50)	100	50/50
1-7	157 (50)		156 (50)	99	50/50	157 (50)	100	50/50	147 (50)	94	50/50
2-7	189 (50)		187 (50)		50/50	189 (50)	100	50/50	177 (50)	94	50/50
3-7	215 (50)		214 (50)		50/50	215 (50)	100	50/50	199 (50)	93	50/50
4-7	236 (50)		235 (50)		50/50	235 (50)	100	50/50	218 (50)	92	50/50
5-7	254 (50)		251 (50)		50/50	252 (50)	99	50/50	233 (50)	92	50/50
6-7	268 (50)		266 (50)		50/50	267 (50)	100	50/50	247 (50)	92	50/50
7–7	282 (50)	50/50	279 (50)	99	50/50	281 (50)	100	50/50	257 (50)	91	50/50
8-7	293 (50)	50/50	291 (50)	99	50/50	294 (50)	100	50/50	268 (50)	91	50/50
9-7	302 (50)		299 (50)	99	50/50	304 (50)	101	50/50	276 (50)	91	50/50
10-7	312 (50)		308 (50)	99	50/50	313 (50)	100	50/50	283 (50)	91	50/50
11-7	320 (50)		316 (50)	99	50/50	320 (50)	100	50/50	289 (50)	90	50/50
12-7	325 (50)	50/50	322 (50)	99	50/50	327 (50)	101	50/50	295 (50)	91	50/50
13-7	333 (50)	50/50	329 (50)		50/50	334 (50)	100	50/50	300 (50)	90	50/50
14-7	340 (50)	50/50	336 (50)		50/50	341 (50)	100	50/50	306 (50)	90	50/50
18-7	358 (50)	50/50	355 (50)	99	50/50	360 (50)	101	50/50	320 (50)	89	50/50
22-7	371 (50)		369 (50)		50/50	373 (50)	101	50/50	329 (50)	89	50/50
26-7	384 (50)	50/50	381 (50)	99	50/50	387 (50)	101	50/50	339 (50)	88	50/50
30-7	394 (50)	50/50	390 (50)		50/50	397 (50)	101	50/50	347 (50)	88	50/50
34-7	401 (50)		400 (50)		50/50	406 (50)	101	50/50	354 (50)	88	50/50
38-7	410 (49)		406 (50)		50/50	413 (50)	101	50/50	359 (50)	88	50/50
42-7	417 (49)		414 (50)		50/50	420 (50)	101	50/50	365 (50)	88	50/50
46-7	422 (49)		420 (50)		50/50	426 (50)	101	50/50	369 (49)	87	49/50
50-7	427 (49)		424 (50)		50/50	431 (50)	101	50/50	372 (49)	87	49/50
54-7	430 (49)		427 (48)		48/50	435 (49)	101	49/50	373 (49)	87	49/50
58-7	432 (49)		429 (48)		48/50	435 (49)	101	49/50	372 (49)	86	49/50
62-7	434 (49)		430 (48)	99	48/50	438 (49)	101	49/50	371 (49)	85	49/50
66-7	432 (49)		429 (48)	99	48/50	439 (49)	102	49/50	367 (48)	85	48/50
70-7	433 (48)		432 (48)	100	48/50	439 (49)	101	49/50	367 (47)	85	47/50
74-7	434 (46)		435 (48)		48/50	443 (48)	102	48/50	363 (45)	84	45/50
78-7	433 (46)		437 (48)		48/50	442 (48)	102	48/50	356 (45)	82	45/50
82-7	432 (45)		438 (47)		47/50	440 (48)	102	48/50	349 (45)	81	45/50
86-7	423 (45)		435 (47)		47/50	433 (48)	102	48/50	339 (45)	80	45/50
90-7	424 (41)		430 (47)		47/50	425 (46)	100	46/50	324 (45)	76	45/50
94-7	416 (41)		424 (45)	102	45/50	417 (45)	100	45/50	312 (45)	75	45/50
98-7	412 (38)		414 (41)		41/50	405 (43)	98	43/50	300 (40)	73	40/50
102-7	399 (38)		400 (39)	100	39/50	389 (43)	97	43/50	282 (37)	73 71	37/50
104-7	390 (38)		393 (36)	101	36/50	375 (41)	96	43/30	266 (33)	68	33/50
104 1	330 (30)	30/30	030 (30)	101	30/30	313 (41)	30	41/30	200 (33)	UO	J3/ JU

< >:No. of effective animals, ():No. of measured animals

Av. Wt. : g

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0759 MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

REPURITYPE: AT 104
SEX: FEMALE
PAGE: 2

Week-Day on Study	Av. Wt.	No. of	Av. Wt.									
		Surviv. <50>	7, 11	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	_
0-0	99 (50) 50/50	100 (50)	101	50/50	100 (50)	101	50/50	99 (50)	100	50/50	
1-7	115 (50		115 (50)	100	50/50	115 (50)	100	50/50	112 (50)	97	50/50	
2-7	128 (50		129 (50)	101	50/50	129 (50)	101	50/50	125 (50)	98	50/50	
3-7	138 (50	50/50	137 (50)	99	50/50	138 (50)	100	50/50	132 (50)	96	50/50	
4-7	146 (50) 50/50	145 (50)	99	50/50	146 (50)	100	50/50	138 (50)	95	50/50	
5-7	154 (50		153 (50)	99	50/50	155 (50)	101	50/50	145 (50)	94	50/50	
6-7	159 (50		159 (50)	100	50/50	160 (50)	101	50/50	151 (50)	95	50/50	
7–7	163 (50		163 (50)	100	50/50	165 (50)	101	50/50	155 (50)	95	50/50	
8-7	167 (50		167 (50)	100	50/50	169 (50)	101	50/50	158 (50)	95	50/50	
9-7	170 (50		171 (50)	101	50/50	173 (50)	102	50/50	161 (50)	95	50/50	
10-7	174 (50		175 (50)	101	50/50	178 (50)	102	50/50	166 (50)	95	50/50	
11-7	177 (50		178 (50)	101	50/50	180 (50)	102	50/50	168 (50)	95	50/50	
12-7	178 (50		181 (50)	102	50/50	183 (50)	103	50/50	171 (50)	96	50/50	
13-7	180 (50		182 (50)	101	50/50	184 (50)	102	50/50	172 (50)	96	50/50	
14-7	182 (50		184 (50)	101	50/50	186 (50)	102	50/50	174 (50)	96	50/50	
18-7	191 (50		191 (50)	100	50/50	194 (50)	102	50/50	178 (49)	93	49/50	
22-7	196 (50		196 (50)	100	50/50	198 (50)	101	50/50	182 (49)	93	49/50	
26-7	202 (50		201 (50)	100	50/50	205 (50)	101	50/50	186 (49)	92	49/50	
30-7	208 (50		205 (50)	99	50/50	209 (50)	100	50/50	188 (49)	90	49/50	
34-7	212 (50		210 (50)	99	50/50	214 (50)	101	50/50	192 (49)	91	49/50	
38-7	217 (50		215 (50)	99	50/50	219 (50)	101	50/50	196 (49)	90	49/50	
42-7	222 (50		221 (50)	100	50/50	225 (50)	101	50/50	198 (49)	89	49/50	
46-7	227 (50		225 (50)	99	50/50	229 (50)	101	50/50	200 (49)	88	49/50	
50-7	230 (50		230 (50)	100	50/50	232 (50)	101	50/50	203 (49)	88	49/50	
54-7 58-7	235 (50		235 (50)	100	50/50	239 (50)	102	50/50	206 (49)	88	49/50	
	239 (50		241 (50)	101	50/50	244 (50)	102	50/50	208 (49)	87	49/50	
62-7 66-7	245 (50 252 (50		246 (50)	100 100	50/50	250 (50)	102	50/50	210 (49)	86 0.5	49/50	
70-7			253 (49)		49/50	257 (50)	102	50/50	213 (48)	85	48/50	
74-7	261 (50 268 (50		262 (49)	100 99	49/50	264 (50)	101 101	50/50	216 (48)	83	48/50	
74-7 78-7	272 (49		266 (48) 272 (48)	100	48/50 48/50	271 (49) 276 (48)		49/50	215 (48) 212 (48)	80 70	48/50 48/50	
82-7	277 (48		277 (48)	100	48/50 48/50	282 (48)	101 102	48/50 48/50	212 (48)	78 75	48/50 48/50	
86-7	283 (46		281 (46)	99	48/50 46/50	282 (48) 284 (47)	102	48/50 47/50	207 (48)	75 71	46/50 46/50	
90-7	287 (45		283 (45)	99	46/50 45/50		100	47/50 46/50	200 (46) 189 (38)		46/50 38/50	
90-7 94-7	286 (43		286 (42)	100	45/50 42/50	286 (46) 285 (45)	100	46/50 45/50	189 (38)	66 64	36/50 26/50	
98-7	286 (40		284 (42)	99	42/50 42/50	287 (43)	100	43/50 43/50	168 (16)	59	26/50 16/50	
102-7	280 (35		287 (39)								6/50	
104-7	281 (34		284 (39)	103 101	39/50 39/50	281 (42) 276 (42)	100 98	42/50 42/50	162 (6) 148 (3)	58 53	3/50	

< >:No. of effective animals, ():No. of measured animals

Av. Wt. : g

TABLE C 3

BODY WEIGHT CHANGES: MALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

Group Name	Administration	n week-day				***	
	0-0	1-7	2–7	3-7	4–7	5-7	6-7
***************************************						A. A. A. C. C. A. A. A. C. C. A. A. C.	
Control	124± 6	157± 8	189± 8	215± 8	236 ± 8	254± 8	268± 8
280 ppm	124± 6	156± 9	187± 10	214± 11	235± 11	251± 12	266± 13
ov ppiii	124 5	150 ± 9	107 ± 10	214 11	233 ± 11	231.1. 12	200 1 13
400 ppm	124± 6	157 ± 8	189± 9	215± 9	235 ± 10	252 ± 10	267± 11
7000 mag 0007	124± 6	147± 8**	177± 10**	199± 10**	218± 10**	233± 10**	247± 11**
ооо ррш	124 ± 0	147 1 0++	111 10++	199 10**	210 - 10++	200 1. 10**	241 = 11**

(HAN260)

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$

Test of Dunnett

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Administration	week-day					
	7–7	8-7	9–7	10-7	11-7	12-7	13-7
A STATE OF THE STA							
Control	282 ± 9	293 ± 9	302 ± 10	312± 11	320± 11	325± 12	333± 12
280 ppm	279± 13	291± 14	299± 15	308± 16	316± 15	322± 16	329± 17
1400 ppm	281± 12	294± 12	304± 12	313± 12	320± 12	327± 13	334± 13
1400 ppm	201 - 12	254 1 12	304± 12	313 - 12	320± 12	321 1. 13	334± 13
7000 ppm	257± 11**	268± 13**	276± 12**	283± 13**	289± 13**	295± 13**	300± 14**

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

PAGE: 3

117	week-day					
14-7	18-7	22-7	26-7	30-7	34-7	38-7
340± 13	358± 12	371± 13	384± 15	394± 15	401 ± 21	410± 16
336± 17	355± 18	369± 20	381± 23	390± 22	400± 23	406± 24
341 ± 13	360± 14	373± 15	387± 15	397± 16	406± 16	413± 16
306± 14**	320± 14**	329± 16**	339± 17**	347± 18**	354± 18**	359± 19**
	336± 17 341± 13	336 ± 17 355 ± 18 341 ± 13 360 ± 14	$336\pm$ 17 $355\pm$ 18 $369\pm$ 20 $341\pm$ 13 $360\pm$ 14 $373\pm$ 15	$336\pm$ 17 $355\pm$ 18 $369\pm$ 20 $381\pm$ 23 $341\pm$ 13 $360\pm$ 14 $373\pm$ 15 $387\pm$ 15	$336\pm$ 17 $355\pm$ 18 $369\pm$ 20 $381\pm$ 23 $390\pm$ 22 $341\pm$ 13 $360\pm$ 14 $373\pm$ 15 $387\pm$ 15 $397\pm$ 16	$336\pm$ 17 $355\pm$ 18 $369\pm$ 20 $381\pm$ 23 $390\pm$ 22 $400\pm$ 23 $341\pm$ 13 $360\pm$ 14 $373\pm$ 15 $387\pm$ 15 $397\pm$ 16 $406\pm$ 16

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g REPORT TYPE : A1 104 SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

PAGE: 4

Group Name	Administratio	n week-day					
	42-7	46-7	50-7	54-7	58-7	62-7	66-7
Control	417± 16	422± 17	427 ± 17	430± 18	432 ± 17	434± 18	432± 19
280 ppm	414± 24	420± 25	424± 29	427± 23	429± 23	430± 22	429± 22
1400 ppm	420± 17	426 ± 17	431 ± 17	435± 19	435± 19	438± 19	439± 20
7000 ppm	365± 19**	369± 21**	372± 22**	373± 22**	372± 22**	371 ± 22**	367± 24**

Significant difference ; $*: P \leq 0.05$ ** : P ≦ 0.01 Test of Dunnett

(HAN260) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Administr	ation week-day											
	70-7	74-7	7	78-7		82-7	•	86-7		90-7		94-7	
	-100-0		***************************************				-1-405						nnata
Control	433± 21	434±	20	$433\pm$	21	432±	21	423 ±	27	424 ±	26	416±	32
280 ppm	432± 23	3 435±	24	437 ±	25	438±	25	435±	26	430±	28	424±	33
1400 ppm	439± 23	3 443±	20	442±	20	440±	21	433±	26	425±	27	417±	27
7000 ppm	367± 21	** 363±	21**	356±	19**	349±	18**	339±	17**	324±	18**	312±	25**

(SUMMARY)

BODY WEIGHT CHANGES ALL ANIMALS

Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

Group Name	Administration w	eek-day		
	98-7	102-7	104-7	
ontrol	412± 28	399± 29	390± 31	
280 ppm	414± 35	400 ± 39	393 ± 37	
1400 ppm	405± 26	389± 31	$375\pm$ 38	
7000 ppm	300± 23**	282± 26**	266± 32**	
0	D < 0.0F	D < 0.04	T. ()	
Significant differen	ce; *: P ≦ 0.05 **	: P ≤ 0.01	Test of Dunnett	

(HAN260) BAIS 5

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 7

Group Name	Admini	stration	week-day					-						
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
							and the same of th			·		***************************************	******	
ontrol	99±	4	115±	4	128±	5	138±	6	146±	7	154±	8	$159\pm$	8
						_		_		_		_		_
60 ppm	100±	4	115±	4	129±	5	137±	6	145±	7	153±	8	159±	9
00 ppm	100±	4	115±	5	129±	6	138±	6	146±	7	155±	8	160±	9
mqq 000	99±	4	112±	4**	125±	5**	132±	6**	138±	7**	145 \pm	7**	151 ±	8**
Maria 100 Maria														

(HAN260)

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$

Test of Dunnett

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration w	eek-day	***				
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
01	100 10	107	170 41	174	177 + 11	170	100 11
Control	163± 10	167± 10	170± 11	174± 11	177± 11	178± 12	180± 11
160 ppm	163± 8	167± 9	171± 11	175± 10	178± 11	181± 10	182± 10
Mqq 008	165± 9	169± 10	173± 11	178± 10	180± 11	183± 11	184± 11
4000 ppm	155± 8**	158± 8**	161± 10**	166± 10**	168± 9**	171± 10**	172± 10**

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

Group Name	Administration	week-day		terra			
	14-7	18-7	22-7	26-7	30-7	34-7	38-7
Control	182± 12	191± 12	196± 13	202± 14	208± 15	212± 15	217± 15
160 ppm	184± 10	191± 10	196± 12	201± 13	205± 13	210± 14	215± 14
800 ppm	186± 11	194± 12	198± 12	205± 14	209± 14	214± 15	219± 17
4000 ppm	174± 10**	178± 10**	182± 11**	186± 11**	188± 11**	192± 12**	196± 12**

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

42-7	46-7	50-7	54–7	58-7	62-7	66-7
222± 16	227± 18	230± 17	235± 18	239± 19	245± 22	252± 22
221± 16	225 ± 18	230± 19	235± 20	241± 20	246± 20	253± 24
225± 17	229± 19	232± 19	239± 20	244± 23	250± 24	257± 25
198± 13**	200± 13**	203± 13**	206± 14**	208± 14**	210± 15**	213± 15**
	221± 16 225± 17	221± 16 225± 18 225± 17 229± 19	221 ± 16 225 ± 18 230 ± 19 225 ± 17 229 ± 19 232 ± 19	$221\pm$ 16 $225\pm$ 18 $230\pm$ 19 $235\pm$ 20 $225\pm$ 17 $229\pm$ 19 $232\pm$ 19 $239\pm$ 20	$221\pm$ 16 $225\pm$ 18 $230\pm$ 19 $235\pm$ 20 $241\pm$ 20 $225\pm$ 17 $229\pm$ 19 $232\pm$ 19 $239\pm$ 20 $244\pm$ 23	$221\pm$ 16 $225\pm$ 18 $230\pm$ 19 $235\pm$ 20 $241\pm$ 20 $246\pm$ 20 $225\pm$ 17 $229\pm$ 19 $232\pm$ 19 $239\pm$ 20 $244\pm$ 23 $250\pm$ 24

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : g

(SUMMARY)

REPORT TYPE : A1 104 SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

Group Name	Administration	week-day						
	70-7	74–7	78-7	82-7	86-7	90-7	94-7	
Control	261 ± 23	268± 23	272± 23	277± 22	283± 24	287± 27	286± 26	
60 ppm	262± 27	266± 21	272± 21	277± 21	281 ± 21	283± 24	286± 25	
mqq 008	264± 25	271 ± 25	276 ± 25	282± 24	284± 24	286± 25	285± 28	
4000 ppm	216± 16**	215± 18**	212± 19**	207± 22**	200± 23**	189± 20**	182± 23**	

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES

ALL ANIMALS

Group Name	Administration w	eek-day		
	98-7	102-7	104–7	
	CONTROL CARDO MANERO COMO TORRA CONTROL CONTRO			
Control	286 ± 29	280 ± 38	281 ± 33	
160 ppm	284± 31	287 ± 23	284 ± 24	
800 mqq 008	287 ± 28	281 ± 30	$276\pm$ 31	
4000 ppm	168± 17**	162± 9**	148± 2**	
Significant differen	nce; *:P≦ 0.05 **	: P ≤ 0.01	Test of Dunnett	

(SUMMARY)

(HAN260)

BAIS 5

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0759

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g

REPORT TYPE : A1 104 SEX : MALE

	Control		280	280 ppm 1400 ;		ppm	7000 ppm				
Week-Day on Study	Av. FC.	No. of Surviv. <50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.
1-7	13. 6 (5	0) 50/50	13. 7 (50)	101	50/50	13. 6 (50)	100	50/50	11. 4 (50)	84	50/50
2-7	14.6 (5	0) 50/50	14.8 (50)	101	50/50	14.8 (50)	101	50/50	13. 7 (50)	94	50/50
3-7	15. 2 (5		15. 6 (50)	103	50/50	15. 2 (50)	100	50/50	13. 9 (49)	91	50/50
4-7	15.6 (5		15. 7 (50)	101	50/50	15. 3 (50)	98	50/50	14. 1 (49)	90	50/50
5-7	15. 7 (5		15. 7 (50)	100	50/50	15. 4 (50)	98	50/50	14.3 (50)	91	50/50
6-7	15. 8 (5		15. 7 (48)	99	50/50	15. 6 (50)	99	50/50	14. 4 (49)	91	50/50
7–7	15. 7 (5		15. 6 (50)	99	50/50	15. 5 (50)	99	50/50	14. 2 (50)	90	50/50
8-7	16.0 (4	9) 50/50	15. 9 (49)	99	50/50	15. 9 (48)	99	50/50	14. 4 (50)	90	50/50
9-7	16.0 (5		15. 6 (50)	98	50/50	15. 8 (50)	99	50/50	14. 2 (50)	89	50/50
10-7	15. 9 (5		15. 9 (50)	100	50/50	15. 9 (50)	100	50/50	14. 2 (50)	89	50/50
11-7	16.0 (5		16. 0 (49)	100	50/50	16.0 (49)	100	50/50	14. 2 (49)	89	50/50
12-7	15. 8 (4		15. 9 (49)	101	50/50	15. 8 (49)	100	50/50	14.0 (49)	89	50/50
13-7	15. 3 (4		15. 3 (47)	100	50/50	15. 3 (47)	100	50/50	13.8 (48)	90	50/50
14-7	15. 4 (4		15. 5 (48)	101	50/50	15. 5 (46)	101	50/50	13. 9 (48)	90	50/50
18-7	15.8 (5	0) 50/50	15. 8 (50)	100	50/50	15. 7 (50)	99	50/50	14.0 (50)	89	50/50
22-7	15. 9 (4	6) 50/50	15. 9 (49)	100	50/50	16.0 (50)	101	50/50	14. 0 (50)	88	50/50
26-7	15. 8 (4	8) 50/50	15. 9 (49)	101	50/50	15. 9 (49)	101	50/50	14.1 (50)	89	50/50
30-7	16.3 (4		16. 2 (48)	99	50/50	16. 1 (50)	99	50/50	14. 2 (50)	87	50/50
34-7	16. 2 (5	0) 50/50	16.5 (50)	102	50/50	16. 4 (50)	101	50/50	14.5 (50)	90	50/50
38-7	16. 3 (4	9) 49/50	16.3 (50)	100	50/50	16.3 (50)	100	50/50	14.6 (50)	90	50/50
42-7	16. 1 (4	3) 49/50	16. 3 (47)	101	50/50	16.3 (48)	101	50/50	14.7 (50)	91	50/50
46-7	16. 2 (4		16. 2 (46)	100	50/50	16. 5 (48)	102	50/50	14.6 (49)	90	49/50
50-7	16.3 (4		16. 1 (49)	99	50/50	16. 4 (50)	101	50/50	14.6 (49)	90	49/50
54-7	16. 4 (4	5) 49/50	16. 4 (47)	100	48/50	16. 5 (48)	101	49/50	14.7 (49)	90	49/50
58-7	16. 1 (4	5) 49/50	16. 2 (48)	101	48/50	16. 4 (49)	102	49/50	14.6 (49)	91	49/50
62-7	16. 1 (4		16. 1 (48)	100	48/50	16. 1 (47)	100	49/50	14. 3 (47)	89	49/50
66-7	15. 7 (4	7) 49/50	15.8 (48)	101	48/50	16. 1 (49)	103	49/50	14. 4 (48)	92	48/50
70-7	15. 8 (4		16.0 (44)	101	48/50	16. 0 (44)	101	49/50	14.0 (41)	89	47/50
74-7	16. 4 (4	5) 46/50	16.5 (46)	101	48/50	16. 6 (48)	101	48/50	14. 1 (45)	86	45/50
78-7	15. 3 (4		15. 4 (38)	101	48/50	15. 4 (38)	101	48/50	13. 3 (37)	87	45/50
82-7	15. 6 (4)	2) 45/50	16.0 (45)	103	47/50	15. 9 (46)	102	48/50	13. 7 (42)	88	45/50
86-7	14.8 (4	5) 45/50	15. 4 (47)	104	47/50	15. 2 (48)	103	48/50	12. 7 (41)	86	45/50
90-7	16. 1 (3	9) 41/50	16. 1 (47)	100	47/50	15. 5 (44)	96	46/50	13. 4 (39)	83	45/50
94-7	15. 8 (3)		15. 8 (43)	100	45/50	15. 0 (43)	95	45/50	13. 0 (39)	82	45/50
98-7	15. 5 (3)		15. 5 (40)	100	41/50	15. 4 (40)	99	43/50	12. 9 (34)	83	40/50
102-7	15. 1 (3		15. 0 (39)	99	39/50	15. 5 (43)	103	43/50	13. 3 (34)	88	37/50
104-7	15. 6 (3)		15. 6 (33)	100	36/50	15. 1 (31)	97	41/50	13. 2 (21)	85	33/50

< >:No. of effective animals, ():No. of measured animals

Av. FC. : g

(B10040)

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0759 MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

: FEMALE PAGE: 2 SEX

	Control		160	mqc		800 p	pm		4000	ppm	
Week-Day on Study	Av. FC.	No. of Surviv. <50>	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.
1-7	10. 3 (50) 50/50	10. 3 (50)	100	50/50	10. 4 (50)	101	50/50	9. 4 (50)	91	50/50
2-7	10. 4 (50		10.6 (50)	102	50/50	10. 8 (50)	104	50/50	10. 0 (50)	96	50/50
3-7	10. 4 (50		10. 5 (50)	101	50/50	10. 6 (50)	102	50/50	9. 8 (50)	94	50/50
4-7	10.8 (50		10.7 (50)	99	50/50	10.9 (50)	101	50/50	10.0 (49)	93	50/50
5-7	10.8 (50		10.8 (50)	100	50/50	10. 9 (50)	101	50/50	10. 0 (49)	93	50/50
6-7	10.7 (50		10.8 (50)	101	50/50	10. 8 (50)	101	50/50	10. 1 (50)	94	50/50
7-7	10. 3 (50		10. 5 (50)	102	50/50	10. 5 (50)	102	50/50	10. 0 (50)	97	50/50
8-7	10. 4 (50		10.6 (50)	102	50/50	10. 6 (50)	102	50/50	10. 1 (50)	97	50/50
9-7	10.5 (50		10. 6 (50)	101	50/50	10. 5 (50)	100	50/50	9. 8 (50)	93	50/50
10-7	10. 5 (49		10.6 (50)	101	50/50	10. 7 (48)	102	50/50	10. 1 (50)	96	50/50
11-7	10. 4 (50		10. 7 (50)	103	50/50	10. 7 (48)	103	50/50	10. 0 (50)	96	50/50
12-7	10. 3 (50		10. 7 (50)	104	50/50	10. 7 (49)	104	50/50	10. 0 (50)	97	50/50
13-7	10. 2 (50		10. 3 (49)	101	50/50	10. 3 (49)	101	50/50	9. 9 (50)	97	50/50
14-7	10. 4 (49		10. 4 (44)	100	50/50	10. 4 (46)	100	50/50	10.0 (50)	96	50/50
18-7	11. 0 (50		10. 7 (50)	97	50/50	10. 9 (50)	99	50/50	10. 0 (49)	91	49/50
22-7	10. 7 (48		10. 8 (47)	101	50/50	10. 8 (47)	101	50/50	10. 1 (49)	94	49/50
26-7	10.8 (50		11. 1 (48)	103	50/50	11. 1 (50)	103	50/50	10. 2 (48)	94	49/50
30-7	11. 5 (50		11. 3 (50)	98	50/50	11. 3 (50)	98	50/50	10. 3 (49)	90	49/50
34-7	11. 4 (50		11. 5 (50)	101	50/50	11. 8 (50)	104	50/50	10.6 (49)	93	49/50
38-7	11. 6 (50		11. 8 (50)	102	50/50	11. 9 (50)	103	50/50	10. 5 (49)	91	49/50
42-7	11. 7 (47		12. 0 (50)	103	50/50	11. 9 (50)	102	50/50	10.6 (49)	91	49/50
46-7	11. 9 (49		12. 1 (49)	102	50/50	11. 8 (50)	99	50/50	10. 8 (49)	91	49/50
50-7	12. 0 (50		12. 3 (50)	103	50/50	12. 3 (50)	103	50/50	11. 0 (49)	92	49/50
54-7	12. 2 (50		12. 3 (50)	101	50/50	12. 4 (50)	103	50/50	11. 0 (49)	92	49/50
58-7	11. 9 (49		12. 3 (50)	103	50/50 50/50	12. 2 (47)	103	50/50 50/50	11. 2 (49)	95	49/50
62-7	12. 3 (49		12. 4 (50)	103	50/50 50/50	12. 5 (50)	103	50/50 50/50	11. 3 (49)	93	49/50
66-7	11. 7 (35		11. 9 (40)	102	49/50	11. 8 (34)	101	50/50 50/50	11. 4 (43)	95	48/50
70-7	12. 5 (49		12. 7 (48)	102	49/50		101		11. 1 (43)		
74-7	12. 5 (49					12. 7 (49)		50/50		90	48/50
74-7 78-7			13. 0 (40)	101	48/50	12. 9 (37)	100	49/50	11.6 (44)	90	48/50
	12. 2 (43		12. 4 (42)	102	48/50	12. 6 (42)	103	48/50	11. 0 (44)	90	48/50
82-7 967	12.7 (46		12. 7 (48)	100	48/50	13. 2 (45)	104	48/50	11. 2 (46)	88	48/50
86-7 00-7	12. 8 (43		12.6 (41)	98	46/50	12. 8 (44)	100	47/50	10. 9 (40)	85 70	46/50
90-7	13. 0 (36		12. 4 (38)	95	45/50	13. 1 (39)	101	46/50	10. 2 (31)	78	38/50
94-7	12. 6 (42		12. 7 (41)	101	42/50	12. 8 (42)	102	45/50	10. 3 (20)	82	26/50
98-7	12. 2 (38		12. 4 (41)	102	42/50	12. 6 (43)	103	43/50	9. 3 (13)	76	16/50
102-7	12. 5 (33		13. 0 (37)	104	39/50	12. 7 (41)	102	42/50	9.3 (4)	74	6/50
104-7	13.0 (34	34/50	12. 5 (38)	96	39/50	12. 5 (42)	96	42/50	7.4 (3)	57	3/50

< >:No. of effective animals, ():No. of measured animals

Av. FC. : g

(B10040)

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

Group Name	Administration	week-day (effective)					
	1–7 (7)	2-7 (7)	3-7 (7)	4-7 (7)	5-7 (7)	6-7 (7)	7-7 (7)
Control	13.6± 0.8	14.6± 0.8	15. 2 ± 0. 7	15. 6± 0. 7	15.7± 0.6	15. 8± 0. 7	15.7± 0.8
280 ppm	13.7± 0.9	14.8± 1.0	15.6± 0.9*	15.7± 0.9	15.7± 1.0	15.7± 0.9	15.6± 1.0
1400 ppm	13.6± 0.7	14.8± 0.8	15. 2± 0. 7	15. 3± 0. 7	15. 4± 0. 6	15. 6± 0. 7	15.5± 0.8
7000 ppm	11. 4± 0. 6**	13.7± 0.8**	13.9± 0.8**	14.1± 0.7**	14.3± 0.7**	14. 4± 0. 8**	14.2± 0.8**
		-					200020
Significant difference ;	* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Administration	week-day(effective)					
	8-7 (7)	9-7 (7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14-7 (7)
Control	16.0± 0.7	16.0± 0.9	15.9± 0.8	16.0± 0.9	15.8 ± 0.8	15. 3 ± 0. 8	15. 4± 0. 8
280 ppm	15.9± 1.1	15.6± 1.1	15.9± 1.2	16.0± 1.1	15.9± 1.3	15. 3 ± 1. 1	15.5± 1.2
1400	15 0 1 0 9	15 0 1 0 0	15.0 0.0	10 04 0 0	15.8± 0.8	15.3± 0.7	15.5± 0.8
1400 ppm	15.9± 0.8	15.8± 0.8	15.9± 0.9	16.0± 0.8	15.8± 0.8	15. 3 ± 0. 1	13. 3 ± 0. 6
7000 ppm	14.4± 0.8**	14.2± 0.8**	14. 2± 0. 8**	14.2± 0.8**	14.0± 0.8**	13.8± 0.7**	13.9± 0.6**
Significant difference :	; * : P ≤ 0.05	** : P ≤ 0.01	· · · · · · · · · · · · · · · · · · ·	Test of Dunnett			***************************************

(HAN260)

BAIS 5

ANIMAL : RAT F344/DuCrICrlj [F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week-day(effective)						
	18-7 (7)	22–7 (7)	26-7 (7)	30-7 (7)	34–7 (7)	38-7 (7)	42-7 (7)	
						A A A A A A A A A A A A A A A A A A A		_
Control	15.8± 0.8	15.9± 0.7	15.8± 0.8	16. 3± 0. 7	16. 2± 0. 8	16. 3 ± 0. 8	16. 1 ± 0. 7	
280 ppm	15.8± 1.1	15.9± 1.2	15.9± 1.1	16. 2± 1. 3	16.5± 1.4	16.3± 1.2	16.3± 1.1	
до ррш	10.0 1.1	10. J.d. 1. L	10.0 1.1	10.22 1.3	10.0 1. 4	10.0	10.0 1. 1	
1400 ppm	15.7± 0.7	16.0± 0.7	15.9± 0.8	16.1± 0.8	16.4± 1.1	16.3± 0.8	16.3± 0.8	
7000 ppm	14. 0± 0. 7**	14.0± 0.7**	14.1± 0.8**	14.2± 0.8**	14.5± 0.9**	14.6± 0.8**	14.7± 0.8**	

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Group Name	Administration 46-7(7)	week-day (effective) 50-7 (7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70-7 (7)
Control	16. 2± 0. 7	16.3± 0.8	16.4± 0.8	16.1± 0.9	16. 1± 0. 8	15.7± 1.1	15.8± 1.3
280 ppm	16. 2± 1. 2	16.1± 1.4	16. 4± 1. 1	16. 2± 1. 2	16.1± 1.1	15.8± 1.2	16.0± 1.2
1400 ppm	16.5± 0.9	16.4± 0.8	16.5± 0.8	16. 4± 1. 0	16. 1 ± 0. 8	16.1± 1.0	16.0± 1.3
7000 ppm	14.6± 0.9**	14.6± 0.9**	14.7± 0.8**	14.6± 0.8**	14.3± 0.8**	14. 4± 1. 4**	14.0± 0.7**

(HAN260)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$

Test of Dunnett

BAIS 5

ANIMAL : RAT F344/DuCrICrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 5

Administration	week-day(effective)_					
74-7 (7)	78-7 (7)	82-7 (7)	86-7 (7)	90-7 (7)	94-7 (7)	98-7 (7)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				W		V
16.4± 0.9	15.3± 1.0	15.6± 1.6	14.8± 2.4	16.1± 1.2	15.8± 1.6	15.5± 1.3
16 5 → 1 5	15 4+ 1 2	16 0+ 1 2	15 A÷ 1 6	16.1+ 1.6	15 8+ 2 0	15.5± 2.2
10. J <u> </u>	13. 4.1. 1. 2	10.0 1.2	13. 44. 1. 0	10. 1 ± 1. 0	13. 0 2. 0	10.0 2.2
16.6± 0.9	15.4± 1.0	15.9± 0.9	15. 2± 1. 4	15.5± 1.0	15.0± 2.0*	15. 4± 1. 5
14.1土 1.1**	13.3生 0.8**	13.7± 0.8**	12.7± 1.4**	13. 4生 1. 0**	13.0± 1.0**	12.9± 1.8**
	74-7 (7) 16. 4± 0. 9 16. 5± 1. 5	$74-7 (7)$ $78-7 (7)$ $16. \ 4\pm \ 0. \ 9$ $15. \ 3\pm \ 1. \ 0$ $16. \ 5\pm \ 1. \ 5$ $15. \ 4\pm \ 1. \ 2$ $16. \ 6\pm \ 0. \ 9$ $15. \ 4\pm \ 1. \ 0$	$74-7 (7)$ $78-7 (7)$ $82-7 (7)$ $16. 4\pm 0.9$ $15. 3\pm 1.0$ $15. 6\pm 1.6$ $16. 5\pm 1.5$ $15. 4\pm 1.2$ $16. 0\pm 1.2$ $16. 6\pm 0.9$ $15. 4\pm 1.0$ $15. 9\pm 0.9$	$74-7 (7)$ $78-7 (7)$ $82-7 (7)$ $86-7 (7)$ $16.4\pm 0.9$ $15.3\pm 1.0$ $15.6\pm 1.6$ $14.8\pm 2.4$ $16.5\pm 1.5$ $15.4\pm 1.2$ $16.0\pm 1.2$ $15.4\pm 1.6$ $16.6\pm 0.9$ $15.4\pm 1.0$ $15.9\pm 0.9$ $15.2\pm 1.4$	$74-7$ (7) $78-7$ (7) $82-7$ (7) $86-7$ (7) $90-7$ (7) $16.4\pm0.9$ $15.3\pm1.0$ $15.6\pm1.6$ $14.8\pm2.4$ $16.1\pm1.2$ $16.5\pm1.5$ $15.4\pm1.2$ $16.0\pm1.2$ $15.4\pm1.6$ $16.1\pm1.6$ $16.6\pm0.9$ $15.4\pm1.0$ $15.9\pm0.9$ $15.2\pm1.4$ $15.5\pm1.0$	$74-7$ (7) $78-7$ (7) $82-7$ (7) $86-7$ (7) $90-7$ (7) $94-7$ (7) $16.4\pm0.9$ $15.3\pm1.0$ $15.6\pm1.6$ $14.8\pm2.4$ $16.1\pm1.2$ $15.8\pm1.6$ $16.5\pm1.5$ $15.4\pm1.2$ $16.0\pm1.2$ $15.4\pm1.6$ $16.1\pm1.6$ $15.8\pm2.0$ $16.6\pm0.9$ $15.4\pm1.0$ $15.9\pm0.9$ $15.2\pm1.4$ $15.5\pm1.0$ $15.0\pm2.0*$

Significant difference ;  $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260) BAIS 5

ANIMAL : RAT F344/DuCr1Cr1j [F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

Group Name	Administration 102-7(7)	week-day (effective) 104-7 (7)		
Control	15. 1 ± 1. 0	15. 6± 1. 0		
280 ppm	15. 0± 2. 0	15.6± 1.8		
1400 ppm	15.5± 1.6	15. 1 ± 2. 2		
7000 ppm	13.3± 1.3**	13.2± 1.2**		
Significant differe	ence ;	** : P ≤ 0.01	Test of Dunnett	
(HAN260)	A CONTRACTOR OF THE CONTRACTOR			BAIS 5

## TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 7

Group Name		week-day(effective)					
	1-7 (7)	2-7 (7)	3-7 (7)	4-7 (7)	5-7 (7)	6-7 (7)	7–7 (7)
Control	10.3± 0.5	10.4± 0.6	10.4± 0.5	10.8± 0.7	10.8± 0.8	10.7± 0.8	10.3± 0.9
160 ppm	10.3± 0.4	10.6± 0.6	10.5± 0.6	10.7± 0.7	10.8± 0.8	10.8± 0.8	10.5± 0.8
800 ppm	10.4± 0.5	10.8± 0.5**	10.6± 0.6	10.9± 0.6	10.9± 0.7	10.8± 0.7	10.5± 0.6
4000 ppm	9. 4± 0. 4**	10.0± 0.5**	9.8± 0.6**	10.0± 0.7**	10.0± 0.6**	10.1± 0.5**	10.0± 0.6*
Significant differe	ence :  * : P ≦ 0.05	±		Test of Dunnett			

(HAN260)

Test of Dunnett

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 8

Group Name	Administration	week-day(effective)					
	8-7 (7)	9-7 (7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14-7 (7)
Control	10.4± 0.9	10.5± 0.9	10.5± 0.8	10. 4± 0. 8	10.3± 0.8	10. 2 ± 1. 0	10.4± 0.8
160 ppm	10.6± 0.8	10.6± 0.9	10.6± 0.8	10.7± 0.8	10.7± 0.9**	10.3± 0.7	10.4± 0.7
		V V V					
800 ppm	10.6± 0.8	10.5± 0.8	10.7± 0.7	10.7± 0.8	10.7± 0.7**	10.3± 0.8	10.4± 0.7
4000	40.4	0.01.0.7	40.4 0.0	40.04	40.0.	0.0.	10.0 0.0
4000 ppm	10. 1 ± 0. 6	9.8± 0.7**	10.1± 0.6**	10.0± 0.6*	10.0± 0.6	9.9± 0.5	10.0± 0.6**

Significant difference;  $*: P \leq 0.05$ 

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g REPORT TYPE : A1 104

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

Group Name	Administration week-day(effective)									
	18-7 (7)	22-7 (7)	26-7 (7)	30-7 (7)	34-7 (7)	38-7 (7)	42-7 (7)			
							AMARIAN SENIOR S			
Control	11.0± 0.8	10.7± 0.9	10.8± 1.0	11.5± 1.2	11. 4± 1. 1	11.6 $\pm$ 1.3	11.7± 1.2			
160 ppm	10.7± 0.7	10.8± 0.9	11.1± 1.1	11. 3± 1. 1	11.5± 1.1	11.8± 1.2	12.0± 1.2			
800 ppm	10.9± 0.9	10.8± 0.9	11.1± 1.1	11.3± 1.2	11. 8± 1. 2	11.9± 1.4	11.9± 1.2			
ooo ppiii	10. Julia U. J	10.0 = 0.0	FF I wise 11 I	11.0	11. 0	11. 0	71.0= 7.0			
4000 ppm	10.0± 0.7**	10.1± 0.8**	10.2± 0.7**	10.3± 0.8**	10.6± 1.0**	10.5± 0.9**	10.6± 1.1**			

PAGE: 9

Significant difference;  $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260) BAIS 5

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

PAGE: 10

Group Name	Administration	week-day(effective)					
	46-7 (7)	50-7 (7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70–7 (7)
	ACCUMENTATION OF THE PROPERTY						
Control	11.9± 1.2	12.0± 1.1	12.2± 1.1	11.9± 0.9	12.3± 1.2	11.7± 1.2	12.5± 1.0
60 ppm	12. 1 ± 1. 0	12. 3± 1. 3	12. 3± 1. 0	12. 3± 0. 9	12. 4± 1. 4	11.9± 1.0	12.7± 1.4
800 ppm	11.8± 1.1	12.3± 1.2	12.4± 1.2	12. 2± 1. 4	12.5± 1.2	11.8± 1.2	12.7± 1.3
1000 ppm	10.8± 1.0**	11.0± 1.0**	11.2± 1.0**	11.3± 1.2**	11.4± 1.1**	11.1± 1.2	11.3± 1.0**

Significant difference;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

Group Name		week-day(effective)	00.7(7)	00 7 (7)	00 7 (7)	0.4 7 (7)	98-7 (7)	
	74-7 (7)	78-7 (7)	82-7 (7)	86-7 (7)	90-7 (7)	94-7 (7)	98-7 (7)	
Control	12.9± 1.4	12. 2± 1. 1	12.7± 1.5	12.8± 1.1	13.0± 1.1	12.6± 1.4	12. 2± 1. 9	
160 ppm	13. 0± 1. 1	12. 4± 0. 9	12.7± 1.2	12.6± 1.0	12. 4± 2. 5	12.7± 1.6	12. 4± 2. 0	
mqq 008	12.9± 1.0	12.6± 1.1	13. 2± 1. 2	12.8± 1.2	13.1± 1.3	12.8± 1.4	12.6± 1.4	
4000 ppm	11.6± 1.1**	11.0± 1.0**	11. 2± 1. 4**	10.9± 1.6**	10.2± 1.6**	10.3± 2.2**	9.3± 1.9**	

PAGE: 11

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$ Test of Dunnett

(HAN260) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administratio 102-7(7)	on week-day(effective) 104-7(7)		
Control	12.5± 2.5	13.0± 1.7		
160 ppm	13.0± 1.4	12.5± 1.8		
800 ppm	12.7± 1.9	12.5± 1.8		
4000 ppm	9.3± 0.8*	7. 4± 0. 5**		
Significant difference ;	* : P ≤ 0.05	** : P ≦ 0.01	Test of Dunnett	
(HAN260)				BAIS 5

#### TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

Group Name	Adminis	tration	(weeks)										7		
			2	···	3		4		5		b				
Control	0 ±	0	0±	0	<b>0</b> ±	0	0±	0	0±	0	<b>0</b> ±	0	<b>0</b> ±	0	
280 ppm	25±	1	22±	1	20±	1	19±	1	17±	1	17±	1	16±	1	
1400 ppm	122±	3	110±	3	99±	3	91 ±	3	86±	3	82±	3	78±	3	
7000 ppm	546±	17	542±	18	487±	17	452±	16	430±	16	410±	19	387 ±	18	

(HAN300) BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	tration	(weeks)												
	8		9		10		11		12		13		14		
Control	0±	0	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	
280 ppm	15±	1	15±	1	14±	1	14±	1	14±	1	13±	1	13±	1	
1400 ppm	75±	3	73±	3	71 ±	4	70±	3	68±	3	64±	3	64±	3	
7000 ppm	375±	16	$360\pm$	16	$350\pm$	15	344±	14	$332\pm$	14	322±	13	319±	12	

PAGE: 2

(HAN300) BAIS 5

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

STUDY NO. : 0759

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : MALE PAGE: 3

Group Name	Adminis	tration	(weeks)												
	18		22		26		30		34		38		42		
MATERIAL AND A STATE OF THE STA						***************************************			" * *						
Control	0 ±	0	0±	0	0±	0	0 ±	0	0 ±	0	0 ±	0	0 ±	0	
280 ppm	12±	1	12±	1	12±	1	12±	1	12±	1	11 ±	1	11±	1	
Loo ppiii	12	•	14-	•	16	•	16	•	I da more	•	1 1 4000			•	
1400 ppm	61±	3	60±	3	57±	3	57±	3	57±	4	56±	3	54±	3	
7000 ppm	307±	13	298±	12	291±	10	287±	12	286±	14	$285\pm$	11	282±	11	

BAIS 5 (HAN300)

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	tration	(weeks)	······											
	46		50		54		58		62		66		70		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
280 ppm	11±	1	11±	1	11±	1	11 ±	1	11 ±	1	10±	1	10±	1	
1400 ppm	54±	4	<b>53</b> ±	3	<b>53</b> ±	3	53±	4	52±	3	51 ±	4	51±	4	
7000 ppm	278±	10	275±	12	277±	11	275±	12	271±	11	274±	22	267±	11	

PAGE: 4

(HAN300) BAIS 5

STUDY NO. : 0759

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 5

Group Name	Adminis	stration	(weeks)											
	74		78		82		86		90		94		98	
hinacas and an analysis and an														
Control	0 ±	0	0±	0	$0\pm$	0	$0\pm$	0	$0\pm$	0	0±	0	0±	0
280 ppm	11±	1	10±	0	10±	1	10±	1	11 ±	1	10±	1	10±	1
		•						·		·	, ,	·		
1400 ppm	$53\pm$	4	48±	4	51 ±	4	49 $\pm$	4	51 ±	5	50±	7	53±	6
7000 ppm	272±	15	261±	14	275±	16	261 ±	31	287 $\pm$	20	291 ±	21	302±	43
וווען טטט אוווי	212 ±	10	201 ±	14	213 I	10	201 ±	31	261 I	20	291 ≖	21	302 ≖	40

(HAN300) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

SEX : MALE				
Group Name	Adminis 102	tration	(weeks)	
Control	0±	0	0±	0
280 ppm	10±	1	11±	1
1400 ppm	56±	7	55±	7
7000 ppm	333±	41	$334\pm$	29

(HAN300)

BAIS 5

#### TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104 SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 7

Adminis	(weeks)												
1		2		3		4		5		6		7	
·			***************************************						· · · · · · · · · · · · · · · · · · ·				
0 ±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0	0 ±	0
14±	0	13±	0	12±	1	12±	1	11±	1	11±	0	10±	1
72 ±	3	67±	2	62±	2	60±	2	$56\pm$	2	54±	2	51 ±	2
334±	13	321±	12	296±	12	291 ±	13	276±	11	269±	10	259±	9
	1 0± 14± 72±	1 0± 0 14± 0 72± 3	$14\pm 0$ $13\pm 72\pm 3$ $67\pm$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(HAN300) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

PAGE: 8

Group Name	Adminis	(weeks)													
	8		9	9		10		11			13	13			
								***************************************	***************************************		u-se-	,			
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0	
160 ppm	10±	1	10±	1	10±	1	10±	1	10±	1	9±	1	9 ±	0	
800 ppm	50±	2	49±	2	48±	2	47 ±	3	47 ±	2	45±	2	45±	2	
4000 ppm	254±	9	<b>244</b> ±	9	244±	9	238±	9	$235\pm$	10	229±	10	229±	12	

(HAN300) BAIS 5

STUDY NO. : 0759

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration (weeks)														
	18		22		26		30		34		38		42		
		_		_											
ontrol	$0\pm$	0	0±	0	$0\pm$	0	0 ±	0	0±	0	0±	0	0 ±	0	
60 ppm	<b>9</b> ±	0	9±	1	9±	1	9 ±	1	9±	1	9±	1	9±	1	
800 ppm	45±	3	44±	3	43±	3	43±	3	44±	3	43±	4	42±	3	
ооо урш	40 -	J	44	3	40 =	J	40.	J	44	v	40 -	7	<b>76</b> .i	J	
4000 ppm	224±	10	222±	10	220±	8	218±	10	221 ±	12	214±	11	213±	14	

(HAN300) BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : mg/kg/day

REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

Group Name	Administration		(weeks)									*****			
	46		50		54		58		62		66		70		
· · · · · · · · · · · · · · · · · · ·						**						*			
Control	0±	0	0±	0	0±	0	<b>0</b> ±	0	$0\pm$	0	<b>0</b> ±	0	0±	0	
160 ppm	9±	1	9±	1	<b>8</b> ±	1	8±	1	8±	1	8±	1	8 ±	1	
roo ppiir	3-	1	3 1	'	0.1	ı	0.1	ľ	0	'	0.1.	,	0.1	'	
800 ppm	41 ±	3	<b>42</b> ±	4	42±	3	40 $\pm$	4	40±	4	38±	4	39±	3	
4000	010 1	10	016.1	10	010 +	10	010 :	14	017 -	1.5	200-⊢	1.4	210±	10	
4000 ppm	216±	13	216±	13	218±	12	218±	14	217±	15	$209\pm$	14	210±	12	

PAGE: 10

(HAN300) BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 11

Group Name	Adminis	tration	(weeks)												
	74		78		82		86		90		94		98		
Control	0±	0	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	
160 ppm	8 ±	1	7±	1	7±	1	7±	1	7±	1	7±	1	7±	1	
800 ppm	39±	4	37±	3	37±	4	36±	4	37 ±	4	36±	4	$35\pm$	5	
4000 ppm	217±	13	209±	15	215±	21	219±	22	215±	17	224±	24	218±	26	

(HAN300) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)		 	
	102	104			

Control	0±	0	0±	0
160 ppm	7±	1	7±	1
800 ppm	36±	5	37±	6
4000 ppm	232±	13	200±	16

PAGE: 12

(HAN300) BAIS 5

# TABLE F 1

HEMATOLOGY: MALE

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE REPORT TYPE : A1 HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RED BLOOD CELL 1 O ^s /µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f &	MCH pg	MCHC g∕dl	PLATELET 1 0³⁄µl
Control	38	8. 82± 1. 02	13.9± 1.8	42. 6± 4. 7	48. 5 ± 2. 9	15. 8± 1. 2	32.5± 1.0	896± 154
280 ppm	36	8. 41 ± 1. 54	13. 5 ± 2. 5	41.5± 6.6	49. 7± 2. 8	16.0± 1.2	32. 2± 1. 8	929± 250
1400 ppm	39	7. 77± 1. 73**	12. 4± 2. 4*	38. 5± 6. 6*	51. 2± 9. 5	16. 3± 2. 1	32. 0 ± 1. 4	1006± 231**
7000 ppm	29	7. 24± 1. 94**	11. 3± 2. 3**	35. 2± 7. 0**	50. 1 ± 6. 8	16. 0± 2. 0	32. 0± 0. 6**	1096± 205**

Significant difference ;  $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HCL070)

BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1 HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RETICULOCYTE %	METHEMOGLOBIN %		
Control	38	3. 2± 1. 8	0.8± 0.3		
280 ppm	36	4.8± 4.9	0.9± 0.3		
400 ppm	39	4. 4± 3. 6	1. 0± 0. 5		
7000 ppm	29	6. 0± 4. 3**	1. 1 ± 0. 4*		

BAIS 5 (HCL070)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name NO. of WBC Differential WBC (%)  $1 \, 0^3 / \mu \ell$ LYMPHO MONO EOS1NO BAS0 OTHER Animals NEUTRO Control  $3\pm$  $0\pm$ 0 4± 2 38 5. 67 ± 1. 68 43± 9 1 ±  $49 \pm$ 280 ppm 36 6. 01 ± 4. 77  $49\pm$ 10  $44\pm$ 10  $3\pm$ 1± 1  $0\pm$ 0  $3\pm$ 1±  $0\pm$  $5\pm$ 3 1400 ppm 39 8. 78 ± 14. 35  $53\pm$ 13  $38\pm$ 13 **4**± 1 1 7000 ppm 29 11.54± 21.23 19 1 ±  $0\pm$ 0 11± 23  $53\pm$  $32\pm$ 14**  $3\pm$ 1 1**

(HCL070) BAIS 5

# TABLE F 2

HEMATOLOGY: FEMALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1 HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RED BLOOD 1 O ⁶ /µl	CELL	HEMOGLO g/dl	BIN	HEMATO( %	CRIT	MCV f &	بساء .	MCH pg		MCHC g/dl		PLATELE 1 0 ³ /μ	
ontrol	34	8. 33± 1.	21	14.5±	1. 8	43. 6±	4. 6	52.9±	4. 4	17. 5±	1. 4	33. 2±	1. 1	$680\pm$	163
60 ppm	38	8. 15± 1.	32	14.3±	2. 0	43.0±	5. 0	53.6±	7. 1	17.7±	1. 6	33. 2±	1. 4	664±	125
00 ppm	42	8.36± 0.	87	14.5±	1. 6	43. 5±	4. 0	52. 2±	2. 0	17. 3±	0. 8	33. 2±	1. 2	779±	148*
000 ppm	3	3. 99± 1.	04**	7.3±	1. 6**	24. 3±	5. 6**	61. 3±	1. 9*	18. 4±	0. 7	30.0±	0. 5**	1034±	582

PAGE: 4

(HCL070) BA1\$ 5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE: 5 Group Name NO. of RETICULOCYTE METHEMOGLOBIN Animals % % Control 34 3. 3 ± 3. 3 0.8± 0.3 160 ppm 38 4. 0± 6. 5 0.8± 0.4 800 ppm 42 3. 2 ± 3. 5 0.9± 0.3 4000 ppm 14.0± 2.9** 1. 1 ± 0. 2 Significant difference ;  $*: P \leq 0.05$ 

** :  $P \leq 0.01$ 

Test of Dunnett

(HCL070)

BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE: 6 Group Name NO. of WBC Differential WBC (%)  $1.0^{3}/\mu l$ EOS INO BAS0 OTHER Animals NEUTRO LYMPH0 MONO Control 13 1± 34 4. 19 ± 6. 79 44± 11  $46\pm$ 4± 1  $0\pm$  $5\pm$ 14 160 ppm 38 4. 44 ± 8. 85 12  $48 \pm$ 12  $3\pm$  $2\pm$ 1  $0\pm$  $4\pm$ 2  $43 \pm$  $2\pm$ 42 2 800 ppm 3.  $21 \pm 3.20$ 44± 13  $47 \pm$ 13  $3\pm$ 1  $0\pm$ 1  $4\pm$ 4000 ppm 3 2. 25 ± 0. 39 7** 28± 5  $3\pm$  $0\pm$  $0\pm$ 0  $2\pm$ 1  $67 \pm$ 1 1* Significant difference;  $*: P \leq 0.05$ Test of Dunnett ** :  $P \leq 0.01$ 

(HCL070) BAIS 5

# TABLE G 1

BIOCHEMISTRY: MALE

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	TOTAL PRO g/dl	DTEIN	ALBUMIN g/dl		A/G RAT	10	T-BILI mg∕dl		GLUCOSE mg/dl		T-CHOLE mg∕dl	STEROL	TRIGLYC mg/dl	ERIDE
Control	38	6. 8±	0. 4	2.8±	0. 2	0.7±	0. 1	0.09±	0. 11	150±	20	167±	43	63±	33
280 ppm	36	6.7±	0. 4	2. 9±	0. 2	0.8±	0. 1	0.08±	0. 04	150±	24	182±	49	77±	47
1400 ppm	39	6. <b>8</b> ±	0. 6	2.7±	0. 3	0.7±	0. 1*	0. 61 ±	3. 33	144±	27	248±	62**	138±	80**
7000 ppm	29	6. 1±	0. 8**	2.4±	0. 3**	0.6±	0. 1**	0. 07±	0. 05	141±	37	225 $\pm$	54**	119±	75**

PAGE: 1

(HCL074) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

MEASURE. TIME : 1

SEX : MALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 2

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST U/L		ALT U/L		LDH U/L		ALP U/L		G-GTP U/L		CK U/L	
Control	38	235±	62	93±	46	42±	32	129±	42	348±	234	5. 7±	2. 8	105±	24
280 ppm	36	257±	67	86±	45	35±	11	148±	62	290±	107	5. 5±	3. 1	122±	52
400 ppm	39	350±	119**	118±	207	51 ±	50	158±	103	$339\pm$	293	9. 2±	6. 8	127±	50
7000 ppm	29	313±	66**	120±	140	59±	43**	173±	162	341 ±	95	9.4±	5. 7*	163±	130

Significant difference ; *:  $P \le 0.05$  **:  $P \le 0.01$  Test of Dunnett

(HCL074) BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

INORGANIC PHOS mg/dl	1	CALCIUM mg∕dl		CHLORIDE mEq/l		POTASSI mEq/s		SODIUM mEq∕l		CREATII mg/dl	TROGEN	UREA NI mg/dl	NO. of Animals	Group Name
3. 9± 0. 6	0. 3	10.5±	1	105±	0. 4	3.8±	1	142±	0. 15	0. 54±	2. 6	19.5±	38	Control
4. 0 ± 0. 5	0. 3	10.6±	1	105±	0. 4	3.7±	1	142±	0. 13	0.56±	3. 0	18.9±	36	280 ppm
5** 4. 6± 1. 4*	0. 6**	11. 0±	2	105±	0. 4	3.8±	2	142±	0. 27**	0.78±	11. 3**	30.8±	39	1400 ppm
9. 1 ± 6. 6*	0. 9**	11.3±	2**	103±	0. 6**	4. 3±	2	142±	0. 71**	1. 29±	73. 9**	85.5±	29	7000 ppm
**	0. 9**	11. 3±	2**	103±		4.3± Test of Dun		142±		1. 29± ** : P ≤ 0. (		***************************************	29	

PAGE: 3

(HCL074) BAIS 5

# TABLE G 2

BIOCHEMISTRY: FEMALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	TOTAL F g/dl	PROTEIN	ALBUMIN g∕dl		A/G RAT	T10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYCI mg∕dl	ERIDE
Control	34	7. <b>0</b> ±	0. 4	3. 5±	0. 3	1. 0±	0. 1	0. 08±	0. 09	154±	19	132±	27	75±	42
60 ppm	38	7.1±	0. 5	3.5±	0. 4	1. 0±	0. 2	0.12±	0. 28	146±	20	158±	47**	118±	99
00 ppm	42	7.1±	0. 5	3.7±	0. 4	1.1±	0. 2	0.06±	0. 02	150±	18	159±	41**	77±	41
mqq 000	3	4. 0±	0. 3**	1.6±	0. 1**	0.7±	0. 0	0. 03±	0. 01*	52±	20**	158±	29	10±	6*

PAGE: 4

(HCL074) BAIS 5

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1 BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

PAGE: 5

Group Name	NO. of Animals	PHOSPHO mg/dl	LIPID	AST U/L		ALT U/L		<b>LDH</b> U∕L		ALP U/L		G-GTP U/L		CK U/L	
Control	34	232±	47	140±	89	50±	20	188±	138	232±	170	2. 1±	1. 1	133±	179
160 ppm	38	274±	79*	141±	78	48±	16	166±	68	$295\pm$	472	3. 1 ±	4. 4	96±	37
mag 008	42	267±	62**	120±	51	49±	20	146±	53	196±	161	2. 4±	2. 1	87±	25
4000 ppm	3	228±	52	378±	11*	189±	61*	$468\pm$	233*	243±	68	2.1±	0. 2	797±	178*

(HCL074) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

UREA NITROGEN Group Name NO. of CREATININE SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg/dl mg/dl mEq/l mEq∕ℓ mEq/l mg/dl mg/dl Control 2 0.6 0. 45 ± 0. 11  $141 \pm$ 2 3.5 $\pm$ 0.4 104± 10.6 $\pm$ 0.3  $3.9\pm$ 34 17. 2± 2. 5 160 ppm 38 16. 9 ± 2. 2  $141\pm$ 3.6 $\pm$ 0.5 104± 3 10.7 $\pm$ 3.7 $\pm$ 0.8 0. 48± 0. 13 19.1 $\pm$ 800 ppm 42 8. 7 0. 47 ± 0. 15  $141 \pm$ 2 3.4± 0. 3  $103 \pm$ 3 10.9 $\pm$ 0.5* 3.7 $\pm$ 0. 6 4000 ppm 3 248.6 $\pm$ 8. 6** 107± 5 0. 5 1. 70 ± 0. 25** 149± 1** 5. 5 ± 0. 3* 10.2 $\pm$ 19. 4± 1. 3**

PAGE: 6

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Dunnett

(HCL074) BAIS 5

# TABLE H 1

URINALYSIS: MALE

### Urinalysis of male rats

In the dosed groups, protein, glucose, ketone body, bilirubin and urobilinogen could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items, group names and number of animals that could not be measured are shown as followed.

Protein: 1400 ppm (1), 7000 ppm (17) Glucose: 1400 ppm (22), 7000 ppm (28)

Ketone body: 280 ppm (1), 1400 ppm (2), 7000 ppm (24) Bilirubin: 280 ppm (2), 1400 ppm (20), 7000 ppm (29)

Urobilinogen: 280 ppm (2)

URINALYSIS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

Group Name	NO. of	рH_								Pr	ote	in_					Gluc	ose					K	eton	e bo	dу				Bi	liru	bin		
	Animals	5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	CHI		土	+	2+ 3	+ 4+	CHI		- :	± +	2+	3+	4+	CHI		· ±	+ :	2+ 3	+ 4+	Cl	HI	_	+	2+ 3	+ 0	CHI
									1																									
Control	38	0	0	0	6	13	8	11		0	1	1	4 3	2 0			38	0	0 0	0	0		26	8	4	0	0 0			38	0	0	0	
280 ppm	37	0	1	2	2	14	10	8		0	0	1	14 2	2 0	*		37	0	0 0	0	0		24	1 11	1	0	0 0			34	1	0	0	
1400 ppm	41	0	3	10	5	5	5	13	**	0	0	0	15 2	5 0	*		19	0	0 0	0	0		22	2 16	1	0	0 0			18	1	1	1	
7000 ppm	33	0	2	7	7	10	1	6	**	0	0	0	10	6 0	**		5	0	0 0	0	0		(	5 2	1	0	0 0			4	0	0	0	
											···																							
Significan	t difference ;	*	: P ≦	≦ 0.05	5	**	: P ≦	€ 0. 01							Te	st of	CHI	SQI	JARE															

PAGE: 1

(HCL101) BAIS 5

URINALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2

Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI	
Control	38	37 0 0 0 1	38 0 0 0 0	
280 ppm	37	37 0 0 0 0	35 0 0 0 0	
1400 ppm	41	41 0 0 0 0	40 1 0 0 0	
7000 ppm	33	31 0 1 0 1	33 0 0 0 0	
Significan	t difference	; * : P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE

(HCL101)

BAIS 5

# TABLE H 2

URINALYSIS: FEMALE

### Urinalysis of female rats

In the dosed groups, glucose, ketone body, bilirubin and urobilinogen could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items, group names and number of animals that could not be measured are shown as followed.

Glucose: 800 ppm (2), 4000 ppm (3)

Ketone body: 800 ppm (6), 4000 ppm (3)

Bilirubin: 800 ppm (9), 4000 ppm (2)

Urobilinogen: 800 ppm (6)

Therefore, glucose, ketone body and bilirubin in 4000 ppm dosed group could not be evaluated.

URINALYSIS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

PAGE: 3

Group Name	NO. of Animals	pH_ 5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	CHI	Protein	Glucose	Ketone body ± + 2+ 3+ 4+ CHI	Bilirubin — + 2+ 3+ CHI
Control	34	0	1	1	5	6	17	4		0 4 11 9 10 0	34 0 0 0 0 0	14 18 2 0 0 0	34 0 0 0
160 ppm	39	0	0	4	0	8	14	13	*	0 3 10 8 17 1	39 0 0 0 0 0	12 18 8 1 0 0	37 1 1 0
300 ppm	42	0	2	4	3	7	13	13		0 1 12 17 11 1	40 0 0 0 0 0	10 16 8 2 0 0	33 0 0 0
4000 ppm	4	0	1	3	0	0	0	0	**	0 0 0 0 4 0	1 0 0 0 0 0 ?	1 0 0 0 0 0 ?	2 0 0 0 ?

^{? :} Significant test is not applied, because No. of data in this group is less than 3.

(HCL101)

BAIS 5

URINALYSIS

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

Group Name	NO. of Animals	Occult blood — ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI	
Control	34	33 0 0 1 0	34 0 0 0 0	
160 ppm	39	35 0 3 1 0	37 1 0 1 0	
800 ppm	42	41 0 0 0 1	36 0 0 0 0	
4000 ppm	4	0 0 1 1 2 **	4 0 0 0 0	

(HCL101)

BAIS 5

# TABLE I 1

GROSS FINDINGS: MALE: ALL ANIMALS

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : SEX :	MALE				PAGE: 1
Organ	Findings	Group Name Control NO. of Animals 50 (%)	280 ppm 50 (%)	1400 ppm 50 (%)	7000 ppm 50 {%}
skin/app	nodule	8 (16)	2 ( 4)	5 (10)	1 ( 2)
	scab	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
subcutis	jaundice	1 ( 2)	0 ( 0)	2 ( 4)	0 ( 0)
	mass	6 (12)	11 (22)	16 ( 32)	6 (12)
lung	white zone	4 ( 8)	1 ( 2)	3 (6)	5 (10)
	red zone	1 ( 2)	0 ( 0)	1 ( 2)	1 ( 2)
	nodu l e	0 ( 0)	1 ( 2)	2 ( 4)	0 ( 0)
lymph node	enlarged	1 ( 2)	0 ( 0)	3 (6)	3 (6)
spleen	enlarged	5 (10)	5 (10)	9 (18)	5 ( 10)
	nodu l e	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
heart	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
oral cavity	nodu l e	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
tooth	white zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	nodu l e	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
tongue	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	ulcer	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
stomach	forestomach:ulcer	1 ( 2)	0 ( 0)	1 (2)	0 ( 0)
	forestomach:nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	forestomach:thick	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	glandular stomach:ulcer	1 ( 2)	0 ( 0)	0 ( 0)	1 ( 2)
	glandular stomach:erosion	0 ( 0)	1 ( 2)	1 ( 2)	2 ( 4)
	glandular stomach:nodule	2 ( 4)	2 ( 4)	0 ( 0)	1 ( 2)

STUDY NO. : 0759 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

Organ	Findings	Group Name Control NO. of Animals 50 (%)	280 ppm 50 (%)	1400 ppm 50 (%)	7000 ppm 50 (%)
stomach	glandular stomach:thick	0 ( 0)	0 ( 0)	0 ( 0)	5 (10)
small intes	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	invagination	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
liver	enlarged	2 ( 4)	1 ( 2)	1 ( 2)	0 ( 0)
	white zone	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 2)
	nodule	2 ( 4)	0 ( 0)	0 ( 0)	1 ( 2)
	rough	2 ( 4)	1 ( 2)	3 ( 6)	2 ( 4)
	herniation	4 ( 8)	9 (18)	4 ( 8)	5 (10)
pancreas	nodule	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
cidney	white zone	0 ( 0)	1 ( 2)	0 ( 0)	1 ( 2)
	nodule	0 ( 0)	1 ( 2)	0 ( 0)	1 ( 2)
	cyst	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	granular	5 (10)	2 ( 4)	13 ( 26)	29 ( 58)
ırin bladd	white zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	urine:marked retention	0 ( 0)	1 ( 2)	0 ( 0)	3 ( 6)
	urine:red	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
ituitary	enlarged	6 (12)	14 (28)	5 (10)	1 ( 2)
	red zone	9 (18)	5 (10)	5 (10)	0 ( 0)
	nodule	. 1 ( 2)	2 ( 4)	7 (14)	1 ( 2)
	cyst	1 ( 2)	1 ( 2)	1 ( 2)	0 ( 0)
hyroid	enlarged	2 ( 4)	3 ( 6)	7 (14)	1 ( 2)
	nodule	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE

gan	Findings	Group Name Control NO. of Animals 50 (%)	280 ppm 50 (%)	1400 ppm 50 (%)	7000 ppm 50 (%)
renal	enlarged	5 (10)	3 ( 6)	3 (6)	0 ( 0)
stis	nodule	32 ( 64)	27 ( 54)	36 (72)	45 ( 90)
ididymis	nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
state	nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
p/cli gl	nodu l e	0 ( 0)	1 ( 2)	1 ( 2)	1 ( 2)
in	red zone	2 ( 4)	0 ( 0)	0 ( 0)	1 (2)
	yellow zone	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	black zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	hemorrhage	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	nodu l e	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
nal cord	red zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
iph nerv	nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	turbid	1 ( 2)	0 ( 0)	0 ( 0)	2 ( 4)
	white	4 ( 8)	9 (18)	2 ( 4)	2 ( 4)
bal gl	nodule	1 ( 2)	0 ( 0)	1 ( 2)	1 ( 2)
iastinum	mass	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
itoneum	nodule	0 ( 0)	1 (2)	0 ( 0)	0 ( 0)
roperit	cyst	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	thick	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
ominal c	hemorrhage	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	ascites	0 ( 0)	1 ( 2)	0 ( 0)	2 ( 4)
acic ca	pleural fluid	0 ( 0)	1 ( 2)	1 ( 2)	2 ( 4)

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

SEX : MALE

PAGE: 4

Organ	Findings	Group Name NO. of Animals	Control 50 (%)	280 ppm 50 (%)	1400 ppm 50 (%)	7000 ppm 50 {%}
other	tail:nodule		0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
whole body	anemic		0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)
(HPT080)						BAIS 5

# TABLE I 2 GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

: MALE

gan	Findings	Group Name Control NO. of Animals 12 (%)	280 ppm 14 (%)	1400 ppm 9 (%)	7000 ppm 17 (%)
cin/app	nodu l e	3 (25)	0 ( 0)	1 (11)	1 ( 6)
bcutis	jaundice	1 ( 8)	0 ( 0)	1 (11)	0 ( 0)
	mass	1 ( 8)	4 (29)	3 (33)	1 (6)
ing	white zone	1 ( 8)	0 ( 0)	1 (11)	1 (6)
	red zone	1 ( 8)	0 ( 0)	1 (11)	1 ( 6)
	nodule	0 ( 0)	0 ( 0)	1 (11)	0 ( 0)
mph node	enlarged	0 ( 0)	0 ( 0)	2 (22)	3 (18)
leen	enlarged	3 (25)	3 (21)	4 ( 44)	3 (18)
al cavity	nodu l e	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
oth	nodule	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
ngue	ulcer	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
omach	forestomach:ulcer	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
	forestomach: thick	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
	glandular stomach:ulcer	1 ( 8)	0 ( 0)	0 ( 0)	1 ( 6)
	glandular stomach:erosion	0 ( 0)	1 (7)	0 ( 0)	1 (6)
all intes	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 6)
	invagination	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
ver	enlarged	2 (17)	1 ( 7)	1 (11)	0 ( 0)
	nodule	2 (17)	0 ( 0)	0 ( 0)	0 ( 0)
	rough	1 ( 8)	0 ( 0)	1 (11)	0 ( 0)
	herniation	0 ( 0)	1 ( 7)	1 (11)	3 (18)
dney	white zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (6)

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

Organ	Findings	Group Name Control NO. of Animals 12 (%)	280 ppm 14 (%)	1400 ppm 9 (%)	7000 ppm 17 (%)
kidney	granular	1 ( 8)	0 ( 0)	0 ( 0)	7 (41)
urin bladd	urine:marked retention	0 ( 0)	1 ( 7)	0 ( 0)	3 (18)
	urine:red	0 ( 0)	0 ( 0)	0 ( 0)	1 (6)
pituitary	enlarged	3 (25)	5 (36)	2 (22)	1 (6)
	red zone	0 ( 0)	2 (14)	0 ( 0)	0 ( 0)
thyroid	enlarged	1 ( 8)	0 ( 0)	0 ( 0)	1 (6)
adrenal	enlarged	2 (17)	1 (7)	0 ( 0)	0 ( 0)
testis	nodu l e	3 (25)	4 (29)	3 (33)	13 (76)
orostate	nodu l e	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
brain	red zone	2 (17)	0 ( 0)	0 ( 0)	1 (6)
	yellow zone	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
	black zone	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
	hemorrhage	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
	nodu l e	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
spinal cord	red zone	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
periph nerv	nodule	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
eye	turbid	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
	white	0 ( 0)	1 (7)	0 ( 0)	2 ( 12)
Zymbal gl	nodule	1 ( 8)	0 ( 0)	0 ( 0)	1 (6)
nediastinum	mass	1 ( 8)	0 ( 0)	0 ( 0)	0 ( 0)
peritoneum	nodule	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
retroperit	thick	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 6)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : MALE PAGE: 3

Organ	Findings	Group Name Control NO. of Animals 12 (%)	280 ppm 14 (%)	1400 ppm 9 (%)	7000 ppm 17 (%)
abdominal c	hemorrhage	0 ( 0)	1 ( 7)	0 ( 0)	0 ( 0)
	ascites	0 ( 0)	1 ( 7)	0 ( 0)	2 ( 12)
oracic ca	pleural fluid	0 (0)	1 ( 7)	1 (11)	1 (6)
ole body	anemic	0 ( 0)	1 (7)	1 (11)	0 ( 0)

BAIS 5 (HPT080)

# TABLE I 3

GROSS FINDINGS: MALE: SACRIFICED ANIMALS

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

)rgan	Findings	Group Name Control NO. of Animals 38 (%)	280 ppm 36 (%)	1400 ppm 41 (%)	7000 ppm 33 (%)
kin/app	nodule	5 (13)	2 ( 6)	4 (10)	0 ( 0)
	scab	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
ubcutis	j aund i ce	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	mass	5 (13)	7 (19)	13 ( 32)	5 (15)
ung	white zone	3 ( 8)	1 ( 3)	2 ( 5)	4 (12)
	nodu l e	0 ( 0)	1 ( 3)	1 ( 2)	0 ( 0)
ymph node	enlarged	1 ( 3)	0 ( 0)	1 ( 2)	0 ( 0)
pleen	enlarged	2 ( 5)	2 ( 6)	5 ( 12)	2 ( 6)
	nodu l e	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
eart	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
ral cavity	nodu l e	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
ooth	white zone	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
ongue	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
tomach	forestomach:ulcer	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	forestomach:nodule	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	glandular stomach:erosion	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 3)
	glandular stomach:nodule	2 ( 5)	2 ( 6)	0 ( 0)	1 ( 3)
	glandular stomach:thick	0 ( 0)	0 ( 0)	0 ( 0)	5 (15)
iver	white zone	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 3)
	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 3)
	rough	1 ( 3)	1 ( 3)	2 ( 5)	2 ( 6)
	herniation	4 (11)	8 (22)	3 (7)	2 ( 6)

: RAT F344/DuCrlCrlj[F344/DuCrj]

nodule

cyst

granular

enlarged

red zone

nodule cyst

enlarged

enlarged

nodule

nodule

nodule

turbid

white

nodule

cyst

pleural fluid

tail:nodule

nodule

white zone

GROSS FINDINGS (SUMMARY)
SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

urin bladd

pituitary

thyroid

adrenal

testis

eye

epididymis

prep/cli gl

Zymbal gl

retroperit

thoracic ca

SEX : MALE

Organ	Findings	Group Name NO. of Animals	Control 38 (%)	280 ppm 36 (%)	1400 ppm 41 (%)	7000 ppm 33 (%)
pancreas	nodu l e		0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
kidney	white zone		0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)

0 (0)

1 (3)

4 (11)

1 (3)

3 (8)

9 (24)

1 (3)

1 (3)

1 (3)

0 (0)

3 (8)

29 (76)

0 ( 0)

0 ( 0)

0 (0)

4 (11)

0 (0)

1 (3)

0 (0)

0 ( 0)

1 (3)

0 ( 0)

2 (6)

0 (0)

9 (25)

3 (8)

2 (6)

1 (3)

3 (8)

0 ( 0)

2 (6)

23 (64)

1 (3)

1 (3)

0 ( 0)

8 (22)

0 ( 0)

0 (0)

0 (0)

1 (3)

0 ( 0)

0 ( 0)

13 (32)

0 (0)

3 (7)

5 (12)

7 (17)

1 (2)

7 (17)

1 (2)

3 (7)

33 (80)

0 (0)

1 (2)

0 (0)

2 (5)

1 (2)

0 (0)

0 (0)

0 (0)

other

PAGE: 2

1 (3)

0 (0)

22 (67)

0 ( 0)

0 (0)

0 ( 0)

1 (3)

0 ( 0)

0 ( 0)

0 ( 0)

0 (0)

32 (97) 0 (0)

1 (3)

2 (6)

0 ( 0)

0 (0)

0 (0)

1 (3)

# TABLE I 4

GROSS FINDINGS: FEMALE: ALL ANIMALS

: RAT F344/DuCrlCrlj[F344/DuCrj]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO.
ANIMAL : RAI roa...
REPORT TYPE : A1
CEY : FEMALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	160 ppm 50 (%)	800 ppm 50 (%)	4000 ppm 50 (%)
kin/app	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	3 ( 6)
ubcutis	jaundice	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	mass	17 ( 34)	13 (26)	14 (28)	11 ( 22)
ung	white zone	0 ( 0)	1 ( 2)	0 ( 0)	29 ( 58)
	red zone	1 ( 2)	0 ( 0)	0 ( 0)	1 ( 2)
	brown zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	nodule	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)
ymph node	enlarged	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
pleen	enlarged	6 (12)	7 (14)	5 (10)	2 ( 4)
	hemorrhage	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
rtery/aort	induration	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
ongue	nodule	0 ( 0)	1 ( 2)	3 ( 6)	0 ( 0)
tomach	forestomach:ulcer	1 ( 2)	2 ( 4)	0 ( 0)	2 ( 4)
	forestomach:nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	forestomach:red zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	glandular stomach:erosion	1 ( 2)	0 ( 0)	0 ( 0)	3 ( 6)
	glandular stomach:black zone	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	glandular stomach:thick	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
mall intes	nodule	1 ( 2)	0 ( 0)	1 ( 2)	0 ( 0)
	adhesion	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
ver	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	pale	0 ( 0)	1 (2)	0 ( 0)	0 ( 0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

san	Findings	Group Name Control NO. of Animals 50 (%)	160 ppm 50 (%)	800 ppm 50 (%)	4000 ppm 50 (%)
er	white zone	1 ( 2)	2 ( 4)	1 ( 2)	0 ( 0)
	red zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	nodule	1 ( 2)	1 ( 2)	0 ( 0)	0 ( 0)
	cyst	0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)
	rough	3 ( 6)	1 ( 2)	0 ( 0)	0 ( 0)
	nodular	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	herniation	7 (14)	6 (12)	14 (28)	6 (12)
ney	nodule	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	deformed	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
	granular	0 ( 0)	1 ( 2)	0 ( 0)	3 ( 6)
bladd	urine:marked retention	1 ( 2)	1 ( 2)	0 ( 0)	4 ( 8)
uitary	enlarged	8 (16)	10 (20)	11 ( 22)	0 ( 0)
	red zone	13 (26)	11 (22)	6 (12)	3 ( 6)
	black zone	1 ( 2)	2 ( 4)	0 ( 0)	0 ( 0)
	nodule	1 ( 2)	1 ( 2)	4 ( 8)	1 ( 2)
	cyst	1 ( 2)	1 (2)	3 ( 6)	0 ( 0)
oid	enlarged	1 ( 2)	1 ( 2)	4 ( 8)	0 ( 0)
ena l	enlarged	2 ( 4)	1 ( 2)	0 ( 0)	0 ( 0)
у	enlarged	0 ( 0)	0 ( 0)	1 ( 2)	2 ( 4)
	nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
us	black zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (2)
	nodule	9 (18)	8 (16)	7 (14)	4 ( 8)

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

Organ	Findings	Group Name Control NO. of Animals 50 (%)	160 ppm 50 (%)	800 ppm 50 (%)	4000 ppm 50 (%)
uterus	dilated lumen	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
vagina	nodule	0 ( 0)	1 (2)	0 ( 0)	0 ( 0)
	dilated	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
brain	red zone	1 ( 2)	1 ( 2)	1 (2)	0 ( 0)
eye	turbid	0 ( 0)	0 ( 0)	0 ( 0)	5 (10)
	white	1 ( 2)	3 ( 6)	3 ( 6)	2 ( 4)
Zymbal gl	nodule	0 ( 0)	1 (2)	2 ( 4)	1 ( 2)
nuscle	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 (2)
oleura	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
nediastinum	mass	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)
peritoneum	nodule	1 ( 2)	1 (2)	0 ( 0)	0 ( 0)
bdominal c	hemorrhage	0 ( 0)	1 (2)	0 ( 0)	0 ( 0)
	ascites	0 ( 0)	2 ( 4)	1 (2)	3 ( 6)
thoracic ca	pleural fluid	2 ( 4)	0 ( 0)	0 ( 0)	43 ( 86)
other	nodule	2 ( 4)	0 ( 0)	0 ( 0)	0 ( 0)
	tail:nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	ear:nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	forelimb:nodule	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)
	nose:nodule	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)
whole body	anemic	1 ( 2)	0 ( 0)	0 ( 0)	1 (2)

	TABLE I 5		
GROSS FINDINGS: FEM	MALE: DEAD AN	ND MORIBUND A	NIMALS

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

rgan	Findings	Group Name Control NO. of Animals 16 (%)	160 ppm 11 (%)	800 ppm 8 (%)	4000 ppm 47 (%)
kin/app	nodul e	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)
ubcutis	jaundice	0 ( 0)	0 ( 0)	1 (13)	0 ( 0)
	mass	3 (19)	2 (18)	1 (13)	11 ( 23)
ung	white zone	0 ( 0)	0 ( 0)	0 ( 0)	29 (62)
	red zone	1 ( 6)	0 ( 0)	0 ( 0)	1 ( 2)
	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
ymph node	enlarged	0 ( 0)	1 ( 9)	0 ( 0)	0 ( 0)
oleen	enlarged	4 (25)	3 (27)	4 (50)	2 ( 4)
	hemorrhage	0 ( 0)	1 ( 9)	0 ( 0)	0 ( 0)
tery/aort	induration	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
omach	forestomach:ulcer	1 ( 6)	2 (18)	0 ( 0)	1 ( 2)
	forestomach:nodule	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	forestomach:red zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	glandular stomach:erosion	1 ( 6)	0 ( 0)	0 ( 0)	2 ( 4)
	glandular stomach:black zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
mall intes	nodule	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
iver	enlarged	0 ( 0)	0 ( 0)	1 (13)	0 ( 0)
	pale	0 ( 0)	1 ( 9)	0 ( 0)	0 ( 0)
	white zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	cyst	0 ( 0)	0 ( 0)	1 (13)	0 ( 0)
	rough	2 (13)	0 ( 0)	0 ( 0)	0 ( 0)
	herniation	3 (19)	1 (9)	2 (25)	6 (13)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 16 (%)	160 ppm 11 (%)	800 ppm 8 (%)	4000 ppm 47 (%)
dney	nodu l e	0 ( 0)	0 ( 0)	1 (13)	0 ( 0)
	granular	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)
in bladd	urine:marked retention	1 ( 6)	1 ( 9)	0 ( 0)	4 ( 9)
tuitary	enlarged	6 (38)	4 (36)	3 (38)	0 ( 0)
	red zone	2 (13)	1 (9)	0 ( 0)	3 (6)
	black zone	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
yroid	enlarged	1 ( 6)	0 ( 0)	1 (13)	0 ( 0)
renal	enlarged	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
ary	enlarged	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	nodu l e	1 ( 6)	0 ( 0)	0 ( 0)	0 ( 0)
erus	black zone	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
	nodule	3 (19)	3 (27)	0 ( 0)	3 ( 6)
	dilated lumen	0 ( 0)	1 (9)	0 ( 0)	0 ( 0)
gina	nodule	0 ( 0)	1 ( 9)	0 ( 0)	0 ( 0)
	dilated	0 ( 0)	0 ( 0)	1 (13)	0 ( 0)
ain	red zone	1 ( 6)	0 ( 0)	1 (13)	0 ( 0)
е	turbid	0 ( 0)	0 ( 0)	0 ( 0)	3 ( 6)
	white	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)
mbal gl	nodul e	0 ( 0)	0 ( 0)	1 (13)	1 ( 2)
cle	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)
ura	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

PAGE: 6

l e		0 ( (	0)	0 ( 0)	0	( 0)	2	( 4)
				- ' 0'	·	, 0,	L	( 4)
		1 ( 6	5)	1 ( 9)	0	( 0)	0	( 0)
rrhage		0 ( (	))	1 ( 9)	0	( 0)	0	( 0)
tes		0 ( (	0)	2 (18)	1	(13)	3	( 6)
ral fluid		1 ( (	5)	0 ( 0)	0	( 0)	41	( 87)
: nodul e		0 ( (	))	0 ( 0)	0	( 0)	1	( 2)
limb: nodule		1 (	6)	0 ( 0)	0	( 0)	0	( 0)
ic		1 ( (	5)	0 ( 0)	0	( 0)	1	( 2)
1	tes ral fluid module limb:nodule	tes ral fluid module limb:nodule	tes 0 ( Caral fluid 1 ( Carandule 0 ( Carandule 1 ( Carand	tes 0 ( 0) ral fluid 1 ( 6) module 0 ( 0)	tes 0 ( 0) 2 ( 18) ral fluid 1 ( 6) 0 ( 0) rnodule 0 ( 0) 0 ( 0)	tes 0 (0) 2 (18) 1  ral fluid 1 (6) 0 (0) 0  module 0 (0) 0 (0) 0  limb:nodule 1 (6) 0 (0) 0	tes 0 (0) 2 (18) 1 (13)  ral fluid 1 (6) 0 (0) 0 (0)  module 0 (0) 0 (0) 0 (0)  limb:nodule 1 (6) 0 (0) 0 (0)	tes 0 (0) 2 (18) 1 (13) 3 ral fluid 1 (6) 0 (0) 0 (0) 41 rnodule 0 (0) 0 (0) 0 (0) 1

(HPT080)

BAIS 5

# TABLE I 6

GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

Organ	Findings	Group Name Control NO. of Animals 34 (%)	160 ppm 39 (%)	800 ppm 42 (%)	4000 ppm 3 (%)
skin/app	nodule	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
subcutis	mass	14 (41)	11 (28)	13 (31)	0 ( 0)
lung	white zone	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	brown zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
	nodu l e	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
spleen	enlarged	2 ( 6)	4 (10)	1 ( 2)	0 ( 0)
tongue	nodu l e	0 ( 0)	1 ( 3)	3 ( 7)	0 ( 0)
stomach	forestomach:ulcer	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
	glandular stomach:erosion	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
	glandular stomach:thick	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
small intes	nodu l e	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)
	adhesion	1 ( 3)	0 ( 0)	0 ( 0)	0 ( 0)
liver	white zone	0 ( 0)	2 ( 5)	1 ( 2)	0 ( 0)
	red zone	0 ( 0)	0 ( 0)	0 ( 0)	1 (33)
	nodu l e	1 ( 3)	1 ( 3)	0 ( 0)	0 ( 0)
	cyst	0 ( 0)	1 (3)	0 ( 0)	0 ( 0)
	rough	1 ( 3)	1 (3)	0 ( 0)	0 ( 0)
	nodular	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	herniation	4 (12)	5 (13)	12 ( 29)	0 ( 0)
kidney	deformed	0 ( 0)	1 ( 3)	0 ( 0)	0 ( 0)
	granular	0 ( 0)	1 ( 3)	0 ( 0)	1 (33)
pituitary	enlarged	2 ( 6)	6 (15)	8 (19)	0 ( 0)

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 34 {%	160 ppm ) 39 (%)	800 ppm 42 (%)	4000 ppm 3 (%)
tuitary	red zone	11 (3	2) 10 (26)	6 (14)	0 ( 0)
	black zone	0 (	0) 2 ( 5)	0 ( 0)	0 ( 0)
	nodule	1 (	3) 1 ( 3)	4 (10)	0 ( 0)
	cyst	1 (	3) 1 ( 3)	3 (7)	0 ( 0)
/roid	enlarged	0 (	0) 1 ( 3)	3 (7)	0 ( 0)
enal	enlarged	1 (	3) 1 ( 3)	0 ( 0)	0 ( 0)
ry	enlarged	0 (	0 (0)	1 ( 2)	1 (33)
rus	nodule	6 (1	8) 5 (13)	7 (17)	1 (33)
n	red zone	0 (	0) 1 ( 3)	0 ( 0)	0 ( 0)
	turbid	0 (	0 ( 0)	0 ( 0)	2 (67)
	white	1 (	3 (8)	3 ( 7)	0 ( 0)
oal gl	nodule	0 (	0) 1 ( 3)	1 ( 2)	0 ( 0)
racic ca	pleural fluid	1 (	3) 0 ( 0)	0 ( 0)	2 (67)
er	nodule	2 (	6) 0 ( 0)	0 ( 0)	0 ( 0)
	ear:nodule	0 (	0 ( 0)	0 ( 0)	1 (33)
	nose:nodule	0 (	0) 1 (3)	0 ( 0)	0 ( 0)

# TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 SEX : MALE

SEX : MAL UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	Body	Weight	ADRE	NALS	TEST	ES	HEAR	Τ	LUNG	S	KIDN	IEYS
Control	38	372±	32	0. 093±	0. 088	3. 196±	1. 434	1. 232±	0. 090	1. 442±	0. 172	2. 790±	0. 183
280 ppm	36	373±	35	0. 092±	0. 101	2. 881 $\pm$	1. 447	1. 255±	0. 125	1. 427±	0. 150	2. $880\pm$	0. 374
1400 ppm	39	353±	38*	0. 134±	0. 224	2. 734±	1. 139	1. 276±	0. 102	1. <b>548</b> ±	0. 271*	3. 221 ±	0. 695**
7000 ppm	29	250±	28**	0. 071±	0. 009	3. 226±	1. 102	1. 174±	0. 086	1. 515±	0. 120**	2.819±	0. 280

(HCL 040) BAIS 5

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

UNIT: g

PAGE: 2

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	38	1. 089± 0. 379	10. 641 ± 0. 973	2. 126± 0. 048	
280 ppm	36	1. 211 ± 0. 654	11. 144± 1. 680	2. 125± 0. 049	
1400 ppm	39	1. 587 ± 2. 443	13. 159± 1. 437**	2. 135± 0. 039	
7000 ppm	29	1. 077± 0. 467	12. 470± 1. 394**	2. 056± 0. 043**	

(HCL040) BAIS 5

# TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	Body N	Weight	ADREI	NALS	OVAR	IES	HEAR	T	LUNG	S	KIDN	EYS
Control	34	266±	33	0. 147±	0. 415	0.139±	0. 025	0. 900±	0. 057	1. 038±	0. 163	1. 861±	0. 119
160 ppm	39	268±	24	0.080±	0. 029	0.139±	0. 020	0. 920±	0. 099	1. 048±	0. 129	1. 921 ±	0. 181
800 ppm	42	261 ±	33	0. 080 $\pm$	0. 014	0.216±	0. 479	0.893±	0. 066	1. 031±	0. 078	1. 848±	0. 186
4000 ppm	3	134±	7**	0. 087±	0. 002	4.762±	8. 089	0. 959±	0. 044	2. 056±	1. 219**	1. 485±	0. 009*

(HCL040) BAIS 5

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	34	1. 056± 1. 751	7. 036± 1. 021	1. 955± 0. 049	
160 ppm	39	1. 222± 2. 282	7. 615± 2. 096	1. 948± 0. 039	
mqq 008	42	0. 678± 0. 450	7. 402 ± 1. 332	1. 945 ± 0. 032	
4000 ppm	3	0. 350± 0. 056**	6. 145± 0. 934	1. 843± 0. 044**	

PAGE: 4

(HCL040) BAIS 5

# TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

REPORT TYPE : A1 SEX : MALE

UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	Body Weight (g)	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	38	372± 32	0. 025± 0. 022	0. 861 ± 0. 380	0. 333± 0. 026	0. 391± 0. 063	0. 755± 0. 073
280 ppm	36	373± 35	0. 025± 0. 030	0. 784± 0. 413	0. 339± 0. 042	0. 385± 0. 045	0. 776± 0. 103
1400 ppm	39	353± 38*	0. 037± 0. 059*	0. 767± 0. 298	0. 366± 0. 052**	0.445± 0.109**	0. 937± 0. 336**
7000 ppm	29	250± 28**	0. 029± 0. 006**	1. 280± 0. 389**	0. 475± 0. 063**	0. 611± 0. 059**	1. 138± 0. 133**

(HCL042) BAIS 5

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE UNIT: %

PAGE: 2

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	38	0. 294± 0. 109	2. 873± 0. 254	0. 577± 0. 055	
. mag 089	36	0. 323± 0. 166	2. 983± 0. 334	0. 574± 0. 057	
400 ppm	39	0. 473± 0. 845**	3. 767± 0. 608**	0. 611 ± 0. 066**	
7000 ppm	29	0. 432± 0. 205**	5. 007 ± 0. 401**	0. 832± 0. 086**	

(HCL042)

BAIS 5

# TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS
Control	34	266± 33	0. 056± 0. 160	0. 053± 0. 010	0. 343± 0. 052	0. 399± 0. 108	0. 709± 0. 101
160 ppm	39	268± 24	0. 030± 0. 013	0.052± 0.008	0. 345± 0. 043	0. 395± 0. 070	0. 720± 0. 075
mqq 00	42	261± 33	0. 031 ± 0. 006	0. 081 ± 0. 170	0. 347± 0. 042	0. 401± 0. 051	0.716± 0.083
4000 ppm	3	134± 7**	0. 065± 0. 002**	3. 606± 6. 129*	0. 717± 0. 060**	1. 564± 0. 993**	1. 111± 0. 064**

(HCL042)

BAIS 5

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

REPORT TYPE : A1 SEX : FEMALE UNIT: %

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	34	0. 426± 0. 786	2. 657± 0. 345	0. 746± 0. 102	
160 ppm	39	0. 496± 1. 057	2. 862± 0. 859	0.732± 0.064	
300 ppm	42	0. 262± 0. 169	2. 841 ± 0. 374**	0.759± 0.110	
4000 ppm	3	0. 262± 0. 044	4. 575± 0. 547**	1. 378± 0. 080**	

(HCL042) BAIS 5

### TABLE L 1

# HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	280 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
[Integumentar	y system/appandagel				
skin/app	3 33 CCIII/ appartuage)	<50>	<50>	<50>	<50>
	ulcer	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	0 1 0 0 ( 0) ( 0)
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 ( 0) ( 0)
	scab	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
subcutis	cyst	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 1 0 (0) (0) (2) (0)
{Respiratory	system)				
nasal cavit	thrombus	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 4 1 0 0 ( 8) ( 2) ( 0) ( 0)	(50) 1 0 0 0 (2) (0) (0) (0)
	mineralization	41 0 0 0 ( 82) ( 0) ( 0) ( 0)	43 0 0 0 ( 86) ( 0) ( 0) ( 0)	45 0 0 0 (90) (0) (0) (0)	47 0 0 0 (94) (0) (0) (0)

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 2

Organ		Group Name No. of Animals on Stud Grade	y 1+	trol 50 2+ (%)	3+ (%)	4+ (%)	1+ (%)	80 ppm 5 2+ (%)	1 i0 3+ (%)	4+ (%)	1+		50 2+	3+ 4+ (%) (%)		7+ (%)	000 pp 5 2+ (%)		4+ (%)
(Respiratory s	system)																		
nasal cavit	eosinophilic change:olfactory epitheli		40 80) (	<50) 2 4) (	1	0 ( 0)	39 ( 78)	7		0 ( 0)	44 ( 88)			0 0		31 ( 62)	<5 0 ( 0)	0> 0 ( 0)	0 *
	eosinophilic change:respiratory epithe		8 16) (	0 (	0 0)	0 ( 0)	9 ( 18)	0 ( 0)	0 ( 0)	0 ( 0)	2 ( 4)	( (	) )) (	0 0		7 ( 14)	0 ( 0)	0 ( 0)	0 ( 0)
	inflammation:foreign body		16 32) (	4 8) (	0 0)	0 ( 0)	18 ( 36)	2 ( 4)	0 ( 0)	0 ( 0)	21 ( 42)		9 3) (	1 0 2) ( 0)			17 ( 34)	2 ( 4)	0 **
	inflammation:respiratory epithelium	(	9 18) (	1 2) (	0 0)	0 ( 0)	9 ( 18)	0 ( 0)	0 ( 0)	0 ( 0)	9 ( 18)	(	) )) (	0 0 0) ( 0)		9 ( 18)	1 ( 2)	0 ( 0)	0 ( 0)
	respiratory metaplasia:olfactory epith		4 8) (	0 0) (	0 0)	0 ( 0)	10 ( 20)	0 ( 0)	0 ( 0)	0 ( 0)	8 ( 16)			0 0 0) ( 0)		5 [ 10)	0 ( 0)	0 ( 0)	0 ( 0)
	respiratory metaplasia:gland		50 00) (	0 0) (	0 0)	0 ( 0)	49 ( 98)	1 ( 2)	0 ( 0)	0 ( 0)	47 ( 94)	( (	) )) (	0 0 0) ( 0)	ı	40 ( 80)	1 ( 2)	0 ( 0)	0 **
	squamous cell metaplasia:respiratory e		1 2) (	0 0) (	0	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)	( 2	2) (	0 0		0 ()	0 ( 0)	0 ( 0)	0 ( 0)
	ulcer:respiratory epithelium	(	1 2) (	0 0) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	( (	) )) (	0 0 0) ( 0)		0 ()	0 ( 0)	0 ( 0)	0 ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

(c) c:b/a * 100

STUDY NO. : 0759 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 3

		Group Name No. of Animals on Stud		ntrol 50	1		2	80 ppr				1.	400	mqq 50				70	1q 00	om 60		
Organ		Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	50 3+ (%)		4+ %)	1+ (%)	(%	2+	3+ (%)	4+ (%)		( + ( )	2+ (%)	3+ (%)		4+ (%)
{Respiratory	system)																					
nasal cavit	hyperplasia:transitional epithelium	(	1 2) (	<50 0 ( 0)	0	0 ( 0)	0 ( 0)	<5 0 ( 0)	50> 0 ( 0)	(	0 0)	0 ( 0)	( (	<50> ) )) (		0 ( 0)	( (	) )) (	(5 0 0 0	( 0)	(	0 0)
	inflammtory infiltration:respiratory e	pithelium (	1 2) (	0 (0)	0 ( 0)	0 ( 0)	2 ( 4)	0 ( 0)	0 ( 0)	(	0 0)	3 ( 6)	( (	) )) (	0 0)	0 ( 0)	( {	<b>1</b> 3) (	0 0)	0 ( 0)	(	0 0)
	atrophy:olfactory epithelium	(	0 0) (	0 (0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( (	) )) (	0 0)	0 ( 0)	( (	} 5) (	0 0)	0 ( 0)	(	0 0)
	brown pigment olfactory gland	(	0 0) (	0 (	0 ( 0)	0 ( 0)	2 ( 4)	0 ( 0)	0 ( 0)	(	0 0)	15 ( 30)	( (	) )) (	0 0)	0 ** ( 0)	26 ( 52	6 ?) (	0 0)	0 ( 0)	(	0 ** 0)
nasopharynx	inflammation	(	1 2) (	<50 0 ( 0)	0	0 ( 0)	1 ( 2)	0	50> 0 ( 0)	(	0 0)	1 ( 2)	1 ( 2	<50>	0 0)	0 ( 0)	( 4	? I) (	3	0> 0 ( 0)		0 0)
	lymphocytic infiltration	(	2 4) (	0 (0)	0 ( 0)	0 ( 0)	2 ( 4)	0 ( 0)	0 ( 0)	(	0 0)	3 ( 6)	( (	) (	0 0)	0 ( 0)	( 4	? I) (	0 0)	0 ( 0)	(	0 0)
	inflammation:foreign body	(	0 0) (	0 (	0 ( 0)	0 ( 0)	1 ( 2)	1 ( 2)	0 ( 0)	(	0 0)	2 ( 4)	( 0	) ) (	0 0)	0 ( 0)	1 ( 2	: 2) (	0 0)	0 ( 0)	(	0 0)
larynx	inflammatory infiltration	(	1 2) (	<50 0 0 (	0	0 ( 0)	1 ( 2)	<5 0 ( 0)	i0> 0 ( 0)	(	0 0)	0 ( 0)	( 0	<50> ) ) (	0 0)	0 ( 0)	1 ( 2	!) {	0	0> 0 ( 0)	(	0 0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b b : Number of animals with lesion

( c ) c : b / a * 100

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 4

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
{Respiratory:	system)				
lung	congestion	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	hemorrhage	2 2 1 0 ( 4) ( 4) ( 2) ( 0)	1 2 0 0 (2) (4) (0) (0)	1 1 0 0 (2) (2) (0) (0)	3 2 0 0 (6) (4) (0) (0)
	edema	3 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (7)	3 0 0 0 0 (6) (6) (7)
	inflammatory infiltration	2 0 0 0 ( 4) ( 0) ( 0) ( 0)	2 0 0 0 0 (4) (0) (0)	2 0 0 0 0 (4) ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)
	accumulation of foamy cells	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	5 0 0 0 (10) ( 0) ( 0) ( 0)
	bronchiolar-alveolar cell hyperplasia	2 1 0 0 (4) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
(Hematopoletic	c system)				
bone marrow	congestion	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site b b : Number of animals with lesion

(c) c : b / a * 100

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE : 5

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoíetic	c system}				
bone marrow	hemorrhage	<50> 0 2 0 0 ( 0) ( 4) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	deposit of pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	deposit of hemosiderin	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	4 0 0 0 0 ( 8) ( 0) ( 0)
	increased hematopoiesis	6 0 0 0 (12) (0) (0) (0)	10 3 0 0 (20) (6) (0) (0)	9 3 1 0 (18) (6) (2) (0)	36 3 0 0 ** (72) (6) (0) (0)
thymus	ectopic tissue	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
spleen	congestion	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	deposit of hemosiderin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a * 100

STUDY NO. : 0759 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 6

Organ	Findings	Group Name Control  No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Hematopoieti	c system)				
spleen	fibrosis:focal	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 (2) (0) (0) (0)
e	extramedullary hematopoiesis	18 2 0 0 (36) (4) (0) (0)	23 6 1 0 ( 46) ( 12) ( 2) ( 0)	19 5 0 0 (38) (10) (0) (0)	22 3 0 0 ( 44) ( 6) ( 0) ( 0)
(Circulatory	system}				
heart	thrombus	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	mineralization	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
	myocardial fibrosis	34 4 0 0 (68) (8) (0) (0)	23 3 0 0 * (46) (6) (0) (0)	29 1 0 0 (58) (2) (0) (0)	26 6 0 0 (52) (12) (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked 4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a * 100

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE PAGE: 7

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings_	Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Circulatory	system}				
artery/aort	mineralization:pulmonary artery	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
(Digestive sy	stem)				
tongue	ulcer	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)		0 0 0 0 0 (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
stomach	ectopic tissue	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	ulcer:forestomach	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	1 1 1 0 ( 2) ( 2) ( 0)	3 0 0 0 0 (6) (0) (0)

Grade 1+ : Slight 2+ : Moderate

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

3+ : Marked

4+ : Severe

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 8

	Group Name Control No. of Animals on Study 50		280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sys	stem)				
stomach	hyperplasia:forestomach	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 1 1 1 0 ( 2) ( 2) ( 2) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 3 0 0 0 (6) (0) (0) (0)
	erosion:glandular stomach	4 0 0 0 (8) (8) (0) (0) (0)	6 0 0 0 0 (12) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	10 0 0 0 (20) (0) (0) (0)
	ulcer:glandular stomach	6 1 0 0 (12) (2) (0) (0)	2 0 0 0 0 (4) (0) (0)	2 0 0 0 0 (4) (0) (0)	5 0 0 0 (10) ( 0) ( 0) ( 0)
	hyperplasia:glandular stomach	1 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	intestinal metaplasia:glandular stom	ach 0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (4)
	mineralization:glandular stomach	0 0 1 0 ( 0) ( 2) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 1 0 0 ( 6) ( 2) ( 0) ( 0)
	change of location of chief cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
small intes	ulcer	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \)
 \( a \)

b : Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 9

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sys	stem}				
small intes	invagination	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
large intes	erosion	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 1 0 0 0 (2) (0) (0) (0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)
iver	herniation	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	\$50\$ 9 0 0 0 (18) (0) (0) (0)	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	5 0 0 0 ( 10) ( 0) ( 0) ( 0)
	necrosis:central	0 0 0 0 (0) (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	2 0 0 0 (4) (0) (0)	1 0 0 0 (2) (3)
	necrosis:focal	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	fatty change:peripheral	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)
	lymphocytic infiltration	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)

Grade < a > 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

b

a : Number of animals examined at the site b : Number of animals with lesion

( c )

c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE : 10

		Group Name Control No. of Animals on Study 50			7000 ppm 50
Organ Fi	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive	system)				
liver	granulation	<50> 4 1 0 0 ( 8) ( 2) ( 0) ( 0)	<50> 6 1 0 0 (12) (2) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	<pre></pre>
	inflammatory cell nest	4 0 0 0 0 ( 8) ( 0) ( 0) ( 0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	clear cell focus	3 0 0 0 0 ( 6) ( 6) ( 0) ( 0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (7)
	acidophilic cell focus	32 1 0 0 (64) (2) (0) (0)	20 3 0 0 * (40) (6) (0) (0)	28 4 0 0 (56) (8) (0) (0)	29 4 0 0 (58) (8) (0) (0)
	basophilic cell focus	14 0 0 0 (28) (0) (0) (0)	11 0 0 0 (22) (0) (0) (0)	18 0 0 0 (36) (0) (0) (0)	16 2 0 0 (32) (4) (0) (0)
	mixed cell focus	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)
	spongiosis hepatis	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	15 0 0 0 *** (30) (0) (0) (0)	3 0 0 0 0 (6) (6) (7)
	bile duct hyperplasia	32 15 0 0 (64) (30) (0) (0)	36 11 0 0 (72) (22) (0) (0)	29 16 0 0 (58) (32) (0) (0)	30 19 0 0 (60) (38) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

(c) c:b/a * 100

ANIMAL : RAT F344/DuCriCrij[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 11

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sys	stem)				
liver	biliary cyst	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	focal fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	1 0 0 0 (2) (3)
pancreas	atrophy	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	50> 5 0 0 0 (10) ( 0) ( 0) ( 0)	<pre></pre>	3 0 0 0 ( 6) ( 0) ( 0) ( 0)
	islet cell hyperplasia	1 0 1 0 (2) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Urinary syste	em)				
kidney	cyst	<50> 2	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>
	inflammatory infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 12

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary sys	tem}				
kidney	scar	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)
	fatty metamorphosis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
	chronic nephropathy	24 10 9 1 (48) (20) (18) (2)	17 19 7 1 (34) (38) (14) (2)	4 11 23 10 ** ( 8) ( 22) ( 46) ( 20)	1 2 15 31 ** ( 2) ( 4) ( 30) ( 62)
	mineralization:papílla	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	12 7 0 0 ** (24) (14) (0) (0)
	mineralization:pelvis	3 0 0 0 0 (6) (6) (7)	5 2 0 0 (10) (4) (0) (0)	2 1 0 0 ( 4) ( 2) ( 0) ( 0)	13 3 0 0 ** (26) (6) (0) (0)
	mineralization:tubule	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)
	urothelial hyperplasia:pelvis	1 0 0 0 ( 2) ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)	19 0 0 0 *** (38) (0) (0) (0)	27 8 1 0 ** (54) (16) (2) (0)
	atypical tubule hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

(c)

b: Number of animals with lesion c: b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

KEPUKI	IIIC	٠	ΑI
SEX		:	MALE

PAGE: 13

Organ	Findings	Group Name Control  No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)	7000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)
(Urinary syst	em)				
kidney	inflammation:pelvis	\( \langle 50 \rangle \) \[ 1  0  0  0 \\ (2)  (0)  (0)  (0) \]	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 (2) (0) (0) (0)
urin bladd	dilatation	(50) 0 0 0 0 ( 0) ( 0) ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)
	inflammation	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 1 0 (0) (2) (0)
(Endocrine sy	stem)				
pituitary	angiectasis	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	cyst	10 0 0 0 (20) (0) (0) (0)	3 2 0 0 * (6) (4) (0) (0)	3 2 0 0 * (6) (4) (0) (0)	3 0 1 0 (6) (7) (2) (7)
	hyperplasia	14 8 0 0 ( 28) ( 16) ( 0) ( 0)	12 5 0 0 (24) (10) (0) (0)	15 8 1 0 (30) (16) (2) (0)	11 2 0 0 (22) (4) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 14

		Group Name No. of Animals on Study	Cont				280 ppm 50			1400 ppm 50				7000 ppm 50								
Organ	Findings		i + (i) (	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3		4+ (%)	1+ (%)	2 (%	+	3+ %)	4+ (%)		1+ (%)	2- (%)	+	3+ (%)	4+ (%)
{Endocrine sy	vstem)																					
pituitary	Rathke pouch	3 ( 6)	; ;) (	<50) 0 0) (	) 0 0)	0 ( 0)	3 ( 6)	( 0)	50> 0 ( 0)	) (	0 0)	3 ( 6)	0 ( 0)	<50> ) (	0 0) (	0 0)	(	2 4)	0 ( 0)	<50> (	0 0)	0 ( 0)
	gliosis	0 ( 0)	) )) (	1 2) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	( 0)	) (	0 0)	0 ( 0)	( 0)	) (	0 0) (	0 0)	(	0 0)	0 ( 0)	(	0 0)	0 ( 0)
thyroid	C-cell hyperplasia	8 ( 16)	) ()	<50) 3 6) (		0 ( 0)	12 ( 24)	2 ( 4)	50> 0 ( 0)	) (	0 0)	5 ( 10)	7 ( 14)	<50> (	1 2) (	0 0)	(	2 4)		<50> (		0 ( 0)
adrenal	congestion	1 ( 2)	) (	<50) 0 0) (	> 0 0)	0 ( 0)	0 ( 0)	0 ( 0)	50> 0 ( 0)	) (	0 0)	0 ( 0)	0 ( 0)	<50> (	0 0) (	0 0)	(	0 0)	0 ( 0)	(50> (	0	0 ( 0)
	extramedullary hematopoiesis	1 ( 2)	) (	0 0) (	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	) (	0 0)	0 ( 0)	( 0)	(	0 0) (	0 0)	(	0 0)	0 ( 0)	(	0	0 ( 0)
	hyperplasia:cortical cell	5 ( 10)	; )) (	0 0) (	0 0)	0 ( 0)	5 ( 10)	2 ( 4)	0 ( 0)	) (	0 0)	3 ( 6)	( 0)	(	0 0) (	0 0)	(	4 8)	( 0)	(	0	0 ( 0)
	hyperplasia:medulla	3 ( 6)	; ) (	4 8) (	1 2)	0 ( 0)	5 ( 10)	2 ( 4)	0 ( 0)	) (	0 0)	6 ( 12)	2 ( 4)	(	0 0) (	0 0)	( 1	6  2)	0 ( 0)	(	1 2)	0 ( 0)

Grade < a > 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b

b : Number of animals with lesion c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 15

	Group Name Control			280 ppm 50			1400 ppm				7000 ppm							
Findings	Grade	1+ %) 	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)			2+ (%)	3+ (%)	4+ (%)
stem)																		
focal fatty change:cortex	( )	3 6) (	<50 0 0) (	> 0 0)	0 ( 0)	5 ( 10)	<5( 2 ( 4)	0 ( 0)	0 ( 0)	5 (10) (	<5 3 6)	0> 0 ( 0)	0 ( 0)	(	3 6) (	<5 0 0)	0> 0 ( 0)	0 ( 0)
system)																		
inflammatory infiltration	1 ( 2	1 2) (	<50; 0 0) (	) 0 0)	0 ( 0)	0 ( 0)	<50 0 ( 0)	)> 0 ( 0)	0 ( 0)	0 ( 0) (	<50 0 0)	0> 0 ( 0)	0 ( 0)	(	0 (	<5 0 0)	0> 0 ( 0)	0 ( 0)
interstitial cell hyperplasia	( 8	4 8) (	0 (	0 0)	0 ( 0)	11 ( 22)	0 (0)	0 ( 0)	0 ( 0)	4 ( 8) (	1 2)	0 ( 0)	0 ( 0)	(	2 4) (	0 0)	0 ( 0)	0 ( 0)
inflammatory infiltration	1 ( 2	1 2) (	0	0	0 ( 0)	0 ( 0)	<5( 0 ( 0)	)> 0 ( 0)	0 ( 0)	0 ( 0) (	<50 0 0)	0> 0 ( 0)	0 ( 0)	(	0 0) (	<5 0 0)	0> 0 ( 0)	0 ( 0)
inflammation	( 2	1 2) (	0	0	0 ( 0)	2 ( 4)	<5( 1 ( 2)	)> 0 ( 0)	0 ( 0)	4 ( 8) (	<50 0 0)	0> 0 ( 0)	0 ( 0)	( 1	6 12) (	<5 0 0)	0> 0 ( 0)	0 ( 0)
hyperplasia	( 8	4 8) (	1 (	0 0)	0 ( 0)	5 ( 10)	2 (4)	0 ( 0)	0 ( 0)	5 ( 10) (	0 0)	0 ( 0)	0 ( 0)	(	1 (	0 0)	0 ( 0)	0 ( 0)
	focal fatty change:cortex  system)  inflammatory infiltration  interstitial cell hyperplasia  inflammatory infiltration	No. of Animals on Study Grade  Findings	No. of Animals on Study Grade 1+ (%)  Item)  focal fatty change:cortex 3 (6) (  system)  inflammatory infiltration 1 (2) (  interstitial cell hyperplasia 4 (8) (  inflammatory infiltration 1 (2) (  hyperplasia 4 (4)	No. of Animals on Study Grade	No. of Animals on Study   50   Grade   1+ 2+ 3+   3+   2+   3+   3+   2+   3+   3	No. of Animals on Study   50   1+ 2+ 3+ 4+   2+ 3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 4+   3+ 3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+   3+ 3+ 3+ 3+   3+ 3+ 3+ 3+   3+ 3+ 3+ 3+   3+ 3+ 3+ 3+   3+ 3+ 3+ 3+ 3+   3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+	No. of Animals on Study   50   Grade   1+ 2+ 3+ 4+ 1+   1+ 2+ 3+ 4+   1+   2+ 3+ 4+   1+   3+ 3+ 3+   3+   3+   3+   3+	No. of Animals on Study   50   50   50   50   50   50   50   5	No. of Animals on Study   50   50   50	No. of Animals on Study   50   50   1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 4 + 4 + 4 + 2 + 3 + 4 + 4 + 4 + 4 + 2 + 3 + 4 + 4 + 4 + 4 + 2 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	No. of Animals on Study   50   50   50	No. of Animals on Study   50   50   50   50   50   50   50   5	No. of Animals on Study   50   50   50   50   50   50   50   5	No. of Animals on Study	No. of Animals on Study   50   50   50   50   50   50   50   5	No. of Animals on Study   1	No. of Animals on Study   50   50   50   50   50   50   50   5	No. of Animals on Study   50

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site b : Number of animals with lesion

( c )

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

						1400 ppm					7000 ppm 50								
rgan	Findings	No. of Animals on Study Grade 1: (%	+ 2+	50 3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1 (%		50 2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
(Reproductive	e system)																		
mammary gl	cyst	0 ( 0)	0 ( 0)	50> 0 ( 0)	0 ( 0)	0 ( 0)	<5 0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2	) (	<50) 0 0) (	> 0 0)	0 ( 0)	(	0 0)	<5 0 ( 0)	0> ( 0)	0 ( 0)
{Nervous syst	em)																		
brain	hemorrhage	3 ( 6)	0 ( 0)	50> 0 ( 0)	0 ( 0)	0 ( 0)	<5 0 ( 0)	0> ( 0)	0 ( 0)	0 )	) (	<50) 0 0) (	> 0 0)	0 ( 0)	(	0	<5 0 ( 0)	0> ( 0)	0 ( 0)
	necrosis:focal	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	( 0.	) (	0 (	0 0)	0 ( 0)	(	1 2)	0 ( 0)	( 0)	0 ( 0)
	dilatation:cerebral ventricle	0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	1 ( 2)	0 ( 0)	0 ( 0)	0 ( 0)	( 0.	) (	0 (	0 0)	0 ( 0)	(	0 0)	0 ( 0)	( 0)	0 ( 0)
(Special sens	e organs/appendage)																		
eye	cataract	3 ( 6)	3 ) ( 6)	50> 0 ( 0)	0 ( 0)	5 ( 10)	<5 6 ( 12)	0 ( 0)	0 ( 0)	4 ( 8)	) (	<50) 1 2) (	) 0 0)	0 ( 0)	(	2 4)	<5 1 ( 2)	0> 0 ( 0)	0 ( 0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 17

					280 ppm			1400 ppm 50				7000 ppm 50					
Organ	Findings	No. of Animals on Study Grade 1+ 2 (%) (%	50 + 3+ ) (%)	4+ (%)	1+ (%)	50 2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4 (%)
Special sen	se organs/appendage)																
eye	retinal atrophy	10 2 ( 20) ( 4)	<50> 3 ) ( 6)	0 ( 0)	3 ( 6) (	<50 2 4) (	8 16)	0 ( 0)	4 ( 8) (	<5 1 2)	0> 2 ( 4)	0 ( 0)	(	3 6)	<5 1 ( 2)	i0> 2 ( 4)	( 0
	keratitis	4 0	1 ( 2)	0 ( 0)	6 (12) (	0 0) (	0 0)	0 ( 0)	2 ( 4) (	0 0)	0 ( 0)	0 ( 0)	(	3 6)	1 ( 2)	1 ( 2)	( 0
	iritis	1 1 ( 2) ( 2)	0 ( 0)	0 ( 0)	3 ( 6) (	0 0) (	0 0)	0 ( 0)	1 ( 2) (	0 0)	0 ( 0)	0 ( 0)	(	3 6)	0 ( 0)	0 ( 0)	( 0
	mineralization:cornea	0 0	0 ( 0)	0 ( 0)	3 ( 6) (	0 0) (	0 0)	0 ( 0)	0 ( 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	( 0
arder gl	degeneration	0 0 ( 0) ( 0)	<50> 0 ( 0)	0 ( 0)	2 ( 4) (	<50 0 0) (	> 0 0)	0 ( 0)	1 ( 2) (	<5 0 0)	0> 0 ( 0)	0 ( 0)	(	3 6)	<5 0 ( 0)	0 ( 0)	0 ( 0
(Musculoskel	etal system}																
uscle	degeneration	0 0 ( 0) ( 0)	<50> 0 ( 0)	0 ( 0)	0 ( 0) (	(50) 0 0) (	> 0 0)	0 ( 0)	0 (0) (	<5 0 0)	0> 0 ( 0)	0 ( 0)	(	1 2)	<5 0 ( 0)	0 ( 0)	0 (

< a >

b

a : Number of animals examined at the site

b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCriCrij [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 18

		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50		
Organ		Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)		
Musculoskele	tal system)						
one	osteosclerosis	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)		
Body cavitie	(2)						
eritoneum	inflammation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	\( \langle 50 \rangle \) 1	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)		
	mesothelial hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)		
etroperit	cyst	\( \langle 50 \rangle \) \[ 1  0  0  0  (0)  (0)  (0)  (0) \]	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)		

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

BAIS5

## TABLE L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 1

		p Name Control of Animals on Study 12	280 ppm 14	1400 ppm 9	7000 ppm 17
Organ	Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(integumentar	y system/appandage)				
skin/app	ulcer	<12> 0 0 0 0 0 0 0 0 0 0 0 0	(14) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 0 1 0 0 ( 0) ( 6) ( 0) ( 0)
	scab	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (6) (0) (0)
{Respiratory	system)				
nasal cavit	thrombus	3 0 0 0 ( 25) ( 0) ( 0) ( 0)	3 0 0 0 (21) (0) (0) (0)	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
	mineralization	9 0 0 0 (75) ( 0) ( 0) ( 0)	12 0 0 0 (86) (0) (0) (0)	6 0 0 0 (67) (0) (0) (0)	15 0 0 0 (88) (0) (0) (0)
	eosinophilic change:olfactory epithelium	7 0 0 0 (58) (0) (0) (0)	12 0 0 0 (86) (0) (0) (0)	6 0 0 0 (67) (0) (0) (0)	4 0 0 0 0 (24) (0) (0) (0)
	eosinophilic change:respiratory epithelium	0 0 0 0 0 (0) (0)	2 0 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (7)
	inflammation:foreign body	5 0 0 0 (42) (0) (0) (0)	6 1 0 0 (43) (7) (0) (0)	4 0 1 0 (44) (0) (11) (0)	5 6 2 0 * (29) (35) (12) (0)

4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c : b / a * 100 ( c )

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		280 ppm	1400 ppm	7000 ppm 17
Findings Grade	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
:ystem)				
inflammation:respiratory epithelium	<12> 1 1 0 0 ( 8) ( 8) ( 0) ( 0)	2 0 0 0 (14) (0) (0) (0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0
respiratory metaplasia:olfactory epithelium	1 0 0 0 0 (8) (0) (0)	1 0 0 0 0 (7) (0) (0)	1 0 0 0 0 (11) (0) (0)	1 0 0 0 (6) (6) (7)
respiratory metaplasia:gland	12 0 0 0 (100) ( 0) ( 0) ( 0)	14 0 0 0 (100) ( 0) ( 0) ( 0)	8 0 0 0 (89) (0) (0) (0)	10 0 0 0 * (59) (0) (0) (0)
ulcer:respiratory epithelium	1 0 0 0 (8) (9) (9)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
brown pigment olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 (12) ( 0) ( 0) ( 0)
inflammation	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<14> 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<17> 2 2 0 0 (12) (12) (0) (0)
lymphocytic infiltration	1 0 0 0 0 (8) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
inflammation:foreign body	0 0 0 0 0 (0) (0)	1 1 0 0 (7) (7) (0) (0)	1 0 0 0 (11) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	No. of Ani Grade  Findings  system)  inflammation:respiratory epithelium  respiratory metaplasia:olfactory epithelium  respiratory metaplasia:gland  ulcer:respiratory epithelium  brown pigment olfactory gland  inflammation  lymphocytic infiltration	No. of Animals on Study	No. of Animals on Study	No. of Animals on Study

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCriCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Group Name Control 280 ppm 1400 ppm 7000 ppm 17 No. of Animals on Study 12 14 9 1+ 2+ 3+ 4+ Grade 1+ 2+ 3+ 4+ 2+ 3+ 4+ 2+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ___ Findings_ (Respiratory system) larynx <12> <14> < 9> 1 0 0 0 inflammatory infiltration 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (7) (0) (0) (0) (0)(0)(0)(0) (6) (0) (0) (0) <12> <14> < 9> <17> lung 0 0 0 0 0 0 0 0 congestion 0 1 0 0 3 0 0 0 (0) (8) (0) (0) (21) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 2 2 0 0 hemorrhage 0 2 (8) (17) (8) (0) (0) (14) (0) (0) (11) (11) (0) (0) (12) (12) (0) (0) edema 0 0 2 0 0 0 (8) (0) (0) (0) (0)(0)(0)(0) (22) (0) (0) (0) (12) (0) (0) (0) inflammatory infiltration (6) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) bronchiolar-alveolar cell hyperplasia 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (0)(0)(0)(0) (0) (0) (0) (0) (11) (0) (0) (0) (0)(0)(0)(0) {Hematopoietic system} bone marrow ⟨12⟩ (14) 0 0 0 0 0 0 0 0 2 0 0 0 congestion 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (12) (0) (0) (0) Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe < a >

a : Number of animals examined at the site

b: Number of animals with lesion b

⁽c) c:b/a * 100 Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

## HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 4

Organ	Findings	Group Name Control No. of Animals on Study 12 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	280 ppm 14 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 9 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoietic	c system)				
bone marrow	hemorrhage	<12> 0 1 0 0 0 0 0 0 0	<14> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
	deposit of pigment	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (12) (0) (0)
	deposit of hemosiderin	1 0 0 0 ( 8) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (12) (0) (0)
	increased hematopoiesis	1 0 0 0 ( 8) ( 0) ( 0) ( 0)	4 1 0 0 (29) (7) (0) (0)	2 1 1 0 (22) (11) (11) (0)	9 1 0 0 * (53) (6) (0) (0)
thymus	ectopic tissue	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(14) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
spleen	congestion	\( \lambda 12 \rangle \) \[ 1  0  0  0  \text{(8) (0) (0) (0)} \]	<14> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0
	deposit of hemosiderin	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (7) (7)

Grade 1+ : Slight 2+ : Moderate < a >

a : Number of animals examined at the site

b : Number of animals with lesion

b (c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

3+ : Marked

4+ : Severe

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

Group Name 280 ppm 1400 ppm 7000 ppm Control No. of Animals on Study 12 14 17 Grade 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) Organ Findings (%) (%) (%) (%) (Hematopoietic system) <12> <14> **<17>** spleen 1 4 0 0 6 2 0 0 extramedullary hematopoiesis 2 1 0 0 3 2 1 0 (17) (8) (0) (0) (21) (14) (7) (0) (11) (44) (0) (0) (35) (12) (0) (0) (Circulatory system) heart <12> <14> 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 thrombus (0)(0)(0)(0) (0)(0)(0)(0) (0)(7)(0)(0) (0)(0)(0)(0) 0 0 0 0 mineralization 0 1 0 0 0 0 0 0 1 0 0 0 (0)(8)(0)(0) (0)(0)(0)(0) (11) (0) (0) (0) (0) (0) (0) (0) 2 0 0 0 inflammatory infiltration (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (12) (0) (0) (0) myocardial fibrosis 8 4 0 0 (50) (17) (0) (0) (43) (14) (0) (0) (44) (11) (0) (0) (47) (24) (0) (0) artery/aort <12> <14> < 9> <17>

0 0 0 0

(0)(0)(0)(0)

0 0 0 0

(0)(0)(0)(0)

0 1 0 0

(0) (8) (0) (0)

mineralization:pulmonary artery

0 0 0 0

(0)(0)(0)(0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

c:b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

: MALE PAGE: 6 SEX Group Name 280 ppm 1400 ppm 7000 ppm Control No. of Animals on Study 17 12 Grade 2+ 3+ 4+ 1+ 2+ 3+ 1+ 2+ 3+ 1+ 2+ 3+ 4+ 1+ (%) (%) (%) (%) (%) (%) (%) Organ Findings (%) (%) (%) (%) (Digestive system) <12> <14> < 9> (17) tongue 0 0 0 0 0 0 0 0 0 0 0 0 ulcer (0)(0)(0)(0) (0)(0)(0)(0) (8) (0) (0) (0) (0)(0)(0)(0) <12> <17> stomach <14> < 9> ulcer: forestomach 2 0 0 0 0 0 0 0 0 1 (18) (0) (0) (0) (17) (0) (0) (0) (7) (0) (0) (0) (0)(0)(11)(0) hyperplasia:forestomach (0) (8) (0) (0) (7) (7) (0) (0) (0)(0)(0)(0) (12) (0) (0) (0) erosion:glandular stomach 3 0 2 (8) (0) (0) (0) (21) (0) (0) (0) (0)(0)(0)(0) (12) (0) (0) (0) ulcer:glandular stomach 0 (17) (8) (0) (0) (7) (0) (0) (0) (11) (0) (0) (0) (18) (0) (0) (0) mineralization:glandular stomach 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 (0) (0) (8) (0) (0)(0)(0)(0) (0)(0)(0)(0) (12) (6) (0) (0) <12> small intes <14> < 9> <17> 0 0 0 0 0 1 0 0 ulcer 0 0 0 (0)(0)(0)(0) (0) (7) (0) (0) ( 0) ( 0) ( 0) ( 0) (0) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

⁽a) a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 7

		Group Name Control No. of Animals on Study 12 Grade 1+ 2+ 3+ 4+	280 ppm 14 1+ 2+ 3+ 4+	1400 ppm 9 1+ 2+ 3+ 4+	7000 ppm 17 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%)
{Digestive sys	stem)				
small intes	invagination	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<14> 0 1 0 0 ( 0) ( 7) ( 0) ( 0)	<pre></pre>	<17> 0 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
large intes	erosion	(12) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>
liver	herniation	<12> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 ( 7) ( 0) ( 0) ( 0)	<pre></pre>	<17> 3 0 0 0 (18) (0) (0) (0)
	necrosis:central	0 0 0 0 0 (0) (0)	1 0 0 0 (7) (0) (0) (0)	2 0 0 0 0 (22) (0) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (11) (0) (0)	0 0 0 0 0 (0) (0)
	granulation	0 0 0 0 0 (0) (0)	1 1 0 0 (7) (7) (0) (0)	0 0 0 0 0 (0) (0)	4 0 0 0 0 (24) (0) (0) (0)
	inflammatory cell nest	1 0 0 0 ( 8) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

( c ) c : b / a * 100 Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 8

		Group Name Control No. of Animals on Study 12	280 ppm 14	1400 ppm 9	7000 ppm 17		
Organ Find	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)		
(Digestive	system)						
liver	clear cell focus	<12> 1 0 0 0 ( 8) ( 0) ( 0) ( 0)	<14> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)		
	acidophilic cell focus	2 0 0 0 (17) (0) (0) (0)	2 0 0 0 0 (14) (0) (0) (0)	4 0 0 0 (44) (0) (0) (0)	7 0 0 0 (41) (0) (0) (0)		
	basophilic cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (7) (0) (0) (0)	1 0 0 0 0 (11) (0) (0)	6 1 0 0 * (35) (6) (0) (0)		
	mixed cell focus	0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 1 0 0 (6) (6) (0) (0)		
	spongiosis hepatis	0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	3 0 0 0 (33) (0) (0) (0)	2 0 0 0 (12) (0) (0) (0)		
	bile duct hyperplasia	5 5 0 0 ( 42) ( 42) ( 0) ( 0)	10 2 0 0 (71) (14) (0) (0)	3 1 0 0 (33) (11) (0) (0)	11 5 0 0 (65) (29) (0) (0)		
	biliary cyst	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)		
	focal fatty change	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (6) (6) (7)		

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

SEX : MALE DEAD AND MORIBUND ANIMALS (0-105W)

Organ	Findings	Group Name Control  No. of Animals on Study 12  Grade 1+ 2+ 3+ 4	280 ppm 14 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 9 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	ystem)				
pancreas	atrophy	<12> 1 0 0 0 ( 8) ( 0) ( 0) ( 0)	<14> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
{Urinary sys	tem)				
kidney	inflammatory infiltration	<12> 0 0 0 0 0 0 0 0 0 0 0 0 0	<14> 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
	chronic nephropathy	5 2 1 1 (42) (17) (8) (8)	5 4 1 0 (36) (29) (7) (0)	2 4 0 1 (22) (44) (0) (11)	1 1 3 11 * ( 6) ( 6) ( 18) ( 65)
	mineralization:papilla	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	6 2 0 0 * (35) (12) (0) (0)
	mineralization:pelvis	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	2 1 0 0 (12) (6) (0) (0)
	mineralization:tubule	0 1 0 0 (0) (8) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	urothelial hyperplasia:pelvis	1 0 0 0 ( 8) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	9 2 0 0 ** (53) (12) (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Findings	Group Name Control  No. of Animals on Study 12  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 14 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 9 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)
em)				
dilatation	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(14) 0 1 0 0 ( 0) ( 7) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
inflammation	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 1 0
stem)				
angiectasis	\( \lambda 12 \rangle \) \( 0  0  0  0  0  \text{(0)}  (0)  (0)  (0)  \)	\( \langle 14 \rangle \) \( 1  0  0 \\ (7)  (0)  (0)  (0) \)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
cyst	3 0 0 0 (25) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (6) (6) (0) (0)
hyperplasia	2 2 0 0 (17) (17) (0) (0)	0 2 0 0 ( 0) ( 14) ( 0) ( 0)	3 0 0 0 (33) (0) (0) (0)	4 1 0 0 (24) (6) (0) (0)
Rathke pouch	0 0 0 0 0 (0) (0)	1 0 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (12) (0) (0)
C-cell hyperplasia	\( \lambda 12 \rangle \) \[ 1  1  0  0 \\ (8)  (8)  (0)  (0) \]	(14) 1 1 0 0 ( 7) ( 7) ( 0) ( 0)	2 1 0 0 ( 22) ( 11) ( 0) ( 0)	<17> 0 0 0 0 0 0 0 0 0
	dilatation  inflammation  stem)  angiectasis  cyst  hyperplasia  Rathke pouch	No. of Animals on Study	No. of Animals on Study   12	No. of Animals on Study

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 12	280 ppm	1400 ppm 9	7000 ppm 17
Organ	Findings	No. of Animals on Study 12 Grade 1+ 2+ 3+ (%) (%) (%)	14 4+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
Endocrine sy	stem)				
drenal	congestion	<12> 1 0 0 ( 8) ( 0) ( 0) (	0 0 0 0 0 0) ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	extramedullary hematopoiesis	1 0 0 (8) (0) (0) (	0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:cortical cell	1 0 0 ( 8) ( 0) ( 0) (	0 2 0 0 0 0 0 0 14) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia:medulla	0 1 0 ( 0) ( 8) ( 0) (	0 2 0 0 0 0 0 0 14) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	3 0 0 0 (18) (0) (0) (0)
	focal fatty change:cortex	0 0 0 ( 0) ( 0) (	0 2 1 0 0 0 0 14) (7) (0) (0)	1 0 0 0 0 (11) (0) (0)	2 0 0 0 0 (12) (0) (0) (0)
Reproductive	system)				
estis	interstitial cell hyperplasia	<12> 1 0 0 ( 8) ( 0) ( 0) (	0 4 0 0 0 0) (29) (0) (0) (0)	<pre></pre>	2 0 0 0 (12) (0) (0) (0)
rostate	inflammation	<12> 0 0 0 ( 0) ( 0) ( 0) (	<pre></pre>	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)

b : Number of animals with lesion c : b / a * 100

⁽c)

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name   Control     No. of Animals on Study   12     Grade   1+ 2+ 3+ 4+     (米) (米) (米) (米) (米)	280 ppm 14 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 9 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Reproducti	ve system)				
prostate	hyperplasia	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<14> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
(Nervous sy	vstem)				
brain	hemorrhage	3 0 0 0 ( 25) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<17> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (7)
	dilatation:cerebral ventricle	0 0 0 0 0 (0) (0)	1 0 0 0 0 (7) (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
(Special se	ense organs/appendage)				
еуе	cataract	<12> 1 0 0 0 ( 8) ( 0) ( 0) ( 0)	<14> 0 1 0 0 ( 0) ( 7) ( 0) ( 0)	<pre></pre>	<17> 1 1 0 0 ( 6) ( 6) ( 0) ( 0)
Grade < a > b ( c ) Significant	1+: Slight 2+: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b/a * 100 : difference; *: P≤ 0.05 **:				

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 13

		Group Name Control No. of Animals on Study 12	280 ppm 14	1400 ppm 9	7000 ppm 17
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Special sen	nse organs/appendage)				
еуе	retinal atrophy	<12> 1 1 0 0 ( 8) ( 8) ( 0) ( 0)	<14> 0 0 1 0 0 0 7 (0) (7) (0)	<pre></pre>	<17> 2 0 2 0 (12) (0) (12) (0)
	keratitis	1 0 1 0 ( 8) ( 0) ( 8) ( 0)	1 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (12) (0) (0) (0)
	iritis	0 1 0 0 (0) (8) (0) (0)	1 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (12) ( 0) ( 0) ( 0)
	mineralization:cornea	0 0 0 0 (0) (0) (0)	1 0 0 0 (7) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Harder gl	degeneration	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	1 0 0 0 ( 6) ( 0) ( 0) ( 0)
(Musculoske)	etal system)				
muscle	degeneration	<12> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<17> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)
Grade <a> b (c) Significant</a>	1+: Slight 2+: Moderate 3 a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P				

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 12			280 ppm 14			1400 ppm 9			7000 ppm 17							
Organ	Findings	Grade		2+ 3 %) (%	3+ 4+ %) (%)	1 (%		3+ (%)	4+ (%)	1+	2+ (%)			1 (%		2+ (%)	3+ (%)	4+ (%)
luscu i osl	keletal system)																	
one	osteosclerosis		1 (8) (	<12> 0 0 0) ( 0	) O )) ( O)	0	0	4> 0 ( 0)	0 ( 0)	0 ( 0)				0 ( 0)	) (	<17> 0 0 0) (	0 0 0) (	0 (0)
	1+ : Slight 2+ : Moderate a : Number of animals examined at t b : Number of animals with lesion c : b / a * 100	he site	: Severe						\$\$************************************						L.			
(c)		P ≤ 0.01 Test of C	hi Square											***************************************				

## TABLE L 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

Organ	N	roup Name Control b. of Animals on Study 38 rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	280 ppm 36 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 41 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%)
{Integumentar	y system/appandagel				
skin/app	squamous cell hyperplasia	38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 0 0 0 0 0 0 0 0 0	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)
subcutis	cyst	<38> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 0 0 1 0 0 0) ( 3) ( 0)
{Respiratory	system)				
nasal cavit	thrombus	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>
	mineralization	32 0 0 0 ( 84) ( 0) ( 0) ( 0)	31 0 0 0 (86) (0) (0) (0)	39 0 0 0 (95) (0) (0) (0)	32 0 0 0 (97) (0) (0) (0)
	eosinophilic change:olfactory epitheliu	33 2 1 0 (87) (5) (3) (0)	27 7 0 0 (75) (19) (0) (0)	38 2 0 0 (93) (5) (0) (0)	27 0 0 0 (82) (0) (0) (0)
	eosinophilic change:respiratory epithel	ium 8 0 0 0 (21) (0) (0)	7 0 0 0 (19) (0) (0) (0)	2 0 0 0 ( 5) ( 0) ( 0) ( 0)	6 0 0 0 0 (18) (0) (0) (0)

Grade 〈 a 〉 b

b : Number of animals with lesion

c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(c)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

PAGE: 2 SEX : MALE

Organ	Findings	Group Name No. of Animals on Si Grade	Control tudy 38 1+ 2+ (%) (%)	3+ 4 (%) (%	+ 1+	280 ppm 36 2+ 3 (%) (%)		1400 ppm 41 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Respiratory s	system)								
nasal cavit	inflammation:foreign body		<38 11 4 (29) (11)	0 0		<36> 1 0 ( 3) ( 0)	0 ( 0)	\( \lambda 41 \rangle \) 17  9  0  (41)  (22)  (0)  (0)	<33> 8 11 0 0 (24) (33) (0) (0)
	inflammation:respiratory epithelium		8 0 (21) ( 0)	0 0	7 ) (19)	0 0	0 ( 0)	9 0 0 0 0 (22) (0) (0)	9 1 0 0 (27) (3) (0) (0)
	respiratory metaplasia:olfactory epi	thelium	3 0 ( 8) ( 0)	0 0	9 ( 25)	0 0	0 ( 0)	7 0 0 0 (17) (0) (0) (0)	4 0 0 0 (12) (0) (0) (0)
	respiratory metaplasia:gland		38 0 (100) ( 0)	0 0		1 0	0) (0)	39 0 0 0 (95) (0) (0) (0)	30 1 0 0 (91) (3) (0) (0)
	squamous cell metaplasia:respiratory	/ epithelium	1 0 ( 3) ( 0)	0 0	) ( 0)	0 0	0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 (0) (0)
	hyperplasia:transitional epithelium		1 0 ( 3) ( 0)	0 (0)	0 (0)	0 0	) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammtory infiltration:respiratory	y epithelium	1 0 ( 3) ( 0)	0 (	2 ( 6)	0 0	) O )) ( O)	3 0 0 0 0 (7) (0) (0)	4 0 0 0 0 (12) (0) (0)
	atrophy:olfactory epithelium		0 0	0 (		0 0	) O )) ( O)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (9) (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE

Group Name 280 ppm 1400 ppm 7000 ppm Control 33 No. of Animals on Study 36 41 1+ 2+ 3+ 4+ Grade 1+ 2+ 3+ 4+ 2+ 3+ 1+ 2+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ Findings (%) {Respiratory system} <38> <36> **<41>** nasal cavit 0 0 0 0 0 0 15 0 0 0 ** 24 0 0 0 ** brown pigment olfactory gland (37) (0) (0) (0) (73) (0) (0) (0) (0)(0)(0)(0) (6) (0) (0) (0) <38> <36> <41> <33> nasopharynx 0 1 0 0 inflammation 0 0 0 0 0 0 1 1 0 (3) (0) (0) (0) (3) (0) (0) (0) (2) (2) (0) (0) (0)(3)(0)(0) lymphocytic infiltration (6) (0) (0) (0) (7) (0) (0) (0) (6) (0) (0) (0) (3) (0) (0) (0) inflammation:foreign body (0)(0)(0)(0) (2) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0) larynx **<41>** <33> inflammatory infiltration 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) <38> <36> **〈41〉** <33> lung 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 congestion (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0) 1 0 0 0 hemorrhage 1 0 0 0 0 0 0 (3) (0) (0) (0) (3) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a > a: Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

(HPT150)

BA1S5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1
SEX : MALE

SACRIFICED ANIMALS (105W)

	Group Name Control	280 ppm	1400 ppm	7000 ppm 33
Findings	No. of Animals on Study   38	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4- (%) (%) (%) (%)
stem)				
edema	<38> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	33> 1 0 0 0 (3) (0) (0) (0)
inflammatory infiltration	2 0 0 0 (5) (6) (7)	2 0 0 0 0 (6) (6) (0) (0)	2 0 0 0 0 (5) ( 0) ( 0)	0 0 0 0 0 0 (0) (0) (0)
fibrosis:focal	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 ( 9) ( 0) ( 0)
accumulation of foamy cells	1 0 0 0 0 (3) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 1 0 0 (0) (2) (0) (0)	5 0 0 0 (15) ( 0) ( 0) ( 0
bronchiolar-alveolar cell hyperplasia	2 1 0 0 (5) (3) (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
system}				
hemorrhage	<38> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	<36> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
deposit of hemosiderin	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0)	2 0 0 0 (6) (6) (7) (7)
	edema  inflammatory infiltration  fibrosis:focal  accumulation of foamy cells  bronchiolar-alveolar cell hyperplasia  system)  hemorrhage	No. of Animals on Study   38   Grade   1+ 2+ 3+ 4+ 4+ 4+ 5   5   6   6   6   6   6   6   6   6	No. of Animals on Study	No. of Animals on Study   38

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE

		Group Name Control No. of Animals on Study 38	280 ppm 36	1400 ppm 41	7000 ppm 33
Organ		Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoiet	tic system)				
bone marrow	increased hematopoiesis	<38> 5 0 0 0 (13) (0) (0) (0)	<36> 6 2 0 0 (17) (6) (0) (0)	<41> 7 2 0 0 (17) (5) (0) (0)	<pre></pre>
spleen	congestion	(38) 1 0 0 0 (3) (0) (0) (0)	36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	fibrosis:focal	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (3) (0) (0) (0)
	extramedullary hematopoiesis	16 1 0 0 ( 42) ( 3) ( 0) ( 0)	20 4 0 0 (56) (11) (0) (0)	18 1 0 0 (44) (2) (0) (0)	16 1 0 0 (48) (3) (0) (0)
(Circulatory	system)				
heart	thrombus	38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0)
Grade < a > b ( c ) Significant	1+: Slight 2+: Moderate a: Number of animals examined at t b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **:				

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

SEX : MALE

		Group Name Control	280 ppm	1400 ppm	7000 ppm
Organ		lo. of Animals on Study 38 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	36 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Circulator	y system)				
heart	fibrosis:focal	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	myocardial fibrosis	28 2 0 0 (74) (5) (0) (0)	17 1 0 0 * (47) (3) (0) (0)	25 0 0 0 (61) (0) (0) (0)	18 2 0 0 (55) (6) (0) (0)
Digestive	system}				
ongue	squamous cell hyperplasia	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(41) 0 1 0 0 (0) (2) (0) (0)	33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	arteritis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
stomach	ectopic tissue	38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	36> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<pre></pre>	33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	ulcer:forestomach	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
Grade ( a > b ( c )	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the si b: Number of animals with lesion c: b/a * 100 t difference; *: P ≤ 0.05 **: P ≤				

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

SEX : MALE

		Group Name Control	280 ppm 36	1400 ppm 41	7000 ppm 33	
Organ	No. of Grade	No. of Animals on Study 38  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
(Digestive s	ysteml				400	
stomach	hyperplasia:forestomach	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 1 0 ( 0) ( 0) ( 3) ( 0)	(41) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	(33) 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	
	erosion:glandular stomach	3 0 0 0 (8) (9) (9)	3 0 0 0 0 (8) (0) (0)	3 0 0 0 ( 7) ( 0) ( 0) ( 0)	8 0 0 0 (24) (0) (0) (0)	
	ulcer:glandular stomach	4 0 0 0 0 (11) (0) (0)	1 0 0 0 (3) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (6) (0) (0)	
	hyperplasia:glandular stomach	1 0 0 0 (3) (0) (0)	1 0 0 0 (3) (0) (0) (0)	2 0 0 0 ( 5) ( 0) ( 0)	2 0 0 0 0 (6) (6) (0) (0)	
	intestinal metaplasia:glandular stoma	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	
	mineralization:glandular stomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	
	change of location of chief cell	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	
liver	herniation	<38> 4 0 0 0 ( 11) ( 0) ( 0) ( 0)	<36> 8 0 0 0 (22) (0) (0) (0)	3 0 0 0 ( 7) ( 0) ( 0) ( 0)	<33> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)	

^{3+ :} Marked 4+ : Severe 2+ : Moderate Grade 1+ : Slight

a : Number of animals examined at the site < a >

b : Number of animals with lesion b c : b / a * 100 (c)

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE PAGE: 8

Organ Findings	Group Name Control No. of Animals on Study 38	280 ppm 36	1400 ppm 41	7000 ppm 33	
	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive	system)				
liver	necrosis:focal	<38> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	fatty change:peripheral	0 0 0 0 (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	lymphocytic infiltration	1 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 (2) (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
	granulation	4 1 0 0 (11) (3) (0) (0)	5 0 0 0 (14) (0) (0) (0)	8 0 0 0 (20) ( 0) ( 0) ( 0)	4 1 0 0 (12) (3) (0) (0)
	inflammatory cell nest	3 0 0 0 (8) (9) (9)	2 0 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	clear cell focus	2 0 0 0 (5) (0) (0) (0)	2 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (6) (6) (0) (0)
	acidophílic cell focus	30 1 0 0 (79) (3) (0) (0)	18 3 0 0 <b>*</b> (50) (8) (0) (0)	24 4 0 0 (59) (10) (0) (0)	22 4 0 0 (67) (12) (0) (0)
	basophilic cell focus	14 0 0 0 ( 37) ( 0) ( 0) ( 0)	10 0 0 0 (28) (0) (0) (0)	17 0 0 0 (41) (0) (0) (0)	10 1 0 0 (30) (3) (0) (0)
01	basophilic cell focus		10 0 0 0 (28) (0) (0) (0)	17 0 ( (41) (0) (0	) 0

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 9

Organ	Findings	Group Name Control  No. of Animals on Study 38  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 36 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1400 ppm 41 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	ystem)				
liver	mixed cell focus	\( \lambda 88 \) 1	<36> 0 0 0 0 0 0 0 0 0 0	<41> 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	spongiosis hepatis	2 0 0 0 ( 5) ( 0) ( 0) ( 0)	1 0 0 0 0 (3) (0) (0)	12 0 0 0 * (29) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
	bile duct hyperplasia	27 10 0 0 (71) (26) (0) (0)	26 9 0 0 (72) (25) (0) (0)	26 15 0 0 (63) (37) (0) (0)	19 14 0 0 (58) (42) (0) (0)
	focal fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 ( 0) ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)
ancreas	atrophy	38> 3 0 0 0 (8) (0) (0) (0)	36> 5 0 0 0 (14) (0) (0) (0)	(41) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	2 0 0 0 ( 6) ( 0) ( 0) ( 0)
	islet cell hyperplasia	1 0 1 0 (3) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
{Urinary sys	t em)				
cidney	cyst	<38> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<33> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)

< a > b (c)

c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE PAGE: 10

Organ Find		Group Name Control No. of Animals on Study 38	280 ppm	1400 ppm	7000 ppm 33	
	Findings	No. of Animals on Study 38 Grade 1+ 2+ 3+ 4+	36 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Urinary sy	steml					
kidney	scar	<38> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<36> 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	
	fatty metamorphosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	
	chronic nephropathy	19 8 8 0 (50) (21) (21) (0)	12 15 6 1 (33) (42) (17) (3)	2 7 23 9 ** ( 5) ( 17) ( 56) ( 22)	0 1 12 20 ** ( 0) ( 3) ( 36) ( 61)	
	mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0)	6 5 0 0 ** (18) (15) ( 0) ( 0)	
	mineralization:pelvis	3 0 0 0 0 (8) (9) (9) (9)	4 2 0 0 (11) (6) (0) (0)	2 1 0 0 (5) (2) (0) (0)	11 2 0 0 ** ( 33) ( 6) ( 0) ( 0)	
	mineralization:tubule	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (4) (5)	0 0 0 0 0 (0) (0) (0)	
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (3) (6) (6)	19 0 0 0 ***	18 6 1 0 ** (55) (18) (3) (0)	
	atypical tubule hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	
	11 . Climb Ol . Madamba	2)				

Grade 1+ : Slight

2+ : Moderate

3+ : Marked 4+ : Severe

< a >

b

a : Number of animals examined at the site b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1

SEX : MALE

PAGE: 11

Organ	Findings	Group Name Control  No. of Animals on Study 38  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 36 1+ 2+ 3+ 4+ (%) (%) (%)	1400 ppm 41 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	em)				
kidney	inflammation:pelvis	\( \lambda 8 \rightarrow \) 1	<36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 1 0 0 0 (3) (0) (0) (0)
{Endocrine sy	rstem)				
pituitary	angiectasis	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 1 0 0 ( 0) ( 3) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	cyst	7 0 0 0 (18) ( 0) ( 0) ( 0)	3 2 0 0 (8) (6) (0) (0)	3 2 0 0 ( 7) ( 5) ( 0) ( 0)	2 0 1 0 (6) (7) (7) (7)
	hyperplasia	12 6 0 0 (32) (16) (0) (0)	12 3 0 0 (33) (8) (0) (0)	12 8 1 0 (29) (20) (2) (0)	7 1 0 0 (21) (3) (0) (0)
	Rathke pouch	3 0 0 0 ( 8) ( 0) ( 0) ( 0)	2 0 0 0 (6) (6) (7)	3 0 0 0 (7) (0) (0) (0)	0 0 0 0 0 (0) (0)
	gliosis	0 1 0 0 (0) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
thyroid	C-cell hyperplasia	<38> 7 2 0 0 ( 18) ( 5) ( 0) ( 0)	<36> 11 1 0 0 (31) (3) (0) (0)	<pre></pre>	<pre></pre>

3+ : Marked 4+ : Severe 2+ : Moderate Grade 1+ : Slight

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

⁽c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

SEX : MALE

7000 ppm 1400 ppm 280 ppm Group Name Control 41 33 No. of Animals on Study 38 36 1+ 2+ 3+ 4+ 2+ 3+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ Grade (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Findings (Endocrine system) <36> <33> <38> adrenal 4 0 0 0 2 0 0 0 0 0 hyperplasia:cortical cell (12) (0) (0) (0) (8) (6) (0) (0) (7) (0) (0) (0) (11) (0) (0) (0) 3 0 1 0 0 3 3 1 0 hyperplasia:medulla (9) (0) (3) (0) (15) (5) (0) (0) (8) (6) (0) (0) (8) (8) (3) (0) 1 0 0 0 3 0 0 0 3 1 0 0 4 3 focal fatty change:cortex (3) (0) (0) (0) (10) (7) (0) (0) (8) (3) (0) (0) (8) (0) (0) (0) (Reproductive system) testis 0 0 0 0 0 0 0 0 inflammatory infiltration (0)(0)(0)(0) (0)(0)(0)(0) 2 0 0 0 interstitial cell hyperplasia (5) (0) (0) (0) (0) (0) (0) (0) (8) (0) (0) (0) (19) (0) (0) (0) <36> <41> epididymis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 inflammatory infiltration (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0)

^{2+ :} Moderate 3+ : Marked 4+ : Severe Grade 1+ : Slight

a : Number of animals examined at the site < a >

b: Number of animals with lesion b

⁽c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE SEX

Organ	Findings	Group Name Control  No. of Animals on Study 38  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	280 ppm 36 1+ 2+ 3+ 4+ (%) (%) (%)	1400 ppm 41 1+ 2+ 3+ 4+ (%) (%) (%) (%)	7000 ppm 33 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Reproductive	system)				
prostate	inflammation	38> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<pre></pre>	4 0 0 0 (10) (0) (0) (0)	<pre></pre>
	hyperplasia	4 1 0 0 (11) (3) (0) (0)	5 2 0 0 (14) (6) (0) (0)	4 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)
nammary gl	cyst	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 0 0 0 0 (0) (0) (0) (0)	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	33> 0 0 0 0 0 0 0 0 0 0
Special sens	e organs/appendage}				
ye	cataract	<38> 2	<pre></pre>	<11> 4 1 0 0 (10) (2) (0) (0)	<pre></pre>
	retinal atrophy	9 1 3 0 ( 24) ( 3) ( 8) ( 0)	3 2 7 0 (8) (6) (19) (0)	3 1 2 0 ( 7) ( 2) ( 5) ( 0)	1 1 0 0 *
	keratitis	3 0 0 0 ( 8) ( 0) ( 0) ( 0)	5 0 0 0 (14) ( 0) ( 0) ( 0)	2 0 0 0 ( 5) ( 0) ( 0) ( 0)	1 1 1 0 ( 3) ( 3) ( 3) ( 0)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 14

		Group Name Control No. of Animals on Study 38 Grade 1+ 2+ 3+ 4+	280 ppm 36 1+ 2+ 3+ 4+	1400 ppm 41 1+ 2+ 3+ 4+	7000 ppm 33 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%)	(%) (%) (%)
(Special sens	se organs/appendage)				
еуе	iritís	<38> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<36> 2	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<33> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)
	mineralization:cornea	0 0 0 0 0 (0) (0)	2 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)
Harder gl	degeneration	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)	<41> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<33> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)
(Body cavitie	es}				
peritoneum	inflammation	<38> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<36> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<41> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<33> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	mesothelial hyperplasia	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
retroperit	cyst	38> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	36> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	33> 0 0 0 0 0 0 0 0
Crado	11 : Clight 21 : Moderate	21 - Maylad Al - Causas			

Grade < a >

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

( c ) Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

## TABLE L 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 19

Organ	No.	oup Name Control of Animals on Study 50 ade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{ ntegumentar	y system/appandage}				
skin/app	squamous cell hyperplasia	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	scab	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 ( 0) ( 0)	0 2 0 0 ( 0) ( 4) ( 0) ( 0)
(Respiratory	systeml				
nasal cavit	thrombus	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	<pre></pre>	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	mineralization	30 0 0 0 0 (60) (60) (60)	25 0 0 0 (50) (0) (0) (0)	33 0 0 0 (66) (0) (0) (0)	37 0 0 0 (74) ( 0) ( 0) ( 0)
	rhinitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0 ( 0) ( 2) ( 0)
	eosinophilic change:olfactory epithelium	31 16 0 0 (62) (32) (0) (0)	27 22 0 0 (54) (44) (0) (0)	28 21 0 0 (56) (42) (0) (0)	31 1 0 0 ** (62) (2) (0) (0)
	eosinophilic change:respiratory epitheliu	18 0 0 0 0 (36) (0) (0) (0)	26 0 0 0 (52) (0) (0) (0)	27 0 0 0 (54) (0) (0) (0)	10 0 0 0 (20) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

b

a : Number of animals examined at the site b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 20

		Name Control f Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm	
Irgan	Findings		1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	
Respiratory s	system)					
asal cavit	inflammation:foreign body	<50> 2 1 2 0 ( 4) ( 2) ( 4) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	\( \langle 50 \rangle \) \[ 1  0  0  0 \\ (2)  (0)  (0)  (0) \]	
	inflammation:respiratory epithelium	10 0 0 0 0 (20) (0) (0)	9 0 0 0 0 (18) (0) (0)	6 0 0 0 (12) ( 0) ( 0) ( 0)	2 0 0 0 *	
	respiratory metaplasia:gland	47 0 0 0 (94) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)	49 0 0 0 (98) (0) (0) (0)	38 0 0 0 * (76) ( 0) ( 0) ( 0)	
	squamous cell metaplasia:respiratory epithe	1 ium 0 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	
	hyperplasia:transitional epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	
	inflammtory infiltration:respiratory epithe	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	
	brown pigment olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	10 0 0 0 ***	6 0 0 0 *	
asopharynx	inflammation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b : Number of animals with lesion b

c : b / a * 100

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 21

		Group Name No. of Animals on Study	Cont	trol 50				160	ppm 50				8	00 ppm 5	0			4	ıq 000	om 50		
Organ	Findings	Grade 1:	+	2+ (%)	3+ (%)	4+ (%)	1 (%		2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+(%)	2+ (%)	3+ (%)		
{Respiratory	system)																					
larynx	inflammation	1 ( 2)	) (	<50) 0 0) (	0	0 ( 0)	0 ( 0	) (	<50 0 0) (	0 (0)	0 ( 0)	(	3 6)	<5 0 ( 0)	0> ( 0)	0 ( 0)	(	0 0)		50> 0 ( 0)	0 ( 0)	
	inflammatory infiltration	3 ( 6)	; i) (	0 0) (	0 0)	0 ( 0)	3 ( 6	) (	0 0) (	0 0)	0 ( 0)	(	2 4)	0 ( 0)	0 ( 0)	0 ( 0)	(	1 2)	0 ( 0)	0 ( 0)	0 ( 0)	
	hyperplasia:epithelium	1 ( 2)	} (	0 0) (	0 0)	0 ( 0)	0 ( 0	) (	0 0) (	0 (0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	
trachea	inflammation	0 ( 0)	) (	<50) 0 0) (	0	0 ( 0)	0 ( 0	) (	<50 0 0) (	> 0 0 0)	0 ( 0)	(	1 2)	<5 0 ( 0)	0> 0 ( 0)	0 ( 0)	(	0 0)	( 0 ( 0)	60> 0 ( 0)	0 ( 0)	
lung	congestion	4 ( 8)	) (	<50> 0 0) (	0	0 ( 0)	3 ( 6	) (	<50 1 2) (	) 0 0)	0 ( 0)	(	4 8)	<5 1 ( 2)	0> 0 ( 0)	0 ( 0)	(	12 24)	0	( 0)	0 ( 0)	
	hemorrhage	2 ( 4)	) (	1 2) (	1 2)	0 ( 0)	2	) (	0 0) (	0 0)	0 ( 0)	(	2 4)	0 ( 0)	0 ( 0)	0 ( 0)	(	4 8)	0 ( 0)	( 0)	0 ( 0)	
	edema	3 ( 6)	) (	0 0) (	0 0)	0 ( 0)	1 ( 2	) (	0 0) (	0 0)	0 ( 0)	(	2 4)	1 ( 2)	0 ( 0)	0 ( 0)	(	22 44)	3 ( 6)	0 ( 0)	( 0)	**

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 22

Organ	Findings	Group Name   Control	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	system}				
lung	inflammatory infiltration	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	fibrosis:focal	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	36 1 0 0 ** (72) ( 2) ( 0) ( 0)
	accumulation of foamy cells	1 0 0 0 (2) (3) (4)	1 0 0 0 (2) (0) (0)	4 0 0 0 0 (8) (0) (0)	9 0 0 0 +
	bronchíolar-alveolar cell hyperplasia	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)
	inflammation:foreign body	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Hematopoieti	c system)				
bone marrow	congestion	(50) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	hemorrhage	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)

< a > b

b : Number of animals with lesion c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 23

		Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+	160 ppm 50 1+ 2+ 3+ 4+	800 ppm 50 1+ 2+ 3+ 4+	4000 ppm 50 1+ 2+ 3+ 4+
Organ	Findings		(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
(Hematopoieti	c system)				
bone marrow	deposit of hemosiderin	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 39 0 0 0 ** (78) ( 0) ( 0) ( 0)
	granulation	2 2 0 0 (4) (4) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	0 2 0 0 ( 0) ( 4) ( 0) ( 0)	0 0 0 0 0 (0) (0)
	increased hematopoiesis	9 4 0 0 (18) ( 8) ( 0) ( 0)	6 3 0 0 (12) (6) (0) (0)	7 4 0 0 (14) (8) (0) (0)	45 2 0 0 ** ( 90) ( 4) ( 0) ( 0)
	myelofibrosis	0 0 1 0 ( 0) ( 2) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
lymph node	hemorrhage	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
spleen	congestion	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2	<pre></pre>
	deposit of hemosiderin	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)

4+ : Severe Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 24

		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50	
Organ	Findings	Grade 1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
(Hematopoieti	ic systeml					
spleen	fibrosis:focal	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	
	extramedullary hematopoiesis	26 8 3 0 (52) (16) (6) (0)	28 7 3 0 (56) (14) (6) (0)	26 9 4 0 (52) (18) (8) (0)	24 11 2 0 ( 48) ( 22) ( 4) ( 0)	
{Circulatory	system					
heart	thrombus	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	
	mineralization	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	
	inflammatory infiltration	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	myocardial fibrosis	22 0 0 0 ( 44) ( 0) ( 0) ( 0)	20 0 0 0 0 (40) (0) (0)	23 0 0 0 (46) ( 0) ( 0) ( 0)	35 9 0 0 ** (70) (18) ( 0) ( 0)	
	subendocardial fibrosis	0 0 0 0 0 ( 0) ( 0) ( 0)	0 0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 25

		Group Name Control No. of Animals on Study 50	160 ppm	mqq 008 50	4000 ppm 50
Organ	Findings	No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Circulatory	system)				
artery/aort	mineralization:pulmonary artery	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 2
{Digestive sy	rstem)				
tongue	lymphocytic infiltration	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	squamous cell hyperplasia	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 ( 0) ( 0) ( 0)
stomach	ulcer:forestomach	(50) 1 2 2 0 ( 2) ( 4) ( 4) ( 0)	(50) 0 2 1 0 (0) (4) (2) (0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	(50) 1 3 0 0 (2) (6) (0) (0)
	hyperplasia:forestomach	2 1 0 0 ( 4) ( 2) ( 0) ( 0)	2 2 0 0 (4) (4) (0) (0)	0 1 0 0	4 0 0 0 0 (8) (9) (9) (9)

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c:b/a * 100 (c)

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ррм 50
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sy	stem)				
stomach	erosion:glandular stomach	<50> 2 1 0 0 ( 4) ( 2) ( 0) ( 0)	<50> 5 0 0 0 (10) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<pre></pre>
	ulcer:glandular stomach	2 1 1 0 ( 4) ( 2) ( 2) ( 0)	1 0 0 0 (2) (0) (0)	1 0 0 0 (2) (0) (0)	5 1 0 0 (10) (2) (0) (0)
	hyperplasia:glandular stomach	1 0 0 0 (2) (3) (4)	1 0 0 0 (2) (0) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	inflammation:glandular stomach	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hemorrhage:glandular stomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
	mineralization:glandular stomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	17 7 3 0 *: (34) (14) (6) (0)
	change of location of chief cell	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
mall intes	inflammatory infiltration	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \)
 \( a \)
 \( a \)
 \( \text{Number of animals examined at the site} \)

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 27

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
	111011100			, , , , , , , , , , , , , , , , , , ,	
(Digestive s	ystem)				
liver	herniation	<50> 7 0 0 0 ( 14) ( 0) ( 0) ( 0)	<50> 6 0 0 0 ( 12) ( 0) ( 0) ( 0)	<50> 14 0 0 0 (28) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)
	peliosis-like lesion	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
	necrosis:central	2 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 2 0 0 (2) (4) (0) (0)
	necrosis:focal	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (4)
	fatty change:peripheral	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
	degeneration:central	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	lymphocytic infiltration	2 0 0 0 (4) (4) (6) (6)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4)	1 0 0 0 0 (2) (0) (0)
	granulation	17 2 0 0 (34) (4) (0) (0)	18 1 0 0 (36) (2) (0) (0)	9 2 0 0 (18) (4) (0) (0)	10 1 0 0 (20) (2) (0) (0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

b

a : Number of animals examined at the site

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

: RAT F344/DuCrlCrlj[F344/DuCrj] ANIMAL

REPORT TYPE : A1 SEX

: FEMALE PAGE: 28

		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive :	system)				
liver	inflammatory cell nest	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<pre></pre>	<50> 6 1 0 0 (12) (2) (0) (0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)
	extramedullary hematopoìesis	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)	1 0 0 0 0 (2) (0) (0)
	clear cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (6)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (6) (0) (0)
	acidophilic cell focus	5 1 0 0 (10) (2) (0) (0)	11 1 0 0 (22) (2) (0) (0)	6 1 0 0 (12) (2) (0) (0)	11 0 0 0 (22) (0) (0) (0)
	basophilic cell focus	28 0 0 0 (56) (0) (0) (0)	33 1 0 0 (66) (2) (0) (0)	25 0 0 0 (50) (0) (0) (0)	24 0 0 0 ( 48) ( 0) ( 0) ( 0)
	mixed cell focus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	spongiosis hepatis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)
	bile duct hyperplasia	19 3 0 0 (38) (6) (0) (0)	18 5 0 0 (36) (10) (0) (0)	28 1 0 0 (56) (2) (0) (0)	27 0 0 0 (54) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site b : Number of animals with lesion

b

(c) c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

STUDY NO. : 0759 ANIMAL : RAT F344/DuCriCrij[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name No. of Animals on Stud		ntrol 50				160 p	pm 50				80	0 ppm	i 0			4	000 р	pm 50		
rgan	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)		+	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)			1+ (%)	2+ (%)	3-		4+ (%)
Digestive sy	stem)																					
liver	cholangiofibrosis	(	0 0) (	<50 1 2) (	> 0 0)	0 ( 0)	0 ( 0)	1 ( 2	<50> ) (	0 0)	0 ( 0)	(	0 0) (	<5 0 0)	0> ( 0)	0 ( 0)	(	0 0)	( 0)	50> 0 ( 0)	(	0 0)
	hepatocellular hypertrophy:central	(	0 0) (	0 0) (	0 0)	0 ( 0)	1 ( 2)	( 0)	) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( 0)	(	0 0)
pancreas	atrophy	(	1 2) (	<50 0 0) (	) 0 0)	0 ( 0)	0 ( 0)	0 ( 0)	<50> ) (	0 0)	0 ( 0)	(	1 2) (	<5 0 0)	0> 0 ( 0)	0 ( 0)	(	1 2)	0 ( 0)	50> 0 ( 0)	(	0 0)
Urinary syste	eml																					
cidney	cyst	(	0 (	<50 0 0) (	> 0 0)	0 ( 0)	1 ( 2)	0 ( 0)	<50>	0 0)	0 ( 0)	(	0 0) (	<5 0 0)	0> 0 ( 0)	0 ( 0)	(	0 0)	( 0)	50> 0 ( 0)	(	0 0)
	inflammatory infiltration	(	1 (	0 0) (	0 0)	0 ( 0)	2 ( 4)	0 ( 0)	) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	1 2)	0 ( 0)	0 ( 0)	(	0 0)
	scar	. (	0 (	0	0 0)	0 ( 0)	1 ( 2)	0 ( 0)	(	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	(	0 0)

(HPT150)

(c)

c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

EMALE

		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary syst	t em)				
kidney	fatty metamorphosis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	chronic nephropathy	16 3 1 0 (32) (6) (2) (0)	19 6 3 0 (38) (12) (6) (0)	27 8 3 1 ** (54) (16) (6) (2)	1 1 1 46 ** ( 2) ( 2) ( 2) ( 92)
	tubular necrosis	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (2) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	2 0 0 0 ( 0) ( 4) ( 0) ( 0)	4 2 0 0 * (8) (4) (0) (0)
	dilatation:tubular lumen	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	mineralization:tubule	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	3 0 0 0 0 (6) (6) (0) (0)
	urothelial hyperplasia:pelvis	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (4) (0) (0)	30 2 0 0 ** (60) (4) (0) (0)
	dilated pelvis	0 0 0 0 0 (0) (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 31

		Group Name Control No. of Animals on Study 50		160 ppm 50	800 ppm 50	4000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ (%) (%) (%)	4+ (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary syst	em)					
k i dney	inflammation:pelvis	<50> 0 0 0 ( 0) ( 0) ( 0)	0 ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	\( \langle 50 \rangle \) 1
urin bladd	dilatation	<50> 0 1 0 ( 0) ( 2) ( 0)	0 ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
{Endocrine sy	stem}					
pituitary	angiectasis	<50> 3 1 0 ( 6) ( 2) ( 0)	0 ( 0)	<50> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	\( \langle 50 \rangle \) 1
	cyst	16 0 3 (32) (0) (6)	0 ( 0)	20 2 1 0 (40) (4) (2) (0)	12 3 2 0 ( 24) ( 6) ( 4) ( 0)	8 3 1 0 (16) (6) (2) (0)
	degeneration	1 0 0 ( 2) ( 0) ( 0)	0 ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	8 5 2 (16) (10) (4)	0 ( 0)	14 6 1 0 (28) (12) (2) (0)	13 5 0 0 (26) (10) (0) (0)	5 2 0 0 (10) (4) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\[} a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 32

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Endocrine sys	stem				
pituitary	Rathke pouch	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
thyroid	C-cell hyperplasia	(50) 17 7 1 0 (34) (14) (2) (0)	<pre></pre>	<50> 23 7 1 0 (46) (14) (2) (0)	<pre></pre>
parathyroid	hyperplasia	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
adrena!	angiectasis	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(50) 2	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	hemorrhage	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	15 0 0 0 ** (30) (0) (0) (0)
	peliosis-like lesion	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 33

Organ	Findings	Group Name Control  No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(F., J.,					
{Endocrine	system)	-		(0.0)	
adrenal	extramedullary hematopoiesis	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	hyperplasia:cortical cell	4 2 0 0 ( 8) ( 4) ( 0) ( 0)	8 0 0 0 (16) (0) (0) (0)	6 1 0 0 (12) (2) (0) (0)	6 0 0 0 (12) (0) (0) (0)
	hyperplasia:medulla	2 1 0 0 ( 4) ( 2) ( 0) ( 0)	6 0 1 0 (12) (0) (2) (0)	3 0 0 0 0 (6) (6) (0) (0)	6 0 0 0 (12) ( 0) ( 0) ( 0)
	focal fatty change:cortex	5 0 0 0 (10) ( 0) ( 0) ( 0)	8 1 0 0 (16) (2) (0) (0)	7 2 0 0 (14) (4) (0) (0)	6 0 0 0 0 (12) (0) (0) (0)
	focal fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
{Reproducti	ve system)				
ovary	cyst	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	lymphocytic infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)

< a > a : Number of animals examined at the site

b : Number of animals with lesion c : b / a * 100 b

(c)

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE : 34

Organ	Findings	Group Name Control  No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Reproductive	system)				
ovary	hyperplasia	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
uterus	cyst	(50) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	stromal hyperplasia	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)	0 0 0 0 0 ( 0) ( 0)
	endometrial hyperplasia	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	cystic endometrial hyperplasia	10 0 0 0 (20) (0) (0) (0)	9 0 0 0 0 (18) (0) (0)	4 0 0 0 0 (8) (9) (9)	1 0 0 0 * ( 2) ( 0) ( 0)
vagina	inflammation	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)
prep/cli gl	hyperplasia	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

< a > a : Number of animals examined at the site
b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 35

		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Nervous sys	tem}				
brain	hemorrhage	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<50> 1 0 0 0 (2) (0) (0) (0)
	gliosis	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	dilatation:cerebral ventricle	2 0 0 0 ( 4) ( 0) ( 0) ( 0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Special sen	se organs/appendage)				
еуе	cataract	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	<50> 4 2 0 0 (8) (4) (0) (0)	<50> 2	<pre></pre>
	retinal atrophy	14 7 0 0 ( 28) ( 14) ( 0) ( 0)	10 2 3 0 ( 20) ( 4) ( 6) ( 0)	2 0 3 0 **	3 0 1 0 ** ( 6) ( 0) ( 2) ( 0)
	keratitis	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	1 0 0 0 (2) (0) (0)	1 0 2 0 (2) (3) (4) (0)	6 12 1 0 ** (12) (24) (2) (0)
	iritis	2 0 0 0 ( 4) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	1 1 0 0 ( 2) ( 2) ( 0) ( 0)	9 3 0 0 *

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

< a >

4+ : Severe

b

a : Number of animals examined at the site

(c)

b : Number of animals with lesion

c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

Organ	Findings	Group Name Control  No. of Animals on Study 50  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	160 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Special sens	e organs/appendage)				
еуе	mineralization:cornea	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	(50) 0 0 0 0 ( 0) ( 0) ( 0)	\( \langle 50 \rangle \) 1
Harder gl	degeneration	<50> 0 0 0 0 0 0 0 0 0 0 0	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 1 1 0 0 ( 2) ( 2) ( 0) ( 0)	<50> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	inflammatory infiltration	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 1 0 0 (0) (2) (0) (0)
	lymphocytic infiltration	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (3) (4)	2 0 0 0 (4) (0) (0)	1 0 0 0 0 (2) (0) (0)
nasolacr d	inflammation	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	3 0 0 0 ( 6) ( 0) ( 0) ( 0)	<50> 4 0 0 0 ( 8) ( 0) ( 0) ( 0)
(Musculoskele	tal system)				
bone	osteosclerosis	\$50> 5 1 0 0 ( 10) ( 2) ( 0) ( 0)	\$50\$ 9 2 0 0 (18) (4) (0) (0)	<50> 6 1 0 0 (12) (2) (0) (0)	\$\ \ \ \ 9 & 1 & 0 & 0 \ (18) & (2) & (0) & (0) \ \ \end{array}

b : Number of animals with lesion

b (c)

( c ) c : b / a * 100 Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCriCrij [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 37

		Group Name No. of Animals on		ntrol 50	)		1	160 pp	m 50		86	0 ppm 5				40	199 00C 15		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
(Body cavities	s)																		
mediastinum	inflammatory infiltration		0 ( 0)	<5( 0 ( 0)	)> 0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)		0 ( 0)	0 ( 0)	<5 0 ( 0)	0> 0 ( 0)	0 ( 0)	(	1 2) (	<5( 0 ( 0)	0> 0 ( 0)	0 ( 0)
peritoneum	inflammation		1 ( 2)	<5( 0 ( 0)	)> 0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)		0 ( 0)	0 ( 0)	<5 0 ( 0)	0> 0 ( 0)	0 ( 0)	(	0 0) (	<5( 0 ( 0)	0 ( 0)	0 ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion

(c) c:b/a * 100

(HPT150)

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

BAIS5

## TABLE L 5

## HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 15

	Group Nam		160 ppm	mqq 008	4000 ppm
Organ	No. of An Grade Findings	imals on Study 16 1+ 2+ 3+ 4+ (%) (%) (%) (%)	11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	8 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Integumentar	y system/appandage)				
skin/app	scab	<16> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<pre></pre>	<47> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)
(Respiratory	system)				
nasal cavit	thrombus	3 0 0 0 (19) (0) (0) (0)	<11> 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>
	mineralization	7 0 0 0 ( 44) ( 0) ( 0) ( 0)	5 0 0 0 (45) ( 0) ( 0) ( 0)	2 0 0 0 (25) (0) (0) (0)	34 0 0 0 (72) (0) (0) (0)
	rhinitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 1 0 (0) (2) (0)
	eosinophilic change:olfactory epithelium	10 4 0 0 (63) (25) (0) (0)	8 2 0 0 (73) (18) (0) (0)	5 2 0 0 (63) (25) (0) (0)	28 1 0 0 ** (60) (2) (0) (0)
	eosinophilic change:respiratory epithelium	4 0 0 0 (25) (0) (0) (0)	3 0 0 0 (27) (0) (0) (0)	4 0 0 0 (50) (0) (0) (0)	9 0 0 0 0 (19) (0) (0) (0)
	inflammation:foreign body	1 0 1 0 ( 6) ( 0) ( 6) ( 0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (13) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCriCrij [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 16

Organ	Findings	Group Name No. of Animals on Stu Grade		ontrol 16 2+ (%)	3+ (%)	4+ (%)		+	) ppm 11 2+ (%)	3+ (%)	4 (%)		8 1+ (%)	00 pp 2+ (%)	8 3+	4+ (%)		1+ (%)	000 pp 4 2+ (%)		4+ (%)
(Respiratory :	system)																				
nasal cavit	inflammation:respiratory epithelium	(	2 13)	<16 0 ( 0)	5> 0 ( 0)	0 ( 0)	( (	) )) (	<11 0 0)	0 ( 0)	( 0)	ı	0 ( 0)	0 ( 0)	8> 0 ( 0)	0 ( 0)	(	2 4)	<4 0 ( 0)	7> 0 ( 0)	0 ( 0)
	respiratory metaplasia:gland	(	14 88)	0 ( 0)	0 ( 0)	0 ( 0)	11 ( 9:	)  ) (	0	0 ( 0)	( 0)		7 ( 88)	0 ( 0)	0 ( 0)	0 ( 0)	(	35 74)	0 ( 0)	0 ( 0)	0 ( 0)
	inflammtory infiltration:respiratory	epithelium (	1 6)	0 ( 0)	0 ( 0)	0 ( 0)	( (	) )) (	0	0 ( 0)	( 0)		0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)
	brown pigment olfactory gland	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	( (	) )) (	0 0)	0 ( 0)	( 0)		0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	4 9)	0 ( 0)	0 ( 0)	0 ( 0)
nasopharynx	inflammation	(	0 0)	<16 0 ( 0)	0	0 ( 0)	( 9	)) (	<11 0 0)	> 0 ( 0)	0 ( 0)		0 ( 0)	0 ( 0)	8> 0 ( 0)	0 ( 0)	(	0 0)	<4 0 ( 0)	7> 0 ( 0)	0 ( 0)
larynx	inflammation	(	1 6)	<16 0 ( 0)	0	0 ( 0)	( (	) )) (	<11 0 0)	> 0 ( 0)	0 ( 0)		1 ( 13)	( 0 ( 0)	8> 0 ( 0)	0 ( 0)	(	0 0)	<4 0 ( 0)	7> 0 ( 0)	0 ( 0)
	inflammatory infiltration	ſ	2 13)	0 ( 0)	0 ( 0)	0 ( 0)	( (	) )) (	0	0 ( 0)	0 ( 0)		0 ( 0)	0 ( 0)	0 ( 0)	0 ( 0)	(	1 2)	0 ( 0)	0 ( 0)	0 ( 0)

Grade

1+ : Slight

2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name Control  No. of Animals on Study 16  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	160 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%)	800 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 47 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	system)				
larynx	hyperplasia:epithelium	16> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<47> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
trachea	inflammation	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>	<47> 0 0 0 0 0 0 0 0 0 0 0 0
lung	congestion	3 0 0 0 (19) (0) (0) (0)	<pre></pre>	2 1 0 0 (25) (13) (0) (0)	(47> 12 0 0 0 (26) (0) (0) (0)
	hemorrhage	2 1 1 0 (13) (6) (6) (0)	1 0 0 0 0 (9) (0) (0)	1 0 0 0 (13) (0) (0) (0)	4 0 0 0 0 ( 9) ( 0) ( 0)
	edema	3 0 0 0 (19) (0) (0) (0)	1 0 0 0 0 ( 9) ( 0) ( 0)	1 1 0 0 (13) (13) (0) (0)	21 2 0 0 (45) (4) (0) (0)
	fibrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	35 1 0 0 ** (74) ( 2) ( 0) ( 0)
	accumulation of foamy cells	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	9 0 0 0 0 (19) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a : Number of animals examined at the site
 \]

b b: Number of animals with lesion

(c) c:b/a*100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj] REPORT TYPE : A1

DEAD AND MORIBUND ANIMALS (0-105W)

SEX : FEMALE

Group Name Control 160 ppm 800 ppm 4000 ppm 47 No. of Animals on Study 11 2+ 2+ 3+ 2+ 3+ 4+ 3+ Grade 1+ 2+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_ {Hematopoietic system} <16> **<11>** < 8> bone marrow 0 0 0 0 congestion 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (2) (0) (0) (0) hemorrhage 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(2)(0)(0) deposit of hemosiderin 0 2 0 0 0 0 0 0 0 38 0 0 ** 0 (81) (0) (0) (0) (6) (0) (0) (0) (18) (0) (0) (0) (0)(0)(0)(0) granulation 1 0 0 0 1 0 0 0 0 0 0 0 0 0 (6) (0) (0) (0) (9) (0) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) increased hematopoiesis 4 3 0 0 3 3 0 0 3 3 0 0 42 2 0 0 ** (38) (38) (0) (0) (25) (19) (0) (0) (27) (27) (0) (0) (89) (4) (0) (0) myelofibrosis 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(6)(0) (0)(0)(0)(0) (0)(0)(0)(0) lymph node <11> <16> < 8> hemorrhage 0 0 0 0 0 (0)(0)(0)(0) (9) (0) (0) (0) (0)(0)(0)(0) (0) (0) (0) (0) spleen <16> ⟨11⟩ < 8> congestion 0 n 0 0 0 0 n 0 0 0 0 1 0 n (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) (0)(2)(0)(0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 16 Grade 1+ 2+ 3+ 4+	160 ppm 11 1+ 2+ 3+ 4+	800 ppm 8 1+ 2+ 3+ 4+	4000 ppm 47 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
(Hematopoiet	tic system)				
spleen	deposit of hemosiderin	<16> 1 0 0 0 (6) (0) (0) (0)	(11) 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<47> 0 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	fibrosis:focal	1 0 0 0 ( 6) ( 6) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	5 1 3 0 (31) (6) (19) (0)	2 3 2 0 (18) (27) (18) (0)	1 0 3 0 (13) (0) (38) (0)	23 9 2 0 (49) (19) (4) (0)
(Circulatory	system)				
eart	thrombus	<16> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<47> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	mineralization	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	1 0 0 0 0 (2) (3) (4)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	1 0 0 0 0 ( 9) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	myocardial fibrosis	9 0 0 0 0 (56) (0) (0) (0)	6 0 0 0 (55) (0) (0) (0)	7 0 0 0 (88) (0) (0) (0)	33 9 0 0 ** (70) (19) ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b (c) c : b / a * 100

Significant difference;  $*: P \le 0.05$  **:  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 20

		Group Name No. of Animals on Stud				160 ppm 11					мад 008 8						4000 ppm 47					
Organ	Findings	Grade	1+	2+ (%)	3+ (%)	4+ (%)	1+ (%)		. 3		4+ (%)	1+ (%)	(	2+ %)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)		4+ (%)
(Circulatory s	system)																					
artery/aort	mineralization:pulmonary artery	(	0 0) (	<16 0 0)	) 0 ( 0)	0 ( 0)	0 ( 0)	( 0)	(11) 0 ( 0	) (	0 0)	1 ( 13)	(	< 8. 0 0) (	) 0 0)	0 ( 0)	(	2 4) (	<4 0 ( 0)	7> 0 ( 0)	(	0 0)
(Digestive sys	stem)																					
ongue	arteritis	(	0 0) (	<16 0 0)	0 (0)	0 ( 0)	0 ( 0)	0 ( 0)	(11) 0 ( 0		0 0)	1 (13)	(	< 8: 0 0) (	> 0 0)	0 ( 0)	(	0 0) (	<4 0 ( 0)	7> 0 ( 0)	(	0 0)
tomach	ulcer:forestomach		0 0) (	<16 1 6)	> 2 13)	0 ( 0)	0 ( 0)	( 1 ( 9)	(11) 1 ( 9	) (	0 0)	2 ( 25)	(	< 8: 0 0) (	> 0 0)	0 ( 0)	(	1 2) (	<4 2 ( 4)	7> 0 ( 0)	(	0 0)
	hyperplasia:forestomach	(	1 6) (	0 0)	0 (	0 (0)	2 ( 18)	1 ( 9)	( 0	) (	0 0)	0 ( 0)	( 1	1 3) (	0 0)	0 ( 0)	(	3 6) (	0 (0)	0 ( 0)	(	0 0)
	erosion:glandular stomach		2 13) (	1 6)	0 (0)	0 (0)	2 ( 18)	0 ( 0)	( 0	) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	(	1 2) (	0 (0)	0 ( 0)	(	0 0)
	ulcer:glandular stomach		2 13) (	1 6) (	1 6)	0 (0)	0 ( 0)	0 ( 0)	0 ( 0)	) (	0 0)	1 ( 13)	(	0 0) (	0 0)	0 ( 0)	(	3 6) (	1 (2)	0 ( 0)	(	0 0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 21

Organ	Findings	Group Name Control  No. of Animals on Study 16  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	160 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 47 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sy	stem)				
stomach	hemorrhage:glandular stomach	(16) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	(11) 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<47> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
	mineralization:glandular stomach	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	17 7 3 0 ** ( 36) ( 15) ( 6) ( 0)
small intes	inflammatory infiltration	(16) 1	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	<47> 0 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
liver	herniation	<16> 3 0 0 0 ( 19) ( 0) ( 0) ( 0)	<pre></pre>	2 0 0 0 0 (25) (0) (0) (0)	<pre></pre>
	necrosis:central	2 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 2 0 0 (2) (4) (0) (0)
	necrosis:focal	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (3)
	fatty change:peripheral	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight < a >

2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)

REPORT TYPE : A1

AN I MAL

SEX : FEMALE

DEAD AND MORIBUND ANIMALS (0-105W)

4000 ppm Group Name Control 160 ppm mag 008 47 No. of Animals on Study 11 2+ 2+ 3+ 2+ 3+ 2+ 3÷ 3+ Grade 1+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Findings__ (%) Organ____ (Digestive system) liver <16> **<11>** < 8> degeneration:central n 0 0 0 0 0 0 0 (6) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) lymphocytic infiltration 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (13) (0) (0) (0) (2) (0) (0) (0) granulation 3 0 0 0 1 0 0 0 10 1 0 0 (19) (0) (0) (0) (9) (0) (0) (0) (0)(0)(0)(0) (21) (2) (0) (0) inflammatory cell nest 0 0 0 0 0 2 0 0 0 (4) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (13) (0) (0) (0) extramedullary hematopoiesis 0 0 0 0 0 1 0 0 1 0 0 0 n 0 (6) (0) (0) (0) (0)(0)(0)(0) (2) (0) (0) (0) (13) (0) (0) (0) clear cell focus (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (6) (0) (0) (0) acidophilic cell focus 2 10 (0)(0)(0)(0) (18) (0) (0) (0) (0)(0)(0)(0) (21) (0) (0) (0) basophilic cell focus (25) (0) (0) (0) (55) (0) (0) (0) (13) (0) (0) (0) (45) (0) (0) (0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

(a) a: Number of animals examined at the site

b b: Number of animals with lesion (c) c: b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

(HPT150)

BA1S5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 23

		Group Name Control No. of Animals on Study 16	160 ppm 11	maq 008	4000 ppm 47
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive s	system}				
liver	mixed cell focus	<16> 0 0 0 0 0 (0) (0) (0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	< 8> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<47> 2 0 0 0 ( 4) ( 0) ( 0) ( 0)
	spongiosis hepatis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)
	bile duct hyperplasia	6 2 0 0 (38) (13) (0) (0)	2 1 0 0 (18) (9) (0) (0)	2 1 0 0 (25) (13) (0) (0)	27 0 0 0 * (57) (0) (0) (0)
pancreas	atrophy	<16> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	\( \langle 47 \rangle \) 1
{Urinary sys	stem)				
kidney	inflammatory infiltration	<16> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<11> 2 0 0 0 (18) (0) (0) (0)	<pre></pre>	<pre></pre>
	fatty metamorphosis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

< a >

a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

STUDY NO. : 0759 ANIMAL : RAT F344/DuCr|Cr|j[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control	160 ppm	800 ppm	4000 ppm				
)rgan	Findings	No. of Animals on Study 16 Grade 1+ 2+ 3+ 4+	11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)				
Urinary syst	em}								
idney	chronic nephropathy	<16> 3 1 1 0 (19) (6) (6) (0)	<pre></pre>	3 2 0 1 (38) (25) (0) (13)	<47> 1 1 1 43 *** ( 2) ( 2) ( 2) ( 91)				
	mineralization:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 1 0 0 ( 6) ( 2) ( 0) ( 0)				
	dilatation:tubular lumen	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 ( 9) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)				
	mineralization:tubule	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)				
	urothelial hyperplasia:pelvis	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	27 2 0 0 *: (57) (4) (0) (0)				
	dilated pelvis	0 0 0 0 0 (0) (0)	2 0 0 0 (18) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)				
	inflammation:pelvis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)				
rin bladd	dilatation	<16> 0 1 0 0 ( 0) ( 6) ( 0) ( 0)	<11> 0 1 0 0 ( 0) ( 9) ( 0) ( 0)	<pre></pre>	<47> 0 4 0 0 ( 0) ( 9) ( 0) ( 0)				

< a > a : Number of animals examined at the site

b : Number of animals with lesion

c : b / a * 100 (c)

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: FEMALE PAGE: 25

		Group Name Control No. of Animals on Study 16	160 ppm 11	800 ppm 8	4000 ppm 47
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Endocrine sy	rstem)				
pituitary	angiectasis	<16> 1 1 0 0 (6) (6) (0) (0)	<11> 0 1 0 0 ( 0) ( 9) ( 0) ( 0)	<pre></pre>	<47> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)
	cyst	2 0 1 0 (13) (0) (6) (0)	3 0 0 0 (27) (0) (0) (0)	2 0 0 0 (25) (0) (0) (0)	7 3 1 0 (15) (6) (2) (0)
	degeneration ·	1 0 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	hyperplasia	1 1 0 0 (6) (6) (0) (0)	1 0 0 0 0 ( 9) ( 0) ( 0)	1 0 0 0 (13) (0) (0) (0)	5 1 0 0 (11) (2) (0) (0)
	Rathke pouch	1 0 0 0 0 (6) (7) (7)	0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 (0) (0)
thyroid	C-cell hyperplasia	<16> 2 0 0 0 (13) (0) (0) (0)	<11> 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<47> 1 1 0 0 ( 2) ( 2) ( 0) ( 0)
parathyroid	hyperplasia	<16> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<47> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

( c ) c : b / a * 100 Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 26

		Group Name Control No. of Animals on Study 16 Grade 1+ 2+ 3+ 4+	160 ppm 11 1+ 2+ 3+ 4+	800 ppm 8 1+ 2+ 3+ 4+	4000 ppm 47 1+ 2+ 3+ 4+				
Organ	Findings	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)				
(Endocrine s	ystem)								
adrenal	hemorrhage	<16> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	< 8> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>				
	peliosis-like lesion	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0)				
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (13) (0) (0) (0)	0 0 0 0 0 (0) (0)				
	hyperplasia:cortical cell	0 0 0 0 0 (0) (0)	1 0 0 0 0 (9) (0) (0)	0 1 0 0 (0) (13) (0) (0)	6 0 0 0 0 (13) (0) (0) (0)				
	hyperplasía:medulla	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 (13) (0) (0) (0)	6 0 0 0 (13) (0) (0) (0)				
	focal fatty change:cortex	2 0 0 0 (13) (0) (0) (0)	2 0 0 0 0 (18) (0) (0) (0)	1 0 0 0 0 (13) (0) (0) (0)	6 0 0 0 0 (13) (0) (0)				
{Reproductiv	e system)								
ovary	cyst	<16> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<47> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)				

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b (c)

b : Number of animals with lesion c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCr(Crt) [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 27

		Group Name No. of Animals on Study		ntrol 16				16	0 ppm 1				8(	)O pp	m Ω				4000	ppm 47		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ %)	2+ (%)	(%)	4+ (%)		1+ (%)	2+ (%)	(%)			1+ (%)	· (:	2+ %)	3+ (%)	4+ (%)
{Reproductive	system)																					
uterus	cyst	(	0 0) (	<16; 0 0) (	0 0 0)	0 ( 0)	(	0 0) (	<1 0 0)	1> 0 ( 0)	0 ( 0)	(	0 0)	( 0 ( 0)	8> 0 ( 0)	0 ( 0)		1 ( 2)	( /	<47> 0 0) (	0 0 0)	0 ( 0)
	stromal hyperplasia	(	0 0) (	0 0) (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	1 13)	0 ( 0)	( 0)	( 0)		0 ( 0)	( (	D O) (	0 0)	0 ( 0)
	cystic endometrial hyperplasia	(	1 6) (	0 0) (	0 0)	0 ( 0)	(	1 9) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	( 0)	0 ( 0)		0 ( 0)	( )	0 0) (	0 0)	0 ( 0)
vagina	inflammation	(	0 0) (	<16) 0 0) (	) 0 0)	0 ( 0)	(	0 0) (	<1 0 0)	1> 0 ( 0)	0 ( 0)	(	0 0)	( 0 ( 0)	8> 0 ( 0)	0 ( 0)		2 ( 4)	( )	<47> 0 0) (	0 0)	0 ( 0)
(Nervous syste	om)																					
orain	hemorrhage	(	0 0) (	<16) 0 0) (	0	0 ( 0)	(	0 0) (	<1 0 0)	1> 0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	8> 0 ( 0)	0 ( 0)		1 ( 2)	( (	<47> ) 0) (	0 0)	0 ( 0)
	gliosis	(	0 0) (	0 (	0 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)	,	1 ( 2)	( )	) 0) (	0 0)	0 ( 0)

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\(} a \)
 \( a \)
 \( a \)
 \( \text{Number of animals examined at the site} \)

b : Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

Organ	Findings	Group Name Control  No. of Animals on Study 16  Grade 1+ 2+ 3+ 4+	160 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 47 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Nervous sys	tem)				
brain	dilatation:cerebral ventricle	<16> 2 0 0 0 (13) (0) (0) (0)	<11> 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<47> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)
(Special sens	se organs/appendage)				
еуе	cataract	<16> 1 0 0 0 0 (6) (0) (0) (0)	<11> 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<47> 5 1 0 0 (11) (2) (0) (0)
	retinal atrophy	2 1 0 0 (13) (6) (0) (0)	1 1 0 0 (9) (9) (0)	1 0 1 0 (13) (0) (13) (0)	2 0 1 0 (4) (0) (2) (0)
	keratitis	1 0 0 0 ( 6) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0)	1 0 1 0 (13) (0) (13) (0)	6 11 1 0 (13) (23) (2) (0)
	iritis	1 0 0 0 (6) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	7 3 0 0 (15) (6) (0) (0)
	mineralization:cornea	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 ( 2) ( 0) ( 0) ( 0)
Harder gl	inflammatory infiltration	(16) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 0 0 0 0 0	<pre></pre>	<47> 0 1 0 0 ( 0) ( 2) ( 0) ( 0)

a: Number of animals examined at the site

< a >

b : Number of animals with lesion b c : b / a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ		Group Name Control  No. of Animals on Study 16  Grade 1+ 2+ 3+ 4+  (%) (%) (%)	160 ppm 11 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 8 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 47 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Special sens	e organs/appendage)				
Harder gl	lymphocytic infiltration	<16> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(11) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>
nasolacr d	inflammation	<16> 2 0 0 0 ( 13) ( 0) ( 0) ( 0)	(11) 1 0 0 0 ( 9) ( 0) ( 0) ( 0)	<pre></pre>	<47> 4 0 0 0 ( 9) ( 0) ( 0) ( 0)
(Musculoskele	etal system)				
bone	osteosclerosis	<16> 2 0 0 0 ( 13) ( 0) ( 0) ( 0)	3 0 0 0 ( 27) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
(Body cavitie	isl				
mediastinum	inflammatory infiltration	<16> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<11> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<47> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)
peritoneum	inflammation	<16> 1 0 0 0 ( 6) ( 0) ( 0) ( 0)	<11> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<47> 0 0 0 0 0 0 0 0 0 0
<a>&gt; b (c)</a>	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤				

## TABLE L 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0759 ANIMAL : RAT F344/DuCriCrij[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 15

	Group Name No. of Animals		Control on Study 34		ı			160 ppm 39		800 ppm 42			4000 ppm 3								
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4- (%)	1÷ (%)		2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
{Integumentar	y system/appandage}																				
skin/app	squamous cell hyperplasia		0 ( 0)	<34 0 ( 0)	0	0 ( 0)	(	0	<3! 1 ( 3)	0	0 ( 0)	0 ( 0)	(	<42) 0 0) (	0	0 ( 0)	. (	0 0)	( 0)	3> 0 ( 0)	0 ( 0)
	scab		0 ( 0)	0 ( 0)	0 (0)	0 ( 0)	(	0 0) (	0 (0)	0 ( 0)	( 0)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	(	0 0)	1 ( 33)	0 ( 0)	0 ( 0)
(Respiratory	system)																				
nasal cavit	mineralization		23 ( 68)	<34 0 ( 0)	0	0 ( 0)		20 51) (	<39 0 ( 0)	9> 0 ( 0)	( 0)	31 ( 74)		<42) 0 0) (	0	0 ( 0)	(	3 100)	0	3> 0 ( 0)	0 ( 0)
	eosinophilic change:olfactory epithe		21 ( 62)	12 ( 35)	0	0 ( 0)	( 4	19 19) (	20 51)	0 ( 0)	( 0)	23 ( 55)	1 ( 4	9 5) (	0 0)	0 ( 0)	(	3 100)	0 ( 0)	0 ( 0)	0 ( 0)
	eosinophilic change:respiratory epit		14 ( 41)	0 ( 0)	0 0)	0 ( 0)		?3 59) (	0 ()	0 ( 0)	( 0)	23 ( 55)		0 0) (	0 0)	0 ( 0)	(	1 33)	0 ( 0)	0 ( 0)	0 ( 0)
	inflammation:foreign body		1 ( 3)	1 ( 3)	1 3)	0 ( 0)	(	0 0) (	0 0)	0 ( 0)	( 0)	1 ( 2)	(	0 0) (	0 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)
	inflammation:respiratory epithelium		8 ( 24)	0 ( 0) (	0 0)	0 ( 0)		9 ?3) (	0 (0)	0 ( 0)	0 ( 0)	6 ( 14)	(	0 0) (	0 0)	0 ( 0)	(	0 0)	0 ( 0)	0 ( 0)	0 ( 0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site b: Number of animals with lesion

c : b / a * 100 (c)

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

b

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE : 16

	Group Name No. of Animal:	Control			4000 ppm 3	
Organ	Findings	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
(Respiratory	system)					
nasal cavit	respiratory metaplasia:gland	33 0 0 0 ( 97) ( 0) ( 0) ( 0)	39 0 0 0 (100) ( 0) ( 0) ( 0)	42 0 0 0 (100) ( 0) ( 0) ( 0)	3 0 0 0 (100) ( 0) ( 0) ( 0)	
	squamous cell metaplasia:respiratory epithelium	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 ( 2) ( 0) ( 0) ( 0)	0 0 0 0 0 (0) (0) (0)	
	hyperplasia:transitional epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	
	inflammtory infiltration:respiratory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	
	brown pigment olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	10 0 0 0 ** ( 24) ( 0) ( 0) ( 0)	2 0 0 0 ***	
larynx	inflammation	<34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	39> 0 0 0 0 0 0 0	2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>	
	inflammatory infiltration	1 0 0 0 0 (3) (0) (0) (0)	3 0 0 0 0 ( 8) ( 0) ( 0) ( 0)	2 0 0 0 0 ( 5) ( 0) ( 0)	0 0 0 0 0 (0) (0)	
lung	congestion	34> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	39> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<42> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	< 3> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	

4+ : Severe

Grade 1+: Slight 2+: Moderate 3+: Marked

< a > a : Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 17

		Group Name Control	160 ppm	800 ppm	4000 ppm	
Organ		No. of Animals on Study 34  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	3 1+ 2+ 3+ 4+ (%) (%) (%)	
(Respiratory :	system)					
lung	hemorrhage	(34) 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	39> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	<42> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>	
	edema	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	1 1 0 0 **	
	inflammatory infiltration	1 0 0 0 ( 3) ( 0) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	fibrosis:focal .	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (33) (0) (0) (0)	
	accumulation of foamy cells	1 0 0 0 ( 3) ( 0) ( 0)	1 0 0 0 (3) (0) (0)	4 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0) (0)	
	bronchiolar-alveolar cell hyperplasia	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (33) (0) (0) (0)	
	inflammation:foreign body	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	0 0 0 0 0 (0) (0)	
{Hematopoietic	: system)					
bone marrow	deposit of hemosiderin	34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	39> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<pre></pre>	

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

< a >

a : Number of animals examined at the site

b

b: Number of animals with lesion

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

4+ : Severe

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE : 18

		up Name Control	160 ppm	800 ppm	4000 ppm	
Organ	No. Gra Findings	of Animals on Study 34 de 1+ 2+ 3+ 4+	39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	3 1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Hematopoie	tic system)					
bone marrow	granulation	\( \lambda 34 \rangle \) \[ 1  2  0  0 \\ (3)  (6)  (0)  (0) \]	<39> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<42> 0 2 0 0 0 0 ( 5) ( 0) ( 0)	<pre></pre>	
	increased hematopoiesis	5 1 0 0 (15) (3) (0) (0)	3 0 0 0 0 (8) (9) (9)	4 1 0 0 (10) (2) (0) (0)	3 0 0 0 ** (100) ( 0) ( 0) ( 0)	
spleen	congestion	\left\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	39> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<42> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>	
	deposit of hemosiderin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	
	extramedullary hematopoiesis	21 7 0 0 (62) (21) (0) (0)	26 4 1 0 (67) (10) (3) (0)	25 9 1 0 (60) (21) (2) (0)	1 2 0 0 (33) (67) (0) (0)	
{Circulator	y system)					
heart	inflammatory infiltration	34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	39> 1 0 0 0 (3) (0) (0) (0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	
Grade <a>&gt; b (c) Significant</a>	1+: Slight 2+: Moderate 3+: M a: Number of animals examined at the site b: Number of animals with lesion c: b/a $*$ 100 difference; $*$ : $P \le 0.05$ $**$ : $P \le 0.05$					

(HPT150)

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 19

Organ	Findings	Group Name Control No. of Animals on Study 34 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	160 ppm 39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	800 ppm 42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	4000 ppm 3 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Circulatory	v system)				
neart	myocardial fibrosis	\( \langle 34 \rangle \) 13	<39> 14 0 0 0 ( 36) ( 0) ( 0) ( 0)	<42> 16 0 0 0 ( 38) ( 0) ( 0) ( 0)	<pre></pre>
subendocardial fibrosi	subendocardial fibrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
Digestive s	system)				
ongue	lymphocytic infiltration	34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	<42> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)
	squamous cell hyperplasia	0 0 0 0 0 (0) (0)	0 1 0 0 ( 0) ( 3) ( 0) ( 0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)
stomach	ulcer:forestomach	34> 1 1 0 0 ( 3) ( 3) ( 0) ( 0)	<pre></pre>	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	3> 0 1 0 0 ( 0) ( 33) ( 0) ( 0)
	hyperplasia:forestomach	1 1 0 0 ( 3) ( 3) ( 0) ( 0)	0 1 0 0	0 0 0 0 (0) (0) (0)	1 0 0 0 (33) (0) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : P  $\leq$  0.05 ** : P  $\leq$  0.01 Test of Chi Square

(HPT150)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE SEX PAGE: 20 Group Name 160 ppm 800 ppm 4000 ppm Control No. of Animals on Study 39 3 Grade 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_ (Digestive system)

(5.8001110 0)					
stomach	erosion:glandular stomach	<pre></pre>	39> 3 0 0 0 (8) (0) (0) (0)	<42> 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>
	ulcer:glandular stomach	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 ***
	hyperplasia:glandular stomach	1 0 0 0 0 (3) (0) (0)	1 0 0 0 0 (3) (0) (0)	2 0 0 0 (5) (6) (6)	0 0 0 0 0 (0) (0)
	inflammation:glandular stomach	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	change of location of chief cell	1 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
liver	herniation	<34> 4 0 0 0 (12) (0) (0) (0)	<39> 4 0 0 0 (10) (0) (0) (0)	<42> 12 0 0 0 (29) (0) (0) (0)	<pre></pre>
	peliosis-like lesion	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (33) (0) (0) (0)
	necrosis: focal	1 0 0 0 (3) (3) (6)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a: Number of animals examined at the site b b: Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 21

	Group Name Control	160 ppm	800 ppm	4000 ppm 3	
Findings	No. of Animals on Study 34  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
tem)					
fatty change:peripheral	\( \langle 34 \rangle \) \( 0 \	39> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<42> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	
lymphocytic infiltration	2 0 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
granulation	14 2 0 0 ( 41) ( 6) ( 0) ( 0)	17 1 0 0 (44) (3) (0) (0)	9 2 0 0 (21) (5) (0) (0)	0 0 0 0 0 (0) (0)	
inflammatory cell nest	2 0 0 0 (6) (6) (7)	0 2 0 0 (0) (5) (0) (0)	5 1 0 0 (12) (2) (0) (0)	0 0 0 0 0 (0) (0)	
extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	
clear cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
acidophilic cell focus	5 1 0 0 (15) (3) (0) (0)	9 1 0 0 (23) (3) (0) (0)	6 1 0 0 (14) (2) (0) (0)	1 0 0 0 (33) (0) (0) (0)	
basophilic cell focus	24 0 0 0 (71) ( 0) ( 0) ( 0)	27 1 0 0 (69) (3) (0) (0)	24 0 0 0 (57) (0) (0) (0)	3 0 0 0 (100) ( 0) ( 0) ( 0)	
3	fatty change:peripheral  lymphocytic infiltration  granulation  inflammatory cell nest  extramedullary hematopoiesis  clear cell focus  acidophilic cell focus	Findings	Findings	Stem	

4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100 (c)

Significant difference;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

#### HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

Group Name 160 ppm 800 ppm 4000 ppm Control No. of Animals on Study 34 39 Grade 1+ 2+ 3+ 4+ 2+ 3+ 4+ 2+ 3+ 2+ 3+ 4+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ_ Findings_ (Digestive system) **<42>** liver <34> bile duct hyperplasia 1 0 0 16 4 0 0 26 0 0 0 (0)(0)(0)(0) (38) (3) (0) (0) (41) (10) (0) (0) (62) (0) (0) (0) cholangiofibrosis 0 1 0 0 0 1 0 0 0 0 0 (0)(3)(0)(0) (0) (3) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 hepatocellular hypertrophy:central (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0) (0) (0) (0) (0) <39> <42> <34> pancreas 0 0 0 0 atrophy 0 0 0 0 0 0 1 0 0 0 (2) (0) (0) (0) (0)(0)(0)(0) (3) (0) (0) (0) (0) (0) (0) (0) (Urinary system) kidney ⟨34⟩ cyst 0 0 0 0 1 0 0 0 0 0 0 0 (3) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) 0 0 0 0 0 0 0 0 scar 1 0 0 0 0 0 (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0)

4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a : Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a * 100

Significant difference;  $*: P \leq 0.05$  **:  $P \leq 0.01$  Test of Chi Square

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE

PAGE: 23

		Group Name Control	160 ppm	800 ppm 42	4000 ppm	
Organ	Findings	No. of Animals on Study 34 Grade 1+ 2+ 3+ 4+ (%) (%) (%)	39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	3 1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Urinary sys	tem)					
kidney	chronic nephropathy	34> 13 2 0 0 (38) (6) (0) (0)	<pre></pre>	<42> 24 6 3 0 * (57) (14) (7) (0)	<pre></pre>	
	tubular necrosis	0 0 0 0 0 (0) (0)	0 0 1 0 ( 0) ( 3) ( 0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	
	mineralization:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	2 0 0 0 0 (5) (0) (0) (0)	1 1 0 0 ** (33) (33) (0) (0)	
	mineralization:tubule	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (33) (0) (0) (0)	
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 ( 0) ( 5) ( 0) ( 0)	3 0 0 0 ***	
{Endocrine s	:ystem}					
pituitary	angiectasis	<34> 2 0 0 0 ( 6) ( 0) ( 0) ( 0)	39> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<42> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>	
	cyst	14 0 2 0 ( 41) ( 0) ( 6) ( 0)	17 2 1 0 (44) (5) (3) (0)	10 3 2 0 (24) (7) (5) (0)	1 0 0 0 (33) (0) (0) (0)	

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

b

a : Number of animals examined at the site

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ;  $*: P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

	N	roup Name Control o. of Animals on Study 34	160 ppm 39	800 ppm 42	4000 ppm 3		
Organ	Findings	rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)		
(Endocrine sy	stem)						
pituitary	hyperplasia	<34> 7 4 2 0 (21) (12) (6) (0)	<pre></pre>	<42> 12 5 0 0 (29) (12) (0) (0)	<pre></pre>		
	Rathke pouch	0 0 0 0 0 (0) (0)	2 0 0 0 0 (5) (0) (0)	1 0 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)		
thyroid	C-cell hyperplasia	\( \langle 34 \rangle \) 15	<pre></pre>	<42> 23 7 1 0 (55) (17) (2) (0)	<pre></pre>		
parathyroid	hyperplasia	34> 0 0 0 0 0 0 0 0	39> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>		
adrenal	angiectasis	34> 0 0 0 0 0 0 0 0	39> 0 0 0 0 0 0 0 0	2 0 0 0 ( 5) ( 0) ( 0) ( 0)	<pre></pre>		
	peliosis-like lesion	1 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (33) (0) (0) (0)		
	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (33) (0) (0) (0)		
<pre></pre>	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤						

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control	160 ppm	800 ppm	4000 ppm
Organ	Findings	No. of Animals on Study 34  Grade 1+ 2+ 3+ 4+  (%) (%) (%) (%)	39 1+ 2+ 3+ 4+ (%) (%) (%) (%)	42 1+ 2+ 3+ 4+ (%) (%) (%) (%)	3 1+ 2+ 3+ 4+ (%) (%) (%)
{Endocrine s	ystem)				
adrenal	extramedullary hematopoiesis	34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	\( \langle 42 \rangle \) \( 1  0  0  0 \\ ( 2)  ( 0)  ( 0)  ( 0)  ( 0) \end{array}	<pre></pre>
	hyperplasia:cortical cell	4 2 0 0 (12) (6) (0) (0)	7 0 0 0 (18) ( 0) ( 0) ( 0)	6 0 0 0 0 (14) (0) (0) (0)	0 0 0 0 0 ( 0) ( 0)
	hyperplasia:medulla	2 1 0 0 ( 6) ( 3) ( 0) ( 0)	6 0 1 0 (15) (0) (3) (0)	2 0 0 0 0 ( 5) ( 0) ( 0)	0 0 0 0 0 (0) (0)
	focal fatty change:cortex	3 0 0 0 0 ( 9) ( 0) ( 0) ( 0)	6 1 0 0 (15) (3) (0) (0)	6 2 0 0 (14) (5) (0) (0)	0 0 0 0 0 (0) (0)
	focal fatty change	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 ( 0) ( 0)
(Reproductiv	e system)				
ovary	lymphocytic infiltration	<34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>	(42) 1 0 0 0 ( 2) ( 0) ( 0) ( 0)	<pre></pre>
	hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (33) (0) (0) (0)

b b : Number of animals with lesion

c : b / a * 100 (c)

Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$  Test of Chi Square

(HPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control	160 ppm	800 ppm	4000 ppm
Organ	Findings		39 4+ 1+ 2+ 3+ 4+ %) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	3 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Reproductive	e system)				
uterus	endometrial hyperplasia	34> 0 0 0 ( 0) ( 0) ( 0) (	39> 0 0 1 0 0 0) (0) (3) (0) (0)	<42> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
	cystic endometrial hyperplasia	9 0 0 (26) (0) (0) (	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 (10) (10) (10)	1 0 0 0 0 (33) (0) (0) (0)
prep/cli gl	hyperplasia	34> 0 0 0 ( 0) ( 0) ( 0) (	<pre></pre>	<pre></pre>	<pre></pre>
(Nervous syst	eml				
brain	gliosis	34> 1 0 0 ( 3) ( 0) ( 0) (	<pre></pre>	<42> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	<pre></pre>
(Special sens	e organs/appendage}				
еуе	cataract	34> 3 0 0 ( 9) ( 0) ( 0) (	39> 0 3 2 0 0 0) (8) (5) (0) (0)	<pre></pre>	<pre></pre>
Grade < a > b ( c )	1+ : Slight 2+ : Moderate a : Number of animals examined at the b : Number of animals with lesion c : b / a * 100	3+ : Marked 4+ : Severe site			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

		Group Name Control No. of Animals on Study 34 Grade 1+ 2+ 3+ 4+	160 ppm 39 1+ 2+ 3+ 4+	800 ppm 42 1+ 2+ 3+ 4+	4000 ppm 3 1+ 2+ 3+ 4+
Organ	Findings	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
(Special sens	se organs/appendage)				
еуе	retinal atrophy	\( \lambda 34 \rangle \) 12 6 0 0 ( 35) ( 18) ( 0) ( 0)	<pre></pre>	\( \langle 42 \rangle \) \( 1  0  2  0 ** \) \( 2) \( ( 0)  ( 5)  ( 0) \)	<pre></pre>
	keratitis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 1 0 (0) (2) (0)	0 1 0 0 (0) (33) (0) (0)
	íritis	1 0 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	2 0 0 0 ***
Harder gl	degeneration	34> 0 0 0 0 ( 0) ( 0) ( 0) ( 0)	39> 1 0 0 0 ( 3) ( 0) ( 0) ( 0)	\( \langle 42 \rangle \) \( 1  1  0  0 \\ ( 2)  ( 0)  ( 0) \end{array}	<pre></pre>
	lymphocytic infiltration	1 0 0 0 ( 3) ( 3) ( 0) ( 0)	1 0 0 0 0 (3) (0) (0)	2 0 0 0 0 (5) (0) (0)	0 0 0 0 0 (0) (0)
nasolacr d	inflammation	2 0 0 0 ( 6) ( 0) ( 0) ( 0)	<39> 2 0 0 0 ( 5) ( 0) ( 0) ( 0)	3 0 0 0 ( 7) ( 0) ( 0) ( 0)	<pre></pre>
(Musculoskele	etal system)				
oone	osteosclerosis	34> 3 1 0 0 ( 9) ( 3) ( 0) ( 0)	<39> 6 2 0 0 (15) (5) (0) (0)	<42> 6 1 0 0 (14) (2) (0) (0)	<pre></pre>
<a>&gt; b (c)</a>	1+: Slight 2+: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 lifference; *: P ≤ 0.05 **: P				

# TABLE M 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

## NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

: MALE

Time-related Weeks	I tems	Group Name	Control	280 ppm	1400 ppm	7000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		1	1	0	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		1 1 0	1 1 0	0 0 0	0 0 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 1 1	1 0 1	0 0 0	0 0 0	
53 - 78 NO. OF EXAMINED	NO. OF EXAMINED ANIMALS		3	1	2	4	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		3 2 1	0 0 0	1 0 1	3 1 2	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		3 1 4	0 0 0	1 1 2	2 3 5	
79 - 104	NO. OF EXAMINED ANIMALS		8	12	7	12	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		8 1 7	12 3 9	7 2 5	12 6 6	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		17 6 23	16 8 24	9 7 16	15 3 18	
105 - 105	NO. OF EXAMINED ANIMALS		38	36	41	33	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		38 7 31	36 9 27	41 4 37	33 20 13	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		86 4 90	72 10 82	95 16 111	49 3 52	

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

SEX

: MALE

PAGE: 2

Time-related Weeks	Items	Group Name	Control	280 ppm	1400 ppm	7000 ppm	- ~
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		50	49	49	48	
	NO. OF ANIMALS WITH SINGLE TUMORS		11	13	6	27	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		39	36	43	21	
	NO. OF BENIGN TUMORS		106	89	105	66	
	NO. OF MALIGNANT TUMORS		12	18	24	9	
	NO. OF TOTAL TUMORS		118	107	129	75	

(HPT070)

BAIS5

# TABLE M 2

# NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

REPORT TYPE : A1
SEX : FEM.

: FEMALE

Fime-related Weeks	Items	Group Name	Control	160 ppm	800 ppm	4000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	0	0	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		0 0 0	0 0 0	0 0 0	1 1 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 0 0	0 0 0	0 0 0	0 1 1	
53 - 78	NO. OF EXAMINED ANIMALS		1	2	2	1	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		1 1 0	2 2 0	2 2 0	1 1 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 1 1	2 0 2	0 2 2	1 0 1	
79 - 104	NO. OF EXAMINED ANIMALS		15	9	6	45	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		15 9 6	9 8 1	6 3 3	16 10 6	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		14 8 22	4 6 10	5 4 9	19 3 22	
105 - 105	NO. OF EXAMINED ANIMALS	A SUM UM EN CORDONATION	34	39	42	3	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		26 16 10	29 18 11	30 19 11	3 3 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		32 7 39	36 8 44	39 9 48	1 2 3	

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

SEX : FEMALE

Time-related Weeks	I tems	Group Name	Control	160 ppm	800 ppm	4000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS		42	40	38	21	
	NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		26 16	28 12	24 14	15 6	
	NO. OF BENIGN TUMORS		46	42	44	21	
	NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		16 62	14 56	15 59	6 27	
	**************************************						

(HPT070)

BAIS5

# TABLE N 1

# HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

)rgan	Findings	Group Name Control No. of animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
{Integumentary	system/appandage)				
skin/app	squamous cell papilloma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	trichoepithelioma	0 ( 0%)	2 ( 4%)	0 ( 0%)	0 ( 0%)
	keratoacanthoma	7 (14%)	2 ( 4%)	7 (14%)	1 ( 2%)
	sebaceous adenoma	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	squamous cell carcinoma	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
subcutis	fibroma	<50> 4 ( 8%)	<50> 7 (14%)	<50> 7 ( 14%)	<50> 2 ( 4%)
	lipoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	schwannoma	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	fibrosarcoma	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
	histiocytic sarcoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
	sarcoma:NOS	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
(Respiratory s	ystem)				
nasal cavit	adenoma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
(Respiratory s	system)				
lung	bronchiolar-alveolar adenoma	<50> 2 ( 4%)	<50> 3 ( 6%)	<50> 1 ( 2%)	<50> 1 ( 2%)
	bronchiolar-alveolar carcinoma	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
Hematopoietic	: system}				
lymph node	histiocytic sarcoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
pleen	hemangioma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	mononuclear cell leukemia	4 ( 8%)	6 (12%)	9 (18%)	6 (12%)
Digestive sys	tem}				
ral cavity	squamous cell papilloma	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 0 ( 0%)
	squamous cell carcinoma	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
sophagus	squamous cell papilloma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
mall intes	leiomyosarcoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
iver	hepatocellular adenoma	<50> 3 ( 6%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 2 ( 4%)
ancreas	islet cell adenoma	<50> 4 ( 8%)	<50> 2 ( 4%)	<50> 5 ( 10%)	<50> 0 ( 0%)

< a > a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm

c:b/a * 100

ANIMAL : RAT F344/DuCrICrIj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE \$EX

cell adenocarcinoma hymoma cell carcinoma tional cell papilloma		0	<50> ( 0%) <50> ( 0%)		<50> ( 2%) <50> ( 2%)		<50> ( 2%) <50> ( 0%)		<50> ( 0%)
chymoma cell carcinoma		0	( 0%)		( 2%) <50>		( 2%) <50>		( 0%)
cell carcinoma		0		1		0			(50)
cell carcinoma		0		1		0			(= 0)
		0						1	<50> ( 2%)
tional cell papilloma			( 0%)	1	( 2%)	1	( 2%)	0	( 0%)
			<50> ( 4%)	0	<50> ( 0%)	1	<50> ( 2%)	0	<50> ( 0%)
ia			<50> ( 30%)	17	<50> ( 34%)	17	<50> ( 34%)	0	<50> ( 0%)
arcinoma		0	( 0%)	2	( 4%)	0	( 0%)	0	( 0%)
adenoma			<50> ( 28%)	5	<50> ( 10%)	12	<50> ( 24%)	6	<50> ( 12%)
ular adenoma		0	( 0%)	1	( 2%)	0	( 0%)	3	( 6%)
carcinoma		2	( 4%)	4	( 8%)	5	( 10%)	0	( 0%)
ular adenocarcinoma		0	( 0%)	0	( 0%)	1	( 2%)	0	( 0%)
a				0	<50> ( 0%)	1	<50> ( 2%)	0	<50> ( 0%)
u	lar adenoma carcinoma lar adenocarcinoma	lar adenoma carcinoma Har adenocarcinoma	tlar adenoma 0 carcinoma 2 tlar adenocarcinoma 0	carcinoma       0 ( 0%)         carcinoma       2 ( 4%)         clar adenocarcinoma       0 ( 0%)         <50>	carcinoma       0 (0%)       1         carcinoma       2 (4%)       4         clar adenocarcinoma       0 (0%)       0         <50>	carcinoma       0 (0%)       1 (2%)         carcinoma       2 (4%)       4 (8%)         clar adenocarcinoma       0 (0%)       0 (0%)         √50>       √50>	carcinoma       0 (0%)       1 (2%)       0         carcinoma       2 (4%)       4 (8%)       5         clar adenocarcinoma       0 (0%)       0 (0%)       1         <50>       <50>	Carcinoma	lar adenoma

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm

c : b / a * 100

ANIMAL : RAT F344/DuCrICrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

Findings	Group Name Control No. of animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
tem)				
pheochromocytoma	<50> 7 ( 14%)	<50> 4 ( 8%)	<50> 4 ( 8%)	<50> 0 ( 0%)
pheochromocytoma:malignant	2 ( 4%)	1 ( 2%)	2 ( 4%)	0 ( 0%)
system)				
interstitial cell tumor	<50> 41 ( 82%)	<50> 35 ( 70%)	<50> 43 ( 86%)	<50> 47 ( 94%)
fibroadenoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 2 ( 4%)	<50> 0 ( 0%)
adenoma	<50> 1 ( 2%)	<50> 2 ( 4%)	<50> 3 ( 6%)	<50> 3 ( 6%)
preputial gland tumor:malignant	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
m)				
glioma	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
meningioma:malignant	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
organs/appendage)				
Zmbal gland tumor:benign	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
Zymbal gland tumor:malignant	1 ( 2%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
	pheochromocytoma pheochromocytoma:malignant system) interstitial cell tumor fibroadenoma adenoma preputial gland tumor:malignant m) glioma meningioma:malignant organs/appendage) Zmbal gland tumor:benign	No. of animals on Study   50	No. of animals on Study   50   50   50	No. of animals on Study   50   50   50   50

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
{Musculoskele	tal system}				
bone	osteoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
(Body cavitie	sì				
peritoneum	hemangioma	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	mesothelioma	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
<a>&gt;</a> b (c)	a: Number of animals examined at the site b: Number of animals with neoplasm c: b/a *	100			- 1
(HPT085)	D. Hamber of arranges with neoptesm				

# TABLE N 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
(Integumentar	y system/appandage}				
skin/app	schwannoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	keratoacanthoma	0 ( 0%)	0 ( 0%)	0 ( 0%)	2 ( 4%)
subcutis	fibroma	<50> 1 ( 2%)	<50> 2 ( 4%)	<50> 0 ( 0%)	<50> 1 ( 2%)
	leiomyosarcoma	1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
	schwannoma:malignant	0 ( 0%)	0 ( 0%)	0 ( 0%)	1 ( 2%)
(Hematopoieti	c system)				
spleen	mononuclear cell leukemia	<50> 6 ( 12%)	<50> 5 ( 10%)	<50> 4 ( 8%)	<50> 2 ( 4%)
(Digestive sy	stem)				
tongue	squamous cell papilloma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 1 ( 2%)
	squamous cell carcinoma	0 ( 0%)	0 ( 0%)	1 ( 2%)	0 ( 0%)
small intes	leiomyosarcoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
liver	hepatocellular adenoma	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 ( 2%)
	histiocytic sarcoma	0 ( 0%)	1 ( 2%)	0 ( 0%)	0 ( 0%)

b (c) c : b / a * 100 b : Number of animals with neoplasm

STUDY NO. : 0759 ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

rgan	Findings	Group Name Control No. of animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
(Digestive sy	ystem)				
iver	hepatocellular carcinoma	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
ancreas	islet cell adenoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 2 ( 4%)	<50> 0 ( 0%)
Urinary sys	tem)				
cidney	sarcoma:NOS	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
(Endocrine s	ystem)				
ituitary	adenoma	<50> 14 ( 28%)	<50> 17 ( 34%)	<50> 11 ( 22%)	<50> 0 ( 0%)
	adenocarcinoma	0 ( 0%)	1 ( 2%)	2 ( 4%)	0 ( 0%)
hyroid	C-cell adenoma	<50> 5 ( 10%)	<50> 6 ( 12%)	<50> 7 ( 14%)	<50> 0 ( 0%)
	C-cell carcinoma	0 ( 0%)	1 ( 2%)	2 ( 4%)	0 ( 0%)
ndrenal	pheochromocytoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
	pheochromocytoma:malignant	2 ( 4%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
(Reproductiv	e system}				
ovary	granulosa cell tumor:benign	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)

b (c) b : Number of animals with neoplasm c:b/a * 100

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 50	160 ppm 50	800 ppm 50	4000 рр <b>m</b> 50
(Reproductive	system)				
ovary	granulosa cell tumor:malignant	<50> 1 (2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
uterus	endometrial stromal polyp	<50> 7 (14%)	<50> 7 ( 14%)	<50> 6 (12%)	<50> 5 ( 10%)
	adenocarcinoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	histiocytic sarcoma	1 ( 2%)	1 ( 2%)	0 ( 0%)	0 ( 0%)
	endometrial stromal sarcoma	2 ( 4%)	3 ( 6%)	2 ( 4%)	0 ( 0%)
vagina	polyp	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)
nammary gl	adenoma	<50> 1 ( 2%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 1 ( 2%)
	fibroadenoma .	11 ( 22%)	7 (14%)	14 ( 28%)	7 (14%)
rep/cli gl	adenoma	<50> 3 (6%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 2 ( 4%)
(Special sense	e organs/appendage)				
Zymbal gl	Zmbal gland tumor:benign	<50> 0 ( 0%)	<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	Zymbal gland tumor:malignant	0 ( 0%)	0 ( 0%)	2 ( 4%)	1 ( 2%)
(Musculoskelet	al system)				
muscle	rhabdomyosarcoma	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
(2)	a. Number of animals examined at the site				MANAGER AND THE STATE OF THE ST

< a > a : Number of animals examined at the site

b (c) b : Number of animals with neoplasm c:b/a * 100

STUDY NO. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

SEX

: FEMALE

Organ	Findings	Group Name No. of animals on St	Control audy 50	160 ppm 50	800 ppm 50	4000 ppm 50
{Musculoskelet	tal system}					
cartilage	chondroma		<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 1 ( 2%)
(Body cavities	sł					
peritoneum	lipoma		<50> 1 ( 2%)	<50> 0 ( 0%)	<50> 0 ( 0%)	<50> 0 ( 0%)
	neuroendocrine cell tumor:benign		1 ( 2%)	0 ( 0%)	0 ( 0%)	0 ( 0%)
<a>&gt;</a>	a : Number of animals examined at the site	* 100	Constitution of the consti			
(HPT085)	b: Number of animals with neoplasm c:b/a	* 100		MANAGE CONTRACTOR OF THE STATE		A1_1_1_

# TABLE O 1

# NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

## NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	280 ppm	1400 ppm	7000 ppm
	SITE : skin/appendage			
Tumor rate	TUMOR : keratoacanthoma			
Overall rates (a)	7/50 ( 14. 0)	2/50 ( 4. 0)	7/50 ( 14. 0)	1/50 ( 2. 0)
Adjusted rates(b)	15. 56	5. 56	15. 91	3. 03
Terminal rates (c)	5/38 ( 13. 2)	2/36 ( 5. 6)	5/41 ( 12. 2)	1/33 ( 3. 0)
Statistical analysis Peto test				
Standard method (d)	P =			
Prevalence method(d)	P = 0. 9651			
Combined analysis(d)	P =			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.0809	P = 0.0798	P = 0.6129	P = 0.0297*
Fisher Exact test(e)		P = 0. 0/90	P - 0. 0129	r - 0. 0291+
	SITE : subcutis			
_	TUMOR : fibroma			
Tumor rate	4/50 / 9 0)	7/50/ 14 0	7/50 ( 14 0)	2/50 ( 4.0)
Overall rates (a) Adjusted rates (b)	4/50 ( 8. 0) 10. 53	7/50 ( 14. 0) 13. 89	7/50 ( 14. 0) 17. 07	2/50 ( 4. 0) 6. 06
Terminal rates (c)	4/38 ( 10. 5)	5/36 ( 13. 9)	7/41 ( 17. 1)	2/33 ( 6. 1)
Statistical analysis	,, 55 ( ), 5. 5/	0,00,00,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>
Peto test				
Standard method (d)	P = 0.8093			
Prevalence method(d) Combined analysis(d)	P = 0. 8450 P = 0. 9049			
Cochran-Armitage test (e)	P = 0. 1428			
Fisher Exact test(e)		P = 0. 2623	P = 0. 2623	P = 0.3389
**************************************				
	SITE : subcutis			
Tumor rate	TUMOR : fibroma, fibrosarcoma			
Overall rates (a)	4/50 ( 8. 0)	7/50 ( 14. 0)	8/50 ( 16. 0)	2/50 ( 4. 0)
Adjusted rates (b)	10. 53	13. 89	18. 60	6. 06
Terminal rates(c)	4/38 ( 10. 5)	5/36 ( 13. 9)	7/41 ( 17. 1)	2/33 ( 6. 1)
Statistical analysis Peto test				
Standard method(d)	P = 0.8093			
Prevalence method (d)	P = 0. 8759			
Combined analysis (d)	P = 0.9243			
Cochran-Armitage test(e)	P = 0.1345			
Fisher Exact test(e)		P = 0.2623	P = 0.1783	P = 0.3389

(HPT360A)

## NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

PAGE: 2

BA1S5

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	280 ppm	1400 ppm	7000 ppm				
	SITE : lung TUMOR : bronchiolar-alveolar adenoma							
Tumor rate Overall rates(a)	2/50 ( 4. 0)	3/50 ( 6. 0)	1/50 ( 2. 0)	1/50 ( 2. 0)				
Adjusted rates(b)	5. 26	8. 33	2. 44	2. 78				
Terminal rates(c) Statistical analysis Peto test	2/38 ( 5. 3)	3/36 ( 8. 3)	1/41 ( 2. 4)	0/33 ( 0. 0)				
Standard method(d)	P =							
Prevalence method(d) Combined analysis(d)	P = 0.7595 P =							
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 4198	P = 0.5000	P = 0.5000	P = 0.5000				
Tumor rate	SITE : lung TUMOR : bronchiolar-alveol	ar adenoma, bronchiolar-alveolar carcinom	à					
Overall rates (a)	2/50 ( 4. 0)	3/50 ( 6. 0)	2/50 ( 4. 0)	1/50 ( 2. 0)				
Adjusted rates(b) Terminal rates(c)	5. 26 2/38 ( 5. 3)	8. 33 3/36 ( 8. 3)	2. 44 1/41 ( 2. 4)	2. 78 0/33 ( 0. 0)				
Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e) Fisher Exact test (e)	P = 0.3109 P = 0.7595 P = 0.7742 P = 0.3928	P = 0. 5000	P = 0. 6913	P = 0.5000				
	SITE : spleen TUMOR : mononuclear cell le	eukemi a						
Tumor rate Overall rates(a)	4/50 ( 8. 0)	6/50 ( 12. 0)	9/50 ( 18. 0)	6/50 ( 12. 0)				
Adjusted rates (b) Terminal rates (c)	2. 63 1/38 ( 2. 6)	8. 33 3/36 ( 8. 3)	14. 63 6/41 ( 14. 6)	6. 06 2/33 ( 6. 1)				
Statistical analysis Peto test	,,	5.55 ( 5.5)	5, , , , , , ,	2, 55 ( 5, 7,				
Standard method(d)	P = 0.2982							
Prevalence method(d) Combined analysis(d)	P = 0.5195 P = 0.3700							
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.8784	P = 0.3703	P = 0. 1168	P = 0.3703				

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

Group Name	Control	280 ppm	1400 ppm	7000 ppm	
	SITE : liver				
umor rate	TUMOR : hepatocellular ader	10та			
Overall rates (a)	3/50 ( 6.0)	0/50 ( 0.0)	0/50 ( 0. 0)	2/50 ( 4. 0)	
Adjusted rates(b)	6. 67	0. 0	0. 0	6. 06	
Terminal rates(c)	1/38 ( 2. 6)	0/36 ( 0. 0)	0/41 ( 0.0)	2/33 ( 6. 1)	
tatistical analysis					
Peto test					
Standard method (d)	P =				
Prevalence method(d) Combined analysis(d)	P = 0. 2841 P =				
Cochran-Armitage test(e)	P = 0. 6151				
Fisher Exact test(e)	1 - 0.0131	P = 0.1212	P = 0.1212	P = 0.5000	
umor rate Overall rates (a) Adjusted rates (b) Terminal rates (c) tatistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e) Fisher Exact test (e)	SITE : pancreas TUMOR : islet cell adenoma 4/50 ( 8. 0) 10. 53 4/38 ( 10. 5) P = P = 0. 9662 P = P = 0. 0746	2/50 ( 4. 0) 5. 56 2/36 ( 5. 6) P = 0. 3389	5/50 ( 10. 0) 12. 20 5/41 ( 12. 2) P = 0. 5000	0/50 ( 0.0) 0.0 0/33 ( 0.0) P = 0.0587	
umor rate	SITE : pancreas TUMOR : islet cell adenoma,	islet cell adenocarcinoma			
Overall rates(a)	4/50 ( 8. 0)	3/50 ( 6. 0)	6/50 ( 12. 0)	0/50 ( 0.0)	
Adjusted rates(b)	10. 53	8. 33	14. 63	0. 0	
Terminal rates(c) tatistical analysis Peto test	4/38 ( 10. 5)	3/36 ( 8. 3)	6/41 ( 14. 6)	0/33 ( 0.0)	
Standard method(d)	P =				
Prevalence method (d)	P = 0. 9756				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0.0552				
Fisher Exact test(e)		P = 0.5000	P = 0.3703	P = 0.0587	

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE

A THE STATE OF THE				
Group Name	Control	280 ppm	1400 ppm	7000 ppm
	SITE : pituitary gland TUMOR : adenoma			
Tumor rate	TOMOR . adenoma			
Overall rates (a)	15/50 ( 30. 0)	17/50 ( 34. 0)	17/50 ( 34. 0)	0/50 ( 0. 0)
Adjusted rates (b)	28. 95	39. 47	36. 59	0. 0
Terminal rates(c) Statistical analysis Peto test	11/38 ( 28. 9)	14/36 ( 38. 9)	15/41 ( 36. 6)	0/33 ( 0. 0)
Standard method(d)	P = 0.9652			
Prevalence method(d)	P = 1. 0000			
Combined analysis (d)	P = 1.0000			
Cochran-Armitage test(e)	P < 0. 0001**	D 0 4450	0 0 4450	D / D 000111
Fisher Exact test(e)		P = 0. 4152	P = 0. 4152	P < 0. 0001**
	SITE : pituitary gland			
	TUMOR: adenoma, adenocarcinoma			
Tumor rate				
Overall rates (a)	15/50 ( 30. 0)	19/50 ( 38. 0)	17/50 ( 34. 0)	0/50 ( 0. 0)
Adjusted rates(b) Terminal rates(c)	28. 95 11/38 ( 28. 9)	39. 47 14/36 ( 38. 9)	36. 59 15/41 ( 36. 6)	0. 0 0/33 ( 0. 0)
Statistical analysis	11/36 ( 20. 9)	14/30 ( 36. 9)	13/41 ( 36. 0)	0/33 ( 0. 0)
Peto test				
Standard method(d)	P = 0.9847			
Prevalence method(d)	P = 1.0000			
Combined analysis (d)	P = 1.0000			
Cochran-Armitage test(e) Fisher Exact test(e)	P < 0. 0001**	D = 0 0024	D = 0 4152	P < 0. 0001**
risher Exact test(e)		P = 0. 2634	P = 0. 4152	P < 0. 0001**
•	SITE : thyroid			
	TUMOR : C-cell adenoma			
Tumor rate	14/50/ 00 0	5 (50 ( 40 5)	10/50/ 01/0	0./50 / 40 0)
Overall rates (a)	14/50 ( 28. 0)	5/50 ( 10. 0)	12/50 ( 24. 0)	6/50 ( 12. 0)
Adjusted rates (b) Terminal rates (c)	34. 21 13/38 ( 34. 2)	13. 89 5/36 ( 13. 9)	26. 83 11/41 ( 26. 8)	18. 18 6/33 ( 18. 2)
Statistical analysis	10/00 ( 04. 2/	3/30 ( 13. 3)	11/41 ( 20. 0)	0/ 55 ( 10. 2)
Peto test				
Standard method(d)	P =			
Prevalence method(d)	P = 0.8524			
Combined analysis (d)	P =			
Cochran-Armitage test (e)	P = 0. 1973	D = 0.0100÷	D = 0.4400	D 0 0200+
Fisher Exact test(e)		P = 0.0198*	P = 0.4100	P = 0.0392*

SEX

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

: MALE

Group Name Control 280 ppm 1400 ppm 7000 ppm SITE : thyroid TUMOR : follicular adenoma Tumor rate Overall rates (a) 0/50 ( 0.0) 1/50 ( 2.0) 0/50 ( 0.0) 3/50 ( 6.0) 7. 32 Adjusted rates (b) 0. 0 2. 78 0. 0 Terminal rates (c) 0/38 ( 0.0) 1/36 ( 2.8) 0/41 ( 0.0) 2/33 ( 6. 1) Statistical analysis Peto test P = ----Standard method (d) P = 0.0224*Prevalence method (d) Combined analysis (d) P = ----P = 0.0249*Cochran-Armitage test (e) P = N. C.Fisher Exact test(e) P = 0.5000P = 0.1212SITE : thyroid TUMOR : C-cell carcinoma Tumor rate Overall rates (a) 2/50 ( 4.0) 4/50 ( 8. 0) 5/50 (10.0) 0/50 ( 0.0) Adjusted rates (b) 5.00 11. 11 12. 20 0. 0 0/33 ( 0.0) Terminal rates (c) 1/38 ( 2.6) 4/36 (11.1) 5/41 (12.2) Statistical analysis Peto test Standard method (d) P = -----Prevalence method (d) P = 0.9696Combined analysis (d) P = ----P = 0.0851Cochran-Armitage test(e) Fisher Exact test (e) P = 0.3389P = 0.2180P = 0.2475SITE: thyroid TUMOR : C-cell adenoma, C-cell carcinoma Tumor rate Overall rates (a) 16/50 ( 32. 0) 9/50 (18.0) 17/50 ( 34. 0) 6/50 (12.0) Adjusted rates (b) 37. 50 25.00 39. 02 18. 18 14/38 ( 36. 8) Terminal rates (c) 9/36 (25.0) 16/41 (39.0) 6/33 (18.2) Statistical analysis Peto test Standard method(d) P = ----Prevalence method (d) P = 0.9716Combined analysis (d) P = ----P = 0.0365*Cochran-Armitage test(e) Fisher Exact test (e) P = 0.0826P = 0.5000P = 0.0142*

PAGE :

5

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE PAGE: 6

Group Name	Control	280 ррт	1400 ppm	7000 ppm	
	SITE : thyroid TUMOR : follicular adenoma,	falliantar adamagarainama			
Tumor rate	tomor . Totticular auenoma,	TOTTICUTAL AGENOCATCINOMA			
Overall rates (a)	0/50 ( 0.0)	1/50 ( 2. 0)	1/50 ( 2.0)	3/50 ( 6. 0)	
Adjusted rates (b)	0. 0	2. 78	2. 44	7. 32	
Terminal rates (c)	0/38 ( 0. 0)	1/36 ( 2. 8)	1/41 ( 2. 4)	2/33 ( 6. 1)	
Statistical analysis Peto test					
Standard method (d)	P =				
Prevalence method (d)	P = 0.0433*				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0.0590				
Fisher Exact test(e)		P = 0.5000	P = 0. 5000	P = 0. 1212	
Tumor rate	SITE : adrenal gland TUMOR : pheochromocytoma				
Overall rates (a)	7/50 ( 14. 0)	4/50 ( 8. 0)	4/50 ( 8. 0)	0/50 ( 0. 0)	
Adjusted rates (b)	18. 42	8. 51	9. 30	0. 0	
Terminal rates (c)	7/38 ( 18. 4)	2/36 ( 5. 6)	3/41 ( 7. 3)	0/33 ( 0. 0)	
Statistical analysis					
Peto test					
Standard method(d) Prevalence method(d)	P = P = 0. 9978				
Combined analysis (d)	P =				
Cochran-Armitage test (e)	P = 0. 0145*				
Fisher Exact test(e)		P = 0.2623	P = 0. 2623	P = 0.0062**	
Tumor rate	SITE : adrenal gland TUMOR : pheochromocytoma,ph	eochromocytoma:malignant			
Overall rates(a)	9/50 ( 18. 0)	5/50 ( 10. 0)	6/50 ( 12. 0)	0/50 ( 0. 0)	
Adjusted rates (b)	18. 42	10. 64	13. 95	0. 0	
Terminal rates (c)	7/38 ( 18. 4)	3/36 ( 8. 3)	5/41 ( 12. 2)	0/33 ( 0.0)	
Statistical analysis					
Peto test	D 0 0000				
Standard method(d) Prevalence method(d)	P = 0.8850 P = 0.9984				
Combined analysis (d)	P = 0. 9994				
Cochran-Armitage test (e)	P = 0. 0053**				
Fisher Exact test(e)		P = 0.1940	P = 0.2883	P = 0.0013**	

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : MALE PAGE: 7

Group Name	Control	280 ppm	1400 ppm	7000 ppm	
	SITE : testis				
Tumor rate	TUMOR : interstitial cell tumor				
Overall rates(a)	41/50 ( 82. 0)	35/50 ( 70. 0)	43/50 ( 86. 0)	47/50 ( 94. 0)	
Adjusted rates (b)	89. 47	78. 38	43730 ( 86. d) 95. 35	100.00	
Terminal rates (c)	34/38 ( 89. 5)	28/36 ( 77. 8)	39/41 ( 95. 1)	33/33 (100. 0)	
Statistical analysis	34/ 30 ( 03. 3)	20/30 ( 11. 0)	35/41 ( 33. 1)	33/ 33 (100. 0/	
Peto test					
Standard method(d)	P =				
Prevalence method (d)	P = 0.0001**				
Combined analysis (d)	P =				
Cochran-Armitage test (e)	P = 0.0101*				
Fisher Exact test(e)		P = 0.1207	P = 0.3929	P = 0.0606	
-	SITE : preputial/clitoral gland TUMOR : adenoma				
umor rate	1/50/ 2.0)	2 (50 ( 4.0)	2/50/ 5.0	3/50/ 6.0)	
Overall rates (a) Adjusted rates (b)	1/50 ( 2. 0) 2. 17	2/50 ( 4. 0) 2. 78	3/50 ( 6. 0) 7. 32	3/50 ( 6. 0) 6. 82	
Terminal rates (c)	0/38 ( 0. 0)	1/36 ( 2. 8)	3/41 ( 7. 3)	2/33 ( 6. 1)	
Statistical analysis	0/30 ( 0.0)	1/30 ( 2. 8)	3/41( 1.3)	2/33 ( 0. 1)	
Peto test					
Standard method(d)	P = 1.0000 ?				
	P = 0. 1473				
Prevalence method(d)					
Prevalence method(d) Combined analysis(d)	P = 0. 2157				
Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	P = 0. 2157 P = 0. 4539				

(HPT360A)

BA1S5

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj [F344/DuCrj]

SEX : MALE PAGE :

nt			
ηţ			
0 ( 4. 0)	4/50 ( 8. 0)	3/50 ( 6. 0)	
2. 78	7. 32	6. 82	
6 ( 2. 8)	3/41 ( 7. 3)	2/33 ( 6. 1)	
2. 07	0, 4, ( 1. 0,	2,00 ( 0.17	
5000	P = 0.1811	P = 0.3087	
).	). 5000	1. 5000 P = 0. 1811	D. 5000 P = 0. 1811 P = 0. 3087

(HPT360A)

BAIS5

- (a): Number of tumor-bearing animals/number of animals examined at the site.
- (b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
- (c): Observed tumor incidence at terminal kill.
- (d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

- (e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
- ?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

-----: There is no data which should be statistical analysis. Significant difference ; * :  $P \le 0.05$  ** :  $P \le 0.01$ 

N.C.: Statistical value cannot be calculated and was not significant.

### TABLE O 2

# NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

STUDY No. : 0759
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE PAGE: 9

Group Name	Control	160 ppm	mqq 008	4000 ppm	
	SITE : spleen				
Tumor rate	TUMOR : mononuclear cell leukemia				
Overall rates (a)	6/50 ( 12. 0)	5/50 ( 10. 0)	4/50 ( 8. 0)	2/50 ( 4. 0)	
Adjusted rates (b)	11. 76	7. 69	4. 76	0. 0	
Terminal rates(c) Itatistical analysis	4/34 ( 11. 8)	3/39 ( 7.7)	2/42 ( 4. 8)	0/3(0.0)	
Peto test					
Standard method(d)	P = 0. 2506				
Prevalence method(d)	P = 0.8533				
Combined analysis (d)	P = 0.4131				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 1556	P = 0.5000	P = 0.3703	P = 0.1343	
Trailer Exact (CSC(C)		1 - 0. 3000	1 - 0. 3103	1 0. 1040	
	SITE : pituitary gland				
Tumor roto	TUMOR : adenoma				
umor rate Overall rates(a)	14/50 ( 28. 0)	17/50 ( 34. 0)	11/50 ( 22. 0)	0/50 ( 0. 0)	
Adjusted rates (b)	22. 50	33. 33	22. 73	0. 0	
Terminal rates (c)	7/34 ( 20. 6)	13/39 ( 33. 3)	9/42 ( 21. 4)	0/3(0.0)	
Statistical analysis					
Peto test Standard method (d)	P = 0.9879				
Prevalence method (d)	P = 0. 9915				
Combined analysis (d)	P = 0. 9996				
Cochran-Armitage test(e)	P < 0. 0001**				
Fisher Exact test(e)		P = 0.3329	P = 0. 3224	P < 0. 0001**	
	CITE				
	SITE : pituitary gland TUMOR : adenoma, adenocarcinoma				
umor rate					
Overall rates (a)	14/50 ( 28. 0)	18/50 ( 36. 0)	13/50 ( 26. 0)	0/50 ( 0. 0)	
Adjusted rates (b) Terminal rates (c)	22. 50 7/34 ( 20. 6)	35. 90 14/39 ( 35. 9)	25. 00 10/42 ( 23. 8)	0. 0 0/ 3 ( 0. 0)	
itatistical analysis	1/34( 20. 0)	14/33 ( 33. 3)	10/42 ( 23. 0)	U/ 3 ( U. U)	
Peto test					
Standard method(d)	P = 0.9848				
Prevalence method(d)	P = 0.9902				
Combined analysis (d)	P = 0.9994				
Cochran-Armitage test(e) Fisher Exact test(e)	P < 0. 0001**	P = 0. 2603	P = 0.5000	P < 0.0001**	
LISHEL EXACT TEST (6)		r - 0. 2003	r - v. 3000	r \ u. UUU1**	

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name 800 ppm 4000 ppm Control 160 ppm SITE : thyroid TUMOR : C-cell adenoma Tumor rate Overall rates (a) 5/50 (10.0) 6/50 (12.0) 7/50 (14.0) 0/50 ( 0.0) Adjusted rates (b) 11. 43 15. 38 15. 56 0. 0 Terminal rates (c) 3/34 ( 8. 8) 6/39 (15.4) 6/42 (14.3) 0/3(0.0) Statistical analysis Peto test Standard method (d) P = ----Prevalence method (d) P = 0.9555Combined analysis (d) P = ----Cochran-Armitage test (e) P = 0.0163*Fisher Exact test(e) P = 0.0281*P = 0.5000P = 0.3798SITE : thyroid TUMOR : C-cell adenoma, C-cell carcinoma Tumor rate 5/50 ( 10.0) 0/50 ( 0.0) Overall rates (a) 6/50 (12.0) 9/50 (18.0) Adjusted rates (b) 11. 43 15. 38 20.00 0. 0 Terminal rates (c) 3/34 (8.8) 0/3(0.0) 6/39 (15.4) 8/42 (19.0) Statistical analysis Peto test Standard method (d) P = ----Prevalence method (d) P = 0.9300Combined analysis (d) P = ----P = 0.0156*Cochran-Armitage test (e) Fisher Exact test (e) P = 0.5000P = 0.1940P = 0.0281*SITE : uterus TUMOR : endometrial stromal polyp

6/50 (12.0)

6/42 ( 14. 3)

P = 0.5000

14. 29

7/50 (14.0)

7/39 (17.9)

P = 0.6129

17. 95

Tumor rate Overall rates (a)

Peto test

Adjusted rates (b)

Terminal rates (c)

Statistical analysis

Standard method (d)

Prevalence method (d)

Combined analysis (d)

Fisher Exact test (e)

Cochran-Armitage test (e)

7/50 (14.0)

6/34 (17.6)

P = 1.0000 ?

P = 0.0845

P = 0.1457

P = 0.5029

17.65

5/50 ( 10. 0)

1/3(33.3)

P = 0.3798

33. 33

STUDY No. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] SEX : FEMALE PAGE: 11

	SITE : uterus TUMOR : endometrial stromal sarcoma 2/50 ( 4. 0) 2. 94 1/34 ( 2. 9) P = 0. 8467 P = 0. 4699 P = 0. 8621 P = 0. 1173	3/50 ( 6. 0) 2. 56 1/39 ( 2. 6) P = 0. 5000	2/50 ( 4. 0) 2. 38 1/42 ( 2. 4)	0/50 ( 0. 0) 0. 0 0/ 3 ( 0. 0)
Tumor rate Overall rates (a) Adjusted rates (b) Terminal rates (c) Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	2/50 ( 4. 0) 2. 94 1/34 ( 2. 9) P = 0. 8467 P = 0. 4699 P = 0. 8621	3/50 ( 6. 0) 2. 56 1/39 ( 2. 6)	2. 38 1/42 ( 2. 4)	0. 0 0/3( 0. 0)
Overall rates (a) Adjusted rates (b) Terminal rates (c) Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	2. 94 1/34 ( 2. 9) P = 0. 8467 P = 0. 4699 P = 0. 8621	2. 56 1/39 ( 2. 6)	2. 38 1/42 ( 2. 4)	0. 0 0/3( 0. 0)
Adjusted rates (b) Terminal rates (c) Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	2. 94 1/34 ( 2. 9) P = 0. 8467 P = 0. 4699 P = 0. 8621	2. 56 1/39 ( 2. 6)	2. 38 1/42 ( 2. 4)	0. 0 0/3( 0. 0)
Terminal rates (c) Statistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	1/34 ( 2. 9)  P = 0. 8467  P = 0. 4699  P = 0. 8621	1/39 ( 2.6)	1/42 ( 2.4)	0/3(0.0)
Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	P = 0. 4699 P = 0. 8621	P = 0. 5000	D 0 0000	
Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e)	P = 0. 4699 P = 0. 8621	P = 0. 5000	D 0 0000	
Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e)	P = 0. 4699 P = 0. 8621	P = 0. 5000	D 0 0000	
Combined analysis (d) Cochran-Armitage test (e)	P = 0.8621	P = 0. 5000		
Cochran-Armitage test(e)		P = 0.5000		
	P = 0. [1/3	P = 0.5000		
risher exact test(e)		P = 0. 5000		P = 0.2475
			P = 0. 6913	P = 0. 24/3
\$	ITE : mammary gland			
	UMOR : fibroadenoma			•
<b>Sumor rate</b>				
Overall rates (a)	11/50 ( 22. 0)	7/50 ( 14. 0)	14/50 ( 28. 0)	7/50 ( 14. 0)
Adjusted rates (b)	29. 41	17. 50	30. 95	16. 67
Terminal rates (c)	10/34 ( 29. 4)	6/39 ( 15. 4)	13/42 ( 31. 0)	0/3(0.0)
Statistical analysis Peto test				
Standard method(d)	P = 0. 1722			
Prevalence method (d)	P = 0. 2276			
Combined analysis (d)	P = 0. 1435			
Cochran-Armitage test(e)	P = 0. 3762			
Fisher Exact test(e)		P = 0.2178	P = 0.3224	P = 0.2178
ADDITION AND ADDITION ADDITION AND ADDITION		AND THE PROPERTY OF THE PROPER		
	ITE : mammary gland			
	UMOR : adenoma, fibroadenoma			
umor rate Overall rates(a)	12/50 ( 24. 0)	8/50 ( 16. 0)	14/50 / 20 0)	0/50/ 16 0)
Adjusted rates (b)	32. 35	8/50 ( 16. 0) 20. 00	14/50 ( 28. 0) 30. 95	8/50 ( 16. 0) 18. 42
Terminal rates (c)	11/34 ( 32. 4)	7/39 ( 17. 9)	30. 95 13/42 ( 31. 0)	0/3(0.0)
tatistical analysis	(1) 03 ( 02. 4)	1700 ( 11. 0)	10/42 ( 01. 0/	0/ 0 \ 0. 0/
Peto test				
Standard method (d)	P = 0.1722			
Prevalence method(d)	P = 0. 2347			
Combined analysis(d)	P = 0.1494			
Cochran-Armitage test(e)	P = 0.4158			
Fisher Exact test(e)		P = 0.2270	P = 0.4100	P = 0. 2270

#### NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
SEX : FEMALE

Group Name	Control	160 ppm	mqq 008	4000 ррш	
	SITE : preputial/clitoral TUMOR : adenoma	gland			
Tumor rate	TOMOR . auenoma				
Overall rates (a)	3/50 ( 6. 0)	0/50 ( 0. 0)	0/50 ( 0.0)	2/50 ( 4.0)	
Adjusted rates (b)	5. 88	0. 0	0. 0	2. 38	
Terminal rates (c)	2/34 ( 5. 9)	0/39 ( 0. 0)	0/42 ( 0. 0)	0/3(0.0)	
Statistical analysis		2, 22, 4			
Peto test					
Standard method(d)	P = 0.1829				
Prevalence method(d)	P = 0.4388				
Combined analysis(d)	P = 0.2016				
Cochran-Armitage test(e)	P = 0.6151				
Fisher Exact test(e)		P = 0.1212	P = 0.1212	P = 0.5000	

(HPT360A)

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c): Observed tumor incidence at terminal kill.

(d): Beneath the control incidence are the P-values associated with the trend test.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? : The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----: There is no data which should be statistical analysis.

Significant difference;  $*: P \leq 0.05$   $**: P \leq 0.01$ 

N. C. : Statistical value cannot be calculated and was not significant.

BAIS5

# TABLE P 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

ALL ANIMALS (0-105W)

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

REPORT TYPE : A1 SEX : MALE

SEX :	MALE				PAGE :
Organ	Findings	Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
{Integumentar	y system/appandagel				
skin/app	leukemic cell infiltration	<50> 0	<50> 0	<50> 0	<50> 2
ubcutis	leukemic cell infiltration	<50> 0	<50> 0	<50> 0	<50> 1
(Respiratory	system}				
nasal cavit	leukemic cell infiltration	<50> 1	<50> 0	<50> 0	<50> 1
ung	leukemic cell infiltration	<b>⟨50⟩</b> 3	<50> 5	<50> 6	<50> 4
	metastasis:adrenal tumor	1	0	0	0
	metastasis:thyroid tumor	1	0	0	0
Hematopoieti	c system)				
one marrow	leukemic cell infiltration	<50> 4	<50> 3	< <b>50&gt;</b> 7	<50> 3
ymph node	leukemic cell infiltration	<50> 1	<50> 0	<50> 3	<50> 3
	metastasis:subcutis tumor	0	0	1	0
Circulatory :	system)				
eart	leukemic cell infiltration	<50> 2	<50> 2	<50> 2	<50> 4
( a > b	a : Number of animals examined at the s b : Number of animals with lesion	ite			

(JPT150)

BAIS5

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ		Group Name Control No. of Animals on Study 50	280 ppm 50	1400 ppm 50	7000 ppm 50
(Digestive s	system)				
stomach	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
small intes	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 1
liver	leukemic cell infiltration	<50> 4	<50> 5	<50> 6	<50> 5
pancreas	leukemic cell infiltration	<50> 0	<50> 0	<50> 2	<50> 1
(Urinary sys	stem)				
kidney	leukemic cell infiltration	<50> 2	<50> 2	<50> 2	<50> 3
urin bladd	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
{Endocrine s	system)				
pituitary	leukemic cell infiltration	<50> 2	<50> 1	<50> 3	<50> 0
adrenal	leukemic cell infiltration	<50> 2	<50> 2	<50> 2	<50> 2
(Reproductiv	ve system)				
semin ves	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 0
< a > b	a : Number of animals examined at the si b : Number of animals with lesion	te			
( IPT150)		***************************************			DAIC

(JPT150)

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 : MALE SEX

7000 ppm 50 280 ppm 1400 ppm Group Name Control No. of Animals on Study Findings_ Organ___ (Reproductive system) ⟨50⟩ prostate <50> **<50>** <50> leukemic cell infiltration 0 (Nervous system) brain <50> ⟨50⟩ ⟨50⟩ **<50>** leukemic cell infiltration metastasis:pituitary tumor 2 spinal cord ⟨50⟩ **<50>** <50> **<50>** leukemic cell infiltration 1 {Special sense organs/appendage} Harder gl ⟨50⟩ ⟨50⟩ **<50>** ⟨50⟩ leukemic cell infiltration (Musculoskeletal system) muscle <50> <50> **<50>** <50> leukemic cell infiltration (Body cavities) peritoneum ⟨50⟩ ⟨50⟩ <50> **<50>** leukemic cell infiltration 0 < a > a : Number of animals examined at the site b b: Number of animals with lesion

(JPT150)

BAIS5

# TABLE P 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 4 Group Name Control 160 ppm 800 ppm 4000 ppm No. of Animals on Study 50 50 50 Organ___ Findings_ {Respiratory system} ⟨50⟩ ⟨50⟩ <50> ⟨50⟩ lung leukemic cell infiltration 1 metastasis:uterus tumor metastasis:subcutis tumor 0 0 1 {Hematopoietic system} **<50>** <50> **<50>** <50> bone marrow leukemic cell infiltration 3 **<50> <50>** spleen **<50> <50>** metastasis:uterus tumor 0 (Circulatory system) heart **〈50〉** ⟨50⟩ ⟨50⟩ **<50>** leukemic cell infiltration (Digestive system) stomach <50> ⟨50⟩ **<50>** <50> leukemic cell infiltration small intes **<50>** (50) <50> <50> leukemic cell infiltration liver ⟨50⟩ ⟨50⟩ <50> <50> leukemic cell infiltration 0 0 metastasis:uterus tumor 0 < a > a : Number of animals examined at the site b b: Number of animals with lesion (JPT150)

BAIS5

ANIMAL

: RAT F344/DuCrlCrlj[F344/DuCrj]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 5 800 ppm 4000 ppm Group Name Control 160 ppm 50 No. of Animals on Study Findings_ Organ_ (Digestive system) liver <50> **<50>** ⟨50⟩ ⟨50⟩ metastasis:small intestine tumor <50> pancreas ⟨50⟩ **<50> 〈50〉** leukemic cell infiltration 0 0 metastasis:uterus tumor (Urinary system) kidney **<50> 〈50〉 <50>** <50> leukemic cell infiltration 2 1 (Endocrine system) pituitary ⟨50⟩ ⟨50⟩ **<50>** ⟨50⟩ leukemic cell infiltration 1 parathyroid <50> ⟨50⟩ <50> <50> leukemic cell infiltration adrenal ⟨50⟩ **<50>** <50> <50> leukemic cell infiltration {Reproductive system} **<50>** ⟨50⟩ ⟨50⟩ ⟨50⟩ ovary leukemic cell infiltration vagina **<50>** (50) **<50>** ⟨50⟩ metastasis:uterus tumor <50> <50> ⟨50⟩ ⟨50⟩ mammary gl leukemic cell infiltration < a > a : Number of animals examined at the site b b: Number of animals with lesion

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ		Group Name Control No. of Animals on Study 50	160 ppm 50	800 ppm 50	4000 ppm 50
			· · · · · · · · · · · · · · · · · · ·	.,	
(Nervous sys	tem)				
brain	leukemic cell infiltration	<50>	<50>	<50>	<50>
	metastasis:uterus tumor	1	0	0	0
	metastasis:pituitary tumor	0	1	2	0
spinal cord	leukemic cell infiltration	<b>⟨50⟩</b> 0	<50> 0	<50> 1	<50> 0
{Special sens	se organs/appendage)				
eye	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
Harder gl	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50⟩ 0
{Musculoskele	etal system)				
muscle	metastasis:subcutis tumor	<50> 1	<50> 0	<50> 0	<50> 0
(Body cavitie	es				
peritoneum	metastasis:uterus tumor	<50> 0	<50> 2	<50> 0	<50> 0
	metastasis:kidney tumor	0	0	1	0
< a > b	a : Number of animals examined at the si b : Number of animals with lesion	te			
( IDT150)					

# TABLE Q

# HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $F344/DuCrlCrlj\ MALE\ RATS$

TABLE Q HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344Du/Crl/Crlj MALE RATS

Organs Tumors	No. of animals examined	No. of animals bearing tumor	Incidence (%)	Min Ma (%)	ax.
Thyroid	3041				
Follicular adenoma		28	0.9	0 - 4	
Follicular carcinoma		39	1.3	0 - 8	
Follicular adenoma + Follicula	r carcinoma	67	2.2	0 - 8	
Testis	3047				
Interstitial cell tumor		2508	82.3	56 - 98	8

61 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0043,\,0059,\,0061,\,0063,\,0065,\,0067,\,0095,\,0104,\,0115,\,0130,\,0141,\,0158,\,0162,\\0189,\,0205,\,0210,\,0224,\,0242,\,0246,\,0267,\,0269,\,0278,\,0284,\,0288,\,0294,\,0296,\\0318,\,0328,\,0342,\,0347,\,0365,\,0371,\,0396,\,0399,\,0401,\,0407,\,0417,\,0421,\,0437,\\0448,\,0457,\,0461,\,0497,\,0535,\,0560,\,0579,\,0581,\,0610,\,0612,\,0641,\,0667,\,0675,\\0684,\,0686,\,0691,\,0704,\,0711,\,0731,\,0739,\,0753,\,0774$ 

# TABLE R 1

CAUSE OF DEATH: MALE

STUDY NO. : 0759 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]

COUSE OF DEATH (SUMMARY) (0-105W)

SEX : MALE

Group Name Control 280 ppm 1400 ppm 7000 ppm

				, , , , , , , , , , , , , , , , , , , ,
Number of Dead and	12	14	9	17
Moribund Animal				
no microscop confirm	0	0	1	0
digestive sy les	0	1	0	0
cystitis	0	0	0	1
chronic nephropathy	1	0	0	10
tumor d:leukemia	3	3	3	4
tumor d:skin/app	0	0	1	0
tumor d:subcutis	0	2	1	0
tumor d:lung	0	0	1	0
tumor d:oral cavity	1	0	0	0
tumor d:small intes	0	0	0	1
tumor d:pituitary	3	4	1	0
tumor d:adrenal	2	0	0	0
tumor d:prep/cli gl	0	1	1	0
tumor d:brain	0	2	0	0
tumor d:Zymbal gl	1	0	0	1
tumor d:bone	1	0	0	0
tumor d:peritoneum	0	1	0	0

(B10120)

BAIS5

# TABLE R 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0759 ANIMAL

: RAT F344/DuCr1Cr1j [F344/DuCrj]

COUSE OF DEATH (SUMMARY)

(0-105W)

SEX : FEMALE

Group Name Control 160 ppm 800 ppm 4000 ppm 16 11 8 47 Number of Dead and Moribund Animal no microscop confirm 0 chronic nephropathy 0 0 40 tumor d:leukemia 2 2 2 tumor d:skin/app 0 0 tumor d:subcutis 0 tumor d:kidney tumor d:pituitary 2 tumor d:adrenal 0 tumor d:uterus 0 tumor d:mammary gl tumor d:prep/cli gl 0 0 tumor d:Zymbal gl 0 tumor d:muscle 0 0 0

(B10120)

BAIS5