4-クロロ-2-ニトロアニリンのマウスを用いた 経口投与によるがん原性試験(混餌試験)報告書

試験番号:0760

TABLES

TABLES

TABLE A 1	SURVIVAL ANIMAL NUMBERS: MALE
TABLE A 2	SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE B 1	CLINICAL OBSERVATION: MALE
TABLE B 2	CLINICAL OBSERVATION: FEMALE
TABLE C 1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS MALE
TABLE C 2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS FEMALE
TABLE C 3	BODY WEIGHT CHANGES: MALE
TABLE C 4	BODY WEIGHT CHANGES: FEMALE
TABLE D 1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE
TABLE D 2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL NUMBERS: FEMALE
TABLE D 3	FOOD CONSUMPTION CHANGES: MALE
TABLE D 4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE E 1	CHEMICAL INTAKE CHANGES: MALE
TABLE E 2	CHEMICAL INTAKE CHANGES: FEMALE
TABLE F 1	HEMATOLOGY: MALE
TABLE F 2	HEMATOLOGY: FEMALE
TABLE G 1	BIOCHEMISTRY: MALE
TABLE G 2	BIOCHEMISTRY: FEMALE

TABLES (CONTINUED)

TABLE H 1	URINALYSIS: MALE
TABLE H 2	URINALYSIS: FEMALE
TABLE I 1	GROSS FINDINGS: MALE: ALL ANIMALS
TABLE I 2	GROSS FINDINGS: MALE : DEAD AND MORIBUND ANIMALS
TABLE I 3	GROSS FINDINGS: MALE: SACRIFICED ANIMALS
TABLE I 4	GROSS FINDINGS: FEMALE: ALL ANIMALS
TABLE I 5	GROSS FINDINGS: FEMALE: DEAD AND MORIBUND ANIMALS
TABLE I 6	GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS
TABLE J 1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J 2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K 1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K 2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L 1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: ALL ANIMALS
TABLE L 2	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
	MALE: DEAD AND MORIBUND ANIMALS
TABLE L 3	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS MALE: SACRIFICED ANIMALS
TABLE L 4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: ALL ANIMALS
TABLE L 5	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: DEAD AND MORIBUND ANIMALS
TABLE L 6	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS FEMALE: SACRIFICED ANIMALS

TABLES (CONTINUED)

TABLE M 1	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE
TABLE M 2	NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE
TABLE N 1	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: MALE
TABLE N 2	HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS: FEMALE
TABLE O 1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE
TABLE O 2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE
TABLE P 1	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: MALE
TABLE P 2	HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR: FEMALE
TABLE Q	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crl MALE MICE
TABLE R 1	CAUSE OF DEATH: MALE

TABLE R 2 CAUSE OF DEATH: FEMALE

TABLE A 1

SURVIVAL ANIMAL NUMBERS: MALE

SURVIVAL ANIMAL NUMBERS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 1

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	50/50 100. 0	50/50 100. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	47/50 94. 0								
200 ppm	50	50/50 100. 0													
mqq 000	50	50/50 100. 0													
5000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 2

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50	47/50
		94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0
200 ppm	50	50/50 100. 0													
1000 ppm	50	50/50 100. 0													
5000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 3

Group Name	Animals	Administ	ration (Wee	ks)											,
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	47/50 94. 0													
00 ppm	50	50/50 100. 0													
mqq 000	50	50/50 100. 0													
5000 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	48/50 96. 0	47/50 94. 0							

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : MALE

PAGE: 4

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	47/50 94. 0													
200 ppm	50	50/50 100. 0													
1000 ppm	50	50/50 100. 0													
5000 ppm	50	47/50 94. 0	44/50 88. 0	44/50 88. 0											

Number of survival/ Number of effective animals Survival rate (%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 5

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0	45/50 90. 0				
200 ppm	50	50/50 100. 0	48/50 96. 0	47/50 94. 0	46/50 92. 0										
1000 ppm	50	50/50 100. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0	49/50 98. 0
5000 ppm	50	44/50 88. 0	44/50 88. 0	42/50 84. 0	42/50 84. 0	42/50 84. 0	41/50 82. 0	41/50 82. 0	39/50 78. 0	39/50 78. 0	39/50 78. 0	37/50 74. 0	36/50 72. 0	36/50 72. 0	36/50 72. 0

Number of survival/ Number of effective animals
Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 6

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	45/50	45/50	45/50	45/50	45/50	44/50	44/50	44/50	44/50	44/50	44/50	43/50	43/50	43/50
		90. 0	90. 0	90. 0	90. 0	90. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	86. 0	86. 0	86. 0
200 ppm	50	45/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	44/50	43/50
		90. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	88. 0	86. 0
1000 ppm	50	49/50	49/50	48/50	48/50	47/50	47/50	46/50	46/50	45/50	45/50	45/50	45/50	45/50	45/50
		98. 0	98. 0	96. 0	96. 0	94. 0	94. 0	92. 0	92. 0	90. 0	90. 0	90. 0	90. 0	90. 0	90. 0
5000 ppm	50	36/50	34/50	34/50	34/50	33/50	33/50	32/50	32/50	32/50	31/50	31/50	30/50	30/50	30/50
		72. 0	68. 0	68. 0	68. 0	66. 0	66. 0	64. 0	64. 0	64. 0	62. 0	62. 0	60. 0	60. 0	60. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 7

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	43/50 86. 0	43/50 86. 0	42/50 84. 0	41/50 82. 0	41/50 82. 0	41/50 82. 0	40/50 80. 0	40/50 80. 0	38/50 76. 0	38/50 76. 0	37/50 74. 0	37/50 74. 0	37/50 74. 0	36/50 72. 0
mqq 002	50	43/50 86. 0	42/50 84. 0	40/50 80. 0	40/50 80. 0	39/50 78. 0									
1000 ppm	50	44/50 88. 0	43/50 86. 0	42/50 84. 0	41/50 82. 0										
mqq 000	50	30/50 60. 0	27/50 54. 0	26/50 52. 0	24/50 48. 0	23/50 46. 0	23/50 46. 0	21/50 42. 0	21/50 42. 0	20/50 40. 0	20/50 40. 0	18/50 36. 0	17/50 34. 0	17/50 34. 0	17/50 34. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

PAGE: 8

Group Name	Animals	Administ	tration (Wee	eks)		_	•	
	At start	98	99	100	101	102	103	104
Control	50	35/50	34/50	33/50	32/50	32/50	32/50	31/50
		70. 0	68. 0	66. 0	64. 0	64. 0	64. 0	62. 0
200 ppm	50	38/50 76. 0	38/50 76. 0	37/50 74. 0	37/50 74. 0	35/50 70. 0	34/50 68. 0	33/50 66. 0
1000 ppm	50	40/50 80. 0	40/50 80. 0	40/50 80. 0	40/50 80. 0	38/50 76. 0	38/50 76. 0	37/50 74. 0
		δU. U	OU. U	ov. v	ου. υ	76.0	10. U	74. 0
5000 ppm	50	17/50	17/50	16/50	15/50	13/50	11/50	10/50
		34. 0	34. 0	32. 0	30. 0	26. 0	22. 0	20. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

TABLE A 2

SURVIVAL ANIMAL NUMBERS: FEMALE

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Control	50	49/49 100. 0	49/49 100. 0	49/49 100. 0	49/49 100. 0	49/49 100.0	49/49 100. 0								
400 ppm	50	50/50 100. 0													
2000 ppm	50	50/50 100. 0													
10000 ppm	50	50/50 100. 0													

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 10

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Control	50	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
400 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
10000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 11

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Control	50	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0
400 ppm	50	50/50	50/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		100. 0	100. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
10000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50
		100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	100. 0	100. 0	100.0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 12

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Control	50	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49	49/49
		100. 0	100. 0	100.0	100. 0	100. 0	100.0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	100. 0
400 ppm	50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50	49/50
		98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0	98. 0
2000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	48/50	48/50	47/50	47/50	47/50	47/50	47/50	47/50
		100. 0	100. 0	100. 0	100. 0	100. 0	100. 0	96. 0	96. 0	94. 0	94. 0	94. 0	94. 0	94. 0	94. 0
10000 ppm	50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	49/50	49/50
		100. 0	100. 0	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	100.0	100. 0	100. 0	98. 0	98. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 13

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Control	50	48/49 98. 0	47/49 95. 9	47/49 95. 9	46/49 93. 9	46/49 93. 9	46/49 93. 9	46/49 93. 9							
400 ppm	50	49/50 98. 0	49/50 98. 0	49/50 98. 0	48/50 96. 0	47/50 94. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0	46/50 92. 0					
mqq 0002	50	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0	45/50 90. 0	45/50 90. 0	45/50 90. 0							
10000 ppm	50	49/50 98. 0	48/50 96. 0	47/50 94. 0	47/50 94. 0	47/50 94. 0									

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 14

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	70	71	72	73	74	75	76	77	78	79	80	81	82	83
Control	50	45/49 91. 8	44/49 89. 8	44/49 89. 8	44/49 89. 8	43/49 87. 8	42/49 85. 7	39/49 79. 6	39/49 79. 6	39/49 79. 6	39/49 79. 6				
400 ppm	50	46/50 92. 0	44/50 88. 0	44/50 88. 0	44/50 88. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	43/50 86. 0	42/50 84. 0					
2000 ppm	50	44/50 88. 0	43/50 86. 0	42/50 84. 0	41/50 82. 0										
10000 ppm	50	47/50 94. 0	47/50 94. 0	47/50 94. 0	46/50 92. 0	46/50 92. 0	45/50 90. 0	44/50 88. 0	44/50 88. 0						

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 15

Group Name	Animals	Administ	ration (Wee	ks)											
	At start	84	85	86	87	88	89	90	91	92	93	94	95	96	97
Control	50	39/49	39/49	39/49	38/49	37/49	33/49	32/49	31/49	31/49	31/49	31/49	31/49	29/49	27/49
		79. 6	79. 6	79. 6	77. 6	75. 5	67. 3	65. 3	63. 3	63. 3	63. 3	63. 3	63. 3	59. 2	55. 1
400 ppm	50	40/50	40/50	40/50	40/50	39/50	39/50	38/50	38/50	37/50	37/50	36/50	35/50	34/50	32/50
		80. 0	80. 0	80. 0	80. 0	78. 0	78. 0	76. 0	76. 0	74. 0	74. 0	72. 0	70. 0	68. 0	64. 0
2000 ppm	50	41/50	41/50	41/50	41/50	39/50	38/50	38/50	37/50	37/50	37/50	37/50	37/50	36/50	35/50
		82. 0	82. 0	82. 0	82. 0	78. 0	76. 0	76. 0	74. 0	74. 0	74. 0	74. 0	74. 0	72. 0	70. 0
10000 ppm	50	44/50	44/50	44/50	44/50	43/50	42/50	42/50	42/50	41/50	39/50	39/50	37/50	36/50	36/50
		88. 0	88. 0	88. 0	88. 0	86. 0	84. 0	84. 0	84. 0	82. 0	78. 0	78. 0	74. 0	72. 0	72. 0

Number of survival/ Number of effective animals Survival rate (%)

(HAN360) BA1S5

SURVIVAL ANIMAL NUMBERS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 16

Group Name	Animals	Adminis	tration (Wee	eks)				
	At start	98	99	100	101	102	103	104
Control	50	26/49 53. 1	25/49 51. 0					
400 ppm	50	28/50 56. 0	27/50 54. 0	27/50 54. 0	27/50 54. 0	23/50 46. 0	22/50 44. 0	20/50 40. 0
2000 ppm	50	34/50 68. 0	34/50 68. 0	32/50 64. 0	30/50 60. 0	28/50 56. 0	27/50 54. 0	27/50 54. 0
10000 ppm	50	36/50 72. 0	36/50 72. 0	36/50 72. 0	35/50 70. 0	35/50 70. 0	33/50 66. 0	31/50 62. 0

Number of survival/ Number of effective animals Survival rate(%)

(HAN360)

BAIS5

TABLE B 1

CLINICAL OBSERVATION: MALE

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX MALE

JEA . MALL															FAUL .
Clinical sign	Group Name	Admin i	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEATH	Control	0	1	1	2	3	3	3	3	3	3	3	3	3	3
	200 ppm	ő	Ö	Ö	0	0	0	Õ	0	Õ	0	Ö	Õ	Õ	0
	1000 ppm	ñ	Ö	Ö	Õ	Ö	0	0	0	Õ	0	ő	Ŏ	Ö	0
	5000 ppm	Õ	0	0	0	0	0	0	0	0	Õ	Ö	Ő	0	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	U	U	0	0	0	0	0	0	0	0	0	U	0	0
UNCHBACK POSITION	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	Ō	Ō	0	0	0	0
	1000 ppm	0	0	0	0	Ō	Ō	Ō	0	Ō	0	0	Ō	Ō	0
	5000 ppm	0	Ô	0	0	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

SEX . MALE															PAGE :
Clinical sign	Group Name	Admini	stration We	ek-day		****						***************************************			
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25–7	26-7	27-7	28-7
DEATH	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
DEATH	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	ő	0	Ö	0	Õ	Ö	Õ	Ô	ő	Ö	Õ	Ö	Ö
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0 n	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0
HUNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ATAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SOILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	Ō	n	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

SEX . MALE															TAGE .
Clinical sign	Group Name	Admini	stration V	Veek-day											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
EATH	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	1	1	1	2	2	3	3
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm 5000 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	U N
	mqq uvuc	U	U	U	U	U	U	υ	U	U	U	U	U	U	U
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
	maa 0001 maa 0002	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0
		U	U	U	U	U	U	U	U	U	U	U	U	U	U
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0 0	0	0	0	0 0	0 n	0 0	0 0	0	0 0
	5000 ppm	U	U	0	0	U	0	U	U	U	U	U	U	U	U
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm 5000 ppm	U N	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0
	SUUU PPM	U	U	0	U	U	U	U	U	0	U	U	U	U	U
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	maa 0001 maa 0002	0	0 0	0	0 0	0 0	0	0 1	0 0	0 0	0	0 0	0	0 0	0 0
	ազգ Ծու	U	U	U	U	U	1	'	U	U	U	U	U	U	U
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm 5000 ppm	U	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0 N	0	0
	adou ppm	U	υ	U	U	U	U	U	0	0	U	U	U	U	U
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm 5000 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
	וווקק טטטכ	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATH	Control	3	3	3	3	3	3	3	3	3	3	3	3	3	3
-7111	200 ppm	0	0	0	0	0	0	Õ	0	0	0	0	0	0	0
	1000 ppm	Ô	0	0	0	0	0	0	0	0	0	0	0	0	Õ
	5000 ppm	3	3	3	3	3	3	3	3	3	3	3	5	5	5
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	1	1	1	1	1	1	1	0	0	0
OG BELLY	Control	0	1	1	1	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

En . HALL															Trice .
linical sign	Group Name	Admini	istration W	Veek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	3	3	3	3	3	3	3	3	3	3	3	3	5	5
-7/111	200 ppm	ő	0	0	0	2	3	3	3	3	3	3	3	4	5
	1000 ppm	1	1	1	1	1	1	i	1	1	i	1	1	1	1
	5000 ppm	5	7	7	7	8	8	10	10	10	11	12	12	12	12
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	1	1	2	2	2	2	2
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	maa 0003	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mag 0005	0	0	0	1	1	1	2	2	2	1	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	5000 ppm	0	0	1	2	3	3	3	3	3	3	2	2	2	2
OG BELLY	Control	0	0	0	1	1	1	1	1	1	1	1	1	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

															17tuz
linical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	5	5	5	5	6	6	6	6	6	6	6	6	6	6
-A111	200 ppm	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	1000 ppm	1	2	2	2	2	3	3	3	3	3	3	3	3	4
	5000 ppm	14	14	14	15	15	16	16	16	17	17	18	18	18	18
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1000 ppm	0	0	0	1	1	1	1	2	2	2	2	2	2	2
	5000 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
COMOTOR MOVEMENT DECR	Control	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	1	1	0	1	1	1	1	1	1	1	2	2	3
LOERECTION	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	1
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	0	0	0	0	0	0	0	0	0	1	1	1	1
	5000 ppm	2	3	4	3	3	4	4	5	4	4	5	6	6	8
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1000 ppm	0	Ô	Ö	Ö	ò	Ò	Ö	Ô	Ö	Ö	Ö	Ò	Ö	Ô
	5000 ppm	0	0	0	Ō	Ō	Õ	Õ	Ō	Õ	Õ	ñ	Ō	Ō	Ō

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day								***************************************	***************************************		
_	- November - Control of the Control	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EATH	Control	6	7	8	8	8	8	8	10	10	11	11	11	11	13
ZATO	200 ppm	6	6	6	6	o 7	7	o 7	7	7	7	8	8	9	10
	1000 ppm	5	6	6	6	6	6	6	6	6	6	6	6	7	8
	5000 ppm	21	22	24	25	25	27	27	27	27	29	30	30	30	30
ORIBUND SACRIFICE	Control	1	1	1	1	1	2	2	2	2	2	2	2	2	2
	200 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	2
	1000 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5000 ppm	2	2	2	2	2	2	2	3	3	3	3	3	3	3
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAXIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASTING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	2	2	1	1	1	1	1	1	1	0	0	0	0	0
LOERECTION	Control	1	1	1	1	1	1	2	1	2	0	0	0	0	0
	200 ppm	0	0	0	0	0	1	1	1	1	1	0	0	0	0
	1000 ppm	1	1	2	1	1	1	1	1	1	1	0	0	0	0
	5000 ppm	6	5	4	3	3	2	2	3	3	3	1	1	1	1
OG BELLY	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	0
	200 ppm	1	1	1	1	1	i	1	1	1	1	1	1	1	ō
	1000 ppm	Ô	Ö	ò	Ö	O	Ö	ò	Ö	Ö	Ö	Ö	ò	Ö	Õ
	5000 ppm	Õ	ñ	Ŏ	Õ	Õ	Õ	•	1	ĭ	1	Ô	ñ	Õ	Õ

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admin	istration	Week-day			
		99-7	100-7	101-7	102-7	103-7	104-7
	No.						······································
DEATH	Control	14	15	16	16	16	16
DEATH	200 ppm	10	11	11	13	14	15
	1000 ppm	8	8	8	10	10	11
	5000 ppm	30	31	32	34	36	37
	Jood ppiii	30	31	32	34	30	31
MORIBUND SACRIFICE	Control	2	2	2	2	2	2
	200 ppm	2	2	2	2	2	2
	1000 ppm	2	2	2	2	2	2
	5000 ppm	3	3	3	3	3	3
	OCC PPIII	J	v	v	•	J	J
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	1	0	0
WINDLEY BOOK TO		_	_			_	
HUNCHBACK POSITION	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
ATAXIC GAIT	Control	0	0	0	0	0	0
ATAKIG GATI		U	-	0	0	0	0
	200 ppm	l O	1	1	1	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
WASTING	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
	2000 hhiii	Ū	U	U	U	U	U
SOILED	Control	0	0	0	0	0	0
	200 ppm	Ō	Ö	Ö	Õ	ő	Õ
	1000 ppm	Ö	0	Õ	Ö	ő	Õ
	5000 ppm	ŏ	1	Ö	Ö	ő	Ŏ
	* F- ***	-	•	-	•	-	-
PILOERECTION	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	1
	1000 ppm	0	0	0	0	0	0
	5000 ppm	1	1	1	2	2	1
FROG BELLY	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

Clinical sign	Group Name	Admini	stration We	ek-dav	***************************************		***************************************								
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
SOILED PERI-GENITALIA	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	0
SOILED FERT GENTIALIA	200 ppm	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	5000 ppm	0	ő	0	0	0	0	0	0	0	Ő	0	ő	Õ	Ô
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	200 ppm	ñ	ŏ	Õ	Õ	Ö	Õ	Õ	Ô	Õ	ñ	Õ	Õ	Õ	ñ
	1000 ppm	Ö	Ö	ő	Õ	Õ	Õ	ő	0	ő	ñ	Ő	Õ	Õ	Õ
	5000 ppm	Õ	Ô	Ö	0	0	Ö	Ö	0	Ö	Ô	Õ	Ö	Ö	ő
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a din	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50MILNE 67716111	200 ppm	ő	0	0	Ö	Ö	Ö	n	Ö	0	Õ	0	ñ	Õ	Ô
	1000 ppm	ő	Ö	0	0	0	0	0	0	0	Õ	0	0	0	Õ
	5000 ppm	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	n	0	1	0	0	0	0	0	0	0	0	1	1	n
277 2111112 112100	200 ppm	ñ	Ö	ò	Õ	Õ	Õ	Ô	0	Ö	Ô	0	ò	ò	Õ
	1000 ppm	Ô	Ö	Ŏ	ŏ	Ö	Õ	Õ	Ö	Ö	Õ	Õ	Õ	ŏ	ŏ
	5000 ppm	Ō	0	0	Õ	Ö	Õ	Ö	õ	0	0	Ö	Ö	Ô	0
INTERNAL MASS	Control	0	3	1	1	0	0	0	0	1	1	1	1	1	1
	200 ppm	ñ	Ô	Ò	ò	Ŏ	Ö	0	Ŏ	0	Ö	ò	Ö	i	i
	1000 ppm	Õ	Ö	Ö	Õ	ŏ	ŏ	Ŏ	ŏ	Õ	ŏ	Õ	Ö	Ö	Ö
	5000 ppm	Ö	2	2	2	2	2	2	2	2	3	4	4	4	4
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	ő	Ö	Õ	Ö	ŏ	Ŏ	Ö	Ŏ	Ö	Ö	Ô	Ö	ŏ	Ő
	1000 ppm	ő	0	Õ	ő	ŏ	ŏ	Õ	ŏ	Õ	Ô	ñ	Ô	ŏ	Õ
	5000 ppm	Ö	0	Õ	0	ő	Ö	0	ő	Ö	0	Ö	0	Ö	0
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	o.	C		c	^	r	٥	^	•	^	•	٥	•
I FERT EAK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX . MALE															PAGE . I
Clinical sign	Group Name	Admini	stration We	eek-day								***************************************			
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
COLLED DEDL OFFICE			•	•	•			•		•	•	•			0
SOILED PERI-GENITALIA	Control	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0
	200 ppm 1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U N
	5000 ppm	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INTERNAL MASS	Control	1	1	2	2	2	2	2	2	2	2	3	3	4	4
	200 ppm	1	2	2	2	2	2	2	2	2	2	2	2	2	2
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	3	3	3	3	3	3	3	3	3	3	3	3	3	3
M. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	istration W	leek-day								**************************************			
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UILED PERI-GENITALIA	200 ppm	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0
	200 ppm 1000 ppm	0						-		0		0			
	1000 ppm 5000 ppm	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 0
(OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOT IT IT IALMUS	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		·						-	_		-	-			-
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Ō	Õ	Õ	Ö	Ö	Ö	Ö	Ö	Õ	Ō	Õ	Ō	Ō	Ō
	1000 ppm	ő	1	1	1	1	1	ĭ	1	1	ĭ	1	1	ĭ	1
	5000 ppm	Ô	'n	Ö	Ö	Ô	O	Ó	Ö	Ó	Ö	'n	'n	'n	'n
	JOOU PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	U
TERNAL MASS	Control	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	200 ppm	2	2	2	2	2	2	2	2	3	3	3	3	3	3
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	3	3	3	3	3	3	3	3	3	3	3	3	2	2
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	Ō	0	Ō	Ō	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	200 ppm 1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0 N	0	0			0								0 N
	mqq vvvc	U	U	U	0	0	U	0	0	0	0	0	0	0	U
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	Λ	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEA . MALL															PAGE .
Clinical sign	Group Name	Admini	stration We	ek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Õ	Ŏ	Õ	Ö	Ö	Ö	Õ	Õ	Ö	Ö	Ŏ	Ö	Ö	Õ
	1000 ppm	Õ	Ö	Õ	Õ	0	Ö	Õ	Ö	Ö	Ö	Ö	Ō	Õ	Õ
	5000 ppm	Õ	Ö	Ö	Õ	Ö	Ö	0	Õ	Õ	Ö	Ö	0	Ö	0
KOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0
	5000 ppm	U	U	0	0	0	0	0	0	0	U	0	U	0	U
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	1	1	1	1	1	1	1	1	1	2	2	2	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	4	4	4	4	3	3	3	4	4	4	4	4	4	4
	200 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	1000 ppm	0	1	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	3	3	3	3	3	3	4	4	4	4	5	3	4	3
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PER1-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	Λ	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SLA . MALL															TAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Õ	Ö	Ö	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Õ	Ō
	1000 ppm	0	0	Ö	Ō	Ō	Ō	Ō	Ō	0	0	0	0	0	0
	5000 ppm	0	0	0	1	1	1	2	2	2	1	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	maq 0005	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	1	1	1	1	1	ı	0	1	1	0	0
	1000 ppm 5000 ppm	U N	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0
	ազգ սսս	U	U	U	U	U	U	U	U	υ	U	U	U	U	U
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	1	1	1	1	1	2	2	2	2	2	2	2	2
	5000 ppm	0	0	0	0	0	1	2	2	2	0	0	0	0	0
NTERNAL MASS	Control	4	4	4	4	5	4	4	4	3	3	3	3	2	2
	200 ppm	2	2	2	3	2	2	2	2	2	2	2	2	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	6	4	6	6	6	7	7	7	8	7	5	4	7	7
I. NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. PERT EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

EX . HAVEE															
linical sign	Group Name	Admin	istration W	eek-dav											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
NUED DEDI GENUTALIA	011	0		0	•	۰	۰		•	•		0	0		
OILED PERI-GENITALIA	Control 200 ppm	0	0 0	0	0	0	0 0	0	0	0 0	0	0 0	0 0	0 0	0
		•		0	0	0		-	0	-	0	0	0		
	1000 ppm	0	0 1	0 1	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	U	ı	ı	0	0	0	0	0	0	U	U	Ü	0	1
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	Ō	Ō	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	n	n	0	0	0	n
KNEAL OFACTT	200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	200 ppm 1000 ppm	0	•	•	•		0	1	1	0	0	0	0	1	0
	1000 ppm 5000 ppm	0	0	0 0	0 0	0 0	0	0 0	0 0	0	0	0	0	0 0	0
	and and	U	U	U	U	U	U	U	U	U	υ	U	U	U	U
TERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	1	1	1	1	1	1	1	2	1	1	1	1	1
	1000 ppm	2	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	2	3	3	3	2	2	2	1	1	2	2	2	2	2
	200 ppm	1	2	2	2	2	1	1	1	1	1	2	2	1	1
	1000 ppm	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0
	5000 ppm	6	5	6	6	6	7	7	6	8	8	10	10	11	11
NOSE	Control	0	0	0	0	0	0	0	0	n	0	0	0	0	n
HOOL	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	1000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	5000 ppm	Ö	Ö	Ó	0	Ó	Ö	Ó	Ó	0	Ó	Ó	ò	Ó	Ö
DED CHAUTH	0	0	•	•	•					•			•		•
PERI-MOUTH	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	U
	200 ppm	0	1	1	1	1	1	1	1	ì	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	Ō	0	Ō	Ō	Ō	Ō	Ō	Ō	ō	Ō	Ō	Ō	O

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

OLA . MALL															TAGE .
Clinical sign	Group Name	Adminis	stration W	leek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
COLLED DEDI OFFICE		•	•		•	•	•	•	•	•	•	•		•	0
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORNEAL OPACITY	Control	0	0	0	0	0	0	n	0	0	0	0	0	0	0
	200 ppm	í	1	ĭ	1	1	1	1	1	ĭ	1	1	1	1	1
	1000 ppm	Ó	Ö	Ó	ò	Ö	Ö	Ö	Ö	Ö	Ö	ò	Ö	Ö	ó
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	2
ATERIAL MAGG	200 ppm	1	1	1	1	1	1	1	1	1	1	2	2	1	1
	1000 ppm	1	1	2	2		-	-	•	•	1	1	1	2	1
		1	•			1	1	1	1	1	1	!	!	1	l •
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	I	ı	ŧ
NTERNAL MASS	Control	2	2	3	3	3	3	4	3	3	3	3	4	4	2
	200 ppm	1	1	1	3	3	4	4	4	3	3	5	5	4	3
	1000 ppm	1	2	2	3	2	2	2	2	2	3	4	4	5	8
	5000 ppm	10	9	7	7	7	6	6	5	5	5	4	4	4	4
NOSE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI-MOUTH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	1	1	ĭ	í	1	1	í	1	1	i	1	1	1	1
	1000 ppm	'n	Ö	Ó	Ö	Ö	Ö	Ó	Ö	Ö	ò	Ö	ò	ò	'n
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	n	0	0	0	0	0	0	n
ILKI LAK	200 ppm	0						0		-	-				0
		U	0	0	0	0	0	0	0	0	0	0	0	0	U
	1000 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration \	Week-day			
	or our manu	99-7	100-7	101-7	102-7	103-7	104-7
SOILED PERI-GENITALIA	Control	0	0	0	0	0	0
orizin vaki dan man	200 ppm	Ŏ	Õ	Õ	Ö	ŏ	ŏ
	1000 ppm	Ö	Ö	0	Ö	Ö	Õ
	5000 ppm	ŏ	1	0	1	ő	ő
	2222 FF	•	•	•	•	•	•
EXOPHTHALMOS	Control	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1
	1000 ppm	0	Ó	0	0	0	0
	5000 ppm	0	0	Ō	Ō	Ō	0
		_	_	_	_	•	-
GUM	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	Ō	0	0
CORNEAL OPACITY	Control	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
EXTERNAL MASS	Control	2	2	2	2	2	3
	200 ppm	1	1	1	1	1	1
	1000 ppm	1	2	2	2	2	2
	5000 ppm	1	1	1	1	1	1
INTERNAL MASS	Control	2	3	2	2	2	2
	200 ppm	3	4	6	4	5	5
	1000 ppm	9	10	11	10	10	9
	5000 ppm	4	5	5	5	3	3
u noor		Ā	_		_	_	_
M. NOSE	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
M DEDI MOUTH	Combined	•	•	0	•	•	•
M. PERI-MOUTH	Control	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
M. PERI EAR	Control	0	0	0	٥	0	0
m. I LNI LAN	200 ppm	0	0	0 0	0 0	0	0 0
	200 ppm 1000 ppm	0	0				
	וועע טטטו	U	U	0	0	0	0
	5000 ppm	1	1	1	1	1	1

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

SCX . MINCE															TAGE .
Clinical sign	Group Name	Adminis	stration We	ek-day			***************************************								
	,	1-7	2-7	3-7	4-7	5-7	6-7	77	8-7	9-7	10-7	11-7	12-7	13-7	14-7
1. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEOR	200 ppm	Ô	Ö	Ö	Ö	0	Õ	Ö	Õ	0	ő	Ŏ	Õ	ő	Ö
	1000 ppm	0	Ō	Ō	Ö	Ō	Ō	Ö	Ö	0	Ö	0	Ō	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. BREAST	Control	0	0	1	0	0	0	0	0	0	0	0	1	1	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm 5000 ppm	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0
		U	U	υ	U	U	U	U	U	U	U	U	U	U	U
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
I NEOV	0 1 1	•	•		•	•	•	•	•	•		•		•	
I. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	U	U	0	0	0	0	0	0	0	0	0	0	U	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ADDOMEIT	200 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
	and bbu	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Ô	Õ	Ö	Ö	Õ	Õ	ŏ	0	Õ	Õ	Ő	Õ	Ô	Õ
	1000 ppm	Ô	0	Ô	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3000 ррш	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	ñ	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0001011		•	•				_	_		_		_		_	
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	õ	Ö	Ö	0	0	Õ	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		29-7	30-7	31~7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
N NEOV	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
	1000 ppm 5000 ppm	0	1 0	1 0	1 0	1 0	1 0	1 0	0	0 0	0	0 N	0	U N	0 0
	3000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
A. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ADDOMEN	200 ppm	0	0	0	0	0	0	0	0	0	0	n	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ակգ ԾԾԾ	U	U	U	U	U	U	U	U	U	U	U	U	U	U
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	ñ	Ō	Ö	Ö	Ö	Ō	Õ	Ö	Ō	ō	Õ	Ō	Ö	Ō
	1000 ppm	Õ	Õ	Ö	Ö	0	Ö	Õ	Ö	Ö	Õ	Õ	Õ	Ö	0
	5000 ppm	Ô	Ô	ñ	Õ	Õ	Õ	Ô	Ö	Ö	Ô	Ô	Ô	Õ	Ö
	0000 μμ	v	Ü	ŭ	Ü	Ü	Ū	Ū	Ü	J	·	v	·	•	· ·
M. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JLCER	Control	0	Λ	0	0	0	0	0	0	0	0	Λ	0	0	0
	200 ppm	Ď	0	0	0	0	0	0	0	0	0	Ô	0	Ô	Ď
	1000 ppm	Ď	n	0	0	0	0	0	0	0	0	n	Õ	n	Ô
	5000 ppm	Ö	0	Ö	Ö	Ö	Ö	Ö	Õ	Õ	Õ	0	0	0	Ô
TRACTON	011	0	0	0	•	•	•		•	•	•	•	0		0
EROSION	Control	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Ō	Ö	Ö	Ö	Õ	Ŏ	Õ	ŏ	Õ	Ö	Ö	Ö	Ō	Ö
	1000 ppm	Õ	Õ	Õ	Õ	Ö	Ö	Ö	Ö	1	1	1	ī	1	0
	5000 ppm	Ö	Ô	Õ	Õ	Õ	Õ	Õ	Õ	ò	ò	ò	ò	ò	Ö

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

liminal simm	Curana Nama	1 d	. b b ! 101						·····						****
linical sign	Group Name	43-7	stration We 44-7	ек-day 45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
W	· · · · · · · · · · · · · · · · · · ·	40 /	44 1	40 1	40 1	41-1	40 1	43 1	30 1	J1 7	J2 1	33 1	J4 7	JJ 1	30 1
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIEGR.	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	1	1	1	1	2	3	3	5	3	5	6
JSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	ñ	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	eek-day											
-		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
A. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	Õ	Ö	Ŏ	Ö	Ö	Ö	Õ	Ö	Õ	Õ	Ö	Õ	Õ	0
	1000 ppm	Ō	Ō	Ö	Ö	Õ	Ö	1	1	1	1	1	1	1	1
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	1	1	1	1	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	1	1	1	0	0	0	0	0
_CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	1	1	1	0	0	0	0
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	6	5	5	5	4	4	5	8	8	8	7	8	7	8
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

SEA . MALE															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	837	84-7
M. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W. NEGR	Control	0	-	0	0	0	0 0	0 0	0	0	0 0	0 0	0 0	0	0
	200 ppm 1000 ppm	U 1	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	5000 ppm	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	Ō	0	0	Ō	Ō	Ô	0	0	0	0	Ō	0
	1000 ppm	0	0	0	0	Ō	Ō	0	0	0	Ô	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LCER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	7	6	6	5	4	3	3	3	5	6	6	6	7	8
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
-		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HLUN	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	1	1	1	1	1	1	1	1	1	1	2	1
	5000 ppm	Ö	Ö	Ô	ò	Ö	Ö	Ö	Ö	Ö	ò	Ô	ò	Õ	Ö
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CER	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	1	1	1	1	1	0	0	0	0	0
OSION	Control	0	0	0	1	1	2	2	1	1	1	1	1	1	1
	200 ppm	0	1	1	2	2	2	2	2	2	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	6	5	3	3	3	2	2	2	2	1	1	1	1	1
USTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	1	1	1	1	1	1	1	1	1	0	0	0	1	1
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

M. NECK	Control 200 ppm	99-7	istration 1 100-7	101-7	102-7	103-7	104-7
M. NECK	Control 200 ppm	Λ					
M. NECK	Control 200 ppm	n					
M. NECK	Control 200 ppm	U					
	200 ppm		0	0	0	0	0
		0	0	0	0	0	0
	1000 ppm	1	2	2	2	2	2
	5000 ppm	0	0	0	0	0	0
M. BREAST	Control	0	0	0	0	0	0
m. DREAGI	200 ppm	0	0	0	0	0	0
		0	0				
	1000 ppm	_		0	0	0	0
•	5000 ppm	0	0	0	0	0	0
M. ABDOMEN	Control	2	2	2	2	2	2
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	Ō	Ō	Ō	Ō
M ANTERIAR RAPAGE		•	^	•	^	^	^
M. ANTERIOR DORSUM	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	1
W. GEITT THE TH	200 ppm	Ö	Ö	Õ	Õ	Ö	ò
	1000 ppm	Ö	Ö	Õ	Õ	ŏ	Ô
	5000 ppm	0	0	0	0	0	0
	4444	•	-	•	•	•	•
M. ANUS	Control	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
ULCER	Control	0	٥	0	0		0
ULGER	Control 200 ppm	0	0 0	0	0 0	0	0
		0		0		0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0
EROSION	Control	1	2	2	2	2	2
	200 ppm	i	1	1	ī	Õ	Õ
	1000 ppm	0	Ö	ò	Ô	Ö	0
	5000 ppm	1	1	2	2	1	0
	ooo ppiii	•		L	L	1	U
CRUSTA	Control	1	0	0	0	0	0
	200 ppm	1	1	1	1	1	1
	1000 ppm	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

Clinical sign	Group Name		stration W												
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SMALL STOOL	Control	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OL1GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	50	46	47	47	47	47	47	47	46	46	46	45	45	46
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

linical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27–7	28-7
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	n	Λ	0
NTT GOLLTS	200 ppm	n	0	0	0	0	0	0	0	0	0	0	0	n	n
	1000 ppm	ő	0	0	0	0	0	0	0	0	n	0	0	n	0
	5000 ppm	Ö	ő	Ö	0	0	Ô	Õ	ő	Õ	Ö	ő	Õ	0	1
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	0	0	0	0	0	0	, 0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N REMARKABLE	Control	46	46	45	45	45	45	45	45	45	45	44	44	43	43
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	O	0	0	n	0	0	n	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : MALE

PAGE: 27

OLA . WILL															TAUL .
Clinical sign	Group Name	Admin	istration W	leek-day _		······································									
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1.	1	1	1	1	1	1	1	1	1	0	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	50	50	50	50	50	50	50	49	49	49	48	48	47	47
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
NON REMARKABLE	Control	43	43	43	43	43	43	43	43	43	43	43	43	43	43
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : MALE

PAGE: 28

linical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
DRTICOLLIS	Control	n	0	0	0	0	0	0	0	0	n	0	0	0	0
3411002210	200 ppm	ñ	0	0	Õ	Ö	0	0	Õ	0	ñ	0	Õ	n	0
	1000 ppm	ñ	Õ	Õ	Ö	Ö	0	Ö	Ö	í	1	1	1	1	Õ
	5000 ppm	Ö	Ö	0	Õ	Ö	Õ	Ö	Ö	Ö	Ö	ò	Ô	Ö	0
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	2
REGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	1000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	5000 ppm	47	47	47	47	47	47	47	47	47	47	47	44	44	44
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	1	0	0	0	0	0	1	1
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
N REMARKABLE	Control	43	43	43	43	44	44	44	43	43	43	43	43	43	43
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 29

Clinical sign	Group Name	Admini	stration W	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
TORTICOLLIS	Control	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	200 ppm	Ŏ	Ö	Õ	Ô	Ö	Ö	Õ	Õ	Õ	Õ	Õ	Ō	Õ	Ö
	1000 ppm	0	Ō	Ö	Õ	Ö	Ö	Õ	Ö	Õ	Ō	Ō	Ō	Ō	Ō
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	5000 ppm	2	1	1	2	1	0	2	4	4	3	3	3	3	3
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	50	50	50	50	48	47	47	47	47	47	47	47	46	45
	1000 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	5000 ppm	44	42	42	42	41	41	39	39	39	37	36	36	36	36
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	0	0	1	1	0	0	0	0	0	1	0	0	0
L1GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	5000 ppm	1	0	0	1	1	0	0	0	0	0	1	0	0	0
ON REMARKABLE	Control	43	43	43	43	42	43	43	43	44	44	44	44	43	43
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

PAGE: 30

linical sign	Group Name	Admini	stration W	eek-day										·····	
	S. SSP Trains	71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	2	2	2	2	2	2	2	2	1	1	1	2	2	4
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	44	44	44	44	44	44	44	44	44	44	44	44	43	43
	1000 ppm	49	48	48	47	47	46	46	45	45	45	45	45	45	44
	5000 ppm	34	34	34	33	33	32	32	32	31	31	30	30	30	30
ALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	1000 ppm	0	1	0	0	0	0	0	0	0	1	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	1	0	0	0	0
.IGO-STOOL	Control	0	0	0	1	0	0	0	0	0	0	0	0	0	1
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	1000 ppm	1	1	0	1	0	0	0	0	1	1	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	1
ON REMARKABLE	Control	43	42	42	42	42	42	42	43	43	42	41	41	41	40
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 31

Clinical sign	Group Name	Admini	stration W	eek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	Ō	Ō	Ō	0	0	Ō	0	Ō	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OLAPSE OF PENIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	4	4	3	3	3	3	3	2	2	1	1	1	1	1
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	200 ppm	0	0	0	0	0	1	1	1	1	1	1	0	0	0
	1000 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	1	1	2	2	2	1	1	1	1
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200 ppm	43	43	43	43	42	42	42	42	42	42	40	40	39	38
	1000 ppm	43	42	42	42	42	42	42	42	42	42	42	42	41	40
	5000 ppm	27	26	24	23	23	21	21	20	20	18	17	17	17	17
MALL STOOL	Control	0	0	0	0	0	1	1	0	1	0	0	0	0	0
	200 ppm	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	1	1	1	0	0	0	0	0	1	1	0	0	0	0
IGO-STOOL	Control	1	1	1	0	0	1	1	0	1	0	0	0	0	0
	200 ppm	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	1000 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	2	2	2	0	0	0	0	0	0	0	0	0	0	0
ON REMARKABLE	Control	40	39	37	37	37	34	34	34	32	33	33	32	32	30
	200 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5000 ppm	0	0	0	0	0	0	0	0	0	n	0	n	0	0

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 32

Clinical sign	Group Name	Admin	istration \	Week-day _			
		99-7	100-7	101-7	102-7	103-7	104-7
TORTICOLLIS	Control	0	0	0	0	0	0
	200 ppm	Ö	Ö	Õ	Õ	Õ	ŏ
	1000 ppm	Ö	Ö	Ö	Ö	Õ	Õ
	5000 ppm	0	ő	ő	0	0	0
PROLAPSE OF PENIS	Control	0	0	0	1	1	1
	200 ppm	0	0	0	0	0	1
	1000 ppm	0	0	0	0	0	0
	5000 ppm	1	1	1	1	1	0
IRREGULAR BREATHING	Control	0	0	0	0	1	2
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0	0	0	0	0
	5000 ppm	1	1	2	2	1	0
YELLOW URINE	Control	0	0	0	0	0	0
	200 ppm	38	37	37	35	34	33
	1000 ppm	40	40	40	38	38	37
	5000 ppm	17	16	15	13	11	10
SMALL STOOL	Control	0	1	0	0	0	0
	200 ppm	0	0	0	0	0	1
	1000 ppm	0	0	0	0	1	0
	5000 ppm	0	0	0	0	0	0
OLIGO-STOOL	Control	0	0	0	1	1	1
	200 ppm	0	0	0	1	1	2
	1000 ppm	0	0	Ō	Ó	Ö	0
	5000 ppm	0	0	0	Ō	Ö	Ö
NON REMARKABLE	Control	28	26	26	25	24	23
	200 ppm	0	0	0	0	0	0
	1000 ppm	0	0		0	0	0
	5000 ppm	0	Ö	0 0	Ō	Õ	Ō

TABLE B 2

CLINICAL OBSERVATION: FEMALE

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

PAGE · 33

SEX : FEMALE															PAGE: 33
Clinical sign	Group Name		stration W									.,,			
		1-7	2-7	3–7	4-7	5-7	6-7	7–7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Õ	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ô	Õ	Ō	Ō	Ō	0
	2000 ppm	Õ	Õ	Ö	0	Õ	Ö	0	0	Õ	Õ	Ô	Õ	Õ	Õ
	10000 ppm	0	Ö	Õ	0	Ô	0	Ō	0	0	Ö	0	0	0	Ö
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

JEN . TEMALE															i nuu .
Clinical sign	Group Name	Admini	stration W	eek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EATH.	400 ppm	0	Ô	Ö	Õ	0	0	Õ	0	Ô	0	Ő	0	0	ñ
	2000 ppm	0	Õ	Õ	Ö	Ö	0	ŏ	Õ	Ö	Õ	Ô	Õ	Õ	Ö
	10000 ppm	0	Ö	Õ	Ö	Õ	0	0	Ô	0	Ö	0	0	Ö	0
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
	2000 ppm	0	0	0	0	Ō	Ō	0	Ō	0	Ō	Ō	0	0	0
	10000 ppm	0	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

JEN . I CHINEL															i Auc
Clinical sign	Group Name	Admin	istration V	leek-dav				***************************************					***************************************		
_		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
DEATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CATH	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Ö	Ö ,	Ô	0	ő	0	ő	0	Ô	Ö	Ö	ő	0	Ö
MORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·UM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

EX . I CHALL															TAUL .
linical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
EATH	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
-A111	400 ppm	0	0	0	0	0	0	0	0	n	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	Õ	0	0	0	Ö	Ó	Ó	i	1	i
RIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2000 ppm	0	0	0	0	0	2	2	2	2	2	2	2	2	2
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	Ō	0	Ō	0	0	0	0
	10000 ppm	0	Ō	Ō	Ö	Õ	ñ	Ō	Õ	Ô	Õ	Õ	ō	Ö	0

CLINICAL OBSERVATION (SUMMARY)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admir:						~							
		Aumini	stration W	eek-day			~								
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
EATH	Control	1	1	1	1	1	1	1	2	2	3	3	3	3	4
	400 ppm	0	0	1	1	1	1	1	1	2	3	3	3	3	3
	2000 ppm	1	1	2	2	2	2	2	2	2	2	3	3	3	3
	10000 ppm	1	1	1	1	2	2	2	2	2	2	3	3	3	3
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2000 ppm	2	2	2	2	2	2	2	2	2	2	2	2	2	3
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	Ō	Ö	Ō	Ō	Ō	Ō	Ō	Ō	Ö	Ō	Ō	Ō	Ō
	10000 ppm	Õ	Ō	0	0	Ō	Õ	Ō	Ö	0	0	0	Ö	Ō	Ō
ARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ñ	Ö	Ö	Ö	Ö	Ö	Ō	Ō	Õ	Ô	Õ	ñ	Ö	Õ
	2000 ppm	ñ	Õ	Õ	Ö	Ö	Õ	Ô	Ö	Õ	n	Ö	Ô	0	Õ
	10000 ppm	Ö	Õ	Ő	ő	ő	0	0	0	0	0	ő	ő	0	Ö
BNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ô	Ö	Õ	ŏ	Ö	ŏ	0	Õ	ŏ	Õ	ŏ	Õ	Õ	Õ
	2000 ppm	Õ	0	0	0	0	Ö	0	0	Ö	0	0	0	Õ	0
	10000 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	10000 կիր	1	1	'	ı	Ü	U	U	U	U	U	U	U	U	U
LOERECTION	Control	0	0	0	0	0	0	2	1	1	1	1	1	1	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2000 ppm	1	1	1	1	0	0	0	1	1	1	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROG BELLY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	2000 ppm	0	Ō	Ō	Õ	Õ	ò	Ö	Ö	ò	ò	Ö	ò	Ö	ò
	10000 ppm	0	0	0	0	0	Ö	Ö	Ö	0	Ö	0	Ö	Õ	Ö
М	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ô	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ilidd oool	U	U	U	U	U	υ	U	U	U	U	U	U	υ	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

JEA . TEMALE															FAUL . C
Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
EATH	Control	5	5	5	6	7	7	7	7	7	10	10	10	10	10
	400 ppm	3	3	3	3	3	3	3	4	4	4	4	4	4	5
	2000 ppm	3	3	3	3	3	3	3	4	4	4	4	4	5	5
	10000 ppm	3	3	4	4	5	5	5	5	5	5	5	6	6	6
ORIBUND SACRIFICE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	3	3	3	4	4	4	4	4	4	4	4	4	4	5
	2000 ppm	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ILOERECTION	Control	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	400 ppm	0	0	Ö	Ō	0	Ō	Ō	Ō	0	Ō	0	0	Ō	0
	2000 ppm	0	0	0	Ō	0	Ō	Ö	Ō	Ō	0	0	1	Ō	Ō
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	2
ROG BELLY	Control	0	0	0	0	0	0	0	1	2	0	0	0	0	0
	400 ppm	Õ	Ö	Ö	Õ	Ö	ŏ	Õ	O	Õ	Ŏ	Ŏ	Õ	Ö	0
	2000 ppm	Ō	Ō	Ō	Ö	Ö	Õ	0	Ö	Ö	Õ	Ö	Ö	Ö	Õ
	10000 ppm	0	0	0	0	0	Ō	0	0	0	Ō	Ō	0	Ō	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	í	1	1	1	1	1	1	1	1	1	1	1	1	1
	2000 ppm	ò	ò	Ö	Ö	Ö	Ó	Ó	Ó	0	ò	Ö	Ó	Ö	Ó
	10000 ppm	Ö	ő	Ö	0	Ő	Õ	0	0	0	0	Ö	0	0	0
GUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TOOOO PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

JEA . I LMALE															TAUL . O
Clinical sign	Group Name	Admini	stration W	eek-day											
	***************************************	85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
DEATH	Control	10	10	10	11	14	15	16	16	16	16	16	18	20	21
	400 ppm	5	5	5	6	6	7	7	8	8	9	10	11	13	17
	2000 ppm	5	5	5	7	8	8	9	9	9	9	9	9	10	11
	10000 ppm	6	6	6	7	8	8	8	9	11	11	13	14	14	14
ORIBUND SACRIFICE	Control	0	0	1	1	2	2	2	2	2	2	2	2	2	2
	400 ppm	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	2000 ppm	4	4	4	4	4	4	4	4	4	4	4	5	5	5
	10000 ppm	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
OCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	1	0	0	0	0	0	0	0
PARALYTIC GAIT	Control	Λ	0	0	0	0	0	0	Λ	0	0	0	0	0	0
AUTO GATE	400 ppm	ň	Ô	Õ	0	0	0	0	0	0	n	1	1	1	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	Ö	Ö	Ö	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADITORNIAL GATT	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	rooo ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
PILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	1	1	2	2	1
	2000 ppm	0	1	1	1	- 1	2	1	2	2	2	2	2	2	2
	10000 ppm	2	2	2	1	1	1	1	4	2	3	3	4	5	5
ROG BELLY	Control	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	1	0	0	0	0	0	0	0	1	1	0
	10000 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
XOPHTHALMOS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	ĭ	ő	0	ŏ	ŏ	Õ	Õ	Ö	0	Ŏ	Õ	Õ
	2000 ppm	ò	Ö	ò	Ö	0	ő	Ö	0	Õ	Õ	Ô	Ö	Õ	ñ
	10000 ppm	Õ	Ö	Ö	0	0	Ô	0	0	Ô	Õ	ő	0	ő	Ö
SUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· Oni	400 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0					-		•	-	-		_	•
	2000 ppm 10000 ppm	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0 0	0	0
	10000 ppm	U	U	U	U	U	U	0	U	U	U	0	U	U	U

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Admin	istration '	Week-day			·
	4. 40p	99-7	100-7	101-7	102-7	103-7	104-7
DEATH	Control	22	22	22	22	22	22
DEATH	400 ppm	18	18	18	22	23	25
	2000 ppm	11	13	15 15	17	18	18
	10000 ppm	14	14	15	15	17	19
MORIBUND SACRIFICE	Control	2	2	2	2	2	2
MUNIDUNU SACRIFICE	400 ppm	5	5	5	5	5	5
	2000 ppm	5	5	5	5	5	5
	10000 ppm	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECR	Control	0	0	0	0	0	0
LOCOMOTOR MOVEMENT DECK	400 ppm	0	0	0	0	0	0
	400 ppm 2000 ppm	-					
		0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
PARALYTIC GAIT	Control	0	0	0	0	0	0
THERETTY UNIT	400 ppm	0	0	0	0	0	0
		U 1				-	
	2000 ppm	ı	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
ABNORMAL GAIT	Control	0	0	0	0	0	0
ADMORMAL MATT	400 ppm	0					
			0	0	0	0	0
	2000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
PILOERECTION	Control	0	0	0	0	0	0
FILULREGIIUN				0	0	0	0
	400 ppm	0	0	0	0	0	0
	2000 ppm	3	2	2	2	1	1
	10000 ppm	5	4	3	3	1	1
FROG BELLY	Control	0	n	0	0	0	1
I NOO DELL!		0	0	0	0	0	1
	400 ppm	2	2	2	0	0	0
	2000 ppm	0	0	1	1	0	0
	10000 ppm	0	0	0	0	0	0
EVADUTUAL MAC	Camburt	^	^	^	^	^	^
EXOPHTHALMOS	Control	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0
CUM	Cantual	٥	•	^	0	•	
GUM	Control	0	0	0	0	0	1
	400 ppm	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]
REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

Clinical sign	Group Name	Adminis	stration W	eek-dav						***************************************					***************************************
		1-7	2-7	3-7	4-7	57	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
DRNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	Ô	0	0	0	0	0	0	0	0	0
	10000 ppm	Ō	0	Ô	Ö	0	0	0	0	Ö	ő	Ö	Ö	Ö	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	n	0	0	0	0	0	0	0
	2000 ppm	Ô	Ö	Ö	Ö	Õ	Ö	Ö	Ö	Õ	Õ	0	ő	Õ	ŏ
	10000 ppm	Ö	ő	0	0	0	0	0	0	Ö	Ô	0	Ô	Õ	ő
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ñ	Ö	Ö	Ô	Ö	Ö	Õ	Ö	Ö	Õ	Ö	ő	Õ	ñ
	2000 ppm	Ů	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0
	2000 ppm	Ō	0	Õ	Ö	Ö	0	Ô	Ö	Ö	Ô	Õ	Õ	Õ	0
	10000 ppm	ŏ	Ö	Ö	Ö	Ö	Ö	Ö	Ö	0	0	ő	Ö	0	Ö
BREAST	Control	0	0	0	0	0	0	0	0	0	Λ	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	INDA DAM	U	U	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration We	aokday				,							
, in our sign	dioup nume	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERNAL MASS	Control	0	0	0	0	0	0	0	0	n	0	0	0	0	Ω
	400 ppm	ñ	Õ	Ö	ŏ	Ô	0	Õ	1	1	1	1	ĭ	1	1
	2000 ppm	n	0	Ö	Ŏ	0	0	Õ	ò	Ó	Ö	Ö	ò	Ö	ò
	10000 ppm	Ö	Ö	Ö	ŏ	Ö	Ö	0	Ö	Õ	ő	Ö	0	Ö	ő
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	400 ppm	ñ	Ö	Ö	ő	Ö	Õ	Ö	Ö	Õ	Õ	Õ	Ö	0	Õ
	2000 ppm	ñ	0	Ö	Õ	0	0	0	0	0	0	0	0	0	ñ
	10000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
		U	U	U	U	U	U	U	U	U	U	U	U	U	U
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ō	0	Ō	Õ	Õ	Õ	Ö	Ō	Ö	Ö	Ŏ	Ö	Ö	Ö
	2000 ppm	Ď	Ö	Ö	ŏ	Ö	ő	ő	ő	Õ	Õ	Õ	Õ	0	0
	10000 ppm	Õ	Ö	Ö	ő	ő	ő	Ö	ő	Ö	Ö	Ö	Ö	Ö	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	I UUUU PPIII	U	U	U	U	U	U	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE PAGE: 43

Clinical sign	Group Name	Admini	stration W	leek-dav											
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CORNEAL OFACTIT	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mag 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Contual	0	0	0	٥	0	0	٥	0	Λ.	0	0	0	Δ.	0
ENTERNAL MASS	Control 400 ppm	0 0	0 0	0	0	0 0	0 0	0	0	0	0 0	0	0	0 0	0 0
		_		0	0	-	_	0	0	-	-	•	0		-
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2000 ppm	0	0	0	Ô	Ò	Ô	Ö	Ô	0	0	0	0	Ô	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ו דער	0	•		0	۸	0	0	0	0	٥		0	0	•	0
A. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ō	Ö	0	Õ	Ö	Õ	Õ	Õ	Õ	Õ	Õ	Ö	Ö	0
	2000 ppm	Õ	Ŏ	Ö	Ö	Ö	Õ	Ö	Ö	Õ	Ö	ŏ	Ö	Ö	0
	10000 ppm	Õ	Ö	0	Ö	Ô	0	0	0	Õ	0	Ö	Õ	0	Õ
1 DED) 510	0 1 1	•	•	•											
I PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	Õ	0	0	0	0	0	0	0	Õ	0	Ö	0	n
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppili	U	U	U	U	U	U	υ	U	U	U	Ū	U	U	U
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE PAGE: 44

Clinical sign	Group Name	Admini	stration W	eek-day											
	or out maile	43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ONNEAL OFACTTY	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
WIEKTOR GHAMDER GLACITI	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	2000 ppm	0	0			_	_	-	-	0	0	-	-	-	0
		0	0	0	0	0	0	0	0	•	_	0	0	0	0
	10000 ppm	U	U	0	0	0	0	0	0	0	0	U	0	0	U
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	400 ppm	1	1	1	1	0	0	0	1	1	1	1	1	1	1
	2000 ppm	Ô	Ò	Ò	Ó	Ö	Õ	Ö	Ö	Ö	Ö	Ö	o O	0	Ò
	10000 ppm	Ō	0	Ō	0	Õ	Õ	Ö	2	2	2	2	2	2	2
EYE	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ñ	Ö	Ö	0	Õ	ŏ	Õ	Ô	Õ	Õ	Ö	Õ	Ö	ñ
	2000 ppm	ñ	ő	Õ	Ö	Õ	ő	Õ	0	Õ	Ô	0	Õ	ő	Ö
	10000 ppm	Ö	Ŏ	Õ	Ö	0	Ő	Ö	0	Ö	0	0	Ö	Ö	ő
EAR	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
LAN	400 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0												•
	2000 ppm 10000 ppm	U N	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0
		U	U	U	U	U	U	U	U	U	U	U	U	U	U
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Õ	Ô	Ö	Õ	ŏ	ő	Õ	Ő	Õ	Ô	Õ	Õ	Ö	Õ
	2000 ppm	ő	0	Õ	0	0	0	0	0	0	0	0	0	0	0
•	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

JLA . ILMALL															FAGE .
Clinical sign	Group Name	Admini	stration W	eek-day							***************************************				
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	1	1	1	1	0
ORNEAL OFACTIT	400 ppm	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0
	2000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000 mag	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERNAL MASS	Control	0	0	0	0	0	1	1	1	1	0	0	0	0	0
	400 ppm	1	1	1	1	1	2	2	2	1	0	0	1	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	10000 ppm	3	4	4	7	8	9	8	7	7	7	6	7	7	8
EYE	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day		***************************************				·····					······
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
XTERNAL MASS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	1	1	1	1	2
NTERNAL MASS	Control	0	0	1	0	0	1	1	1	1	0	0	0	0	0
	400 ppm	0	0	Ó	Ō	Ō	Ó	Ó	Ö	0	Ō	Ō	0	Ō	Ō
	2000 ppm	Ō	Õ	Ö	0	0	Ŏ	1	2	2	2	2	2	1	2
	10000 ppm	7	7	6	6	5	5	6	6	6	6	6	6	6	6
EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Õ	Ö	Ö	Ö	ŏ	ŏ	ŏ	Ŏ	Ö	ň	Ŏ	Õ	Õ	ñ
	2000 ppm	ñ	Ö	Ö	0	Ö	Ŏ	Õ	Ŏ	Ö	ň	Ô	0	Ö	Õ
	10000 ppm	Ö	0	ő	Ö	ŏ	ő	0	Ô	Ö	Ö	Ö	Õ	Ö	ő
EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	Ô	Ŏ	Ö	Õ	Õ	Ô	Õ	0	0	0	0	0	0
	2000 ppm	0	Ö	ŏ	Õ	Ö	ő	Õ	Ö	Ö	Õ	Õ	0	0	Ô
	10000 ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2711	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NECK	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	1	1	บ 1	1	1
	ւսսսս բիլու	U	U	U	U	U	U	U	U	U	ı	I	1	ı	1
BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE : 4
Clinical sign	Group Name	Admini	stration W	eek-day		***************************************	***************************************	***************************************							
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
CORNEAL OPACITY	Control	0	0	0	0	0	0	0	0	0	0	1	1	1	1
CORNEAL OFACTIT	400 ppm	0	0	0	0	0	0	0	0	1	1	1	1	1	Ó
	2000 ppm	0	0	0	0	0	0	0	0	0	Ö	Ó	Ó	Ů	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	1	1	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EXTERNAL MASS	Control	2	2	1	1	0	1	1	1	1	1	1	1	1	1
	400 ppm	2	2	2	2	2	2	2	1	1	1	1	2	2	1
	2000 ppm	2	2	3	3	2	2	2	2	2	2	2	2	2	2
	10000 ppm	2	2	2	3	2	2	2	2	1	1	1	0	0	0
INTERNAL MASS	Control	0	1	1	3	2	2	1	1	1	1	1	1	1	1
	400 ppm	0	0	0	1	1	2	3	5	5	5	4	3	4	2
	2000 ppm	2	2	3	3	5	5	5	5	5	5	5	4	4	6
	10000 ppm	6	6	6	7	7	6	6	7	7	8	8	8	8	8
M. EYE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M PERI EAR	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	1	1	1	1	1	1	1	1	1	1	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A. NECK	Control	0	0	0	0	0	1	1	1	1	1	1	1	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	1	1	1	1	0	0	0	0	0	0	0	0	0	0
A. BREAST	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	400 ppm	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration	Week-day _					
		99-7	100-7	101-7	102-7	103-7	104-7		
CORNEAL OPACITY	Control	1	1	1	1	1	1		
	400 ppm	0	0	0	1	1	1		
	2000 ppm	0	0	0	0	1	1		
	10000 ppm	0	0	0	0	0	0		
TERIOR CHAMBER OPACITY	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
TERNAL MASS	Control	1	1	1	1	1	1		
	400 ppm	1	3	3	2	1	0		
	2000 ppm	2	3	2	2	2	3		
	10000 ppm	Ö	0	Ō	0	ō	1		
ITERNAL MASS	Control	1	1	1	1	1	1		
	400 ppm	2	ż	3	2	3	4		
	2000 ppm	7	6	7	5	4	4		
	10000 ppm	8	8	7	7	6	6		
EYE	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
EAR	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	1	1	1	1	1	1		
	10000 ppm	0	0	0	0	0	0		
PERI EAR	Control	0	0	0	0	0	0		
	400 ppm	Ō	Ö	0	Õ	Ö	Ö		
	2000 ppm	Ö	Ö	Õ	ő	Õ	Ö		
	10000 ppm	Ö	0	Ö	ŏ	0	0		
			-						
NECK ·	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	1	1	0		
	2000 ppm	0	1	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
BREAST	Control	1	1	1	1	1	1		
	400 ppm	0	1	1	1	0	0		
	2000 ppm	0	0	0	0 0	0	0		
	10000 ppm	0	0	0	0	0	0		

CLINICAL OB

REPORT TYPE : A1 104

SEX : FEMALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

															Trial.
Hinical sign	Group Name	Admini	stration We	ek-day						~					
· · · · · · · · · · · · · · · · · · ·		1-7	2-7	3-7	4-7	5-7	6-7	7–7	87	9-7	10-7	11-7	12-7	13-7	14-7
ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TO OTHER	400 ppm	ő	Ö	Ö	0	ő	0	0	Ö	Ö	Ö	Õ	0	ŏ	ő
	2000 ppm	ő	0	0	0	0	0	Ö	. 0	0	0	0	0	Õ	ő
	10000 ppm	Ö	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Õ	Ö	Ö
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	U	0	0	0	0	0	0	0	U	U	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE :
Clinical sign	Group Name	Admini	stration W	eek-day											
	14-18-18-18-18-18-18-18-18-18-18-18-18-18-	15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ADDONIEN	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR, DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NEM I A	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	Ō	Ō	0	0	0	Ō	Ō	0
	2000 ppm	0	Ō	Ō	Ō	0	Ö	Ö	Ō	Õ	Ō	Õ	0	Ō	Ō
	10000 ppm	Ō	Õ	Ō	Ö	Ŏ	Õ	Ŏ	Ŏ	Ö	Ô	Ŏ	Õ	Ŏ	Õ

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

: FEMALE															PAGE :
nical sign	Group Name	Admini	istration W	eek-day _		***************************************			~~~						
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
BDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DOOMEN	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0				0	0	0			0	0	0	0
		0		0	0	0 0		-	_	0	0	-	0		
	10000 ppm	U	0	0	0	U	0	0	0	0	0	0	U	0	0
NTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSTERIOR DORSUM	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
SOLEKION DONSOM	400 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm 2000 ppm	0	0	0	0	0	0	0	O N	0	0	0	0	0	0
	·• ·• ·	•	-					-	•	-	•	_	•	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	U	0
INDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	n	0	n
IN TALIA	400 ppm	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Õ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	10000 ppili	U	U	U	U	U	U	U	U	U	U	U	U	U	U
NUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i i	0	•		•	•	•	•	•			_			_	•
MA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ô	-		-		-			-	0	n	_	_	n
		•	•			-	-	-	_	-	U	U	-	-	0
		-													0
	400 ppm 2000 ppm 10000 ppm	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-day	***************************************				***************************************						
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADDOMEN	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	1	1	1	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0
	2000 ppm	0	0	0	0	0	Ō	Ō	Ō	Ō	0	0	Ō	0	0
	10000 ppm	n	0	0	0	0	0	Ō	Ō	0	Ō	Ō	Ō	Ō	0

CLINICAL OBSERVATION (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

SEX : FEMALE															PAGE : 5
Clinical sign	Group Name	Admini	stration W	eek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
M. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
m. ADDOMEN	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Õ	0	Ő	0	0	0	0	0	0	0	0	Ő	0	0
M. ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M. TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EDEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANEMIA	Control	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

SEX . FEMALE															PAGE .
Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
A. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. ADDOMEN	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
	2000 ppm	n	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	ő	0	0	0	Ö	Ö	Ö	0	Õ	Ö	Ö	ő	Ô	Ö
ANTERIOR. DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VEMTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

															77102 7
Clinical sign	Group Name	Admin	istration W	eek-day										***************************************	
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ADDOMEN					•	•			•	•	•		•	•	
. ABDOMEN	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANTERIOR DORSUM	Control	2	2	1	1	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POSTERIOR DORSUM	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	Ō	0	Ō	0	0	0	0	0	0
	10000 ppm	0	Ō	0	0	Ō	Ō	0	0	0	0	0	Ō	Ō	0
HINDLIMB	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	1	1	i	1	1	1	Ö	Ö	Õ	Õ	Ö	Ö	Õ
	2000 ppm	'n	0	ò	Ó	Ö	0	Ö	0	0	Ô	0	Õ	Ö	ŏ
	10000 ppm	Ö	ő	ő	Ő	Ö	ŏ	ő	0	Ö	ő	Ö	ő	Ö	0
GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GENTIALIA	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	1	-	1			-		_	-	-	-	-	0	0
	2000 ppm 10000 ppm	1	1	1	1	0	0	0	0	0 1	0	0 1	0 0	0	0
	TOOUU ppm	l	1	'	2	2	2	2	2	1	t	1	υ	U	U
ANUS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAIL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMA	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	400 ppm	Ô	ő	Ö	Õ	0	Ŏ	ŏ	Õ	0	ő	ñ	ŏ	ò	Õ
	2000 ppm	Ô	Õ	0	Ô	0	Ö	ő	0	0	Õ	0	Õ	Õ	ő
	10000 ppm	0	0	Õ	Ô	0	0	0	0	0	0	0	0	0	0
IEM I A	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· · · · · · · · · · · · · · · · · · ·	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm 2000 ppm	0	0	-		-	_				-	•	0	-	-
	2000 ppm 10000 ppm	0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0 0	0
	mqq voovi	U	U	U	U	0	0	U	U	U	U	U	U	U	U

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

inical sign	Group Name	Admini	stration	Wook-day		· · · · · · · · · · · · · · · · · · ·			
Throat Sign	Group Hume	99-7	100-7	101-7	102-7	103-7	104-7		
				***************************************	arminos de meter acomo mon del documento de la composición del composición de la composición de la composición del la composición del composición del composición de la composición del composición				
ABDOMEN	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
ANTERIOR DORSUM	Control	0	0	0	0	0	0		
	400 ppm	1	2	2	1	0	0		
	2000 ppm	0	0	0	0	0	1		
	10000 ppm	0	0	0	0	0	0	*	
POSTERIOR DORSUM	Control	0	0	0	0	0	0		
	400 ppm	0	1	1	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	1		
HINDLIMB	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
GENITALIA	Control	0	0	0	0	0	0		
	400 ppm	Õ	Ō	Ō	Ō	0	0		
	2000 ppm	Ō	Ö	0	Ö	Ö	Ō		
	10000 ppm	0	Ō	0	0	0	0		
ANUS	Control	0	0	0	0	0	0		
	400 ppm	Ö	Õ	Õ	Ö	Ö	Ö		
	2000 ppm	Ö	Õ	Ŏ	ŏ	Õ	ŏ		
	10000 ppm	Ö	ő	Ö	0	Ö	Ö		
AIL	Control	0	0	0	0	0	0		
	400 ppm	Ö	Õ	Ö	ő	Õ	ŏ		
	2000 ppm	1	1	1	1	1	1		
	10000 ppm	0	Ö	ò	ò	0	Ô		
EMA	Control	0	0	0	0	0	0		
••••	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
MIA	Control	0	0	0	0	0	0		
-01173	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0					
	2000 ppm 10000 ppm	0	0	0	0 0	0 0	0 0		
	10000 hhiii	U	U	U	U	U	υ		

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

OLA . I LIIIALL															That .
Clinical sign	Group Name	Admini	stration W	eek-dav				<u> </u>							
	0.000	1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
EROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	Ō	0	Ō	0	0	Ō	0
	10000 ppm	Ō	Ō	Ō	Õ	Õ	Õ	Ö	0	Ö	Ö	0	Ō	Ō	Ō
TORTICOLLIS	Control	n	0	0	0	0	0	0	0	0	0	0	0	0	0
10011002210	400 ppm	Ď	0	0	0	Õ	0	0	0	0	n	0	0	Õ	Õ
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRREGUEAR DREATHING	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppiii	U	U	U	U	U	U	U	U	U	U	U	U	U	U
ABNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SMALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Õ	Ö	ő	Ö	0	0	0	0	Õ	Õ	Ô	0	Ö	Õ
	2000 ppm	Ô	Õ	0	0	0	0	0	0	Ö	0	0	0	0	Ö
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DLIGO-STOOL	Control	n	0	0	0	0	n	۸	•	^	^	•	^		0
JETGU STUUL		v	-	-	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

Clinical sign	Group Name	Admini	stration W	leek-dav											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27-7	28-7
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:KO2 LOM	400 ppm	0	0 0	0 0	0 0	-	0	0	0 0	0	0	0	0 0	0	0
	400 ppm 2000 ppm	0	0	0		0 0	0			0		0 0	0		0
	2000 ppm 10000 ppm	O O	0	0	0 0	0	0 0	0 0	0 0	0	0	0	U N	0	0
	TOUUU ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Õ	0	Õ	Ő	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	n	0	0
		U	U	U	U	U	U	U	U	U	Ū	U	v	U	U
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	Ô	ŏ	ŏ	ŏ	Ŏ	Õ	ŏ	Ô	Õ	Ô	Ö	Õ	ñ	ñ
	2000 ppm	0	Ö	ŏ	ŏ	Ö	Õ	ŏ	0	Ö	Ô	Ô	Õ	0	0
	10000 ppm	Ô	0	ñ	0	0	0	0	0	0	0	0	n	0	0
	10000 ppm	U	Ü	Ü	v	U	U	U	U	U	U	U	Ü	U	U
BNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	2000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MALE STOOL	400 ppm	0	0	0	0		0	0	0			0	-		0
		0				0		-	_	0	0	U	0	0	_
	2000 ppm	•	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2000 ppm	0	0	0	0	0	0	0	0	0	Ō	0	0	Ô	0
	10000 ppm	0	Õ	Ö	Ö	Ö	Ö	Ö	Ŏ	Ö	Ö	Õ	Ö	ŏ	Ŏ

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	eek-day					***************************************						·····
		29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-7
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KO21014	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm 10000 ppm	0	0	0	0	0	0	0	0	O O	0	0	0	0	0
	indd oool	U	U	U	U	U	U	υ	U	U	U	U	U	U	U
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ñ	Ô	ŏ	ŏ	0	0	Õ	0	Õ	Õ	Õ	Ö	0	Ô
	2000 ppm	n	0	0	Ö	0	0	0	0	0	0	0	Ö	n	ñ
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	Ū	Ü	Ü	v	U	U	U	U	U	v	U	v	U	Ū
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ñ	Ö	Ö	Ö	Õ	Ŏ	Õ	ŏ	Ď	Ö	Ö	Õ	Õ	Ô
	2000 ppm	Ō	Ō	Ö	Ö	Õ	Ô	Ö	Õ	Ô	Õ	Ö	Õ	Õ	Õ
	10000 ppm	0	Ŏ	Ô	Ö	Õ	Ö	Õ	Õ	0	Ö	0	Ö	Õ	Ö
Manus agantas aguna			_												_
BNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	50	49	49	49	49	49	49	49	49	49	49	49	49	49
	2000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	50	50	50
IALL STOOL	Control	0	0	0	0	0	0	0	. 0	0	٥	0	0	Λ	0
MALL STOOL	400 ppm	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0 0	0
		0		_		0	0	-	-	-	•	-		-	
	2000 ppm	-	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	0

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1 104

SEX : FEMALE

linical sign	Group Name	Admini	stration W	eek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
OSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
701011	400 ppm	0	0	0	0	0	0	0	1	0	0	0	0	Ô	ő
	2000 ppm	Ô	Õ	Ö	0	0	0	0	Ö	0	0	0	Õ	0	n
	10000 ppm	0	Ö	Ö	0	ő	ő	ő	ő	Õ	ő	ŏ	Õ	0	0
ISTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	Ü
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	U
	2000 ppm	U	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	2000 ppm	50	50	50	50	50	48	48	47	47	47	47	47	47	47
	10000 ppm	50	50	50	50	50	50	50	50	50	50	50	49	49	49
LL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

TEN I CHINEE															TAUL .
Clinical sign	Group Name	Admini	stration V	leek-day											
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ROSION	Control	0	0	0	0	٥	0	0	٥	0	٥	0	0	0	0
(021014	400 ppm	0	0	0	0 0	0 0	0	0	0 0						
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COSTA	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	rooo ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U
MORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ORTICOLLIS	Control	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGULAR BREATHING	Control	0	1	1	1	1	1	1	1	1	1	1	1	1	1
	400 ppm	0	Ö	0	0	Ó	Ö	Ò	Ö	Ö	0	0	Ó	Ó	Ò
	2000 ppm	0	0	0	0	0	0	0	0	1	1	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL RESPIRA SOUND	Control	0	0	0	0	0	1	1	1	1	1	1	1	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	49	49	48	48	48	48	48	48	47	46	46	46	46	46
	2000 ppm	47	47	46	46	46	46	46	46	46	46	45	45	45	44
	10000 ppm	49	49	49	49	48	48	48	48	48	48	47	47	47	47
IALL STOOL	Control	0	0	0	0	0	0	1	1	0	0	0	0	0	1
5.002	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	2000 ppm	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	10000 ppm	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0
LCO CTOOL							•	•		•		•		•	
IGO-STOOL	Control	l 0	1	1	1	1	2	3	2	0	0	0	0	0	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm 10000 ppm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	U	0	0	0	0	0	0	0	0	0	0	0	0

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

X : FEMALE	PAGE: 62

Clinical sign	Group Name	Admini	istration W	leek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
ROSION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	n
1031011	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	n O
	10000 ppm	U	U	U	U	U	U	U	U	U	U	U	U	U	U,
RUSTA	Control	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	Ō	0	0	0	0	Ō	0	Ō	0
	2000 ppm	0	Ö	Ö	Ö	Ö	Ö	Õ	Ō	Ö	Ö	Ō	Õ	Õ	Õ
	10000 ppm	0	Ō	Ö	Ö	Õ	Ö	Ö	Ō	Ö	Ō	Ō	Ö	0	Õ
ORTICOLLIS	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	ò	Ö	Ö	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 phill	U	U	U	U	U	U	U	U	U	U	U	U	U	U
RREGULAR BREATHING	Control	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	Ō	0	Ō	Ō	Ō	Ō	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	44	44	44	43	43	43	43	42	42	42	42	42	42	40
	2000 ppm	43	43	43	43	43	43	43	42	42	42	42	42	41	41
	10000 ppm	47	47	46	46	45	45	45	45	45	45	45	44	44	44
	10000 μμπ	41	41	40	40	40	40	40	40	40	40	40	44	44	44
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	10000 ppm	0	0	0	0	0	1	0	0	0	0	0	0	0	2
.IGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	400 ppm	Ō	Õ	Ŏ	Õ	Õ	Õ	Ö	Õ	Õ	Ô	Ô	Õ	Õ	ò
	2000 ppm	Õ	ŏ	Õ	Ö	0	0	ő	0	Õ	0	0	0	1	0
	10000 ppm	Ö	Õ	Õ	0	Õ	0	Õ	Õ	0	0	0	0	'n	•

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE BGD2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

SEX : FEMALE

Clinical sign	Group Name	Admini	stration W	leek-day											
***************************************		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
EROS I ON	Control	0	0	0	0	0	1	0	0	0	0	0	0	0	0
EKUSTUN	400 ppm	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0
	2000 ppm	1	1	0	0	1	1	υ 1	1	1	1	0	0	1	1
	10000 ppm	Ö	Ó	0	Ô	Ö	Ó	Ó	Ö	Ó	Ô	0	0	Ó	Ó
CRUSTA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HEMORRHAGE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORTICOLLIS	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	1	1	1	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IRREGULAR BREATHING	Control	0	0	1	1	0	0	0	0	0	0	0	1	0	0
	400 ppm	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	2000 ppm	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	1	1	2	1	1	1	1
ABNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YELLOW URINE	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400 ppm	40	40	40	39	39	38	38	37	37	36	35	34	32	28
	2000 ppm	41	41	41	39	38	38	37	37	37	37	37	36	35	34
	10000 ppm	44	44	44	43	42	42	42	41	39	39	37	36	36	36
SMALL STOOL	Control	1	1	1	0	0	0	1	1	1	0	1	1	0	0
	400 ppm	0	0	0	0	0	0	0	0	0	1	2	1	0	0
	2000 ppm	0	0 2	0	0	0	0	0	0	0	0	0	0	0	2
	10000 ppm	1	2	3	2	0	1	0	0	1	1	0	0	0	0
DL1G0-STOOL	Control	1	0	0	1	0	0	0	0	0	1	1	0	0	0
	400 ppm	0	0	0	0	0	0	0	1	1	1	1	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	1	1	1	1	1	1	0	0	0	0	0	0	0	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

OLA . I LIMALL									TAUL .
Clinical sign	Group Name	Admin	istration	Waak-day					
31511	Group Hame	99-7	100-7	101-7	102-7	103-7	104-7	,	
								AMERICAN AND AREA CONTROL CO	
ROSION	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	1	1	1	1	1	1		
	10000 ppm	0	0	0	0	0	0		
RUSTA	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		4
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
EMORRHAGE	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
ORTICOLLIS	Control	0	0	0	0	0	0		
	400 ppm	Õ	Õ	Ö	Ö	Õ	Õ		
	2000 ppm	0	Õ	Ö	0	Õ	Ō		
	10000 ppm	0	0	0	Ō	Ō	Ō		
RREGULAR BREATHING	Control	0	0	0	0	0	0		
MEGGEIM DAEMINING	400 ppm	Ö	ŏ	0	Õ	Õ	ő		
	2000 ppm	ĭ	Ö	Ô	Õ	Ö	Ö		
	10000 ppm	i	1	ĭ	1	Õ	Ō		
		•	,	•	·				
BNORMAL RESPIRA SOUND	Control	0	0	0	0	0	0		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		
ELLOW URINE	Control	0	0	0	0	0	0		
	400 ppm	27	27	27	23	22	20		
	2000 ppm	34	32	30	28	27	27		
	10000 ppm	36	36	35	35	33	31		
MALL STOOL	Control	0	0	0	0	0	0		
	400 ppm	ő	ő	0	Õ	Ő	Ö		
	2000 ppm	2	Ö	Õ	Ö	0	ŏ		
	10000 ppm	0	Ö	Ö	Ŏ	Ö	Ô		
-IGO-STOOL	Control	0	0	0	0	0	0		
1140 01002	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0		0				
	2000 ppm 10000 ppm	0	0	0 0	1	0 1	0 0		
	լուու իրա	U	U	U	ł	1	U		

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 65

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	14-7
ION REMARKABLE	Control	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190) BAIS 5

ANIMAL : MOUSE B6D2F1/Cr1j[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 66

Clinical sign	Group Name	Admini	stration W	leek-day											
		15-7	16-7	17-7	18-7	19-7	20-7	21-7	22-7	23-7	24-7	25-7	26-7	27–7	28-7
NON REMARKABLE	Control	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	Ō	Ō	0	0	Ō	Ō	Ō	0	0	0

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 67

Clinical sign	Group Name	Admini	stration W	eek-day											
	······································	29-7	30-7	31-7	32-7	33-7	34-7	35-7	36-7	37-7	38-7	39-7	40-7	41-7	42-
NON REMARKABLE	Control	49	49	49	49	49	49	49	49	49	49	49	49	49	49
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 68

Clinical sign	Group Name	Admini	stration W	leek-day											
		43-7	44-7	45-7	46-7	47-7	48-7	49-7	50-7	51-7	52-7	53-7	54-7	55-7	56-7
NON REMARKABLE	Contro!	49	49	49	49	49	49	49	49	49	49	48	48	47	47
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190) BAIS 5

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 69

Clinical sign	Group Name	Admini	stration W	leek-day								***************************************			
		57-7	58-7	59-7	60-7	61-7	62-7	63-7	64-7	65-7	66-7	67-7	68-7	69-7	70-7
ION REMARKABLE	Control	47	47	47	47	47	46	44	44	45	45	45	45	45	43
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 mag	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)

ALL ANIMALS

SEX : FEMALE

PAGE: 70

Clinical sign	Group Name	Admini	stration W	eek-day											
		71-7	72-7	73-7	74-7	75-7	76-7	77-7	78-7	79-7	80-7	81-7	82-7	83-7	84-7
NON REMARKABLE	Control	43	43	43	43	42	41	41	40	39	39	39	39	39	36
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mqq 00001	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190)

BAIS 5

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 71

Clinical sign	Group Name	Admini	stration W	leek-day											
		85-7	86-7	87-7	88-7	89-7	90-7	91-7	92-7	93-7	94-7	95-7	96-7	97-7	98-7
ON REMARKABLE	Control	36	35	34	32	31	29	28	28	28	28	27	25	24	23
	400 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(HAN190) BAIS 5

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] REPORT TYPE : A1 104

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

PAGE : 72

Clinical sign	Group Name	Admin	istration	Week-day					
	·	99-7	100-7	101-7	102-7	103-7	104-7	- Western for the Paris	
NON REMARKABLE	Control	22	22	22	22	22	21		
	400 ppm	0	0	0	0	0	0		
	2000 ppm	0	0	0	0	0	0		
	10000 ppm	0	0	0	0	0	0		

(HAN190)

BAIS 5

TABLE C 1

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : MOUSE B6D2F1/Cr[j[Cr]:BDF1]

UNIT : g REPORT TYPE : A1 104 SEX : MALE

STUDY NO. : 0760

REPORT TYPE: AT 104
SEX: MALE

	Control		200 p	pm		1000	ppm		5000	pm		
	Av. Wt.	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	_
Week-Day		Surviv.		cont.	Surviv.		cont.	Surviv.		cont.	Surviv.	
n Study		<50>		<50>			<50>			<50>		
0-0	23. 3 (50)) 50/50	23. 3 (50)	100	50/50	23. 3 (50)	100	50/50	23. 3 (50)	100	50/50	
1-7	24. 4 (50)) 50/50	24. 0 (50)	98	50/50	24. 2 (50)	99	50/50	23. 4 (50)	96	50/50	
2-7	25. 3 (49	9) 49/50	25. 3 (50)	100	50/50	25. 3 (50)	100	50/50	24. 1 (50)	95	50/50	
3-7	25. 9 (49	49/50	26. 3 (50)	102	50/50	26. 4 (50)	102	50/50	25. 0 (50)	97	50/50	
4-7	26. 8 (48	3) 48/50	26. 9 (50)	100	50/50	27. 3 (50)	102	50/50	25. 5 (50)	95	50/50	
5-7	27. 7 (47	') 47/50	27. 6 (50)	100	50/50	27. 9 (50)	101	50/50	26. 1 (50)	94	50/50	
6-7	28. 2 (47		28. 1 (50)	100	50/50	28. 6 (50)	101	50/50	26. 6 (50)	94	50/50	
7-7	28. 7 (47	') 47/50	28. 6 (50)	100	50/50	29. 2 (50)	102	50/50	27. 1 (50)	94	50/50	
8-7	29. 9 (47		29. 5 (50)	99	50/50	30. 2 (50)	101	50/50	27. 8 (50)	93	50/50	
9-7	30. 8 (47		30. 3 (50)	98	50/50	31. 0 (50)	101	50/50	28. 4 (50)	92	50/50	
10-7	31. 0 (47	r) 47/50	31.0 (50)	100	50/50	31. 6 (50)	102	50/50	28. 9 (50)	93	50/50	
11-7	31. 8 (47		31.6 (50)	99	50/50	32. 0 (50)	101	50/50	29. 1 (50)	92	50/50	
12-7	32. 4 (47		32. 2 (50)	99	50/50	32. 9 (50)	102	50/50	29. 8 (50)	92	50/50	
13-7	33. 1 (47		32. 9 (50)	99	50/50	33. 6 (50)	102	50/50	30. 3 (50)	92	50/50	
14-7	33. 4 (47		33. 5 (50)	100	50/50	34. 1 (50)	102	50/50	30. 9 (50)	93	50/50	
18-7	36. 7 (47		36. 4 (50)	99	50/50	37. 4 (50)	102	50/50	33. 0 (50)	90	50/50	
22-7	38. 9 (47		38. 6 (50)	99	50/50	39. 8 (50)	102	50/50	34. 7 (50)	89	50/50	
26-7	40. 2 (47		40. 2 (50)	100	50/50	41.6 (50)	103	50/50	35. 7 (50)	89	50/50	
30-7	42. 2 (47		42. 2 (50)	100	50/50	43. 8 (50)	104	50/50	37. 2 (50)	88	50/50	
34-7	44. 1 (47		43. 9 (50)	100	50/50	45. 9 (50)	104	50/50	38. 4 (50)	87	50/50	
38-7	45. 9 (47		45. 5 (50)	99	50/50	47. 1 (50)	103	50/50	39. 2 (49)	85	49/50	
42-7	47. 2 (47		46. 6 (50)	99	50/50	48. 0 (50)	102	50/50	40. 0 (47)	85	47/50	
46-7	48. 6 (47		47. 5 (50)	98	50/50	48. 9 (50)	101	50/50	40. 1 (47)	83	47/50	
50-7	49. 3 (47		48. 7 (50)	99	50/50	50. 1 (50)	102	50/50	40. 2 (47)	82	47/50	
54-7	50. 3 (47		49. 1 (50)	98	50/50	50. 2 (50)	100	50/50	40. 5 (44)	81	44/50	
58-7	50. 4 (47		50. 2 (50)	100	50/50	50. 5 (49)	100	49/50	39. 9 (42)	79	42/50	
62-7	51. 1 (47		50. 1 (47)	98	47/50	50. 8 (49)	99	49/50	38. 5 (41)	75	41/50	
66-7	51. 3 (47		50. 7 (47)	99	47/50	50. 8 (49)	99	49/50	37. 5 (37)	73	37/50	
70-7	51. 6 (45		51. 1 (45)	99	45/50	50. 6 (49)	98	49/50	37. 7 (36)	73	36/50	
74-7	50. 4 (45		50. 8 (44)	101	44/50	50. 0 (47)	99	47/50	36. 0 (33)	71	33/50	
78-7	50. 5 (44		50. 5 (44)	100	44/50	48. 9 (45)	97	45/50	35. 7 (32)	71	32/50	
82-7	48. 8 (43		49. 4 (44)	101	44/50	46. 7 (45)	96	45/50	33. 6 (30)	69	30/50	
86-7	48. 1 (42		48. 3 (43)	100	43/50	45. 9 (42)	95	42/50	32. 6 (26)	68	26/50	
90-7	47. 1 (40		47. 2 (42)	100	42/50	45. 1 (42)	96	42/50	33. 6 (21)	71	21/50	
94-7	46. 9 (37		45. 7 (42)	97	42/50	43. 8 (42)	93	42/50	33. 3 (18)	71	18/50	
98-7	44. 5 (35		43. 3 (38)	97	38/50	40. 7 (40)	91	40/50	30. 6 (17)	69	17/50	
102-7	41. 5 (32		40. 7 (35)	98	35/50	38. 8 (38)	93	38/50	30. 7 (13)	74	13/50	
104-7	41. 3 (31) 31/50	39. 8 (33)	96	33/50	38. 3 (37)	93	37/50	30. 2 (10)	73	10/50	

< >:No. of effective animals, ():No. of measured animals

TABLE C 2

BODY WEIGHT CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

STUDY NO. : 0760 MEAN BODY WEIGHTS AND SURVIVAL

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

	Control		400 p	pm		2000	ppm		10000	ppm		
	Av. Wt.	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	Av. Wt.	% of	No. of	
eek-Day 1 Study		Surviv. <49>		cont. <50>	Surviv.		cont. <50>	Surviv.		cont. <50>	Surviv.	
0-0	19. 0 (49		19. 0 (50)	100	50/50	19. 0 (50)	100	50/50	19. 0 (50)	100	50/50	
1-7	19. 8 (49		19.7 (50)	99	50/50	19.6 (50)	99	50/50	19. 2 (50)	97	50/50	
2-7	20. 3 (49		20. 3 (50)	100	50/50	20. 1 (50)	99	50/50	20. 0 (50)	99	50/50	
3-7	21. 1 (49		21. 0 (50)	100	50/50	20. 9 (50)	99	50/50	20. 5 (50)	97	50/50	
4-7	21. 4 (49	49/49	21. 3 (50)	100	50/50	21. 2 (50)	99	50/50	20. 9 (50)	98	50/50	
5-7	21. 9 (49	49/49	21.8 (50)	100	50/50	21. 8 (50)	100	50/50	21. 2 (50)	97	50/50	
6-7	22. 3 (49	49/49	22. 1 (50)	99	50/50	22. 3 (50)	100	50/50	21. 7 (50)	97	50/50	
7-7	22. 5 (49	49/49	22. 5 (50)	100	50/50	22. 5 (50)	100	50/50	21. 5 (50)	96	50/50	
8-7	23. 6 (49	49/49	23. 5 (50)	100	50/50	23. 4 (50)	99	50/50	22. 8 (50)	97	50/50	
9-7	24. 1 (49		23. 8 (50)	99	50/50	23. 7 (50)	98	50/50	23. 0 (50)	95	50/50	
10-7	24. 2 (49) 49/49	23.8 (50)	98	50/50	24. 2 (50)	100	50/50	23. 4 (50)	97	50/50	
11-7	24. 7 (49) 49/49	24. 2 (50)	98	50/50	24. 0 (50)	97	50/50	23. 4 (50)	95	50/50	
12-7	24. 9 (49) 49/49	24. 5 (50)	98	50/50	24. 6 (50)	99	50/50	23. 7 (50)	95	50/50	
13-7	25. 3 (49	49/49	25. 2 (50)	100	50/50	25. 2 (50)	100	50/50	23. 9 (50)	94	50/50	
14-7	25. 6 (49) 49/49	25. 3 (50)	99	50/50	25. 7 (50)	100	50/50	24.0 (50)	94	50/50	
18-7	27. 4 (49	49/49	26. 8 (50)	98	50/50	26. 7 (50)	97	50/50	24. 7 (50)	90	50/50	
22-7	29. 0 (49		28. 4 (50)	98	50/50	28. 7 (50)	99	50/50	25. 6 (50)	88	50/50	
26-7	29. 2 (49) 49/49	29. 3 (50)	100	50/50	29. 8 (50)	102	50/50	26. 4 (50)	90	50/50	
30-7	30. 7 (49		30. 9 (49)	101	49/50	30. 8 (50)	100	50/50	26. 6 (50)	87	50/50	
34-7	31. 8 (49) 49/49	31.9 (49)	100	49/50	32. 0 (50)	101	50/50	26. 7 (50)	84	50/50	
38-7	33. 1 (49		32. 8 (49)	99	49/50	32. 6 (50)	98	50/50	27. 5 (50)	83	50/50	
42-7	33. 9 (49) 49/49	34. 0 (49)	100	49/50	33. 6 (50)	99	50/50	27. 8 (50)	82	50/50	
46-7	34. 7 (49		34. 8 (49)	100	49/50	34. 2 (50)	99	50/50	28.0 (50)	81	50/50	
50-7	35. 1 (49	49/49	35. 6 (49)	101	49/50	34. 6 (47)	99	47/50	27. 9 (50)	79	50/50	
54-7	36. 0 (49		35. 9 (49)	100	49/50	35. 0 (47)	97	47/50	27. 8 (49)	77	49/50	
58-7	36. 3 (48		36. 2 (49)	100	49/50	34. 6 (47)	95	47/50	27. 9 (49)	77	49/50	
62-7	36. 2 (48) 48/49	35. 7 (48)	99	48/50	34. 4 (46)	95	46/50	28. 1 (48)	78	48/50	
66-7	36. 2 (46	46/49	36. 0 (46)	99	46/50	34. 0 (46)	94	46/50	27. 8 (48)	77	48/50	
70-7	36. 8 (45		35. 8 (46)	97	46/50	33. 7 (44)	92	44/50	27. 0 (47)	73	47/50	
74-7	36. 3 (43		35. 5 (43)	98	43/50	33. 7 (43)	93	43/50	26. 8 (46)	74	46/50	
78-7	35. 5 (42	42/49	35. 0 (42)	99	42/50	33. 0 (42)	93	42/50	26. 6 (45)	75	45/50	
82-7	35. 5 (39		34. 4 (42)	97	42/50	32. 3 (42)	91	42/50	26. 2 (44)	74	44/50	
86-7	33. 7 (39		34. 1 (40)	101	40/50	31. 6 (41)	94	41/50	25. 3 (44)	75	44/50	
90-7	32. 9 (32		33. 5 (38)	102	38/50	30. 7 (38)	93	38/50	25. 0 (42)	76	42/50	
94-7	32. 6 (31		32. 9 (36)	101	36/50	30. 4 (37)	93	37/50	24. 7 (39)	76	39/50	
98-7	31. 4 (26		33. 0 (28)	105	28/50	29. 2 (34)	93	34/50	23. 7 (36)	75	36/50	
102-7	31. 0 (25		31. 8 (23)	103	23/50	29. 4 (28)	95	28/50	22. 9 (35)	74	35/50	
104-7	31. 2 (25	25/49	32. 1 (20)	103	20/50	29. 0 (27)	93	27/50	23. 1 (30)	74	31/50	

< >:No. of effective animals, ():No. of measured animals

TABLE C 3

BODY WEIGHT CHANGES: MALE

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

Group Name	Administratio	on week-day					
	0-0	1-7	2-7	3–7	4–7	5-7	6-7
							······································
Control	23. $3\pm$ 0. 8	24. 4± 1. 4	25. 3± 1. 6	25. 9± 2. 2	26.8± 2.1	27.7± 1.4	28. 2± 1. 6
000	00.04.00	24.04.4.4	05.0.	00.0.1.0	00.0	07.0.1.1.0	00.1
200 ppm	23. 3± 0. 8	24. 0± 1. 1	25. 3± 0. 9	26. 3± 1. 0	26.9± 1.1	27.6± 1.3	28. 1 ± 1. 3
1000 ppm	23. 3± 0. 8	24. 2± 1. 1	25. 3 ± 1. 2	26. 4± 1. 2	27. 3± 1. 3	27.9± 1.6	28.6± 1.7
5000 ppm	23. 3± 0. 8	23. 4± 1. 0**	24. 1 ± 1. 8**	25.0± 1.6**	25.5± 1.4**	26. 1 ± 1. 5**	26.6± 1.2**
Significant difference	D < 0.0F	. D < 0.01		Test of Dunnett			

(HAN260)

BAIS 5

UNIT : g REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

Group Name	Administration	week-day					
	7-7	8-7	9–7	10-7	11-7	12-7	13-7
Control	28.7± 1.7	29.9± 1.8	30.8± 2.1	31. 0± 2. 4	31. 8± 2. 8	32. 4± 2. 8	33. 1± 3. 2
00 ppm	28.6± 1.5	29.5± 1.8	30. 3± 1. 8	31.0± 1.9	31.6± 2.1	32. 2± 2. 3	32. 9± 2. 4
Mqq 000	29. 2± 1. 9	30. 2± 1. 9	31. 0± 2. 1	31.6± 2.4	32. 0± 2. 8	32.9± 2.6	33.6± 2.7
5000 ppm	27. 1± 1. 3**	27.8± 1.3**	28. 4± 1. 3**	28. 9± 1. 4**	29.1± 1.5**	29.8± 1.6**	30.3± 1.7**
Significant difference	e; *:P≦ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

Group Name	Administration 14-7	18-7	22-7	26-7	30-7	34-7	38-7
Control	33. 4± 3. 5	36. 7 ± 3. 5	38. 9± 4. 0	40. 2± 4. 3	42. 2± 4. 5	44. 1 ± 4. 4	45. 9 ± 4. 4
mqq 00°	33.5± 2.3	36. 4± 3. 0	38. 6± 3. 5	40. 2± 3. 8	42. 2± 4. 1	43.9± 4.5	45. 5± 4. 2
mqq 000	34. 1 ± 2. 8	37. 4± 3. 2	39.8± 3.7	41. 6± 4. 0	43. 8± 4. 3	45.9± 4.4	47. 1± 4. 2
5000 ppm	30.9± 1.8**	33.0± 2.0**	34.7± 2.2**	35.7± 2.5**	37. 2± 3. 1**	38. 4± 3. 5**	39. 2± 4. 1**

PAGE: 3

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name Administration week-day_ 42-7 46-7 50-7 62-7 66-7 54-7 58-7 Control 47.2± 4.3 48.6± 4.2 49. 3 ± 4. 3 50.3± 4.1 50. 4± 4. 3 51. 1 ± 4. 2 51.3± 4.8 200 ppm 46.6± 4.3 47. $5\pm$ 4. 3 48. 7 ± 4.4 49.1± 4.5 50. 2 ± 5. 0 50.1± 4.5 50.7± 4.6 1000 ppm 48.0± 4.2 48.9± 4.3 50.1± 3.7 50.2± 3.8 50.5± 4.3 50.8± 4.7 50.8± 5.3 5000 ppm 40.0± 3.4** 40.1± 3.9** 40. 2 ± 5. 2** 40.5± 5.7** 39.9± 5.9** 38.5± 6.9** 37.5± 7.8** Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01

(HAN260)

Test of Dunnett

BAIS 5

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

PAGE: 5

Group Name	Administration	week-day					
	70-7	74-7	78-7	82-7	86-7	90-7	94-7
Texas and a second of the seco							
Control	51.6± 4.7	50. 4± 5. 3	50.5± 6.1	48.8± 6.4	48. 1 ± 7. 3	47. 1 ± 8. 2	46.9± 8.6
200 ppm	51.1± 4.9	50.8± 4.6	50. 5± 5. 2	49. 4± 5. 6	48. 3± 6. 4	47. 2± 7. 8	45. 7± 8. 1
1000 ppm	50.6± 6.7	50.0± 6.7	48. 9± 7. 4	46. 7± 8. 1	45. 9± 8. 7	45. 1 ± 9. 3	43.8± 9.8
5000 ppm	37.7± 7.5**	36.0± 7.0**	35.7± 7.0**	33.6± 6.9**	32.6± 6.7**	33.6± 6.2**	33.3± 5.9**

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration	week-day			
	98-7	102-7	104-7		
			· · · · · · · · · · · · · · · · · · ·		
Control	44. 5± 9. 1	41.5± 8.7	41. 3 ± 9. 0		
200 ppm	43. 3 ± 8. 2	40.7± 8.3	39.8± 8.3		
1000 ppm	40. 7 ± 9. 2	38.8± 8.9	38. 3± 8. 5		
F000	00.0	00.70			
5000 ppm	30.6± 4.2**	30.7± 4.4**	30. 2± 4. 3**		
***************************************	v v v v v v v v v v v v v v v v v v v			dain Market	
Significant difference	e; *:P≦ 0.05	** : P ≦ 0.01		Test of Dunnett	

(HAN260)

BAIS 5

TABLE C 4

BODY WEIGHT CHANGES: FEMALE

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 7

Administration	week-day					
0-0	1-7	2–7	3-7	4-7	5-7	6-7
19.0± 0.7	19.8± 0.9	20. 3± 0. 9	21.1± 1.0	21. 4± 0. 9	21.9± 1.1	22. 3 ± 1. 2
19.0± 0.7	19.7± 0.9	20. 3 ± 1. 1	21. 0± 0. 9	21. 3± 1. 0	21.8± 1.3	22. 1 ± 1. 0
19.0± 0.7	19.6± 0.9	20. 1 ± 1. 3	20.9± 1.1	21. 2± 1. 0	21.8± 1.0	22.3± 1.1
19.0± 0.7	19.2± 1.0**	20.0± 1.0	20.5± 0.9*	20.9± 0.9	21. 2± 1. 0**	21.7± 0.9*
nca ·	** · P < 0 01		Tast of Dunnatt			
	0-0 19. 0± 0. 7 19. 0± 0. 7 19. 0± 0. 7 19. 0± 0. 7	19. 0± 0. 7 19. 8± 0. 9 19. 0± 0. 7 19. 7± 0. 9 19. 0± 0. 7 19. 6± 0. 9 19. 0± 0. 7 19. 2± 1. 0**	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name Administration week-day_ 8-7 9-7 12-7 7-7 10-7 11-7 13-7

Control 22.5± 1.2 23.6 \pm 1.3 24.1± 1.4 24. 2± 1. 8 24. 7± 1. 8 25. 3 ± 2.0 24. 9 ± 2. 1 400 ppm 22.5± 1.2 23.5± 1.1 23.8± 1.3 24. 2± 1. 4 24.5± 1.5 25.2± 1.6 23.8± 1.3 2000 ppm 22.5± 1.2 23. 4± 1. 4 23. 7 ± 1. 6 24. 2 ± 1. 8 24.0± 1.9* 24.6± 1.9 25. 2 ± 2. 0 10000 ppm 21.5± 1.0** 22.8± 0.9** 23.0± 1.0** 23. 4± 1. 0 23. 4± 1. 2** 23.7± 1.1** 23.9± 1.1**

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

(HAN260)

BAIS 5

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

UNIT : g REPORT TYPE : A1 104 SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration week-day							
	14-7	187	22-7	26-7	30-7	34-7	38-7	
	, , , , , , , , , , , , , , , , , , ,							
Control	25.6± 1.9	27. 4± 2. 5	29.0± 2.7	29. 2± 3. 0	30.7± 3.3	31.8± 3.4	33. 1 ± 3. 7	
00 ppm	25. 3± 1. 7	26.8± 2.5	28. 4± 3. 0	29. 3± 3. 2	30. 9± 3. 3	31.9± 3.3	32. 8± 3. 5	
2000 ppm	25. 7± 1. 8	26.7± 2.5	28.7± 3.1	29.8± 3.3	30.8± 3.7	32. 0± 3. 8	32.6± 4.0	
occ ppm	20.1	LO. I alian L. O	LO, 7 aim V. 1	20.00	0. 0	0.0	7. V	
0000 ppm	24. 0± 1. 2**	24.7± 1.6**	25.6± 1.3**	26. 4± 1. 5**	26.6± 1.5**	26.7± 1.7**	27.5± 1.5**	

Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name	Administration	week-day		*			
***************************************	42-7	46-7	50-7	54-7	58-7	62-7	66-7
Control	33.9± 3.8	34. 7± 4. 1	35. 1 ± 4. 3	36. 0± 4. 4	36. 3± 5. 0	36. 2± 5. 4	36. 2± 5. 0
400 ppm	34. 0± 3. 5	34.8± 4.1	35. 6 ± 4. 3	35. 9± 4. 2	36. 2± 4. 5	35. 7 ± 4. 5	36. 0± 4. 6
2000 ppm	33. 6± 4. 1	34. 2± 4. 2	34. 6± 4. 2	35. 0± 4. 4	34. 6± 4. 7	34. 4± 5. 3	34. 0± 4. 8*
10000 ppm	27. 8± 1. 7**	28.0± 1.8**	27. 9± 1. 8**	27. 8± 2. 0**	27. 9± 2. 3**	28.1± 1.9**	27. 8± 2. 2**
MATALUS STANLARDA L.							
Significant differen	nce ;	** : P ≤ 0.01		Test of Dunnett			
(HAN260)							

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

BODY WEIGHT CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 11

Group Name	Administration	week-day					
	70-7	74-7	78-7	82-7	86-7	90-7	94-7
Control	36.8± 4.9	36. 3 ± 4. 5	35. 5 ± 4. 6	35. 5± 4. 7	33. 7± 4. 8	32. 9± 4. 5	32. 6± 4. 7
400 ppm	35.8± 4.8	35. 5± 5. 0	35. 0± 5. 3	34. 4± 5. 3	34.1± 6.0	33. 5 ± 5. 9	32. 9± 6. 6
2000 ppm	33. 7± 4. 8**	33.7± 4.5**	33. 0± 5. 1**	32. 3± 4. 9**	31. 6± 5. 2	30. 7± 4. 2	30. 4± 3. 8
10000 ppm	27.0± 2.0**	26.8± 2.0**	26.6± 2.1**	26. 2± 2. 3**	25. 3± 2. 0**	25. 0± 2. 2**	24. 7 ± 2. 8**
- Landau Carlotta							
Significant difference ;	* : P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 5

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Administration 98-7 31. 4± 4. 2	102-7 31. 0± 4. 0	104-7 31. 2± 3. 8			
31. 4± 4. 2	31. 0± 4. 0	31. 2± 3. 8		121, 22, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37	
31. 4± 4. 2	31. 0± 4. 0	31. 2 ± 3. 8			
33. 0± 4. 8	31.8± 4.6	32. 1 ± 4. 6			
29. 2± 4. 0	29.4± 4.0	29.0± 3.5			
23. 7± 2. 7**	22.9± 3.2**	23. 1 ± 3. 4**			
* : P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett		
	23.7± 2.7**	29. 2± 4. 0 29. 4± 4. 0 23. 7± 2. 7** 22. 9± 3. 2**	29. 2± 4. 0 29. 4± 4. 0 29. 0± 3. 5 23. 7± 2. 7** 22. 9± 3. 2** 23. 1± 3. 4**	29. 2± 4. 0 29. 4± 4. 0 29. 0± 3. 5 23. 7± 2. 7** 22. 9± 3. 2** 23. 1± 3. 4**	29. 2± 4. 0 29. 4± 4. 0 29. 0± 3. 5 23. 7± 2. 7** 22. 9± 3. 2** 23. 1± 3. 4**

(HAN260)

BAIS 5

TABLE D 1

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: MALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0760

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104 SEX : MALE

Control 200 ppm 1000 ppm 5000 ppm Av. FC. No. of Av. FC. % of No. of Av. FC. % of No. of Av. FC. % of No. of Week-Day Surviv. cont. Surviv. Surviv. Surviv. cont. cont. on Study <50> ⟨50⟩ <50> <50> 1-7 3. 9 (50) 4. 0 (50) 103 92 50/50 4.0 (50) 103 50/50 50/50 3.6 (50) 50/50 2-7 3. 7 (49) 49/50 3.9 (50) 105 50/50 3.8 (50) 103 50/50 3.7 (50) 100 50/50 3-7 3. 6 (49) 49/50 3. 8 (50) 106 3.9 (50) 108 3.6 (49) 100 50/50 50/50 50/50 4-7 3. 7 (48) 48/50 3.8 (50) 103 50/50 3.9 (50) 105 50/50 3. 5 (50) 95 50/50 5-7 3. 8 (47) 47/50 3.8 (50) 100 50/50 3.8 (50) 100 50/50 3.6 (50) 95 50/50 6-7 3. 7 (47) 47/50 3.8 (50) 103 50/50 3.8 (50) 103 50/50 3. 7 (50) 50/50 100 7-7 3. 9 (47) 47/50 3.9 (50) 100 50/50 3.9 (50) 100 50/50 3.7 (50) 95 50/50 4.0 (47) 47/50 3.9 (50) 8-7 98 50/50 4.0 (50) 100 50/50 3.7 (50) 93 50/50 9-7 4. 0 (47) 47/50 3.9 (50) 98 50/50 3. 9 (50) 98 50/50 3.7 (50) 93 50/50 10 - 73. 8 (47) 47/50 3.9 (50) 103 50/50 3.9 (50) 103 50/50 3. 7 (50) 97 50/50 4. 0 (47) 11-7 47/50 3.9 (50) 98 50/50 3.9 (50) 98 50/50 3.7 (50) 93 50/50 3. 8 (46) 12-7 47/50 3.9 (49) 103 50/50 3. 9 (48) 103 50/50 3.8 (47) 100 50/50 4. 0 (47) 13-7 47/50 4.0 (50) 100 50/50 4.0 (50) 100 50/50 3.9 (50) 98 50/50 14-7 3. 8 (47) 47/50 3.9 (50) 103 3.8 (50) 100 100 50/50 50/50 3.8 (50) 50/50 4. 1 (47) 47/50 18-7 4.0 (50) 98 50/50 4. 1 (50) 100 50/50 3. 9 (50) 95 50/50 22-7 4. 2 (47) 47/50 4. 2 (50) 100 50/50 4. 2 (50) 100 50/50 4.0 (50) 95 50/50 26-7 4. 0 (47) 47/50 4.1 (50) 103 4. 2 (50) 105 50/50 4.0 (50) 100 50/50 50/50 30-7 4. 1 (47) 47/50 4.1 (50) 100 50/50 4. 2 (50) 102 50/50 4.0 (50) 98 50/50 4. 2 (47) 34-7 47/50 4. 2 (50) 4. 2 (50) 100 50/50 100 50/50 4.0 (50) 95 50/50 38-7 4. 1 (47) 4.0 (49) 47/50 4. 2 (50) 102 50/50 4. 2 (50) 102 50/50 98 49/50 42-7 4. 6 (47) 47/50 4.6 (50) 100 50/50 4.6 (50) 100 50/50 4.4 (47) 96 47/50 46-7 4. 5 (47) 47/50 4.3 (50) 4. 5 (50) 100 96 50/50 50/50 4. 2 (47) 93 47/50 50-7 4. 5 (47) 47/50 4.6 (50) 102 4.6 (50) 102 50/50 50/50 4.4 (47) 98 47/50 54-7 4. 6 (47) 47/50 4.5 (50) 98 50/50 4.5 (50) 98 50/50 4.3 (44) 93 44/50 58-7 4. 6 (47) 47/50 4.6 (50) 100 50/50 4.5 (49) 98 49/50 4. 3 (42) 93 42/50 62-7 4. 5 (47) 47/50 4. 5 (47) 4. 5 (49) 100 47/50 100 49/50 4. 2 (40) 93 41/50 66-7 4. 5 (47) 47/50 4.4 (47) 98 47/50 4.4 (49) 98 49/50 4. 1 (37) 91 37/50 70-7 4. 9 (44) 45/50 4.8 (44) 98 45/50 4.8 (49) 98 49/50 4.7 (34) 96 36/50 74-7 4. 5 (41) 45/50 4.6 (40) 102 44/50 4. 4 (45) 98 47/50 3.9 (26) 87 33/50 78-7 4. 6 (43) 44/50 4.6 (44) 100 98 44/50 4. 5 (44) 45/50 4. 5 (30) 98 32/50 82-7 4. 5 (42) 43/50 4. 2 (43) 93 44/50 4. 4 (45) 98 45/50 4. 3 (27) 96 30/50 86-7 4. 4 (41) 42/50 4. 5 (42) 102 43/50 4.6 (40) 105 42/50 4.8 (24) 109 26/50 90-7 4. 5 (40) 40/50 4. 5 (42) 4.6 (42) 100 42/50 102 42/50 4. 2 (19) 93 21/50 94 - 74. 5 (37) 37/50 4.6 (41) 102 42/50 4. 5 (42) 100 42/50 4. 2 (17) 93 18/50 98-7 4. 5 (35) 35/50 4.7 (38) 104 38/50 4.4 (38) 98 40/50 4.6 (16) 102 17/50 102-7 4. 1 (28) 32/50 4.6 (30) 112 4.4 (32) 35/50 107 38/50 4.9 (10) 120 13/50 104-7 4. 3 (30) 31/50 4.7 (26) 109 33/50 4. 4 (33) 102 37/50 4.7 (7) 109 10/50

Av. FC. : g

TABLE D 2

FOOD CONSUMPTION CHANGES AND

SURVIVAL ANIMAL NUMBERS: FEMALE

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0760

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]

UNIT : g

REPORT TYPE : A1 104 SEX : FEMALE

400 ppm 2000 ppm 10000 ppm Control Av. FC. No. of Av. FC. % of No. of Av. FC. % of No. of Av. FC. % of No. of Week-Day Surviv. cont. Surviv. cont. Surviv. cont. Surviv. on Study <49> <50> <50> <50> 1-7 3. 7 (49) 49/49 3. 7 (50) 3.4 (50) 50/50 3.8 (50) 103 50/50 100 50/50 92 2-7 3. 4 (49) 49/49 3.4 (50) 100 50/50 3.3 (50) 97 50/50 3.4 (50) 100 50/50 3-7 3. 4 (49) 49/49 3.4 (50) 100 50/50 3.4 (50) 100 50/50 3. 1 (50) 91 50/50 4-7 3. 4 (49) 49/49 3.4 (50) 3.4 (50) 100 3. 1 (50) 50/50 100 50/50 50/50 91 5-7 3. 5 (49) 49/49 3.4 (50) 97 50/50 3. 4 (50) 97 50/50 3.0 (50) 86 50/50 6-7 3. 5 (49) 49/49 3.4 (50) 97 50/50 3.6 (50) 103 50/50 3. 2 (50) 91 50/50 7-7 3. 6 (49) 49/49 3.6 (50) 100 50/50 3.6 (50) 100 50/50 3. 2 (50) 89 50/50 3. 8 (49) 49/49 8-7 3.7 (50) 97 50/50 3.7 (48) 97 50/50 3. 5 (50) 92 50/50 9-7 3. 7 (49) 49/49 3.7 (49) 100 50/50 3.7 (49) 100 50/50 3. 3 (48) 89 50/50 10 - 73. 7 (49) 49/49 3.7 (50) 100 50/50 3.7 (50) 100 50/50 3.4 (50) 92 50/50 3.8 (49) 11-7 49/49 3. 7 (47) 97 95 50/50 3.6 (50) 50/50 3, 4 (50) 89 50/50 12-7 3.6 (49) 49/49 3.6 (50) 100 50/50 3.6 (49) 100 50/50 3. 3 (49) 92 50/50 13 - 73. 7 (49) 49/49 3.8 (50) 103 50/50 3.8 (50) 103 50/50 3.4 (50) 92 50/50 14-7 3.7 (49) 49/49 3.7 (50) 100 3.7 (50) 100 50/50 3. 3 (50) 89 50/50 50/50 18-7 3. 7 (49) 49/49 3.8 (50) 50/50 103 50/50 3. 6 (50) 97 50/50 3. 3 (49) 89 22-7 3.9 (49) 49/49 3.9 (50) 100 50/50 3.8 (50) 97 50/50 3. 5 (50) 90 50/50 3. 8 (49) 26-7 49/49 3.9 (50) 103 50/50 3. 9 (50) 103 50/50 3. 7 (50) 97 50/50 30-7 4.0 (49) 49/49 4.1 (49) 103 49/50 3.9 (50) 98 50/50 3.6 (49) 90 50/50 4. 1 (49) 34-7 49/49 4.1 (49) 3. 9 (50) 95 50/50 3. 5 (48) 85 50/50 100 49/50 38-7 4. 1 (49) 49/49 98 4.1 (49) 100 49/50 4.0 (50) 50/50 3.6 (50) 88 50/50 4. 2 (49) 42 - 749/49 4.4 (49) 105 49/50 4.4 (50) 105 50/50 3. 9 (50) 93 50/50 46-7 4. 2 (49) 49/49 4.3 (49) 4. 1 (50) 98 50/50 3.6 (50) 86 102 49/50 50/50 50-7 4.0 (49) 49/49 4.3 (49) 108 49/50 4. 1 (47) 103 47/50 3.6 (50) 50/50 90 4. 1 (49) 54-7 49/49 4. 2 (49) 102 49/50 4. 1 (47) 100 47/50 3. 4 (46) 83 49/50 58-7 4. 1 (48) 48/49 4.1 (49) 100 49/50 4.0 (47) 98 47/50 3. 5 (49) 85 49/50 4.0 (48) 62 - 748/49 4. 1 (47) 103 3.9 (46) 98 3. 5 (45) 88 48/50 48/50 46/50 66-7 4. 1 (46) 46/49 4.0 (46) 98 46/50 3. 9 (43) 95 46/50 3.4 (39) 83 48/50 70-7 4. 1 (45) 45/49 4. 1 (46) 100 46/50 4. 1 (44) 100 44/50 3. 5 (42) 85 47/50 74-7 4. 0 (42) 43/49 4.3 (40) 108 43/50 4.1 (38) 103 43/50 3. 5 (26) 88 46/50 3. 9 (41) 78-7 42/49 4. 1 (42) 105 42/50 4. 1 (42) 105 42/50 3.6 (41) 92 45/50 82-7 4. 2 (35) 39/49 4.1 (39) 98 42/50 4.0 (31) 95 42/50 3.4 (25) 81 44/50 3.9 (39) 86-7 39/49 4. 2 (38) 108 4. 0 (40) 3.7 (30) 44/50 40/50 103 41/50 95 4. 0 (29) 90-7 32/49 4. 2 (33) 105 38/50 3.9 (29) 98 38/50 3.8 (25) 95 42/50 94-7 4. 2 (31) 31/49 4. 1 (35) 98 36/50 4.1 (37) 98 37/50 3.8 (28) 90 39/50 98-7 4. 0 (25) 26/49 4.1 (26) 103 28/50 4. 1 (32) 103 34/50 3.9 (14) 98 36/50 102-7 4. 6 (24) 25/49 91 4. 2 (22) 23/50 4. 2 (26) 91 28/50 3.9 (15) 85 35/50

No. of effective animals, (): No. of measured animals

98

20/50

4. 0 (23)

4.5 (18)

Av. FC. : g

27/50

4.0 (9)

87

31/50

87

104-7

4. 6 (20)

25/49

TABLE D 3

FOOD CONSUMPTION CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

oup Name	Administration	week-day (effective)	k-day (effective)					
	1-7 (7)	2-7 (7)	3-7 (7)	4-7 (7)	5-7 (7)	6-7 (7)	7-7 (7)	
ntrol	3. $9\pm$ 0. 4	3.7± 0.4	3.6± 0.6	3. 7± 0. 6	3.8± 0.3	3.7± 0.5	3.9 ± 0.4	
0 ppm	4.0± 0.4	3.9± 0.4	3.8± 0.3	3.8± 0.4	3.8± 0.4	3.8± 0.3	3.9± 0.4	
o բթա	4. 0 _ 0. 4	3. 9 1. 0. 4	3. 0 1 0. 3	3. O <u> </u>	3. Q <u> </u>	3. 6 0. 3	3. 9 1 0. 4	
maq 00	4.0± 0.3	3.8± 0.4	3.9± 0.3	3. 9± 0. 3	3.8± 0.3	3.8± 0.2	3. 9 ± 0. 3	
00 ppm	3. 6± 0. 3**	3. 7 ± 0. 5	3.6± 0.3	3. 5± 0. 3**	3. 6± 0. 3	3. 7± 0. 3	3. 7± 0. 3**	
оо ppm	4. 0± 0. 3 3. 6± 0. 3**	3. 8± 0. 4 3. 7± 0. 5	3. 9± 0. 3 3. 6± 0. 3	3. 9 ± 0. 3 3. 5 ± 0. 3**	3. 6± 0. 3	3. 8± 0. 2 3. 7± 0. 3		

Significant difference; $*: P \leq 0.05$ Test of Dunnett ** : P ≤ 0.01

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

8-7 (7)	9-7 (7)	10-7 (7)	11-7 (7)			
			11-7 (1)	12-7 (7)	13-7 (7)	14–7 (7)
4. 0 ± 0. 3	4. 0 ± 0. 4	3. 8± 0. 4	4. 0± 0. 4	3.8± 0.5	4. 0 ± 0. 4	3. 8± 0. 5
3. 9± 0. 4	3.9± 0.4	3. 9± 0. 3	3. 9± 0. 4	3. 9± 0. 4	4. 0 ± 0. 4	3.9± 0.4
4. 0 ± 0. 3	3.9± 0.3	3. 9± 0. 4	3. 9± 0. 5	3. 9± 0. 4	4. 0 ± 0. 3	3.8± 0.4
3.7± 0.3**	3.7± 0.3**	3. 7± 0. 2	3.7± 0.3**	3.8± 0.3	3. 9 ± 0. 4	3.8± 0.3
	3. 9± 0. 4 4. 0± 0. 3	$3. \ 9 \pm 0. \ 4$ $3. \ 9 \pm 0. \ 4$ $4. \ 0 \pm 0. \ 3$ $3. \ 9 \pm 0. \ 3$	$3. \ 9 \pm 0. \ 4$ $3. \ 9 \pm 0. \ 4$ $3. \ 9 \pm 0. \ 3$ $4. \ 0 \pm 0. \ 3$ $3. \ 9 \pm 0. \ 3$ $3. \ 9 \pm 0. \ 4$	$3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 3$ $3. \ 9\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 3$ $3. \ 9\pm \ 0. \ 3$ $3. \ 9\pm \ 0. \ 5$	$3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 3$ $3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 3$ $3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 4$ $3. \ 9\pm \ 0. \ 4$	$3. \ 9\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 3$ $4. \ 0\pm \ 0. \ 4$ $4. \ 0\pm \ 0. \ 3$

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

Administration	week-day(effective)					
18-7 (7)	22-7 (7)	26-7 (7)	30-7 (7)	34-7 (7)	38-7 (7)	42-7 (7)
4. 1 ± 0. 4	4. 2 ± 0. 3	4.0± 0.4	4. 1 ± 0. 4	4. 2 ± 0. 4	4. 1 ± 0. 4	4. 6 ± 0. 4
4. 0± 0. 4	4. 2 ± 0. 3	4. 1 ± 0. 4	4. 1± 0. 4	4. 2± 0. 3	4. 2 ± 0. 4	4.6± 0.6
4. 1 ± 0. 3	4. 2 ± 0. 4	4. 2 ± 0. 3	4. 2 ± 0. 4	4. 2 ± 0. 3	4. 2 ± 0. 4	4. 6± 0. 5
2.0 - 0.4*	4.0 0.2+	4.0 0.4	4.0 0.2	4.0 + 0.4**	4.0 0.4	4. 4± 0. 4
5. 9 1 0. 4+	4. 0 ≘ 0. 3+	4. U± U. 4	4. 0 ± 0. 3	4. 0 1 0. 4++	4. 0 ± 0. 4	4.4 ± 0.4
	18-7 (7) 4. 1 ± 0. 4 4. 0 ± 0. 4	4. 1 ± 0. 4	$18-7 (7)$ $22-7 (7)$ $26-7 (7)$ 4. 1 ± 0.4 4. 2 ± 0.3 4. 0 ± 0.4 4. 0 ± 0.4 4. 2 ± 0.3 4. 1 ± 0.4 4. 1 ± 0.3 4. 2 ± 0.4 4. 2 ± 0.3	$18-7$ (7) $22-7$ (7) $26-7$ (7) $30-7$ (7) 4.1 ± 0.4 4.2 ± 0.3 4.0 ± 0.4 4.1 ± 0.4 4.0 ± 0.4 4.1 ± 0.4 4.1 ± 0.4 4.1 ± 0.3 4.2 ± 0.3 4.2 ± 0.3	18-7 (7) 22-7 (7) 26-7 (7) 30-7 (7) 34-7 (7) 4. 1 ± 0. 4 4. 2 ± 0. 3 4. 0 ± 0. 4 4. 1 ± 0. 4 4. 2 ± 0. 4 4. 0 ± 0. 4 4. 2 ± 0. 3 4. 1 ± 0. 4 4. 1 ± 0. 4 4. 2 ± 0. 3 4. 1 ± 0. 3 4. 2 ± 0. 4 4. 2 ± 0. 3 4. 2 ± 0. 4 4. 2 ± 0. 3	18-7 (7) 22-7 (7) 26-7 (7) 30-7 (7) 34-7 (7) 38-7 (7) 4. 1± 0. 4 4. 2± 0. 3 4. 0± 0. 4 4. 1± 0. 4 4. 2± 0. 4 4. 1± 0. 4 4. 0± 0. 4 4. 2± 0. 3 4. 1± 0. 4 4. 1± 0. 4 4. 2± 0. 3 4. 2± 0. 4 4. 1± 0. 3 4. 2± 0. 4 4. 2± 0. 3 4. 2± 0. 4 4. 1± 0. 3 4. 2± 0. 4

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

UNIT : g
REPORT TYPE : A1 104
SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

OLA . MINEL							
Group Name	Administration v	week-day(effective)					
	46-7 (7)	50-7 (7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70-7 (7)

	40 1 (7)			30 1 (17	OL 1 (//			
Control	4. 5± 0. 3	4. 5± 0. 5	4. 6± 0. 5	4. 6± 0. 6	4. 5± 0. 5	4. 5 ± 0. 6	4. 9 ± 0. 3	
200 ppm	4. 3 ± 0. 6	4.6± 0.6	4. 5± 0. 6	4.6± 0.5	4. 5± 0. 6	4. 4± 0. 7	4. 8± 0. 4	
1000 ppm	4. 5± 0. 6	4.6± 0.3	4. 5± 0. 5	4.5± 0.6	4. 5± 0. 5	4. 4± 0. 6	4.8± 0.6	
5000 ppm	4. 2 ± 0. 6**	4. 4± 0. 5**	4. 3 ± 0. 6	4. 3 ± 0. 5	4. 2± 0. 8**	4. 1 ± 0. 8	4. 7 ± 0. 7	

PAGE: 4

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104 SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 5

Administration week-day(effective)								
98-7 (7)	94-7 (7)	90-7 (7)	86-7 (7)	82-7 (7)	78-7 (7)	74–7 (7)		
	VIII							
4.5± 0.6	4.5± 0.7	4. 5± 0. 9	4. 4± 0. 9	4. 5 ± 0. 8	4.6± 0.6	4. 5 ± 0. 7	Control	
						4.0.	000	
4. 7 ± 0. 6	4. 6± 0. 6	4.5± 0.9	4. 5± 0. 6	4. 2 ± 0. 8	4.6± 0.4	4. 6± 0. 7	200 ppm	
4.4± 0.9	4.5± 0.6	4.6± 0.6	4.6± 0.7	4. 4± 0. 8	4.5± 0.6	4. 4± 0. 9	1000 ppm	
4.6± 0.9	4. 2 ± 0. 8	4. 2± 0. 9	4.8± 1.0	4.3± 0.9	4.5± 1.1	3.9± 0.9**	5000 ppm	
	4. 2± 0. 8	4. 2± 0. 9	4.8± 1.0	4. 3 ± 0. 9	4.5± 1.1	3.9± 0.9**	5000 ppm	

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

UNIT : g
REPORT TYPE : A1 104

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration 102-7 (7)	week-day (effective) 104-7 (7)		
Control	4. 1± 1. 2	4. 3± 0. 8		
200 ppm	4. 6 ± 0. 5	4. 7 ± 0. 7		
1000 ppm	4. 4± 0. 5	4. 4± 0. 6		
5000 ppm	4. 9± 0. 9	4. 7± 0. 7		
Significant differ	ence ;	** : P ≤ 0.01	Test of Dunnett	
(HAN260)		, , , , , , , , , , , , , , , , , , , ,		BAIS 5

TABLE D 4

FOOD CONSUMPTION CHANGES: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	week-day(effective)_					
	1-7 (7)	2-7 (7)	3-7 (7)	4-7 (7)	5-7 (7)	6-7 (7)	7–7 (7)
		,					
Control	3. 7± 0. 3	3. 4± 0. 3	3. 4± 0. 3	3. 4± 0. 2	3. 5 ± 0. 3	3. 5± 0. 4	3.6± 0.3
400 ppm	3.8± 0.3	3. 4± 0. 4	3. 4± 0. 4	3. 4± 0. 3	3. 4± 0. 4	3. 4± 0. 3	3.6± 0.4
400 ppiii	3. O.±. U. 3	3. 4 ± 0. 4	3. 4±. U. 4	3. 4± U. 3	3. 4± 0. 4	3. 4± U. 3	3. 0 ± 0. 4
2000 ppm	3. 7 ± 0. 4	3. 3 ± 0. 4	3. 4± 0. 3	3. 4± 0. 3	3. 4± 0. 3	3. 6± 0. 4	3. 6 ± 0. 4
10000 ppm	3. 4± 0. 4**	3. 4± 0. 4	3. 1 ± 0. 3**	3. 1 ± 0. 3**	3.0± 0.3**	3. 2 ± 0. 3**	3. 2± 0. 3**

Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 8

Administration	week-day (effective)					
8-7 (7)	9-7 (7)	10-7 (7)	11-7 (7)	12-7 (7)	13-7 (7)	14-7 (7)
3.8 ± 0.3	3. 7 ± 0. 3	3. 7 ± 0. 4	3.8± 0.3	3. 6± 0. 4	3. 7 ± 0. 4	3. 7 ± 0. 3
3.7± 0.3	3.7± 0.2	3.7± 0.3	3. 7± 0. 3	3. 6± 0. 3	3.8± 0.4	3. 7± 0. 3
3. 7± 0. 3	3. 7± 0. 3	3. 7± 0. 4	3. 6± 0. 3**	3. 6± 0. 4	3. 8± 0. 4	3.7± 0.4
3.5± 0.3**	3.3± 0.3**	3. 4± 0. 2**	3.4± 0.6**	3.3± 0.2**	3.4± 0.3**	3.3± 0.3**
	8-7 (7) 3. 8± 0. 3 3. 7± 0. 3 3. 7± 0. 3	8-7 (7) 9-7 (7) 3. 8± 0. 3 3. 7± 0. 3 3. 7± 0. 3 3. 7± 0. 2 3. 7± 0. 3 3. 7± 0. 3	8-7 (7) 9-7 (7) 10-7 (7) 3. 8± 0. 3 3. 7± 0. 3 3. 7± 0. 4 3. 7± 0. 3 3. 7± 0. 2 3. 7± 0. 3 3. 7± 0. 3 3. 7± 0. 4	8-7 (7) 9-7 (7) 10-7 (7) 11-7 (7) 3. 8 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 4 3. 8 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 2 3. 7 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 4 3. 6 ± 0. 3**	$8-7 (7)$ $9-7 (7)$ $10-7 (7)$ $11-7 (7)$ $12-7 (7)$ 3.8 ± 0.3 3.7 ± 0.3 3.7 ± 0.4 3.8 ± 0.3 3.6 ± 0.4 3.7 ± 0.3 3.7 ± 0.2 3.7 ± 0.3 3.7 ± 0.3 3.6 ± 0.3 3.7 ± 0.3 3.7 ± 0.3 3.7 ± 0.4 $3.6 \pm 0.3 **$	8-7 (7) 9-7 (7) 10-7 (7) 11-7 (7) 12-7 (7) 13-7 (7) 3. 8 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 4 3. 8 ± 0. 3 3. 6 ± 0. 4 3. 7 ± 0. 4 3. 7 ± 0. 3 3. 7 ± 0. 2 3. 7 ± 0. 3 3. 7 ± 0. 3 3. 6 ± 0. 3 3. 8 ± 0. 4 3. 7 ± 0. 3 3. 7 ± 0. 3 3. 7 ± 0. 4 3. 6 ± 0. 3 ** 3. 6 ± 0. 4 3. 8 ± 0. 4

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 5

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

18-7 (7) 3. 7 ± 0. 3	22-7 (7) 3. 9± 0. 4	26-7 (7) 3. 8± 0. 5	30-7 (7) 4. 0± 0. 6	34-7 (7) 4. 1 ± 0. 5	38-7 (7) 4. 1 ± 0. 4	42-7 (7) 4. 2± 0. 6
3.7± 0.3	3.9± 0.4	3.8± 0.5	4. 0± 0. 6	4. 1 ± 0. 5	4.1± 0.4	42+ 06
3.7± 0.3	3.9± 0.4	3.8± 0.5	4.0± 0.6	4. 1 ± 0. 5	4.1 ± 0.4	42+ 06
						T. L U. U
3.8± 0.5	3.9± 0.5	3. 9 ± 0. 5	4. 1 ± 0. 5	4. 1 ± 0. 5	4. 1 ± 0. 4	4. 4 ± 0. 5
3.6± 0.4	3.8± 0.4	3. 9± 0. 4	3. 9± 0. 5	3. 9± 0. 5*	4. 0 ± 0. 5	4. 4± 0. 5
! 2-+ 0 4++	2 5 + 0 2++	2 7 + 0 4	2.6-4	2 5 - 0 4++	26+ 04++	3.9± 0.4**
	6.6± 0.4	3. 8± 0. 4	3.6 ± 0.4 3.8 ± 0.4 3.9 ± 0.4	3.6 ± 0.4 3.8 ± 0.4 3.9 ± 0.4 3.9 ± 0.5	3.6 ± 0.4 3.8 ± 0.4 3.9 ± 0.4 3.9 ± 0.5 $3.9\pm 0.5*$	3.6 ± 0.4 3.8 ± 0.4 3.9 ± 0.4 3.9 ± 0.5 $3.9\pm0.5*$ 4.0 ± 0.5

Significant difference; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week-day(effective)					
	46-7 (7)	50-7 (7)	54-7 (7)	58-7 (7)	62-7 (7)	66-7 (7)	70-7 (7)
Control	4. 2 ± 0. 6	4. 0 ± 0. 5	4. 1 ± 0. 4	4. 1 ± 0. 5	4. 0 ± 0. 6	4. 1 ± 0. 5	4. 1 ± 0. 6
400 ppm	4. 3 ± 0. 5	4. 3 ± 0. 5	4. 2 ± 0. 4	4. 1 ± 0. 6	4. 1 ± 0. 6	4. 0 ± 0. 6	4. 1 ± 0. 5
2000 ppm	4. 1 ± 0. 4	4. 1 ± 0. 5	4. 1 ± 0. 5	4.0± 0.6	3. 9± 0. 6	3.9± 0.8	4. 1 ± 0. 7
10000 ppm	3.6± 0.4**	3.6± 0.5**	3. 4± 0. 5**	3.5± 0.6**	3.5± 0.6**	3. 4± 0. 5**	3.5± 0.6**

Significant difference ; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

(HAN260)

BAIS 5

UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

Group Name	Administration	week-day(effective)					
	74-7 (7)	78–7 (7)	82-7 (7)	86-7 (7)	90-7 (7)	94-7 (7)	98-7 (7)
			A MATERIAL M				1
Control	4. 0 ± 0. 7	3. 9 ± 0. 8	4. 2 ± 0. 6	3. 9 ± 0. 7	4. 0± 0. 6	4. 2 ± 0. 7	4. 0 ± 0. 7
400 ppm	4. 3 ± 0. 6	4. 1 ± 0. 7	4. 1 ± 0. 6	4. 2 ± 0. 6	4. 2± 0. 7	4. 1 ± 0. 8	4.1± 0.6
2000 ppm	4. 1 ± 0. 5	4. 1 ± 0. 6	4. 0 ± 0. 6	4. 0 ± 0. 8	3. 9± 0. 6	4. 1 ± 0. 7	4. 1 ± 0. 8
0000 mag 0000	3. 5± 0. 4**	3.6± 0.6	3.4± 0.5**	3.7± 0.5	3.8± 0.5	3.8± 0.5*	3.9± 0.5
TOOGO PPIII	0.02	0. 0 0. 0	0.42	0. 7 0. 0	0.0 = 0.0	0.02.0.0	0. 0 0. 0

Significant difference ; $*: P \leq 0.05$ ** : P ≤ 0.01 Test of Dunnett

(HAN260)

BAIS 5

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : g
REPORT TYPE : A1 104

SEX : FEMALE

Group Name	Administratio 102-7 (7)	n week-day(effective) 104-7(7)		
Control	4.6± 1.1	4. 6± 0. 6		
400 ppm	4. 2 ± 1. 0	4. 5 ± 0. 5		
2000 ppm	4. 2± 0. 6	4. 0 ± 0. 7**		
10000 ppm	3.9± 0.6	4. 0 ± 0. 5*		
Significant differenc	e ; * : P ≦ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HAN260)				BAIS 5

TABLE E 1

CHEMICAL INTAKE CHANGES: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

 $772\,\pm$

44

 $760\pm$

76

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

5000 ppm

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

 $725\,\pm\,$

Group Name	Administr	ation (weeks)											
	1		2		3		4		5		6		7	
ontrol	0 ±	0	0 ±	0	0±	0	0 ±	0	0±	0	0 ±	0	0±	0
00 ppm	33±	2	31 ±	3	29±	2	28±	2	28±	2	27±	2	28 ±	2
mqq 0001	164±	8	152±	11	146±	11	141 ±	7	135±	8	132±	8	133±	10

(HAN300) BAIS 5

51

 $695\pm$

 $698\,\pm$

48

56

 $695\pm$

 $675\,\pm$

48

43

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	tration	(weeks)												***************************************
	8		9		10		11		12		13		14		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
200 ppm	26 ±	2	26±	2	25 ±	2	25±	2	24 ±	2	24 ±	2	24±	2	
1000 ppm	132±	10	127±	9	123±	9	120±	13	119±	14	120±	10	113±	13	
5000 ppm	674±	50	657±	42	$640\pm$	43	631 ±	45	637±	46	$637\pm$	54	616±	50	

PAGE: 2

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	stration	(weeks)		· · · · · · · · · · · · · · · · · · ·									
	18		22		26		30		34		38		42	
Cantral	0.1	0	0.1	0	0.1	0	0.1	0	0.1	0	01.	0	0.4	0
Control	0±	0	0±	0	0±	0	$0\pm$	0	$0\pm$	0	0±	0	0±	0
200 ppm	22±	2	22±	1	20±	2	20 \pm	2	19±	2	18±	2	20±	2
1000 ppm	111±	9	106±	10	101±	9	96±	10	93±	7	89±	8	96±	11
5000 ppm	584±	56	576±	41	$555\pm$	47	535±	39	$\textbf{523}\pm$	55	507±	41	558±	53

PAGE: 3

UNIT : mg/kg/day REPORT TYPE : A1 104

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

SEX : MALE

Group Name	Adminis	tration	(weeks)												
	46		50		54		58		62		66		70		
											***************************************				AND THE PROPERTY OF THE PROPER
Control	0±	0	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	
200 ppm	18±	2	19±	2	18±	2	18±	2	18±	3	17±	2	19±	2	
1000 ppm	93±	10	93±	7	89±	8	90±	10	89±	9	87±	11	96±	13	
5000 ppm	525±	84	551 ±	104	540±	112	548±	88	565±	159	562±	148	647±	172	

PAGE: 4

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Admini	stration	(weeks)												
	74		78		82		86		90		94		98		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
200 ppm	18±	3	19±	2	17±	4	19±	3	$20\pm$	5	21 ±	5	22±	6	
1000 ppm	88±	19	92±	13	95±	19	100±	20	105±	17	106±	21	110±	29	
5000 ppm	542 ±	119	642±	225	$658\pm$	202	742±	222	627 \pm	155	639±	143	758±	149	

PAGE: 5

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : MALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis 102	tration	(weeks)	
Control	0±	0	0±	0
200 ppm	23±	5		6
1000 ppm		21		23
5000 ppm	790 \pm	208	751±	132

(HAN300)

BAIS 5

TABLE E 2

CHEMICAL INTAKE CHANGES: FEMALE

UNIT : mg/kg/day
REPORT TYPE : A1 104
SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis	(weeks)					****								
	1		2		3		4		5		6		7		
Control	0±	0	0±	0	0±	0	0 ±	0	0±	0	0±	0	0±	0	
400 ppm	77±	4	66±	7	64±	6	63 ±	5	62 ±	5	62±	6	63 ±	6	
2000 ppm	373±	26	329±	34	327±	27	316±	29	314±	24	321 ±	26	317±	27	
10000 ppm	1763±	173	1691±	192	1526±	139	1475±	128	1396±	108	1484±	114	1476±	134	

(HAN300) BAIS 5

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

PAGE: 8

Group Name	Administration (weeks)														
	8		9		10	10		11		12		13		14	
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
Control	0 ±	U	U <u>1</u>	U	0.1	U	V	U	υ±	U	U .l	U	U <u></u> .	U	
400 ppm	63±	5	62 ±	3	62±	4	61 ±	4	59±	5	60±	5	58±	5	
2000 ppm	316±	22	308±	20	$304\pm$	21	299±	21	$290\pm$	30	299±	25	288±	27	
10000 ppm	1515±	119	1436±	112	1472±	75	1433 \pm	240	1401±	85	1409±	109	1395±	114	

(HAN300)

BAIS 5

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] CHEMICAL INTAKE CHANGES (SUMMARY)
ALL ANIMALS

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

PAGE: 9

Group Name	Administration			(weeks)											
	18		22		26		30		34		38		42		
***************************************			***************************************			***************************************									
Control	0 ±	0	0±	0	0±	0	0 ±	0	$0\pm$	0	0±	0	0±	0	
400 ppm	$56\pm$	6	55±	6	54±	6	54±	6	$\textbf{52}\pm$	6	50±	6	$\textbf{52}\pm$	6	
2000 ppm	$270\pm$	30	$269\pm$	28	$265\pm$	31	253 \pm	33	245 \pm	37	248 \pm	28	$265\pm$	30	
10000 ppm	1352±	131	1357±	110	1389±	126	1341 ±	144	1312±	148	1315±	123	1407±	132	

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 10

Group Name	Admini	(weeks)													
	46		50		54		58		62		66		70		
Control	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0±	0	
400 ppm	50±	6	48±	7	47 ±	5	46±	6	46±	7	45 ±	7	46±	7	
2000 ppm	245±	30	240±	33	235±	27	235±	39	230±	34	231 ±	45	248±	51	
10000 ppm	$1307\pm$	138	1291±	148	1229±	148	1246±	173	1253±	193	1229±	158	1322±	215	

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
UNIT : mg/kg/day
REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Admini	stration	(weeks)											
	74		78		82		86		90		94		98	
Control	0 ±	0	0±	0	0±	0	0±	0	0±	0	0±	0	0 ±	0
400 ppm	49 ±	7	47 ±	7	49±	7	50±	7	50±	10	51 ±	10	51±	9
2000 ppm	242±	37	255±	53	240±	48	259±	55	248±	32	275±	55	282±	56
10000 ppm	1293±	113	1357±	229	1293±	143	1421±	189	1468±	184	1495±	236	1563±	284

(HAN300)

BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

UNIT : mg/kg/day REPORT TYPE : A1 104

SEX : FEMALE

CHEMICAL INTAKE CHANGES (SUMMARY)

ALL ANIMALS

Group Name	Adminis 102	tration	(weeks)	
The Company of the Co				
Control	0±	0	0±	0
400 ppm	53±	13	58±	9
2000 ppm	291 ±	51	281±	56
10000 ppm	1605±	349	1530±	146

(HAN300)

BAIS 5

TABLE F 1

HEMATOLOGY: MALE

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1 SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ /µl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f &	MCH рg	MCHC g∕dl	PLATELET 1 0³/µl
Control	30	9. 87± 0. 73	13. 4± 1. 0	43. 7± 3. 3	44. 3± 1. 5	13.6± 0.5	30.7± 0.9	2023± 542
mqq 00.	32	9. 39± 1. 00	12.7± 1.4	41. 5± 4. 1	44. 3± 2. 0	13. 5± 0. 8	30.5± 0.8	2020± 560
000 ppm	37	9. 77± 0. 95	13.1± 1.2	43. 1 ± 3. 2	44 . 3 ± 2. 0	13. 4± 0. 6	30.3± 1.1	2127± 616
5000 ppm	10	9. 15± 0. 83	12.6± 1.3	41.5± 3.5	45. 4± 1. 0	13.8± 0.4	30. 4± 1. 0	2443± 246

(HCL070)

BAIS 5

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] MEASURE. TIME : 1

SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RETICUL %	OCYTE	METHEMO %	GLOBIN		V45~4 8V454444444444444444444444444444444444	
Control	30	2. 8 ±	1. 3	0.7±	0. 3			
mqq 00	32	3.1±	1. 3	0.6±	0. 3			
000 ppm	37	3.1±	1. 5	0.7±	0. 2			
5000 ppm	10	4.7±	1. 9**	1.4±	0. 3**			

PAGE: 2

(HCL070) BAIS 5

STUDY NO. : 0760
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1 SEX : MALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	₩BC 1 O³/		Dí Neutro	fferentia	I WBC (9 LYMPHO	6)	MONO		EOSINO		BAS0	1929	OTHER	nt-man 1	
Control	30	4. 31 ±	2. 24	30±	11	60±	15	6±	8	2 ±	1	0 ±	0	1±	1	
200 ppm	32	4. 39±	2. 17	34 ±	15	56±	18	6±	6	2 ±	2	0±	0	1 ±	1	
1000 ppm	37	4.55±	3. 38	30±	12	62±	14	4 ±	5	2 ±	1	0 ±	1	2 ±	1	
5000 ppm	10	3. 66±	1. 15	35±	11	59±	12	3 ±	1	2±	1	0±	0	1 ±	0	

(HCL070)

BAIS 5

TABLE F 2

HEMATOLOGY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

NO -f DED DIOOD CELL DIATELET UCHATOCOLT

Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ ∕µℓ	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f &	MCH pg	_ MCHC g∕dl 	PLATELET 1 0³/µl
Control	25	9. 32± 1. 72	12. 9± 2. 3	42. 4± 6. 3	46. 1 ± 3. 9	13.8± 0.7	30. 1 ± 1. 7	1231± 459
400 ppm	20	9. 21 ± 2. 19	12. 9± 2. 9	42. 5± 8. 2	47. 4± 6. 0	14. 1± 0. 7	30.0± 2.4	1318± 435
mqq 000	26	9. 37± 1. 16	13.1± 1.6	43. 2± 4. 3	46. 2± 2. 1	14. 0± 0. 6	30. 2± 1. 2	1419± 447
10000 ppm	31	7. 86± 1. 64**	11. 3 ± 2. 5*	36. 2± 6. 9**	46.5± 3.2	14. 4± 0. 6**	30.9± 2.0*	1585± 545*

Significant difference; $*: P \leq 0.05$

** : P ≤ 0.01

Test of Dunnett

PAGE: 4

(HCL070) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	RETICULOCYTE %	METHEMOGLOBIN %		
Control	25	5. 0± 7. 0	0.6± 0.2		
400 ppm	20	4. 7± 5. 7	0.7± 0.3		
2000 ppm	26	4. 5± 2. 4	0.9± 0.3**		
10000 ppm	31	8. 3± 4. 6**	3.5± 1.4**		
Significan	t difference ;	* : P ≤ 0.05	** : P ≤ 0.01	Test of Dunnett	
(HCL070)		LAUFENNANT COMPANY AND A STATE OF THE STATE			BAIS

D/110 0

STUDY NO. : 0760
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
MEASURE. TIME : 1

SEX : FEMALE

REPORT TYPE : A1

HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)

Group Name	NO. of Animals	WBC 1 0³∕1		Di NEUTRO	fferential	WBC (% LYMPHO	6)	MONO		EOSINO		BAS0		OTHER	***************************************	
Control	25	3. 77 ±	1. 96	28±	13	64±	15	4 ±	4	2±	4	0±	0	2±	1	
400 ppm	20	5. 14±	4. 81	27±	7	66±	9	4 ±	5	2±	1	0±	0	2 ±	2	
2000 ppm	26	4. 35±	2. 35	33±	13	61 ±	15	4 ±	3	1±	1	0 ±	1	2 ±	1	
10000 ppm	31	2. 82±	2. 27*	41±	15**	53±	15**	3±	3	1 ±	1	0±	0	2±	2	

(HCL070)

BAIS 5

TABLE G 1

BIOCHEMISTRY: MALE

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : MALE REPORT TYPE : A1 PAGE: 1

Group Name	NO. of Animals	TOTAL P g/dl	ROTEIN	ALBUMIN g∕dl		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLE mg/dl	STEROL	TRIGLYCI mg∕đl	ERIDE
Control	30	5.0±	0. 5	2. 4±	0. 3	1.0±	0. 2	0.06±	0. 10	177±	46	122±	30	69±	35
200 ppm	32	5. 3±	0. 9	2.5±	0. 6	0.9±	0. 2	0. 04±	0. 03	178±	40	147±	91	72±	54
000 ppm	37	5. 2±	0. 7	2.5 \pm	0. 4	0.9±	0. 1	0.05 \pm	0. 03	171±	46	138±	48	61 ±	38
5000 ppm	10	5. 2±	0. 2	2.6±	0. 2	1.1±	0. 1	0.05±	0. 01	168±	30	153±	24**	40 ±	16

(HCL074) BAIS 5

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 2

Group Name	NO. of Animals	PHOSPHOL mg/dl	.IPID	AST U/L		ALT U/L		LDH U/L		ALP U/L		G-GTP U∕L		CK U/L	
Control	30	219±	47	144±	330	114±	425	441 ±	680	371 ±	937	0.3±	0. 3	134±	213
200 ppm	32	251 ±	112	143±	233	69±	121	$381\pm$	370	$303\pm$	621	0.5±	0. 6	106±	178
1000 ppm	37	239±	59	111±	179	45±	66	316±	190	209±	69	0.3±	0. 2	101±	119
5000 ppm	10	274±	39**	72±	18	56±	73	319±	132	308±	102**	0. 4±	0. 4	$367\pm$	748

Test of Dunnett

(HCL074) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mg/dl mEq/l mEq/l mEq/l mg/dl mg/dl Control 30 28. 4± 14. 5 $153\,\pm$ 2 4.3± 0.6 121± $9.0 \pm$ 0. 5 5. 7 ± 1. 0 200 ppm 32 27. 3 ± 8. 2 $154\pm$ 4 4.3± 0. 5 121± 3 9.1± 0. 5 5. 8 ± 0. 9 37 122± 0. 5 5.7 \pm 0. 9 1000 ppm 29. 3± 12. 1 154± 3 4. 3± 0.4 3 9.1± 5000 ppm 10 45. 4± 20. 8** $155\pm$ 2 122± 2 6.0± 0.9 $3.9\pm$ 0. 4 9.6± 0. 9

(HCL074)

BAIS 5

TABLE G 2

BIOCHEMISTRY: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

31

5. 1 ± 0. 5

MEASURE. TIME : 1 SEX : FEMALE

10000 ppm

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

1.1±

0.2*

TRIGLYCERIDE Group Name NO. of TOTAL PROTEIN ALBUMIN A/G RATIO T-BILIRUBIN GLUCOSE T-CHOLESTEROL Animals g/dl g/dl mg/dl mg/dl mg/dl mg/dl 23 Control 24 5.2± 0. 6 2.6± 0. 2 1.0 \pm 0. 2 0. 04 ± 0. 02 140± 39 $103 \pm$ 26 $48 \pm$ 142± 26 $95\pm$ 22 $48\,\pm\,$ 23 400 ppm 19 5.0 \pm 0. 6 2.4± 0. 2 1.0 \pm 0. 2 0.05 ± 0.06 2000 ppm 26 5.3± 0. 2 0. 2 0.04± 0.02 $133\,\pm$ 38 $127 \pm$ 25** $46 \pm$ 25 0. 7 2.6± $1.0\pm$

PAGE: 4

24*

 $29\pm$

2. 7 ± 0. 2

(HCL074) BAIS 5

0.06± 0.03*

121±

37

 $162 \pm$

39**

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

MEASURE. TIME: 1

SEX : FEMALE

REPORT TYPE : A1

CK Group Name NO. of PHOSPHOLIPID AST ALT LDH ALP G-GTP Animals mg/dl U/L U/L U/L U/L U/L U/L Control $188\pm$ 43 $403\pm$ 183 $0.5\pm$ 134± 184 24 $79 \pm$ 28 $26\pm$ 13 $358 \pm$ 370 0.4 400 ppm 19 $180 \pm$ 37 110± 134 $47 \pm$ 536 ± 1286 370± 173 0. 4 \pm 0. 3 116± 93 84 26 $223\pm$ $225\,\pm$ 209* 2000 ppm 42** $133\pm$ 142 $46 \pm$ 52** $358\,\pm\,$ 323 469± 225 $0.4\pm$ 0. 2 $237 \pm$ 265** 10000 ppm 31 $266 \pm$ 62** $113\pm$ 71 57± 55** $326\,\pm\,$ 187 500± 464 0.9± 2.7

Significant difference; $*: P \leq 0.05$

** : $P \leq 0.01$

Test of Dunnett

PAGE: 5

(HCL074) BAIS 5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)

CALCIUM Group Name NO. of UREA NITROGEN SODIUM POTASSIUM CHLORIDE INORGANIC PHOSPHORUS Animals mg/dl mEq/l mEq/l mEq/l mg/dl mg/dl Control 24 28.7± 16.3 154± 5 4. 1 ± 0. 4 123± 9.4± 0. 6 6.0± 1.6 400 ppm 19 24. 4± 11. 1 $152\,\pm\,$ 2 4.0± 0. 3 121± 3 9.3± 0. 5 5. 9 ± 1. 5 2000 ppm 26 35. 7± 18. 2 3 $153 \pm$ $4.0\pm$ 0. 5 121± 3 9.5± 0.6 6.7± 1.8 10000 ppm 31 75. 1 ± 48. 2** $155\,\pm\,$ 4.5± 0.8 $120\pm$ 4** 10.2 \pm 0. 8** 9.2± 4.1** Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

PAGE: 6

(HCL074) BAIS 5

TABLE H 1

URINALYSIS: MALE

Urinalysis of male mice

In the dosed groups, protein, glucose, ketone body and urobilinogen could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items, group names and number of animals that could not be measured are shown as followed.

Protein: 1000 ppm (20), 5000 ppm (10)

Glucose: 5000 ppm (3)

Ketone body: 1000 ppm (1), 5000 ppm (3) Urobilinogen: 1000 ppm (28), 5000 ppm (10)

URINALYSIS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME: 1

SEX : MALE

REPORT TYPE : A1

PAGE: 1

Group Name	NO. of Animals	pH_ 5. 0	6. 0	6. 5	7. 0	7. 5	8. 0	8. 5	СНІ	Protein - ± + 2+ 3+ 4+ CHI	Glucose - ± + 2+ 3+ 4+ CHI	Ketone body - ± + 2+ 3+ 4+ CHI	Occult blood - ± + 2+ 3+ CHI
Control	32	0	14	11	1	5	1	0		8 15 6 3 0 0	32 0 0 0 0 0	10 17 5 0 0 0	28 0 0 1 3
200 ppm	33	0	14	6	4	5	3	1		7 18 6 2 0 0	33 0 0 0 0 0	10 16 4 3 0 0	31 0 1 0 1
mqq 000	37	0	27	1	4	1	3	1	**	2 13 1 1 0 0	37 0 0 0 0 0	8 19 6 3 0 0	36 0 1 0 0
5000 ppm	10	0	10	0	0	0	0	0	*	0 0 0 0 0 0	7 0 0 0 0 0	0 4 2 1 0 0	9 0 0 1 0

(HCL101)

BAIS 5

URINALYSIS

STUDY NO. : 0760
ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : MALE

REPORT TYPE : A1

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	32	32 0 0 0 0		
200 ppm	33	33 0 0 0 0		
1000 ppm	37	9 0 0 0 0		
mag 0003	10	0 0 0 0 0		
Significan	t difference	* : P ≤ 0.05	Test of CHI SQUARE	

(HCL101)

BAIS 5

TABLE H 2

URINALYSIS: FEMALE

Urinalysis of female mice

In the dosed groups, pH, protein, glucose, ketone body and urobilinogen could not be measured by urine test paper in some animals, because their urine were colored by metabolite of test substance.

The inspection items, group names and number of animals that could not be measured are shown as followed.

pH: 10000 ppm (6)

Protein: 2000 ppm (21), 10000 ppm (32) Glucose: 2000 ppm (7), 10000 ppm (26)

Ketone body: 10000 ppm (1)

Urobilinogen: 2000 ppm (21), 10000 ppm (32)

URINALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

32

MEASURE. TIME: 1

SEX : FEMALE

10000 ppm

REPORT TYPE : A1

Group Name NO. of pH_ Glucose_ Ketone body Occult blood Protein__ Animals 5. 0 6. 0 6. 5 7. 0 7. 5 8. 0 8. 5 CHI $-\pm + 2 + 3 + 4 + CHI$ $-\pm + 2 + 3 + 4 + CHI$ $-\pm+2+3+4+$ CHI $-\pm+2+3+$ CHI 18 2 5 0 0 0 24 0 1 0 0 Control 25 0 10 11 1 1 1 1 14 5 5 1 0 0 25 0 0 0 0 0 400 ppm 21 0 11 3 4 2 14 6 1 0 0 0 21 0 0 0 0 0 14 2 4 1 0 0 21 0 0 0 0 2000 ppm 27 0 10 7 4 5 4 0 2 0 0 0 20 0 0 0 0 0 20 2 5 0 0 0 27 0 0 0 0

Significant difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE

0 16 5 1 4 0 0

(HCL101) BAIS 5

6 0 0 0 0 0

0 0 0 0 0 0

32 0 0 0 0

13 10 8 0 0 0 *

URINALYSIS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

MEASURE. TIME : 1 SEX : FEMALE

REPORT TYPE : A1

PAGE: 4

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI	
Control	25	25 0 0 0 0	
400 ppm	21	21 0 0 0 0	
2000 ppm	27	6 0 0 0 0	
10000 ppm	32	0 0 0 0 0	
Significan	t difference	* : $P \le 0.05$ ** : $P \le 0.01$	Test of CHI SQUARE

(HCL101)

BAIS 5

TABLE I 1

GROSS FINDINGS: MALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	200 ppm 50 (%)	1000 ppm 50 (%)	5000 ppm 50 (%)
skin/app	nodu l e	0 (0)	0 (0)	0 (0)	1 (2)
	adhesion	0 (0)	0 (0)	0 (0)	1 (2)
	erosion	4 (8)	2 (4)	0 (0)	15 (30)
	thick	0 (0)	0 (0)	0 (0)	1 (2)
	scab	0 (0)	1 (2)	1 (2)	1 (2)
ubcutis	edema	2 (4)	0 (0)	0 (0)	0 (0)
	mass	1 (2)	1 (2)	0 (0)	1 (2)
	cyst	0 (0)	0 (0)	1 (2)	0 (0)
ung	white zone	1 (2)	1 (2)	1 (2)	1 (2)
	red zone	1 (2)	0 (0)	0 (0)	1 (2)
	nodule	10 (20)	6 (12)	6 (12)	0 (0)
ymph node	enlarged	3 (6)	6 (12)	10 (20)	3 (6)
nymus	atrophic	2 (4)	0 (0)	0 (0)	0 (0)
leen	enlarged	0 (0)	3 (6)	4 (8)	7 (14)
	pale	2 (4)	0 (0)	0 (0)	0 (0)
	black zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodule	1 (2)	4 (8)	1 (2)	0 (0)
	deformed	0 (0)	0 (0)	0 (0)	1 (2)
	accentuation of white pulp	0 (0)	0 (0)	0 (0)	1 (2)
eart	white zone	1 (2)	0 (0)	0 (0)	0 (0)
omach	forestomach:nodule	0 (0)	2 (4)	0 (0)	0 (0)
	glandular stomach:ulcer	0 (0)	1 (2)	0 (0)	0 (0)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

)rgan	Findings	Group Name Control NO. of Animals 50 (%)	200 ppm 50 (%)	1000 ppm 50 (%)	5000 ppm 50 (%)
stomach	glandular stomach:erosion	2 (4)	0 (0)	0 (0)	0 (0)
	glandular stomach nodule	0 (0)	0 (0)	1 (2)	0 (0)
	glandular stomach:black zone	0 (0)	0 (0)	0 (0)	1 (2)
	glandular stomach:thick	1 (2)	3 (6)	4 (8)	1 (2)
small intes	nodule	1 (2)	0 (0)	0 (0)	0 (0)
	thick	0 (0)	0 (0)	1 (2)	0 (0)
iver	enlarged	1 (2)	2 (4)	0 (0)	3 (6)
	pale	1 (2)	0 (0)	0 (0)	0 (0)
	white zone	1 (2)	1 (2)	1 (2)	1 (2)
	red zone	5 (10)	3 (6)	5 (10)	1 (2)
	brown zone	0 (0)	0 (0)	0 (0)	1 (2)
	nodule	22 (44)	19 (38)	16 (32)	5 (10)
	rough	0 (0)	0 (0)	0 (0)	1 (2)
	nodular	1 (2)	0 (0)	0 (0)	0 (0)
idney	enlarged	0 (0)	0 (0)	0 (0)	1 (2)
	small	0 (0)	0 (0)	1 (2)	0 (0)
	white zone	0 (0)	2 (4)	1 (2)	4 (8)
	black zone	0 (0)	0 (0)	0 (0)	1 (2)
	nodule	0 (0)	0 (0)	0 (0)	2 (4)
	cyst	1 (2)	0 (0)	0 (0)	2 (4)
	deformed	3 (6)	4 (8)	6 (12)	13 (26)
	hydronephrosis	9 (18)	2 (4)	3 (6)	10 (20)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

rgan	Findings	Group Name Control NO. of Animals 50 (%)	200 ppm 50 (%)	1000 ppm 50 (%)	5000 ppm 50 (%)
rin bladd	white zone	0 (0)	0 (0)	0 (0)	1 (2)
	red zone	0 (0)	1 (2)	0 (0)	0 (0)
	urine:marked retention	2 (4)	4 (8)	3 (6)	21 (42)
	urine:red	0 (0)	0 (0)	0 (0)	1 (2)
tuitary	nodule	0 (0)	0 (0)	1 (2)	0 (0)
stis	white	1 (2)	0 (0)	0 (0)	0 (0)
ididymis	brown zone	0 (0)	1 (2)	0 (0)	0 (0)
	nodule	1 (2)	1 (2)	0 (0)	0 (0)
ep/cli gl	nodule	2 (4)	0 (0)	0 (0)	0 (0)
	cyst	1 (2)	0 (0)	0 (0)	0 (0)
riph nerv	thick	0 (0)	0 (0)	1 (2)	0 (0)
der gl	enlarged	0 (0)	1 (2)	2 (4)	0 (0)
	nodule	1 (2)	1 (2)	0 (0)	1 (2)
scle	nodule	0 (0)	0 (0)	0 (0)	1 (2)
diastinum	mass	0 (0)	0 (0)	0 (0)	1 (2)
ritoneum	nodule	1 (2)	1 (2)	0 (0)	0 (0)
	thick	1 (2)	1 (2)	0 (0)	0 (0)
troperit	nodule	0 (0)	0 (0)	1 (2)	0 (0)
lominal c	hemorrhage	3 (6)	1 (2)	0 (0)	1 (2)
	ascites	2 (4)	4 (8)	1 (2)	1 (2)
racic ca	hemorrhage	1 (2)	2 (4)	0 (0)	0 (0)
	pleural fluid	3 (6)	2 (4)	2 (4)	3 (6)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

Organ	Findings	Group Name Control NO. of Animals 50 (%)	200 ppm 50 (%)	1000 ppm 50 (%)	5000 ppm 50 (%)
ther	tail:scab	0 (0)	0 (0)	0 (0)	1 (2)
hole body	anemic	0 (0)	1 (2)	0 (0)	0 (0)

TABLE I 2 GROSS FINDINGS: MALE: DEAD AND MORIBUND ANIMALS

: MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL

REPORT TYPE : A1
SEX : MALE

gan	Findings	Group Name Control NO. of Animals 19 (%)	200 ppm 17 (%)	1000 ppm 13 (%)	5000 ppm 40 (%)
kin/app	nodule	0 (0)	0 (0)	0 (0)	1 (3)
	adhesion	0 (0)	0 (0)	0 (0)	1 (3)
	erosion	2 (11)	1 (6)	0 (0)	15 (38)
	thick	0 (0)	0 (0)	0 (0)	1 (3)
	scab	0 (0)	0 (0)	1 (8)	1 (3)
cutis	edema	2 (11)	0 (0)	0 (0)	0 (0)
	mass	1 (5)	1 (6)	0 (0)	1 (3)
	cyst	0 (0)	0 (0)	1 (8)	0 (0)
g	white zone	1 (5)	0 (0)	0 (0)	0 (0)
	red zone	1 (5)	0 (0)	0 (0)	1 (3)
	nodule	4 (21)	4 (24)	1 (8)	0 (0)
ph node	enlarged	1 (5)	2 (12)	3 (23)	3 (8)
mus	atrophic	2 (11)	0 (0)	0 (0)	0 (0)
een	enlarged	0 (0)	3 (18)	3 (23)	7 (18)
	pale	2 (11)	0 (0)	0 (0)	0 (0)
	nodu l e	0 (0)	1 (6)	1 (8)	0 (0)
	deformed	0 (0)	0 (0)	0 (0)	1 (3)
rt	white zone	1 (5)	0 (0)	0 (0)	0 (0)
mach	forestomach:nodule	0 (0)	2 (12)	0 (0)	0 (0)
	glandular stomach:black zone	0 (0)	0 (0)	0 (0)	1 (3)
l intes	nodule	1 (5)	0 (0)	0 (0)	0 (0)
	thick	0 (0)	0 (0)	1 (8)	0 (0)

: MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

ANIMAL : MOUS
REPORT TYPE : A1

: MALE SEX

gan	Findings	Group Name Control NO. of Animals 19 (%)	200 ppm 17 (%)	1000 ppm 13 (%)	5000 ppm 40 (%)
iver	enlarged	1 (5)	2 (12)	0 (0)	3 (8)
	pale	1 (5)	0 (0)	0 (0)	0 (0)
	white zone	1 (5)	1 (6)	1 (8)	1 (3)
	red zone	3 (16)	0 (0)	1 (8)	1 (3)
	nodule	11 (58)	7 (41)	3 (23)	2 (5)
	rough	0 (0)	0 (0)	0 (0)	1 (3)
dney	enlarged	0 (0)	0 (0)	0 (0)	1 (3)
	white zone	0 (0)	1 (6)	0 (0)	4 (10)
	black zone	0 (0)	0 (0)	0 (0)	1 (3)
	nodule	0 (0)	0 (0)	0 (0)	2 (5)
	deformed	0 (0)	1 (6)	2 (15)	9 (23)
	hydronephrosis	9 (47)	1 (6)	1 (8)	8 (20)
n bladd	white zone	0 (0)	0 (0)	0 (0)	1 (3)
	red zone	0 (0)	1 (6)	0 (0)	0 (0)
	urine:marked retention	1 (5)	4 (24)	3 (23)	21 (53)
	urine:red	0 (0)	0 (0)	0 (0)	1 (3)
tuitary	nodu l e	0 (0)	0 (0)	1 (8)	0 (0)
didymis	nodu l e	1 (5)	1 (6)	0 (0)	0 (0)
der gl	enlarged	0 (0)	0 (0)	1 (8)	0 (0)
cle	nodu l e	0 (0)	0 (0)	0 (0)	1 (3)
iastinum	mass	0 (0)	0 (0)	0 (0)	1 (3)
i toneum	nodule	1 (5)	1 (6)	0 (0)	0 (0)

GROSS FINDINGS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name Control NO. of Animals 19 (%)	200 ppm 17 (%)	1000 ppm 13 (%)	5000 ppm 40 (%)
peritoneum	thick	1 (5)	1 (6)	0 (0)	0 (0)
retroperit	nodu l e	0 (0)	0 (0)	1 (8)	0 (0)
abdominal c	hemorrhage	3 (16)	1 (6)	0 (0)	1 (3)
	ascites	2 (11)	4 (24)	0 (0)	1 (3)
thoracic ca	hemorrhage	1 (5)	1 (6)	0 (0)	0 (0)
	pleural fluid	3 (16)	2 (12)	2 (15)	3 (8)
other	tail:scab	0 (0)	0 (0)	0 (0)	1 (3)

(HPT080)

BAIS 5

TABLE I 3

GROSS FINDINGS: MALE: SACRIFICED ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE

SEX

Organ	Findings	Group Name Control NO. of Animals 31 (%)	200 ppm 33 (%)	1000 ppm 37 (%)	5000 ppm 10 (%)
skin/app	erosion	2 (6)	1 (3)	0 (0)	0 (0)
	scab	. 0 (0)	1 (3)	0 (0)	0 (0)
lung	white zone	0 (0)	1 (3)	1 (3)	1 (10)
	nodu l e	6 (19)	2 (6)	5 (14)	0 (0)
lymph node	enlarged	2 (6)	4 (12)	7 (19)	0 (0)
spleen	enlarged	0 (0)	0 (0)	1 (3)	0 (0)
	black zone	0 (0)	0 (0)	1 (3)	0 (0)
	nodu l e	1 (3)	3 (9)	0 (0)	0 (0)
	accentuation of white pulp	0 (0)	0 (0)	0 (0)	1 (10)
stomach	glandular stomach:ulcer	0 (0)	1 (3)	0 (0)	0 (0)
	glandular stomach:erosion	2 (6)	0 (0)	0 (0)	0 (0)
	glandular stomach:nodule	0 (0)	0 (0)	1 (3)	0 (0)
	glandular stomach:thick	1 (3)	3 (9)	4 (11)	1 (10)
iver	red zone	2 (6)	3 (9)	4 (11)	0 (0)
	brown zone	0 (0)	0 (0)	0 (0)	1 (10)
	nodu l e	11 (35)	12 (36)	13 (35)	3 (30)
	nodular	1 (3)	0 (0)	0 (0)	0 (0)
cidney	small	0 (0)	0 (0)	1 (3)	0 (0)
	white zone	0 (0)	1 (3)	1 (3)	0 (0)
	cyst	1 (3)	0 (0)	0 (0)	2 (20)
	deformed	3 (10)	3 (9)	4 (11)	4 (40)
	hydronephrosis	0 (0)	1 (3)	2 (5)	2 (20)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 2

rgan	Findings	Group Name Control NO. of Animals 31 (%)	200 ppm 33 (%)	1000 ppm 37 (%)	5000 ppm 10 (%)
rin bladd	urine:marked retention	1 (3)	0 (0)	0 (0)	0 (0)
estis	white	1 (3)	0 (0)	0 (0)	0 (0)
pididymis	brown zone	0 (0)	1 (3)	0 (0)	0 (0)
rep/cli gl	nodule	2 (6)	0 (0)	0 (0)	0 (0)
	cyst	1 (3)	0 (0)	0 (0)	0 (0)
riph nerv	thick	0 (0)	0 (0)	1 (3)	0 (0)
rder gl	enlarged	0 (0)	1 (3)	1 (3)	0 (0)
	nodule	1 (3)	1 (3)	0 (0)	1 (10)
dominal c	ascites	0 (0)	0 (0)	1 (3)	0 (0)
oracic ca	hemorrhage	0 (0)	1 (3)	0 (0)	0 (0)
ole body	anemic	0 (0)	1 (3)	0 (0)	0 (0)

(HPT080)

BAIS 5

TABLE I 4

GROSS FINDINGS: FEMALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

		Group Name Control	400 ppm	2000 ppm	10000 ppm
rgan	Findings	NO. of Animals 49 (%)	50 (%)	50 (%)	50 (%)
kin/app	ulcer	0 (0)	0 (0)	0 (0)	1 (2)
	erosion	1 (2)	0 (0)	0 (0)	0 (0)
ubcutis	edema	1 (2)	2 (4)	3 (6)	1 (2)
	mass	4 (8)	3 (6)	4 (8)	5 (10)
ung	red	0 (0)	0 (0)	1 (2)	0 (0)
	white zone	0 (0)	0 (0)	1 (2)	1 (2)
	red zone	3 (6)	2 (4)	2 (4)	0 (0)
	nodule	3 (6)	4 (8)	2 (4)	4 (8)
ymph node	enlarged	10 (20)	11 (22)	7 (14)	2 (4)
leen	enlarged	8 (16)	12 (24)	6 (12)	1 (2)
	white zone	1 (2)	0 (0)	0 (0)	0 (0)
	nodule	1 (2)	0 (0)	1 (2)	1 (2)
	accentuation of white pulp	1 (2)	0 (0)	1 (2)	0 (0)
eart	white zone	0 (0)	0 (0)	1 (2)	0 (0)
tomach	glandular stomach:erosion	0 (0)	1 (2)	0 (0)	0 (0)
	glandular stomach:black zone	1 (2)	1 (2)	0 (0)	0 (0)
	glandular stomach:thick	0 (0)	2 (4)	2 (4)	1 (2)
mall intes	nodule	0 (0)	1 (2)	0 (0)	0 (0)
iver	enlarged	3 (6)	5 (10)	3 (6)	2 (4)
	white zone	8 (16)	7 (14)	3 (6)	4 (8)
	red zone	3 (6)	3 (6)	5 (10)	2 (4)
	nodu l e	5 (10)	8 (16)	6 (12)	5 (10)

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Pi	AGE	:

gan	Findings	Group Name Control NO. of Animals 49 (%)	400 ppm 50 (%)	2000 ppm 50 (%)	10000 ppm 50 (%)
dney	enlarged	1 (2)	0 (0)	1 (2)	0 (0)
	white zone	0 (0)	0 (0)	1 (2)	1 (2)
	red zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodule	1 (2)	3 (6)	0 (0)	0 (0)
	cyst	0 (0)	0 (0)	0 (0)	1 (2)
	deformed	9 (18)	10 (20)	13 (26)	23 (46)
	hydronephrosis	2 (4)	3 (6)	8 (16)	14 (28)
in bladd	urine:marked retention	3 (6)	0 (0)	1 (2)	0 (0)
tuitary	enlarged	0 (0)	2 (4)	1 (2)	0 (0)
	red zone	0 (0)	2 (4)	2 (4)	0 (0)
	nodu l e	2 (4)	2 (4)	0 (0)	0 (0)
ary	enlarged	9 (18)	5 (10)	3 (6)	1 (2)
	cyst	5 (10)	4 (8)	1 (2)	3 (6)
erus	nodule	7 (14)	8 (16)	9 (18)	10 (20)
	dilated lumen	1 (2)	0 (0)	0 (0)	1 (2)
ain	red zone	1 (2)	1 (2)	0 (0)	0 (0)
inal cord	red zone	1 (2)	0 (0)	0 (0)	0 (0)
riph nerv	nodu l e	1 (2)	1 (2)	0 (0)	0 (0)
)	turbid	0 (0)	2 (4)	1 (2)	0 (0)
der gl	enlarged	0 (0)	1 (2)	0 (0)	0 (0)
	yellow zone	1 (2)	0 (0)	0 (0)	0 (0)
	nodule	2 (4)	1 (2)	0 (0)	0 (0)

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 7

gan	Findings	Group Name Control NO. of Animals 49 (%)	400 ppm 50 (%)	2000 ppm 50 (%)	10000 ppm 50 (%)
scle	red zone	0 (0)	0 (0)	1 (2)	0 (0)
	nodule	1 (2)	1 (2)	2 (4)	0 (0)
	mass	0 (0)	0 (0)	0 (0)	1 (2)
eura	nodu l e	1 (2)	1 (2)	1 (2)	0 (0)
diastinum	nodu l e	0 (0)	1 (2)	0 (0)	0 (0)
	mass	1 (2)	1 (2)	3 (6)	1 (2)
itoneum	nodule	2 (4)	5 (10)	1 (2)	0 (0)
	thick	1 (2)	1 (2)	1 (2)	0 (0)
ominal c	hemorrhage	0 (0)	1 (2)	1 (2)	1 (2)
	ascites	8 (16)	5 (10)	2 (4)	3 (6)
racic ca	pleural fluid	4 (8)	9 (18)	7 (14)	5 (10)
er	tail:nodule	0 (0)	0 (0)	1 (2)	0 (0)
	ear:nodule	0 (0)	0 (0)	1 (2)	0 (0)
	hindlimb:nodule	0 (0)	2 (4)	0 (0)	0 (0)

(HPT080)

	TABLE I 5		
GROSS FINDINGS: FEM	MALE: DEAD AN	ND MORIBUND A	NIMALS

GROSS FINDINGS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

rgan	Findings	Group Name Control NO. of Animals 24 (%)	400 ppm 30 (%)	2000 ppm 23 (%)	10000 ppm 19 (%)
kin/app	ulcer	0 (0)	0 (0)	0 (0)	1 (5)
	erosion	1 (4)	0 (0)	0 (0)	0 (0)
ubcutis	edema	1 (4)	2 (7)	3 (13)	1 (5)
	mass	3 (13)	3 (10)	3 (13)	3 (16)
ung	red	0 (0)	0 (0)	1 (4)	0 (0)
	white zone	0 (0)	0 (0)	0 (0)	1 (5)
	red zone	3 (13)	2 (7)	2 (9)	0 (0)
	nodu l e	0 (0)	2 (7)	1 (4)	3 (16)
ymph node	enlarged	7 (29)	9 (30)	3 (13)	2 (11)
pleen	enlarged	6 (25)	10 (33)	6 (26)	0 (0)
	white zone	1 (4)	0 (0)	0 (0)	0 (0)
	nodu l e	1 (4)	0 (0)	1 (4)	1 (5)
eart	white zone	0 (0)	0 (0)	1 (4)	0 (0)
tomach	glandular stomach:black zone	1 (4)	1 (3)	0 (0)	0 (0)
	glandular stomach:thick	0 (0)	1 (3)	0 (0)	0 (0)
mall intes	nodu l e	0 (0)	1 (3)	0 (0)	0 (0)
iver	enlarged	3 (13)	5 (17)	2 (9)	2 (11)
	white zone	8 (33)	6 (20)	3 (13)	3 (16)
	red zone	1 (4)	1 (3)	1 (4)	0 (0)
	nodu l e	4 (17)	4 (13)	3 (13)	3 (16)
dney	white zone	0 (0)	0 (0)	1 (4)	1 (5)
	red zone	0 (0)	0 (0)	1 (4)	0 (0)

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

)rgan	Findings	Group Name Control NO. of Animals 24 (%)	400 ppm 30 (%)	2000 ppm 23 (%)	10000 ppm 19 (%)
idney	nodu l e	0 (0)	3 (10)	0 (0)	0 (0)
	deformed	1 (4)	5 (17)	8 (35)	4 (21)
	hydronephrosis	1 (4)	2 (7)	2 (9)	7 (37)
rin bladd	urine:marked retention	3 (13)	0 (0)	0 (0)	0 (0)
ituitary	enlarged	0 (0)	1 (3)	0 (0)	0 (0)
	red zone	0 (0)	2 (7)	1 (4)	0 (0)
vary	enlarged	8 (33)	5 (17)	2 (9)	0 (0)
	cyst	0 (0)	1 (3)	1 (4)	0 (0)
terus	nodule	5 (21)	5 (17)	4 (17)	4 (21)
rain	red zone	1 (4)	1 (3)	0 (0)	0 (0)
pinal cord	red zone	1 (4)	0 (0)	0 (0)	0 (0)
eriph nerv	nodule	1 (4)	1 (3)	0 (0)	0 (0)
ye	turbid	0 (0)	1 (3)	0 (0)	0 (0)
arder gl	yellow zone	1 (4)	0 (0)	0 (0)	0 (0)
	nodule	0 (0)	1 (3)	0 (0)	0 (0)
uscle	red zone	0 (0)	0 (0)	1 (4)	0 (0)
	nodule	1 (4)	1 (3)	2 (9)	0 (0)
	mass	0 (0)	0 (0)	0 (0)	1 (5)
leura	nodule	1 (4)	1 (3)	0 (0)	0 (0)
ediastinum	nodule	0 (0)	1 (3)	0 (0)	0 (0)
	mass	1 (4)	1 (3)	1 (4)	1 (5)
ritoneum	nodu l e	1 (4)	4 (13)	1 (4)	0 (0)

GROSS FINDINGS (SUMMARY)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 6

Organ	Findings	Group Name Control NO. of Animals 24 (%)	400 ppm 30 (%)	2000 ppm 23 (%)	10000 ppm 19 (%)
peritoneum	thick	1 (4)	1 (3)	1 (4)	0 (0)
abdominal c	hemorrhage	0 (0)	1 (3)	1 (4)	1 (5)
	ascites	7 (29)	4 (13)	2 (9)	3 (16)
oracic ca	pleural fluid	4 (17)	8 (27)	4 (17)	4 (21)
ther	hindlimb:nodule	0 (0)	2 (7)	0 (0)	0 (0)

(HPT080)

BAIS 5

TABLE I 6

GROSS FINDINGS: FEMALE: SACRIFICED ANIMALS

STUDY NO. : 0760 ANIMAL : MOUSE

: 0760 : MOUSE B6D2F1/Crlj[Crj:BDF1] GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

gan	Findings	Group Name Control NO. of Animals 25 (%)	400 ppm 20 (%)	2000 ppm 27 (%)	10000 ppm 31 (%)
bcutis	mass	1 (4)	0 (0)	1 (4)	2 (6)
ng	white zone	0 (0)	0 (0)	1 (4)	0 (0)
	nodu l e	3 (12)	2 (10)	1 (4)	1 (3)
mph node	enlarged	3 (12)	2 (10)	4 (15)	0 (0)
leen	enlarged	2 (8)	2 (10)	0 (0)	1 (3)
	accentuation of white pulp	1 (4)	0 (0)	1 (4)	0 (0)
omach	glandular stomach:erosion	0 (0)	1 (5)	0 (0)	0 (0)
	glandular stomach:thick	0 (0)	1 (5)	2 (7)	1 (3)
ver	enlarged	0 (0)	0 (0)	1 (4)	0 (0)
	white zone	0 (0)	1 (5)	0 (0)	1 (3)
	red zone	2 (8)	2 (10)	4 (15)	2 (6)
	nodule	1 (4)	4 (20)	3 (11)	2 (6)
dney	enlarged	1 (4)	0 (0)	1 (4)	0 (0)
	nodu l e	1 (4)	0 (0)	0 (0)	0 (0)
	cyst	0 (0)	0 (0)	0 (0)	1 (3)
	deformed	8 (32)	5 (25)	5 (19)	19 (61)
	hydronephrosis	1 (4)	1 (5)	6 (22)	7 (23)
in bladd	urine:marked retention	0 (0)	0 (0)	1 (4)	0 (0)
tuitary	enlarged	0 (0)	1 (5)	1 (4)	0 (0)
	red zone	0 (0)	0 (0)	1 (4)	0 (0)
	nodule	2 (8)	2 (10)	0 (0)	0 (0)
ry	enlarged	1 (4)	0 (0)	1 (4)	1 (3)

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1
SEX : FEMALE

PAGE: 4

)rgan	Findings	Group Name Control NO. of Animals 25 (%)	400 ppm 20 (%)	2000 ppm 27 (%)	10000 ppm 31 (%)
ovary	cyst	5 (20)	3 (15)	0 (0)	3 (10)
iterus	nodule	2 (8)	3 (15)	5 (19)	6 (19)
	dilated lumen	1 (4)	0 (0)	0 (0)	1 (3)
ye	turbid	0 (0)	1 (5)	1 (4)	0 (0)
larder gl	enlarged	0 (0)	1 (5)	0 (0)	0 (0)
	nodule	2 (8)	0 (0)	0 (0)	0 (0)
leura	nodule	0 (0)	0 (0)	1 (4)	0 (0)
ediastinum	mass	0 (0)	0 (0)	2 (7)	0 (0)
eritoneum	nodu l e	1 (4)	1 (5)	0 (0)	0 (0)
bdominal c	ascites	1 (4)	1 (5)	0 (0)	0 (0)
horacic ca	pleural fluid	0 (0)	1 (5)	3 (11)	1 (3)
ther	tail:nodule	0 (0)	0 (0)	1 (4)	0 (0)
	ear:nodule	0 (0)	0 (0)	1 (4)	0 (0)

(HPT080)

TABLE J 1

ORGAN WEIGHT, ABSOLUTE: MALE

REPORT TYPE : A1 SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	Body Weight	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	30	38. 6± 8. 5	0. 012 ± 0. 003	0.194± 0.041	0. 198± 0. 025	0. 231± 0. 126	0. 564± 0. 079
200 ppm	32	36. 8± 8. 1	0. 011 ± 0. 003	0. 201 ± 0. 045	0. 200± 0. 021	0. 204± 0. 029	0. 571 ± 0. 074
1000 ppm	37	35. 0± 8. 3	0. 012± 0. 003	0. 213± 0. 043	0. 194± 0. 029	0. 248± 0. 144	0. 587 ± 0. 204
5000 ppm	10	27. 3± 3. 1**	0. 011 ± 0. 003	0. 216± 0. 031	0. 184± 0. 017	0. 233± 0. 034	0. 651 ± 0. 256

PAGE: 1

(HCL040) BAIS 5

REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	30	0. 087± 0. 035	1. 746± 0. 698	0. 454± 0. 011	
200 ppm	32	0. 104± 0. 105	1. 637± 0. 417	0. 456 ± 0. 017	
mqq 0001	37	0. 091± 0. 077	1. 618± 0. 340	0. 456 ± 0. 014	
5000 ppm	10	0.090± 0.038	1. 471 ± 0. 221	0. 446 ± 0. 015	

PAGE: 2

BAIS 5 (HCL040)

TABLE J 2

ORGAN WEIGHT, ABSOLUTE: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

REPORT TYPE : SEX : FEMALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 3

Group Name	NO. of Animals	Body Weight	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS
Control	25	27. 5± 3. 7	0. 014± 0. 003	0. 133± 0. 389	0. 158± 0. 020	0. 214± 0. 083	0. 402± 0. 088
400 ppm	20	29. 1± 4. 4	0. 015± 0. 003	0. 068± 0. 082	0. 169± 0. 036	0. 216± 0. 045	0.486 ± 0.267
2000 ppm	26	26. 2± 3. 5	0. 013± 0. 003	0. 062± 0. 135	0. 155± 0. 021	0. 226± 0. 067	$0.\;506\pm\;0.\;278$
10000 ppm	31	20.7± 2.9**	0. 012± 0. 002**	0. 039± 0. 070**	0. 151± 0. 018	0. 204± 0. 029	0. 653 ± 1. 028

(HCL040) BAIS 5

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	25	0. 162± 0. 104	1. 317± 0. 198	0. 468± 0. 020	
400 ppm	20	0. 282± 0. 446	1. 655± 0. 889	0. 471 ± 0. 021	
2000 ppm	26	0. 162± 0. 099	1. 434± 0. 326	0. 463± 0. 017	
10000 ppm	31	0. 133± 0. 136	1. 398± 0. 505	0. 445± 0. 015**	

(HCL040)

BAIS 5

TABLE K 1

ORGAN WEIGHT, RELATIVE: MALE

REPORT TYPE : A1 SEX : MALE

UNIT: %

ORGAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 1

Group Name	NO. of Animals	Body Weight (g)	ADRENALS	TESTES	HEART	LUNGS	KIDNEYS
Control	30	38. 6± 8. 5	0. 033± 0. 010	0. 531± 0. 177	0.530± 0.098	0. 633± 0. 379	1. 503 ± 0. 248
200 ppm	32	36. 8± 8. 1	0. 031 ± 0. 011	0. 570± 0. 174	0. 562± 0. 101	0. 583± 0. 161	1. 600± 0. 312
000 ppm	37	35. 0 ± 8. 3	0. 037± 0. 012	0. 638± 0. 175*	0. 571 ± 0. 100	0. 781± 0. 672	1. 728± 0. 710
5000 ppm	10	27. 3± 3. 1**	0. 042± 0. 009	0. 798± 0. 127**	0. 677± 0. 067**	0.867± 0.185**	2. 441 ± 1. 139**

(HCL042)

BAIS 5

REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)

PAGE: 2

Group Name	NO. of Animals	SPLEEN	LIVER	BRAIN	
Control	30	0. 241 ± 0. 135	4. 718± 2. 209	1. 235± 0. 285	
200 ppm	32	0. 286± 0. 236	4. 590± 1. 324	1. 293 ± 0. 267	
1000 ppm	37	0. 272± 0. 238	4.745± 1.059	1. 367± 0. 294	
5000 ppm	10	0. 333± 0. 159	5. 382± 0. 518**	1. 646± 0. 151**	

(HCL042) BAIS 5

TABLE K 2

ORGAN WEIGHT, RELATIVE: FEMALE

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

Group Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	LUNGS	KIDNEYS
Control	25	27. 5± 3. 7	0. 052± 0. 010	0. 474± 1. 371	0. 579± 0. 080	0. 814± 0. 436	1. 490± 0. 446
100 ppm	20	29. 1± 4. 4	0. 052± 0. 015	0. 249± 0. 326	0. 587± 0. 113	0. 767± 0. 228	1. 683 ± 0. 952
mqq 000	26	26. 2± 3. 5	0.051 ± 0.013	0. 240± 0. 529	0. 598± 0. 097	0.894± 0.367	2. 003 ± 1. 267
0000 ppm	31	20. 7± 2. 9**	0. 057± 0. 011	0.191± 0.369	0. 739± 0. 133**	1. 004± 0. 210**	3. 061 ± 4. 222**

PAGE: 3

(HCL042) BAIS 5

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)

SURVIVAL ANIMALS (105W)

	Animals		LIVER	BRAIN	
l	25	0. 603± 0. 432	4. 830 ± 0. 796	1. 729± 0. 241	· ·
1	23	0. 003 <u> </u>	4. 030 ± 0. 790	1. 129± 0. 241	
m .	20	1. 022± 1. 683	5. 756 ± 3. 288	1. 650± 0. 241	
pm	26	0. 622± 0. 367	5. 525± 1. 237*	1.796± 0.224	
ppm	31	0. 641± 0. 699	6. 757± 2. 165**	2. 179± 0. 277**	
					enantaminetaminet (versionetius et al. 1914)

(HCL042) BAIS 5

TABLE L 1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 1

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	200 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{ ntegumenta	ry system/appandage)				
skin/app	ulcer	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 1 2 0 0 (2) (4) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	erosion	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammation	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)
	squamous cell hyperplasia	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	scab	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)
subcutis	cyst	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	inflammation	0 0 0 0 0 (0) (0)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 2

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50	
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	
{Respiratory	system)					
nasal cavit	inflammatory infiltration	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	
	eosinophilic change:olfactory epithe	elium 11 3 0 0 (22) (6) (0) (0)	13 1 0 0 (26) (2) (0) (0)	17 0 0 0 (34) (0) (0) (0)	24 0 0 0 ** (48) (0) (0) (0)	
	eosinophilic change:respiratory epi	thelium 9 1 0 0 (18) (2) (0) (0)	12 3 2 0 (24) (6) (4) (0)	7 0 0 0 (14) (0) (0) (0)	10 0 0 0 (20) (0) (0) (0)	
	respiratory metaplasia:olfactory ep	thelium 7 0 0 0 0 (14) (0) (0)	12 1 0 0 (24) (2) (0) (0)	12 0 0 0 (24) (0) (0) (0)	11 1 0 0 (22) (2) (0) (0)	
	atrophy:olfactory gland	46 1 0 0 (92) (2) (0) (0)	49 0 0 0 (98) (0) (0) (0)	47 3 0 0 (94) (6) (0) (0)	16 34 0 0 ** (32) (68) (0) (0)	
	atrophy:olfactory epithelium	43 1 0 0 (86) (2) (0) (0)	43 4 0 0 (86) (8) (0) (0)	41 4 0 0 (82) (8) (0) (0)	11 38 1 0 ** (22) (76) (2) (0)	
	exudate:respiratory region	3 0 0 0 (6) (0) (0) (0)	2 0 0 0 (4) (0) (0) (0)	2 0 0 0 (4) (0) (0)	1 0 0 0 0 (2) (0) (0)	
	exudate:olfactory region	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b (c)

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 3

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Respiratory :	system)				
nasal cavit	vacuolic change:olfactory gland	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	respiratory metaplasia:olfactory gland	8 1 0 0 (16) (2) (0) (0)	6 4 0 0 (12) (8) (0) (0)	16 1 0 0 (32) (2) (0) (0)	10 7 0 0 (20) (14) (0) (0)
	respiratory metaplasia:nasal gland	17 3 0 0 (34) (6) (0) (0)	28 4 0 0 (56) (8) (0) (0)	10 14 0 0 ** (20) (28) (0) (0)	22 9 0 0 * (44) (18) (0) (0)
	brown pigment olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	28 1 0 0 ** (56) (2) (0) (0)	2 10 0 0 ** (4) (20) (0) (0)
nasopharynx	exudate	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)
	eosinophilic change	1 0 0 0 (2) (3) (4)	4 1 0 0 (8) (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)	3 2 0 0 (6) (4) (0) (0)
lung	congestion	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE PAGE: 4

		Group Name Control No. of Animals on Study 50	200 ppm ⁻ 50	1000 ppm 50	5000 ppm
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory	system)				
lung	hemorrhage	(50) 1 1 0 0 (2) (2) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)
	edema	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (4) (0) (0)	2 4 0 0 * (4) (8) (0) (0)
	deposit of amyloid	11 0 0 0 (22) (0) (0) (0)	9 0 0 0 0 (18) (0) (0)	16 2 0 0 (32) (4) (0) (0)	11 2 0 0 (22) (4) (0) (0)
	lymphocytic infiltration	0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
	bronchiolar-alveolar cell hyperplasia	2 0 0 0 (4) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
(Hematopoietio	c system)				
bone marrow	decreased hematopolesis	. (50) 5 0 0 0 (10) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	3 0 0 0 (6) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)
	erythropoiesis:increased	5 3 0 0 (10) (6) (0) (0)	3 0 0 0 (6) (0) (0) (0)	2 0 0 0 (4) (0) (0)	3 0 0 0 0 (6) (0) (0)

< a >

b

a : Number of animals examined at the site b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: MALE PAGE: 5 SEX

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	200 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)	1000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoieti	c system)				
bone marrow	granulopoiesis:increased	3 0 0 0 (6) (0) (0) (0)	<pre></pre>	<50> 4 1 0 0 (8) (2) (0) (0)	<50> 3 4 27 0 ** (6) (8) (54) (0)
lymph node	deposit of amyloid	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	lymphadenitis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)
thymus	atrophy	<50> 0 1 1 0 (0) (2) (2) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
spleen	deposit of amyloid	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) (0) (0) (0) (0)	<pre></pre>
	deposit of hemosiderin	2 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	8 0 0 0 (16) (0) (0) (0)
	deposit of melanin	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion (c)

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 6

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50					
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)					
{Hematopoieti	c system)									
spleen	extramedullary hematopoiesis	<50> 10 5 0 0 (20) (10) (0) (0)	<50> 13 7 0 0 (26) (14) (0) (0)	<50> 10 5 0 0 (20) (10) (0) (0)	<50> 8 18 2 0 ** (16) (36) (4) (0)					
	follicular hyperplasia	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)					
{Circulatory :	system)									
heart	thrombus	<50> 0 2 0 0 (0) (4) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)					
	necrosis:focal	1 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)					
	deposit of amyloid	9 0 0 0 0 (18) (0) (0) (0)	7 0 0 0 (14) (0) (0) (0)	12 1 0 0 (24) (2) (0) (0)	8 0 0 0 (16) (0) (0) (0)					
	mineralization	5 0 0 0 (10) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	7 0 0 0 (14) (0) (0) (0)					
	myocardial fibrosis	1 0 0 0 (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)					

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

(c)

a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

(HPT150)

BA1S5

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 7

Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%)	200 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)	1000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Circulatory	/ system)				
heart	arteritis	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 1 0 (0) (0) (2) (0)
{Digestive s	system)				
tooth	dysplasia	<50> 6 28 6 1 (12) (56) (12) (2)	<50> 4 29 6 1 (8) (58) (12) (2)	<50> 5 28 8 1 (10) (56) (16) (2)	<50> 8 20 0 1 * (16) (40) (0) (2)
	inflammation:foreign body	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
tongue	deposit of amyloid	\(\langle 50 > \) 18	<pre></pre>	33 0 0 0 ** (66) (0) (0) (0)	30 0 0 0 * (60) (0) (0) (0)
	arteritis	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)
stomach	deposit of amyloid	<50> 5 0 0 0 (10) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 13 0 0 0 (26) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

SEX : MALE

PAGE: 8 Group Name Control 200 ppm 1000 ppm 5000 ppm

Organ	Findings	No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%) (%)	200 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sy	vstem}				
stomach	hyperplasia:forestomach	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)	(50) 13 0 0 0 ** (26) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	erosion:glandular stomach	5 0 0 0 (10) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	5 0 0 0 (10) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)
	hyperplasia:glandular stomach	15 2 0 0 (30) (4) (0) (0)	22 2 0 0 (44) (4) (0) (0)	25 9 0 0 ** (50) (18) (0) (0)	10 2 0 0 (20) (4) (0) (0)
large intes	deposit of amyloid	<50> 32 1 0 0 (64) (2) (0) (0)	<50> 33 2 0 0 (66) (4) (0) (0)	<50> 26 9 0 0 * (52) (18) (0) (0)	<pre></pre>
	hyperplasia:epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (6) (0) (0)
liver	angiectasis	<50> 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	necrosis:focal	1 0 0 0 0 (2) (2) (3) (4)	1 1 0 0 (2) (2) (0) (0)	2 1 0 0 (4) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion

c:b/a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

b

(c)

BAIS5

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

: MOUSE B6D2F1/Crlj[Crj:BDF1] ANIMAL REPORT TYPE : A1

SEX : MALE

PAGE: 9

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	ystem)				
liver	fatty change	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)
	degeneration:central	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	inflammatory cell nest	5 0 0 0 (10) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)
	extramedullary hematopoiesis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	acidophilic cell focus	3 0 0 0 (6) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
	basophilic cell focus	2 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	2 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0) (0)
	biliary cyst	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b (c) c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 10

Organ		Group Name No. of Animals on Study			200 ppm 50				1000 ppm 50					5000 ppm 50								
	Findings		i + 2 3) (%	+ 3	3+ 6)	4+ (%)	1+ (%)		3-		4+ %)	1+ (%)		2+ (%)	3+ (%)	4+ (%)		1+ (%)			3+ %) 	4+ (%)
{Digestive sys	stem)																					
liver	hepatocellular hypertrophy:central	2 (4	! 0 i) (0	<50> 0 + (0))) (0 0)	2 (4)	0 (0)	50> 0 (0)	(0 0)	5 (10)	(<50 0 0) (> 0 0)	0 (0)	(8 16)	0 (0)	50>	0 0) (0 (0)
pancreas	atrophy	1 (2		<50> 0))) (0 0)	0 (0)	(0 (0)	50> 0 (0)	(0 0)	0 (0)	(<50 0 0) (> 0 0)	0 (0)	(1 2)	(0 (0)	50>	D) (0 (0)
	necrosis:focal	0 (0) 1)) (2)	0 (0))) (0 0)	0 (0)	0 (0)	(0)	{	0 0)	0 (0)	(0 0) (0 0)	0 (0)	{	0 0)	0 (0)	(o o) (0 (0)
(Urinary syste	em)																					
kidney	atrophy	0 (0) 0 (0)	<50> 0 (0))) (0 0)	0 (0)	0 (0)	50> 0 (0)	(0 0)	0 (0)	(<50 0 0) (> 1 2)	0 (0)	(0 0)	(0 (0)	50>)) (0 (0)
	cyst	0 (0) (0)	(0))) (0 0)	0 (0)	0 (0)	0 (0)	(0 0)	0 (0)	(0 0) (0 0)	0 (0)	(2 4)	1 (2)	()))) (0 (0)
	hyaline droplet	1 (2	0 (0)	0)))) (0 0)	1 (2)	0 (0)	0 (0)	(0 0)	0 (0)	(0 0) (0 0)	0 (0)	(1 2)	2 (4)	())) (0 (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

: MOUSE B6D2F1/Crlj[Crj:BDF1] ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 11

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary sy	stem				
kidney	inflammation	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	(50) 0 3 2 0 (0) (6) (4) (0)
	lymphocytic infiltration	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	papillomatous polyp	2 0 0 0 0 (4) (0) (0)	0 1 0 0 (0) (2) (0) (0)	1 1 0 0 (2) (2) (0) (0)	4 3 0 0 (8) (6) (0) (0)
	mineralization:artery	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	hydronephrosis	0 3 6 0 (0) (6) (12) (0)	0 1 1 0	0 1 2 0 (0) (2) (4) (0)	1 8 7 0 (2) (16) (14) (0)
	papillary necrosis	2 0 0 0 (4) (4) (6) (7)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)	4 1 0 0 (8) (2) (0) (0)
	mineralization:papilla	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)
	mineralization:pelvis	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked 4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 12

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Urinary sys	stem)				
kidney	mineralization:cortex	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>
	dilatation:tubular lumen	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)
	urothelial hyperplasia:pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)
	dilated pelvis	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	8 0 0 0 * (16) (0) (0) (0)
	regeneration:renal tubule	3 0 0 0 (6) (7) (7)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammation:pelvis	0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	nephrosclerosis	4 6 1 0 (8) (12) (2) (0)	2 4 1 0 (4) (8) (2) (0)	5 7 4 0 (10) (14) (8) (0)	1 11 2 0 (2) (22) (4) (0)
ureter	inflammation	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site < a >

b : Number of animals with lesion b

⁽c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

		up Name Control of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	em)				
ureter	transitional cell hyperplasia	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
urin bladd	dilatation	<pre></pre>	<50> 0 4 0 0 (0) (8) (0) (0)	<50> 0 3 0 0 (0) (6) (0) (0)	<pre></pre>
	ulcer	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)
	mineralization	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (0) (0)
	inflammation	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 (0) (0)
	simple hyperplasia:transitional epithelium	1 0 0 0 (2) (0) (0) (0)	1 0 0 0 0 (2) (0) (0)	1 0 0 0 (2) (0) (0)	2 0 0 0 (4) (0) (0)
	papillary hyperplasia:transitional epithe	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (4) (0) (0)
	deposit of brown pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	11 0 0 0 *** (22) (0) (0) (0)

Grade < a >

^{1+ :} Slight a : Number of animals examined at the site

^{2+ :} Moderate

^{3+ :} Marked

^{4+ :} Severe

b : Number of animals with lesion b

⁽c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 14

					200 ppm 50				10		5000 ppm 50					
	rade 1	+ 2+	3+	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
em)																
inflammation	1 (2	0 2) (0)	50> 0 (0)	0 (0)	0 (0)	<50 0 (0)	0> 0 (0)	0 (0)	2 (4)	<5 0 (0)	0> 0 (0)	0 (0)	8 (16)	<5 5 (10)	0> 0 (0)	0 **
squamous cell metaplasia:transitional ep	oithelium C) 0)) (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)
steml																
Rathke pouch	2 (4	(0) (0)	50> 0 (0)	0 (0)	1 (2)	<5(0 (0)	0 (0)	0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)
spindle-cell hyperplasia	20 (41	14	0	0 (0)	22 (44)	<50 15 (30)	0 (0)	0 (0)	15 (30)	<5 21 (42)	0> 0 (0)	0 (0)	24 (48)	6	0	0 (0)
necrosis:cortex	0) O	0 (0)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
focal hypertrophy:cortex	0 () 0)) (0)	0 (0)	0 (0)	1 (2)	1 (2)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)	1 (2)	0 (0)	0 (0)	0 (0)
	em) inflammation squamous cell metaplasia:transitional epstem) Rathke pouch spindle-cell hyperplasia necrosis:cortex focal hypertrophy:cortex	em) inflammation squamous cell metaplasia:transitional epithelium (c) stem) Rathke pouch spindle-cell hyperplasia c) (d) necrosis:cortex (d)	No. of Animals on Study Grade 1+ 2+ Findings (%) (%) em) inflammation 1 0 (2) (0) squamous cell metaplasia:transitional epithelium 0 0 (0) (0) stem) Rathke pouch 2 0 (4) (0) spindle-cell hyperplasia 20 14 (41) (29) necrosis:cortex 0 0 (0) (0)	No. of Animals on Study Grade	No. of Animals on Study	No. of Animals on Study 50 Grade 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 2+ 3+ 4+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 2+ 3+ 2+ 3+ 2+ 2+ 3	No. of Animals on Study	No. of Animals on Study 50 50 50 50	No. of Animals on Study	No. of Animals on Study 50 50 50 50 50 50 50 5	No. of Animals on Study	No. of Animals on Study 50 50 50 50 50 50 50 5	No. of Animals on Study 50	No. of Animals on Study 1	No. of Animals on Study 50 50 50 50 50 50 50 5	No. of Animals on Study 50 50 50 50 50 50 50 5

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

ANIMAL MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 15

		Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
{Reproductive	e system)				
testis	atrophy	<50> 5 2 0 0 (10) (4) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)	<50> 5 1 0 0 (10) (2) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)
	mineralization	3 0 0 0 (6) (6) (0) (0)	3 0 0 0 0 (6) (6) (7)	4 0 0 0 0 (8) (0) (0)	1 0 0 0 (2) (0) (0) (0)
epididymis	spermatogenic granuloma	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
prostate	inflammation	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)
prep/cli gl	duct ectasia	<50> 1 3 0 0 (2) (6) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
(Nervous syst	em}				
brain	mineralization	<50> 10 0 0 0 (20) (0) (0) (0)	\(\langle 50 \rangle \) 17	(50) 11 0 0 0 (22) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 16

		Group Name Control No. of Animals on Study 50		200 ppm 50	1000 ppm 50	5000 ppm 50				
)rgan	Findings	Grade 1+ 2+	3+ 4+ (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)				
(Nervous sys	tem)									
orain	gliosis	<50> 0 0 (0) (0) (0 0 0 0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>				
Special sen	se organs/appendage)									
ye	phthisis bulbi	<50> 0 0 (0) (0) (0 0 0) (0)	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)				
arder gl	deposit of pigment	<50> 1 0 (2) (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<50> 4 0 0 0 (8) (0) (0) (0)	\$50> 3 1 0 0 (6) (2) (0) (0)	<pre></pre>				
	hyperplasia	0 0 (0) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)				
	fibrosis:focal	0 0 (0) (0 0	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)				
solacr d	inflammatory infiltration	<50> 0 0 (0) (0) (0 0	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)				

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 17

		Froup Name To. of Animals on Stud		ntrol 50				2	00 р	pm 50				10	q 000	pm 50				5	000 pr	m O		
)rgan		irade	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2 (%	+	3+ (%)	4+ (%)		1+ (%)	2+ (%)		+	4+ (%)		1+ (%)		3+ (%)		4+ (%)
Musculoskel	etal system)																							
uscle	mineralization	(1 2) (<50 0 0) () 0 0)	0 (0)	(0 (0)	(0	<50>) (0 0)	0 (0)	(0 0)	(0)	50> 0 (0)) (0 0)	(0 0)	(0)	0> 0 (0)	(0 0)
ody caviti	es)																							
ritoneum	inflammation	(0 0) (<50 0 0) (> 0 0)	0 (0)	(1 2)	(0	<50>) (0 0)	0 (0)	(0 0)	0 (0)	50> 0 (0)) (0 0)	(0 0)	0 (0)	0> 0 (0)	(0 0)
	arteritis	(0 0) (0 0) (0 0)	0 (0)	(0 0)	(0) (0 0)	0 (0)	(0 0)	0 (0)	(0)) (0 0)	(1 2)	0 (0)	0 (0)	(0 0)
irade (a > b (c)	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b/a * 100	Marked 4+ : Se e	vere	***************************************		***************************************														***************************************				monance

(HPT150)

BAIS5

TABLE L 2

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		roup Name Control o. of Animals on Study 19	200 ppm 17	1000 ppm 13	5000 ppm 40
Organ		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{ ntegumenta	ary system/appandagel				
skin/app	ulcer	<19> 0 1 0 0 (0) (5) (0) (0)	<17> 1 1 0 0 (6) (6) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	erosion	1 0 0 0 (5) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	ínflammation	0 1 0 0 (5) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (3) (0) (0)
subcutis	cyst	<19> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<17> 0 0 0 0 0 0 0 0 0 0 0	<13> 0 1 0 0 (0) (8) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0 0
{Respiratory	y system)				
nasal cavit	eosinophilic change:olfactory epitheliu	(19) 11 4 2 0 0 (21) (11) (0) (0)	3 0 0 0 (18) (0) (0) (0)	3 0 0 0 (23) (0) (0) (0)	<40> 18 0 0 0 * (45) (0) (0) (0)
Grade <a>> b (c) Significant	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX

: MALE PAGE: 2

		Group Name	ame Control Animals on Study 19			200 ppm 17			1000 ppm 13					5000 ppm 40															
Organ	Findings	Grade	1+ (%)	2÷ (%)	ŀ	3+ (%)		4+ (%)	1 (%		2+ (%)		3+ (%)		4+ %)		1+ %)	2+ (%)		3+ (%)	(9	4+ %)	(5	1+ %)	2- (%)	+	3+ (%)	(%	4+ %)
(Respiratory s	system)																												
nasal cavit	eosinophilic change:respiratory epit	nelium (1 5)	0	(19>	0	(0 0)	3 (18) ((1 6)	17>	0 0)	(0 0)	()) (0 0)	(13>	0 0)	(()))		9 3) (0		0 0 0)	((
	respiratory metaplasia:olfactory epi	thelium (1 5)	0 (0)		0 0)	(0 0)	3 (18) (1 6)	(0 0)	(0 0)	(2	3 3) (0 0)	(0 0)	(()))	(1!	5 5) (1 (3)	i (0 0)	(()))
	atrophy:olfactory gland	(17 89)	(0)		0 0)	(0 0)	17 (100) (0 0)	(0 0)	(0 0)	1(7) 7) (3 23)	(0 0)	(()))	13 (33	3 3) (27 (68)	ı (0 0)) **))
	atrophy:olfactory epithelium	(16 84)	0 (0)		0 0)		0 0)	16 (94) (1 6)	(0 0)	(0 0)	(6:	9 9) (3 23)	(0 0)	(()))		4 0) (35 (88)		1 3)) **))
	exudate:respiratory region	(0 0)	0 (0)	(0 0)	(0 0)	1 (6)	(0 0)	(0 0)	(0 0)	())) (0 0)	(0 0)	(()))	(;	1 3) (0 (0)	(0 0)	(0)))
	exudate:olfactory region	(0 0)	0 (0)	(0 0)		0 0)	(0)	(0 0)	(0 0)	(0 0)	((I 3) (0 0)	(0 0)	(()))	(())) (0 (0)	(0 0)	(0)))
	vacuolic change:olfactory gland	(0 0)	0 (0)	(0 0)	(0 0)	(0)	(0 0)	{	0 0)	(0 0)	(())) (0 0)	(0 0)	(0)))			31 (78)		1 3)) **))
	respiratory metaplasia:olfactory glan		3 16)	0 (0)	(0 0)		0 0)	3 (18)		1 6)	(0 0)		0 0)	(1!	<u>?</u> 5) (0 0)	(0 0)	(0))}	8 (20		7 (18)	(0 0)	(0)))

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site b : Number of animals with lesion

b

(c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

< a >

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE SEX

PAGE: 3

Organ	Findings	Group Name Control No. of Animals on Study 19 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	200 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1000 ppm 13 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Respiratory :	systemi				
nasal cavit	respiratory metaplasia:nasal gland	<19> 5 0 0 0 (26) (0) (0) (0)	<17> 9 2 0 0 * (53) (12) (0) (0)	<13> 3 4 0 0 * (23) (31) (0) (0)	<pre></pre>
	brown pigment olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (15) (0) (0)	2 0 0 0 (5) (6) (6)
nasopharynx	eosinophilic change	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 1 0 0 0 (6) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	3 1 0 0 (8) (3) (0) (0)
lung	congestion	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<0><40> 2 0 0 0 (5) (0) (0) (0)
	hemorrhage	1 1 0 0 (5) (5) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0)
	edema	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (15) (0) (0)	2 4 0 0 (5) (10) (0) (0)
	deposit of amyloid	1 0 0 0 (5) (0) (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	1 0 0 0 0 (8) (0) (0)	6 1 0 0 (15) (3) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 4

		Group Name Control No. of Animals on Study 19 Grade 1+ 2+ 3+ 4+	200 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1000 ppm 13 1+ 2+ 3+ 4+	5000 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Organ	Findings	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
(Hematopoieti	c system)				
bone marrow	decreased hematopoiesis	<19> 4 0 0 0 (21) (0) (0) (0)	3 0 0 0 (18) (0) (0) (0)	3 0 0 0 (23) (0) (0) (0)	<40> 1 0 0 0 (3) (0) (0) (0)
	erythropoiesis:increased	5 3 0 0 (26) (16) (0) (0)	1 0 0 0 *	0 0 0 0 *	3 0 0 0 ***
	granulopoiesis:increased	2 0 0 0 (11) (0) (0)	0 1 1 0 (0) (6) (6) (0)	2 1 0 0 (15) (8) (0) (0)	2 3 26 0 ** (5) (8) (65) (0)
lymph node	lymphadenitis	(19) 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 0 1 0 0 (0) (3) (0) (0)
thymus	atrophy	<19> 0 1 1 0 (0) (5) (5) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 0 0 0 0 0 0 0 0 0
spleen	deposit of amyloid	(19) 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<pre></pre>
	deposit of hemosiderin	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 0 (8) (0) (0)

Grade < a >

1+ : Slight

2+ : Moderate

3+ : Marked

a : Number of animals examined at the site

b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

4+ : Severe

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 19 Grade 1+ 2+ 3+ 4+	200 ppm 17 1+ 2+ 3+ 4+	1000 ppm 13 1+ 2+ 3+ 4+	5000 ppm 40 1+ 2+ 3+ 4+
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%)
(Hematopoieti	c system)				
spleen	deposit of melanin	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 1 0 0 0 (3) (0) (0) (0)
	extramedullary hematopoiesis	6 4 0 0 (32) (21) (0) (0)	6 5 0 0 (35) (29) (0) (0)	2 4 0 0 (15) (31) (0) (0)	5 18 2 0 (13) (45) (5) (0)
{Circulatory	system)				
heart	thrombus	<19> 0 2 0 0 (0) (11) (0) (0)	(17) 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
	necrosis:focal	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	2 0 0 0 0 (12) (0) (0) (0)	1 0 0 0 0 (8) (0) (0) (0)	4 0 0 0 (10) (10) (10)
	mineralization	5 0 0 0 (26) (0) (0) (0)	1 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)	7 0 0 0 (18) (0) (0) (0)
	myocardial fibrosis	1 0 0 0 0 (5) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (0) (0)

4+ : Severe

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 6

		Group Name Control No. of Animals on Study 19	200 ppm 17	1000 ppm 13	5000 ppm 40		
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)		
(Circulatory	y systeml						
heart	arteritis	(19) 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)	<pre></pre>		
(Digestive s	system)						
tooth	dysplasia	<19> 1 8 3 0 (5) (42) (16) (0)	<17> 1 6 1 0 (6) (35) (6) (0)	<13> 1 5 3 0 (8) (38) (23) (0)	<pre></pre>		
	inflammation:foreign body	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (8) (0) (0)	0 0 0 0 0 (0) (0)		
tongue	deposit of amyloid	<19> 5 0 0 0 (26) (0) (0) (0)	<17> 4 0 0 0 (24) (0) (0) (0)	6 0 0 0 (46) (0) (0) (0)	20 0 0 0 (50) (0) (0) (0)		
	arteritis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0) (0)		
stomach	deposit of amyloid	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 2 0 0 0 (5) (0) (0) (0)		

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\(a \)
 \(b \)
 \(a \)

b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 7

		Group Name Contr No. of Animals on Study	ol 19			20	ngq 0(n I 7		10	10 pg	om I 3		50	00 pp:		
)rgan	Findings		2+ ;	3+ %)	4+ (%)	1+ (%)	2+ (%)		4+ (%)	1+ (%)	2+ (%)		4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
Digestive sy	stem)																
stomach	erosion:glandular stomach	0 (<19>) ()) (0 0) (0 0)	0 (0)	<1 0 (0)	0 (0)	0 (0)	0 (0)	0) (0 (0)	0 (0)	1 (3) (0 0 0)	0> 0 (0)	0 (0)
	hyperplasia:glandular stomach	2 ((11) (() ()) ((0 0) (0 0)	3 (18)	0 (0)	0 (0)	0 (0)	3 (23)	0 0)	0 (0)	0 (0)	(10) (0 0)	0 (0)	0 (0)
arge intes	deposit of amyloid	4 1 (21) (5	<19> (5) ((0 0) (0 0)	4 (24)	<1 0 (0)	7> 0 (0)	0 (0)	1 (8) ((° 0 0)	0 (0)	0 (0)	8 (20) (<4 2 5)	0> 0 (0)	0 (0)
	hyperplasia:epithelium	0 () ()) ((0 0) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	3 (8) (0 0)	0 (0)	(0)
liver	angiectasis	0 (<19>) (O O) (0 0)	0 (0)	<1 0 (0)	7> 0 (0)	0 (0)	1 (8) (0 0 0)	0 (0)	0 (0)	0 (0) (<40 0 0)	0> 0 (0)	0 (0)
	necrosis:focal	1 0 (5) (0) ()) ((D D) (0 0)	1 (6)	0 (0)	0 (0)	0 (0)	2 (15) (0 0)	0 (0)	0 (0)	1 (3) (0 0)	0 (0)	(0)
	deposit of amyloid	0 0) (D) (0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	1 (3) (0 0)	0 (0)	0 (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

⁽a) a: Number of animals examined at the site

b b: Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 8

		Group Name Control No. of Animals on Study 19	200 ppm 17	1000 ppm 13	5000 ppm 40
)rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive sy	stem)				
liver	degeneration:central	(19) 1 1 0 0 (5) (5) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	<13> 0 1 0 0 (0) (8) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
	basophilic cell focus	0 0 0 0 0 (0) (0)	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Urinary syste	em}				
cidney	cyst	(19) 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<13> 0 0 0 0 (0) (0) (0) (0)	(40) 1 0 0 0 (3) (0) (0) (0)
	hyaline droplet	. (0) (0) (0) (0)	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	1 2 0 0 (3) (5) (0) (0)
	inflammation	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 3 2 0 (0) (8) (5) (0)
	lymphocytic infiltration	0 1 0 0 (0) (5) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	papillomatous polyp	2 0 0 0 0 (11) (0) (0) (0)	0 1 0 0	0 0 0 0 0 (0) (0)	1 3 0 0 (3) (8) (0) (0)

b : Number of animals with lesion b c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE PAGE: 9

	Group Name Control	200 ppm	1000 ppm	5000 ppm 40
Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
eml				
mineralization:artery	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 0 1 0 0 (0) (6) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
hydronephrosis	0 3 6 0 (0) (16) (32) (0)	0 0 1 0 *	0 0 1 0 (0) (8) (0)	0 6 5 0 (0) (15) (13) (0)
papillary necrosis	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	3 1 0 0 (8) (3) (0) (0)
mineralization:papilla	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
mineralization:cortex	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (8) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
dilatation:tubular lumen	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (8) (0) (0)	0 0 0 0 0 (0) (0)
dilated pelvis	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	7 0 0 0 (18) (0) (0) (0)
regeneration:renal tubule	0 0 0 0 0 (0) (0)	1 0 0 0 0 (6) (6) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	em) mineralization:artery hydronephrosis papillary necrosis mineralization:papilla mineralization:cortex dilatation:tubular lumen dilated pelvis	No. of Animals on Study Grade	No. of Animals on Study 19	No. of Animals on Study

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100 Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: MALE

PAGE: 10

		Group Name C No. of Animals on Study	Control 19				200	ppm 17					00 ppm 13				5	000 pp 4		
Organ		Grade 1+ (%)	2+ (%)	3+ (%)	4+ (%)	1 (%)	+) (2+ %)	3+ (%)	4+ (%)	1 (%)	+) ———	2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	3+ (%)	4+ (%)
{Urinary syste	em)																			
kidney	nephrosclerosis	2 (11)	<19> 1 (5) (0 0) (0 ()	0 (0)	(<17> 1 6) (0 0)	0 (0)	1 (8)) (<13 1 8) (> 1 8)	0 (0)	(1 3)	<4 7 (18)	0> 0 (0)	0 (0)
ureter	inflammation	0 (0)	<19> 0 (0) (0	0 0)	0 (0)	(<17> 0 0) (0 ()	0 (0)	0 (0)) (<13 0 0) (> 0 0)	0 (0)	(1 3)	<4 0 (0)	0> 0 (0)	0 (0)
urin bladd	dilatation	0 (0)	<19> 1 (5) (0	0 0)	0 (0)	(2	<17> 4 4) (0 0)	0 (0)	0 (0)) (<13 3 23) (> 0 0)	0 (0)	(2 5)	<4 24 (60)	0> 0 (0)	0 ** (0)
	ulcer	0 (0)	0 (0) (0 0) (0 0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)) (0 0) (0 0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)
	mineralization	0 (0)	0 (0) (0 0) (0 0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)) {	0 0) (0 0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)
	inflammation	(0)	0 (0) (0 0) (0 0)	1 (6)	(0 0) (0 0)	0 (0)	0 (0)) (0 0) (0 0)	0 (0)	{	0 0)	0 (0)	0 (0)	0 (0)
	simple hyperplasia:transitional epithe	lium 1 (5)	0 (0) (0 0) (0 0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)) (0 0) (0 0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b: Number of animals with lesion

(c) c:b/a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 11

	Group Name No. of Anima	Control As on Study 19	200 ppm 17	1000 ppm 13	5000 ppm 40
Organ	Findings	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	t em)				
urin bladd	papillary hyperplasia:transitional epithelium	<19> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<17> 0 0 0 0 0 0 (0) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 2 0 0 0 (5) (0) (0) (0)
	deposit of brown pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	5 0 0 0 (13) (0) (0) (0)
urethra	inflammation	<19> 1 0 0 0 (5) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	<13> 2 0 0 0 (15) (0) (0) (0)	<40> 8 5 0 0 (20) (13) (0) (0)
	squamous cell metaplasia:transitional epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
(Endocrine sy	rstem)				
adrenal	spindle-cell hyperplasia	<19> 8 2 0 0 (42) (11) (0) (0)	<17> 7 5 0 0 (41) (29) (0) (0)	<13> 5 2 0 0 (38) (15) (0) (0)	\(\langle 40 \rangle \) 19
	necrosis:cortex	0 0 0 0 (0) (0) (0) (0)	0 0 1 0 (0) (0) (6) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)

(c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

STUDY NO. : 0760 ANIMAL : MOUSE

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 19	200 ppm 17	1000 ppm 13	5000 ppm 40
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Endocrine s	ysteml				
adrenal	focal hypertrophy:cortex	0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	\(\langle 40 \rangle \) 1
(Reproductive	e system)				
testis	atrophy	<19> 0 1 0 0 (0) (5) (0) (0)	<17> 0 0 0 0 (0) (0) (0) (0)	<13> 1 0 0 0 (8) (0) (0) (0)	<40> 1 0 0 0 (3) (0) (0) (0)
	mineralization	0 0 0 0 0 (0) (0)	1 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
epididymis	spermatogenic granuloma	19> 1 0 0 0 (5) (0) (0) (0)	<17> 1 0 0 0 (6) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)	(40) 0 1 0 0 (0) (3) (0) (0)
prostate	inflammation	<19> 1 0 0 0 (5) (0) (0) (0)	<17> 1 0 0 0 (6) (0) (0) (0)	<13> 0 0 0 0 (0) (0) (0) (0)	4 0 0 0 (10) (0) (0) (0)
(Nervous syst	tem)				
brain	mineralization	2 0 0 0 (11) (0) (0) (0)	<pre></pre>	2 0 0 0 (15) (0) (0) (0)	6 0 0 0 (15) (0) (0) (0)
<a>> b (c)	1+: Slight 2+: Moderate a: Number of animals examined al b: Number of animals with lesior c: b / a * 100 difference; *: P ≤ 0.05 **	п		·	

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

Organ	Findings	Group Name Control No. of Animals on Study 19 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	200 ppm 17 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1000 ppm 13 1+ 2+ 3+ 4+ (%) (%) (%) (%)	5000 ppm 40 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Nervous syst	em)				
brain	gliosis	0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0 0 0 0	(13) 0 0 0 0 (0) (0) (0) (0)	<40> 1 0 0 0 (3) (0) (0) (0)
{Special sens	e organs/appendage)				
eye	phthisis bulbi	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 0 0 0 0 0 0 0 0 0	<13> 0 1 0 0 (0) (8) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
Harder gl	deposit of pigment	<19> 0 0 0 0 (0) (0) (0) (0)	<17> 2 0 0 0 (12) (0) (0) (0)	<13> 1 1 0 0 (8) (8) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
(Musculoskele	tal system)				
muscle	mineralization	\(\langle 19 \rangle \) \(1 0 0 \\ (5) (0) (0) (0) \)	<17> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<13> 0 0 0 0 (0) (0) (0) (0)	<40> 0 0 0 0 (0) (0) (0) (0)
(Body cavities	sl				
peritoneum	inflammation	<19> 0 0 0 0 (0) (0) (0) (0)	(17) 1 0 0 0 (6) (0) (0) (0)	(13) 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
<pre>d > b (c)</pre>	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the si b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY)
DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animal	No. of Animals on Study 19					maq 009 1				1000 r	op m 13			5000 ppm 40			
rgan	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)				1+ 6) 	1+ (%)	2: (%)		4+ (%)
ody caviti	i es)																		
eritoneum			0	<19)>			<1		•	0		(13)		,			(40)	0
	arteritis		(0)	(0)	(0)	0 (0)	(0)	(0)	0 (0)	0 (0)	(0)	(0)		0) (()))	(3)	(0)	(0)	(0)
rade a > b	1+ : Slight 2+ : Moderate a : Number of animals examined at th b : Number of animals with lesion c : b / a * 100	3+ : Marked e site	4+ : Severe														BA-3-W-3-W-3-W-3-W-3-W-3-W-3-W-3-W-3-W-3-		
	difference; $*: P \leq 0.05$ **:	P ≦ 0.01 Test	of Chi Square	!															
HPT150)													************						E

TABLE L 3

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

MALE: SACRIFICED ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

		Group Name Control No. of Animals on Study 31	200 ppm 33	1000 ppm 37	5000 ppm 10
rgan	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Integumentar	y system/appandage}				
kin/app	ulcer	<31> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<37> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	squamous cell hyperplasia	2 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	scab	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
ubcutis	inflammation	<31> 0 0 0 0 (0) (0) (0) (0)	<33> 1 1 0 0 (3) (3) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
Respiratory :	system)				
asal cavit	inflammatory infiltration	<31> 0 0 0 0 (0) (0) (0) (0)	<33> 0 0 0 0 (0) (0) (0) (0)	<37> 1 0 0 0 (3) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)
	eosinophilic change:olfactory epithel	7 1 0 0 (23) (3) (0) (0)	10 1 0 0 (30) (3) (0) (0)	14 0 0 0 (38) (0) (0) (0)	6 0 0 0 (60) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe < a > a : Number of animals examined at the site

b: Number of animals with lesion b

⁽c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE

PAGE: 2

	Group Name	Control	200 ppm	1000 ppm	5000 ppm
Organ	No. of Anima Grade Findings	1s on Study 31 1+ 2+ 3+ 4+ (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	37 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Respiratory	system)				
nasal cavit	eosinophilic change:respiratory epithelium	31> 8 1 0 0 (26) (3) (0) (0)	<33> 9 2 2 0 (27) (6) (6) (0)	<37> 7 0 0 0 (19) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)
	respiratory metaplasia:olfactory epithelium	6 0 0 0 (19) (0) (0)	9 0 0 0 (27) (0) (0) (0)	9 0 0 0 0 (24) (0) (0) (0)	5 0 0 0 (50) (0) (0) (0)
	atrophy:olfactory gland	29 1 0 0 (94) (3) (0) (0)	32 0 0 0 (97) (0) (0) (0)	37 0 0 0 (100) (0) (0) (0)	3 7 0 0 ** (30) (70) (0) (0)
	atrophy:olfactory epithelium	27 1 0 0 (87) (3) (0) (0)	27 3 0 0 (82) (9) (0) (0)	32 1 0 0 (86) (3) (0) (0)	7 3 0 0 * (70) (30) (0) (0)
	exudate:respiratory region	3 0 0 0 0 (10) (10) (10)	1 0 0 0 (3) (0) (0)	2 0 0 0 (5) (6) (6)	0 0 0 0 0 (0) (0)
	exudate:olfactory region	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (3) (0) (0)	0 0 0 0 0 (0) (0)
	vacuolic change:olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	4 6 0 0 *** (40) (60) (0) (0)
	respiratory metaplasia:olfactory gland	5 1 0 0 (16) (3) (0) (0)	3 3 0 0 (9) (9) (0) (0)	14 1 0 0 (38) (3) (0) (0)	2 0 0 0 (20) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0760 ANIMAL : MOUSE

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 3

					2				1				Ę			
Findings	Grade 1+		3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+	4+ (%)	1+ (%)	2+ (%)		4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)
system)																
respiratory metaplasia:nasal gland	12 (39)	3	0	0 (0)	19 (58)	<3 2 (6)	3> 0 (0)	0 (0)	7 (19)	<3 10 (27)	(7) 0 (0)	0 (0)		1	0	0 (0)
brown pigment olfactory gland	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	26 (70)	1 (3)	0 (0)	0 **	0 (0)	10 (100)	0 (0)	0 ** (0)
exudate		1	0	0 (0)	0 (0)	<3 1 (3)	3> 0 (0)	0 (0)	0 (0)	<3 0 (0)	0 (0)	0 (0)	0 (0)	1	0	0 (0)
eosinophilic change	1 (3)	0 (0)	0 (0)	0 (0)	3 (9)	1 (3)	0 (0)	0 (0)	2 (5)	1 (3)	0 (0)	0 (0)	0 (0)	1 (10)	0 (0)	0 (0)
deposit of amyloid	10 (32)	0	0	0 (0)	8 (24)	0	0	0 (0)	15 (41)	<3 2 (5)	0 (0)	0 (0)		1	0	0 (0)
lymphocytic infiltration	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (5)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
bronchiolar-alveolar cell hyperplasi		0 (0)	0 (0)	0 (0)	2 (6)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	respiratory metaplasia:nasal gland brown pigment olfactory gland exudate eosinophilic change deposit of amyloid	No. of Animals on Study Grade 1+ Findings (%) Pystem respiratory metaplasia:nasal gland (39) brown pigment olfactory gland (0) exudate (0) eosinophilic change 1 deposit of amyloid (32) lymphocytic infiltration (0) bronchiolar-alveolar cell hyperplasia 2	No. of Animals on Study Grade	No. of Animals on Study Grade	No. of Animals on Study 31 3+ 4+ 4+ 3+ 4+ 4+ 3+ 4+ 4+	No. of Animals on Study 31 1+ 2+ 3+ 4+ 1+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 3+ 4+ 1+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+	No. of Animals on Study 31 3 3 4 1 2 4 3 4 1 2 4 3 4 4 1 2 4 3 4 4 3 4 4 4 4 4	No. of Animals on Study	No. of Animals on Study 31 33 34 4+	No. of Animals on Study	No. of Animals on Study 31 33 33 44 1+ 2+ 3+ 4+ 1+ 2+ 2+ 3+ 4+ 1+ 2+ 2+ 3+ 4+ 1+ 2+ 2+ 3+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+	No. of Animals on Study 31 33 33 37 33 37 33 37 33 37 37 33 37	No. of Animals on Study 31 33 37 37 34 4+ 1+ 2+ 3+ 4+	No. of Animals on Study 31 24 34 44 14 24 34 44 44 44 44 44 4	No. of Animals on Study 31	No. of Animals on Study 31

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

\[
 a \rightarrow
 \]
 a : Number of animals examined at the site

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 4

		Group Name No. of Animals on Study	21	mqq 00	2		10	00 pp:			5000 ppm 10					
Organ	Findings	Grade 1+	2+	31 3+ (%)	4+ {%}	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ 2	+ 3+ 4	
{Hematopoieti	c system)															
bone marrow	decreased hematopolesis	1 (3)		31> 0 (0)	0 (0)	0 (0)	<33 0 (0)	3> 0 (0)	0 (0)	0 (0) (<3° 0 0)	7> 0 (0)	0 (0)	0 (<10> 0 0) (0) (0))))
	erythropolesis:increased	0 (0)	0 (0)	0 (0)	0 (0)	2 (6)	0 (0)	0 (0)	0 (0)	2 (5) (0 0)	0 (0)	0 (0)	0 (0 0)))
	granulopoiesis:increased	1 (3)	0 (0)	0 (0)	0 (0)	1 (3)	0 (0)	3 (9)	0 (0)	2 (5) (0 0)	0 (0)	0 (0)	1 1 (10) (10	1 0) (10) (0))])
lymph node	deposit of amyloid	0 (0)	(0)	31> 0 (0)	0 (0)	0 (0)	<33 0 (0)	3> 0 (0)	0 (0)	0 (0) (<3° 1 3)	7> 0 (0)	0 (0)	0 (<10> 0 0) (0) (0))))
spleen	deposit of hemosiderin	1 (3)	0 (0)	31> 0 (0)	0 (0)	0 (0)	<33 0 (0)	3> 0 (0)	0 (0)	1 (3) (0) 0 <3.	7> 0 (0)	0 (0)	5 0	<10> 0 0) (0) (0)) **))
	deposit of melanin	0 (0)	(0)	0 (0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)	0 (0) (1 3)	0 (0)	0 (0)	0 0	0 0)))
	extramedullary hematopoiesis	4 (13)	1 (3)	0 (0)	0 (0)	7 (21)	2 (6)	0 (0)	0 (0)	8 (22) (1 3)	0 (0)	0 (0)	3 0 (30) (0	0 0)))

Grade 1+: Slight 2+: Moderate 3+: Marked 4+: Severe

 ^{\[} a : Number of animals examined at the site
 \]

b : Number of animals with lesion

⁽c) c:b/a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crli[Cri:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

Group Name 200 ppm 1000 ppm 5000 ppm Control No. of Animals on Study 31 33 37 10 1+ 2+ 3+ 4+ Grade 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 2+ 3+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ____ Findings_ (Hematopoietic system) spleen <31> 1 0 0 0 2 0 0 0 follicular hyperplasia 1 0 0 0 0 0 0 0 (5) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0) (10) (0) (0) (0) (Circulatory system) heart ⟨31⟩ <10> 9 0 0 0 5 0 0 0 11 1 0 0 4 0 0 0 deposit of amyloid (30) (3) (0) (0) (29) (0) (0) (0) (15) (0) (0) (0) (40) (0) (0) (0) myocardial fibrosis 0 0 0 0 0 1 0 0 0 0 0 0 (0)(0)(0)(0) (0) (3) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (Digestive system) tooth <33> dysplasia 5 20 3 1 3 23 5 1 4 23 5 1 (9) (70) (15) (3) (16) (65) (10) (3) (11) (62) (14) (3) (0) (80) (0) (10) inflammation:foreign body (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe < a > a : Number of animals examined at the site b b : Number of animals with lesion c:b/a * 100 Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

5000 ppm Group Name Control 200 ppm mag 0001 No. of Animals on Study 33 37 10 31 2+ 1+ 2+ 3+ 4+ 2+ 3+ 4+ 1+ 2+ 3+ Grade 1+ 3+ Organ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Digestive system) <31> <10> tongue <33> 0 0 0 27 10 0 0 0 ** 0 0 deposit of amyloid (42) (0) (0) (0) (48) (0) (0) (0) (73) (0) (0) (0) (100) (0) (0) (0) arteritis (3) (0) (0) (0) (3) (0) (0) (0) (3) (0) (0) (0) (0)(0)(0)(0) ⟨33⟩ <37> <10> stomach <31> deposit of amyloid 0 0 0 3 0 0 13 0 6 0 0 0 * (16) (0) (0) (0) (9) (0) (0) (0) (35) (0) (0) (0) (60) (0) (0) (0) hyperplasia: forestomach 0 ** 0 0 6 0 0 0 13 0 0 1 (3) (0) (0) (0) (18) (0) (0) (0) (35) (0) (0) (0) (10) (0) (0) (0) 5 0 0 0 erosion:glandular stomach 3 0 0 0 0 0 0 (16) (0) (0) (0) (9) (0) (0) (0) (14) (0) (0) (0) (0)(0)(0)(0) hyperplasia:glandular stomach 13 2 0 0 19 2 0 0 22 9 0 ** 6 2 0 0 (59) (24) (0) (0) (42) (6) (0) (0) (58) (6) (0) (0) (60) (20) (0) (0) large intes ⟨31⟩ ⟨33⟩ <10> 0 * 6 4 0 0 ** deposit of amyloid 0 0 0 29 2 0 9 0 (90) (0) (0) (0) (88) (6) (0) (0) (68) (24) (0) (0) (60) (40) (0) (0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site < a >

b b: Number of animals with lesion

(c) c:b/a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 MALE SEX

ANIMAL

Group Name Control 200 ppm 1000 ppm 5000 ppm No. of Animals on Study 31 33 37 10 1+ 2+ 3+ 4+ 2+ 3+ Grade 1+ 2+ 3+ 4+ 2+ 3+ 1+ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ__ (%) (%) (%) (%) (%) Findings (Digestive system) liver ⟨31⟩ angiectasis 0 0 0 0 0 1 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(3)(0)(0) necrosis:focal 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0) (3) (0) (0) (0) (3) (0) (0) fatty change 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) deposit of amyloid 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(3)(0)(0) (10) (0) (0) (0) inflammatory cell nest 5 0 0 1 0 0 0 0 (16) (0) (0) (0) (15) (0) (0) (0) (14) (0) (0) (0) (10) (0) (0) (0) extramedullary hematopoiesis (0)(0)(0)(0) (0)(3)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) acidophilic cell focus (10) (0) (0) (0) (3) (0) (0) (0) (5) (0) (0) (0) (0)(0)(0)(0) basophilic cell focus 2 0 (6) (0) (0) (0) (6) (0) (0) (0) (5) (0) (0) (0) (0)(0)(0)(0)

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a >

b: Number of animals with lesion b

(c) c : b / a * 100

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Chi Square

(HPT150)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

PAGE: 8

		Group Name Control No. of Animals on Study 31	200 ppm	1000 ppm	5000 ppm 10					
Organ	Findings	No. of Animals on Study 31 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	37 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)					
(Digestive sy	stem)									
liver	biliary cyst	<pre></pre>	33> 0 0 0 0 (0) (0) (0) (0)	37> 1 0 0 0 (3) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)					
	hepatocellular hypertrophy:central	2 0 0 0 (6) (6) (0) (0)	2 0 0 0 (6) (6) (7)	5 0 0 0 (14) (0) (0) (0)	8 0 0 0 *** (80) (0) (0) (0)					
pancreas	atrophy	31> 1 0 0 0 (3) (0) (0) (0)	33> 0 0 0 0 (0) (0) (0) (0)	37> 0 0 0 0 (0) (0) (0) (0)	<10> 1 0 0 0 (10) (0) (0) (0)					
	necrosis:focal	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)					
{Urinary syste	em)									
kidney	atrophy	31> 0 0 0 0 (0) (0) (0) (0)	33> 0 0 0 0 0 0 0 0	37> 0 0 1 0 0 0) (3) (0)	<10> 0 0 0 0 (0) (0) (0) (0)					
	cyst	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 1 0 0 * (10) (10) (0)					

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: MALE

Organ	Findings	Group Name No. of Animals on Stud Grade		ontrol 31 2+ (%)	3+ (%)	4+ (%)	1+	-	ppm 33 2+ (%)	3+ (%)	4+ (%)		1+ (%)	2+ (%)	37	4+ (%)	1+	2+	0	4+ (%)
(Urinary sys	tem}																			
kidney	hyaline droplet	(1 3)	<31 0 (0) (0	0 (0)	0 (0)	(<333 0 0) (> 0 0)	0 (0)	(0 0)	<3 0 (0)	37> 0 (0)	0 (0)	0 (0)		0 (0)	0 (0)
	lymphocytic infiltration	(1 3)	0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	papillomatous polyp	(0 0) (0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(1 3)	1 (3)	0 (0)	0 (0)	3 (30)	0 (0)	0 (0)	0 *
	hydronephrosis	(0 0) (0 (0) (0 (0)	0 (0)	0 (0)	(1 3) (0 0)	0 (0)	(0 0)	1 3)	1 (3)	0 (0)	1 (10)	2 (20)	2 (20)	0 ** (0)
	papillary necrosis	(2 6) (0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)	1 (10)	0 (0)	0 (0)	0 (0)
	mineralization:papilla	(1 3) (0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(0 0)	0 ()	0 (0)	0 (0)	(0)	0 (0)	0 (0)	0 (0)
	mineralization:pelvis	(1 3) (0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(0 0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	mineralization:cortex	(0 0) (0 (0) (0 (0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	(1 3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

< a >

4+ : Severe

b

a : Number of animals examined at the site

b: Number of animals with lesion

c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

ANIMAL

SEX : MALE PAGE: 10

		Group Name Control No. of Animals on Study 31	200 ppm 33	1000 ppm 37	5000 ppm 10
Organ	Findings	Grade 1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	eml				
kidney	urothelial hyperplasia:pelvis	<31> 0 0 0 0 (0) (0) (0) (0)	33> 0 0 0 0 (0) (0) (0) (0)	37> 1 0 0 0 3) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)
	dilated pelvis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (10) (10)
	regeneration:renal tubule	3 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	inflammation:pelvis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	nephrosclerosis	2 5 1 0 (6) (16) (3) (0)	2 3 1 0 (6) (9) (3) (0)	4 6 3 0 (11) (16) (8) (0)	0 4 2 0 (0) (40) (20) (0)
ureter	inflammation	<31> 0 0 0 0 0 0 0 0 0 0 0	33> 0 0 0 0 (0) (0) (0) (0)	37> 0 1 0 0 (0) (3) (0) (0)	<pre></pre>
	transitional cell hyperplasia	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (0) (0)
urin bladd	dilatation	<31> 0 1 0 0 (0) (3) (0) (0)	<pre></pre>	<37> 0 0 0 0 (0) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

< a > b: Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

b

: MOUSE B6D2F1/Crli[Cri:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX : MALE

ANIMAL

5000 ppm Group Name Control 200 ppm 1000 ppm No. of Animals on Study 31 33 37 10 2+ 3+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ 4+ 1+ 2+ 3+ Grade Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ (Urinary system) <31> ⟨33⟩ <10> urin bladd 1 0 0 0 1 0 0 0 1 0 0 0 simple hyperplasia:transitional epithelium 0 0 0 (0)(0)(0)(0) (3) (0) (0) (0) (3) (0) (0) (0) (10) (0) (0) (0) deposit of brown pigment 0 0 0 0 0 0 0 0 6 0 0 0 ** (0)(0)(0)(0) (0)(0)(0)(0) (0) (0) (0) (0) (60) (0) (0) (0) (Endocrine system) pituitary 1 0 0 0 0 0 0 0 Rathke pouch 0 0 0 (3) (0) (0) (0) (0) (0) (0) (0) (0)(0)(0)(0) (6) (0) (0) (0) adrenal <30> ⟨33⟩ 5 2 0 0 15 10 0 0 10 19 0 0 spindle-cell hyperplasia 12 12 0 0 (40) (40) (0) (0) (45) (30) (0) (0) (27) (51) (0) (0) (50) (20) (0) (0) 1 1 0 0 focal hypertrophy:cortex 0 0 0 0 1 0 0 0 0 0 0 0 (0)(0)(0)(0) (3) (0) (0) (0) (0)(0)(0)(0) (3) (3) (0) (0)

⟨31⟩

1 1 0 0

(3) (3) (0) (0)

5 1 0 0

(16) (3) (0) (0)

4+ : Severe

Grade 1+ : Slight 2+ : Moderate 3+ : Marked

< a > a : Number of animals examined at the site

h b: Number of animals with lesion

atrophy

(c) c:b/a * 100

(Reproductive system)

Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Chi Square

testis

1 0 0 0

(10) (0) (0) (0)

4 1 0 0

(11) (3) (0) (0)

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : MALE SEX

		Group Name Control	200 ppm	1000 ppm 37	5000 ppm					
Organ	Findings	No. of Animals on Study 31 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	33 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	10 1+ 2+ 3+ 4+ (%) (%) (%) (%)					
{Reproductive	system)									
testis	mineralization	3 0 0 0 (10) (0) (0) (0)	<33> 2 0 0 0 (6) (0) (0) (0)	<37> 4 0 0 0 (11) (0) (0) (0)	(10) 1 0 0 0 (10) (0) (0) (0)					
epididymis	spermatogenic granuloma	31> 0 0 0 0 (0) (0) (0) (0)	33> 1 0 0 0 (3) (0) (0) (0)	37> 0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)					
prep/cli gl	duct ectasia	(31) 1 3 0 0 (3) (10) (0) (0)	33> 0 0 0 0 (0) (0) (0) (0)	<37> 0 0 0 0 (0) (0) (0) (0)	(10) 0 0 0 0 (0) (0) (0) (0)					
(Nervous syste	em}									
brain	mineralization	31> 8 0 0 0 (26) (0) (0) (0)	<33> 12 0 0 0 (36) (0) (0) (0)	37> 9 0 0 0 (24) (0) (0) (0)	<10> 0 0 0 0 (0) (0) (0) (0)					
(Special sense	e organs/appendage									
Harder gl	deposit of pigment	<31> 1 0 0 0 (3) (0) (0) (0)	<pre></pre>	<pre></pre>	0 0 0 0 (0) (0) (0) (0)					

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : MALE

		Group Name No. of Animals on Study						200 ppm 33							1000 ppm 37						5000 ppm 10						
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)			1 (%	+	2+ (%)	3 (%		4+ (%)		1+ (%)	(5	2+	3+ (%)		4+ %) 		1+ (%)		2+ (%)	3 (%		4+ (%)
{Special sense	e organs/appendage)																										
Harder gl	hyperplasia		0 0) (<31 0 0) (> 0 (0)	(0		0 (0) (0	33> 0 (0) (0 0)	(0 0)	(;	<37; I 3) () 0 0)	(0 0)	(0 0)	(<11 0 0)	0> 0 (0) (0 0)
	fibrosis:focal		0 0) (0 0) (0 (0)	0)		0 (0	;) (0 0)	0)) (0 0)	(1 3)	(())) (0 0)	{ (0 0)	(0 0)	(0 0)	0 () (0 0)
nasolacr d	inflammatory infiltration		0 0) (<31 0 0) (> 0 (0)	0 (0		1 (3) ((3 0 0)	33> 0 (0) (0 0)	(0 0)	((<37:)) (((0 0)	(0 0)	(<10 0 0)	0> 0 (0) (0 0)

a : Number of animals examined at the site

< a >

b: Number of animals with lesion c: b / a * 100

(c)

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

TABLE L 4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: ALL ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 18

		up Name Con of Animals on Study	trol 49			4	00 pp	om 50			2	000	ppm 50				1	0000	opm 50		
)rgan	Findings	de 1+	2+	3+ (%)	4+ (%)	1+ (%)	2+ (%)	ŀ	3+ (%)	4+ (%)	1+		2+	3+ (%)	4+ (%)		1+ (%)	2+ (%)			4+ (%)
Integumentar	y system/appandage)																				
skin/app	ulcer	0 (0) (<49> 1 2) (0 (0 0)	0 (0)	0 (0)	(50>	0 0) (0 0)	0 (0)	((<50> 0 0) (0 0)	0 (0)	(0 0)	<br 0 (0)	50> 0 (0) (0 0)
subcutis	inflammation	1 (2) (<49> 0 0) (0 0) (0 0)	0 (0)	0 (0)	(50>	0 0) (0 0)	0 (0)	((<50>))) (0 0)	0 (0)	(0 0)	<br 0 (0)	50> 0 (0) (0
Respiratory	system)																				
asal cavit	inflammatory infiltration	(0) (<49> 0 0) (0 0) (0 0)	1 (2)	0 (0)	(50>	0 0) (0 0)	0 (0)	((<50>))) (0 0)	0 (0)	(0 0)	(0) (0)	60> 0 (0) (0 0)
	eosinophilic change:olfactory epithelium	9 (18) (0 0) (0 0)	6 (12)	1 (2)	((0 0) (0 0)	4 (8)	(())) (0 0)	0 (0)	(;	19 38)	2 (4)	0 (0) (0 0)
	eosinophilic change:respiratory epithelium	n 27 (55) (0 0) (0 0)	32 (64)	2 (4)	((0 0) (0 0)	25 (50)	(12	6 2) (0 0)	0 (0)	(4	24 48)	8 (16)	0		0 0)
	inflammation:foreign body	1 (2) (0 (0 0) (0 0)	0 (0)	0 (0)	((0 0) (0 0)	0 (0)	(0))) (0 0)	0 (0)	(0 0)	0 (0)	0) (0 0)

< a > a : Number of animals examined at the site b

b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BAIS5

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX PAGE: 19

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ (%) (%) (%)	4+ 1+ 2+ 3+ (%) (%) (%) (%)	4+ 1+ 2+ 3+ 4 (%) (%) (%) (%) (%)	+ 1+ 2+ 3+ 4+
(Respiratory s	system)				
nasal cavit	respiratory metaplasia:olfactory epi	(49) thelium 8 1 0 (16) (2) (0)	(0) (18) (0) (0) (0 7 1 0 0 0 (14) (2) (0) (0	
	atrophy:olfactory gland	46 2 0 (94) (4) (0)		0 30 18 0 0 0) (60) (36) (0) (0	** 8 42 0 0 **) (16) (84) (0) (0)
	erosion:transitional epithelium	1 0 0 (2) (0) (0)	0 0 0 0 (0) (0) (0 0 0 0 0	0 0 0 0 0 (0) (0) (0)
	atrophy:olfactory epithelium	34 3 0 (69) (6) (0)	0 35 6 0 (0) (70) (12) (0) (0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	exudate:respiratory region	10 0 0 (20) (0) (0)	0 10 0 0 (0) (20) (0) (0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	exudate:olfactory region	2 1 0 (4) (2) (0)	0 0 0 0 0 (0) (0) (0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)
	vacuolic change:olfactory gland	0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0 29 0 0 0 0) (58) (0) (0) (0)	** 22 26 0 0 ** (44) (52) (0) (0)
	respiratory metaplasia:olfactory glad	1 0 0 (2) (0) (0)	0 2 0 0 (4) (0) (0) (0 3 0 0 0	

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b (c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 20

		Group Name Control No. of Animals on Study 49)	400 ppm 50	2000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ (%) (%)	3+ 4+ (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Respiratory s	systeml					
nasal cavit	respiratory metaplasia:nasal gland	<49 8 2 (16) (4) (0 0	(50) 13 2 0 0 (26) (4) (0) (0)	<50> 16 7 0 0 * (32) (14) (0) (0)	<pre></pre>
	brown pigment olfactory gland	0 0 (0) (0 0	0 0 0 0 0 (0) (0)	25 2 0 0 ** (50) (4) (0) (0)	22 14 0 0 ** (44) (28) (0) (0)
nasopharynx	vacuolic change	(49 0 0 (0) (0) (0 0 (0) (0)	(50) 0 1 0 0 (0) (2) (0) (0)	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)
	eosinophilic change	1 2 (2) (4) (0 0	2 0 0 0 0 (4) (0) (0) (0)	5 1 0 0 (10) (2) (0) (0)	3 3 0 0 (6) (6) (0) (0)
lung	congestion	<49 0 0 (0) (0) (0 0	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	\(\langle 50 \rangle \) 1
	hemorrhage	0 0 (0) (0 0	0 1 0 0 (0) (2) (0) (0)	1 0 0 0 0 (2) (0) (0)	0 1 0 0 (0) (2) (0) (0)
	deposit of amyloid	10 0 (20) (0) (0 0	9 0 0 0 0 (18) (0) (0) (0)	14 0 0 0 (28) (0) (0) (0)	23 4 0 0 *** (46) (8) (0) (0)

Grade < a > 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 21

		Group Name No. of Animals on Study	Cont	49			4	400 p	50				20		50				1/		50			
)rgan	Findings	Grade 1 	+	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2 (%	(+ ()	3+ (%)	4+ (%)		1+ %)	2+ (%)	3 (%	+) (4+ %)		1+ (%)	2+ (%)	r	3+ (%)		4+ (%)
Respiratory s	ystem)																							
ung	lymphocytic infiltration	1 (2) (<49) 0 0) (0	0 (0)	0 (0)	0)	<50> 1 1) {	0 0)	0 (0)	(0 0) (0 0)	50> 0 (0) (0 0)	(0 0)	0 (0)	(50> (0 0)	(0
	bronchiolar-alveolar cell hyperplasia	0 (0) (0 0) (0 0)	0 (0)	0 (0)	(0) (0 0)	0 (0)	(1 2) (0 0)	0 (0) (0 0)	(1 2)	0 (0)	(0 0)	(0
Hematopoietic	system)																							
one marrow	decreased hematopolesis	4 (8		<49) 1 2) (> 0 0)	0 (0)	7 (14)	0)	<50>) (0 0)	0 (0)	(4 8) (2 4)	50> 0 (0) {	0 0) .	(3 6)	1 (2)	(50> (0 0)	(0
	erythropoiesis:increased	2 (4) (3 6) (0 0)	0 (0)	4 (8)	1 (2) (0 0)	0 (0)	(2 4) (1 2)	0 (0) (0 0)	(1 2)	2 (4)	(0 0)	(0 0)
	granulopoiesis:increased	0 (. 0)) {	0 0) (2 4)	0 (0)	1 (2)	(0) (0 0)	0 (0)	(0 0) (0 0)	(0) (0 0)	(0 0)	0 (0)	(0 0)	(0 0)
pleen	atrophy	0 (0)) ()	<48) 0 0) (0	0 (0)	0 (0)	2 (4	<50>) (1 2)	0 (0)	(o o) (<br 2 4)	io> 0 (0	(0 0)	(0 0)	1 (2)	(50> (0 0)	(0 0)

< a > b

(c)

b : Number of animals with lesion c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 22

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoieti	c system)				
spleen	deposit of hemosiderin	<48> 6 0 0 0 (13) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	\(\langle 50 \rangle \) 13	<50> 27 3 0 0 ** (54) (6) (0) (0)
	deposit of melanin	3 0 0 0 0 (6) (6) (7)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (2) (3) (4)
	extramedullary hematopoiesis	6 11 1 0 (13) (23) (2) (0)	12 11 0 0 (24) (22) (0) (0)	14 13 0 0 (28) (26) (0) (0)	26 12 0 0 ** (52) (24) (0) (0)
	follicular hyperplasia	2 0 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (7)	1 1 0 0 (2) (2) (0) (0)	0 0 0 0 0 (0) (0)
{Circulatory	system)				
heart	thrombus	<49> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 1 0 (0) (2) (2) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
	deposit of amyloid	13 0 0 0 (27) (0) (0) (0)	15 1 0 0 (30) (2) (0) (0)	14 0 0 0 (28) (0) (0) (0)	15 0 0 0 (30) (0) (0) (0)
	mineralization	3 0 0 0 0 (0)	1 1 0 0 (2) (2) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	2 0 0 0 (4) (6) (6)

Grade

1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL. : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 23

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4	1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Circulator	y system)				
heart	inflammatory infiltration	(49) 0 0 0 0 (0) (0) (0) (0	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)
	myocardial fibrosis	1 0 0 0 (2) (0) (0) (0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (2) (3) (4) (5)
	arteritis	0 1 0 0 (0) (2) (0) (0	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
(Digestive	system)				
tooth	dysplasia	<49> 12 1 0 1 (24) (2) (0) (2	\(\langle 50 \rangle \) 17	<50> 18 3 0 1 (36) (6) (0) (2)	<50> 19 1 0 0 (38) (2) (0) (0)
tongue	ulcer	<pre></pre>	<pre></pre>	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	deposit of amyloid	22 0 0 0 (45)(0)(0)(0)	31 0 0 0 (62) (0) (0) (0)	35 0 0 0 * (70) (0) (0)	43 0 0 0 ** (86) (0) (0) (0)

< a > b

a : Number of animals examined at the site

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
rgan	Findings	Grade 1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
Digestive sy	stem)				
ongue	mineralization	<49> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	arteritis	1 1 0 0 (2) (2) (0) (0)	1 0 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
stomach	deposit of amyloid	(49) 1 0 0 0 (2) (0) (0) (0)	<pre></pre>	<pre></pre>	<pre></pre>
	erosion:forestomach	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
	hyperplasia:forestomach	4 0 0 0 (8) (8) (9) (9)	4 0 0 0 0 (8) (0) (0) (0)	7 0 0 0 (14) (0) (0) (0)	8 0 0 0 (16) (0) (0) (0)
	erosion:glandular stomach	0 0 0 0 (0) (0)	7 0 0 0 * (14) (0) (0) (0)	5 0 0 0 (10) (0) (0) (0)	3 0 0 0
	hyperplasia:glandular stomach	11 1 0 0 (22) (2) (0) (0)	15 3 0 0 (30) (6) (0) (0)	17 3 0 0 (34) (6) (0) (0)	14 1 0 0 (28) (2) (0) (0)
arge intes	deposit of amyloid	<49> 20 8 0 0 (41) (16) (0) (0)	<50> 17 6 0 0 (34) (12) (0) (0)	<50> 19 12 0 0 (38) (24) (0) (0)	<50> 15 17 0 0 (30) (34) (0) (0)

< a >

a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

PAGE: 24

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 25

		Group Name No. of Animals on Stu		ontrol 4	19				40	0 pp	m 50				20	00 r	pm 50				11	0000	ppr 50			
Organ	Findings	Grade 	1+ (%)	2+ (%)	3 (%	() 	4+ (%)	 1 (%	+	2+ (%)		3+ (%)	4+ (%)		1+ %)	2- (%)	ŀ	3+ (%)	4+ (%)		1+ (%)	2 (%	+	3+ (%)	(9	4+ %)
(Digestive sy	rstem}																									
liver	angiectasis	(0 0)	<4 0 (0)	19> 0 (0		0 0)	(0)) (3	(50> (0 0)	0 (0)	(0 0) (1	(50> (0	0 (0)	(1 2)	0	<50)) (0 0)	(0 0)
	necrosis:central	(0 0)	0 (0)	0 (0) (0 0)	0)))) (0 0)	(0 0)	0 (0)	(1 2) (0 0)	(0 0)	0 (0)	(1 2)	1 (2) (0 0)	() O)
	fatty change	(0 0)	0 (0)	0 {		0 0)	0 (0))) (0 0)	(0 0)	0 (0)	(1 2) (0 0)	(0 0)	0 (0)	(0 0)	0)) (0 0)		0 0)
	deposit of amyloid	(0 0)	0 (0)	(0		0 0)	0 (0) (0 0)	(0 0)	0 (0)	{	0 0) (2 4)	(0 0)	0 (0)	(4 8)	0 (0) (0 0)	() D)
	inflammatory infiltration	(0 0)	0 (0)	0 (0		0 0)	0 (0) (0 0)	(0 0)	0 (0)	(0 0) (0 0)	(0 0)	0 (0)	(0 0)	1 (2) (0 0)	() D)
	inflammatory cell nest	(8 16)	0 (0)	0 (0		0 0)	10 (20) (0 0)	(0 0)	0 (0)	(1	9 8) (0 0)	(0 0)	0 (0)	(4 8)	0 (0) (0 0)	() D)
	extramedullary hematopoiesis	(1 2)	0 (0)	(0) (0 0)	(0) (0 0)	(0 0)	0 (0)	(0 0) (0 0)	(0 0)	0 (0)	(1 2)	0) (0 0)	(()))
	acidophilic cell focus	(1 2)	0 (0)	0 (0) (0 0)	2) (0 0)	(0 0)	0 (0)	(0 D) (0 0)	(0 0)	0 (0)	(1 2)	0 (0) (0 0)	((

Grade 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 26

		Group Name Control	400 ppm	2000 ppm	10000 ppm
Organ	Findings	No. of Animals on Study 49 Grade 1+ 2+ 3+ 4+	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	system)				
liver	basophilic cell focus	<49> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<50> 0 2 0 0 (0) (4) (0) (0)	<pre></pre>
	intestinal metaplasia:bile duct	1 0 0 0 (2) (3) (3)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (3) (4) (5)
	hepatocellular hypertrophy:central	2 0 0 0 (4) (0) (0)	2 0 0 0 0 (4) (0) (0) (0)	3 0 0 0 0 (6) (6) (0) (0)	15 0 0 0 ** (30) (0) (0) (0)
	hyperplasia:lto-cell	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)
(Urinary sys	tem}				
kidney	atrophy	<49> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<pre></pre>
	hyaline droplet	4 0 0 0 (8) (8) (0) (0)	7 1 0 0 (14) (2) (0) (0)	6 2 0 0 (12) (4) (0) (0)	4 0 0 0 0 (8) (9) (9)
	lymphocytic infiltration	1 0 0 0 0 (2) (0) (0) (0)	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)

Grade < a > a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE

SEX

PAGE: 27

	Group Name Control No. of Animals on Study 49	400 ррт 50	2000 ppm 50	10000 ppm 50
Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
em)				
papillomatous polyp	<49> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<pre></pre>
hydronephrosis	0 2 0 0 (0) (4) (0) (0)	0 2 2 0 (0) (4) (4) (0)	0 7 4 0 * (0) (14) (8) (0)	3 10 6 0 ** (6) (20) (12) (0)
tubular necrosis	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
papillary necrosis	6 2 0 0 (12) (4) (0) (0)	4 2 0 0 (8) (4) (0) (0)	9 5 0 0 (18) (10) (0) (0)	10 9 0 0 * (20) (18) (0) (0)
mineralization:papilla	1 0 0 0 (2) (0) (0) (0)	0 0 0 0 0 (0) (0)	4 0 0 0 0 (8) (0) (0)	3 0 0 0 0 (6) (0) (0)
mineralization:pelvis	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0) (0)
regeneration:proximal tubule	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)
dilated pelvis	0 1 0 0 (0) (2) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	papillomatous polyp hydronephrosis tubular necrosis papillary necrosis mineralization:papilla mineralization:pelvis	No. of Animals on Study	No. of Animals on Study	No. of Animals on Study

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

a : Number of animals examined at the site b : Number of animals with lesion < a >

b

c : b / a * 100 Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

FEMALE SEX

PAGE: 28

	N	roup Name o. of Animals on Stud Trade	у	trol 49 2+	3+	4+	1+	100 ppm 5 2+		4-	1+	2000	50	3+ 4+		1+	0000	50	3÷	4 +
Organ	Findings		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%		%) (%)		(%)	(%)			(%)
{Urinary syst	em)																			
kidney	nephrosclerosis	(<49> 11 22) (3	0 (0)	5 (10)	<5 11 (22)	0> 3 (6)	0 (0)	6 (12)	15 (30	<50>) (2 O 4) (0)	(21	<50> 10) (20		0 ** 0)
ureter	transitional cell hyperplasia	(0 0) (<49> 0 0) (0	0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0)	0 (0	<50>	0 0 0) (0)	(0 0)	1	<50> 0) (0))) (0 0)
urin bladd	dilatation			<49> 3 6) (0	0 (0)	0 (0)	<5 0 (0)	0> 0 (0)	0 (0)	0 (0)	1 (2	<50>	0 0 0) (0)	(0 0)	0	< 50 > 0) (0		0 0)
	simple hyperplasia:transitional epithel	ium (0 0) (0 0) (0 (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (2) (0 0) (0)	(0 0)	(0)	0 (0	i i) (0 0)
	deposit of brown pigment	(0 0) (0 0) (0 (0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	(0) (0 0 0) (0)	{	3 6)	(0)	0 (0)) (0 0)
{Endocrine sy	stem)																			
pituitary	cyst			<49> 0 0) (0	0 [0)	0 (0)	<5 0 (0)	0> 1 (2)	0 (0)	0 (0)	n	<49>	0 0) (0)	(0 0)	(0)	<50> 0) (0		0 0)
<pre>< a > b (c)</pre>	1+: Slight 2+: Moderate 3+: a: Number of animals examined at the sit b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤																www.coldinide.co			

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 29

Organ	Findings	Group Name Control No. of Animals on Study 49 Grade 1+ 2+ 3+ 4+ (%) (%) (%)	400 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Endocrine s	ystem)				
ituitary	hyperplasia	3 2 0 0 (6) (4) (0) (0)	<pre></pre>	4 0 0 0 (8) (0) (0) (0)	50> 5 1 0 0 (10) (2) (0) (0)
	Rathke pouch	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (2) (0) (0)
drenal	spindle-cell hyperplasia	<49> 2 37 10 0 (4) (76) (20) (0)	<50> 2 33 14 0 (4) (66) (28) (0)	<50> 0 27 22 0 * (0) (54) (44) (0)	<50> 2 37 11 0 (4) (74) (22) (0)
Reproductiv	e system)				
ary (hematoma	<49> 0 0 2 0 (0) (0) (4) (0)	<50> 0 0 2 0 0 0 0 4) (0)	<50> 0 0 1 0 (0) (0) (2) (0)	(50) 0 0 1 0 (0) (0) (2) (0)
	cyst	0 2 2 0 (0) (4) (4) (0)	3 3 3 0	4 7 1 0 (8) (14) (2) (0)	0 2 3 0 (0) (4) (6) (0)
terus	dilatation	<49> 0 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)

(HPT150)

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 30

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Reproductive	system)				
uterus	cystic endometrial hyperplasia	\(\lambda 49 \rangle \) 13	<50> 17 0 0 0 (34) (0) (0) (0)	<50> 14 1 0 0 (28) (2) (0) (0)	<50> 12 0 0 0 (24) (0) (0) (0)
	xanthogranuloma	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (2) (0) (0)
mammary gl	hyperplasia	0 0 0 0 (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
(Nervous syste	em)				
brain	hemorrhage	\(\lambda 49 \rangle \) 1	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
	mineralization	7 0 0 0 (14) (0) (0) (0)	7 0 0 0 (14) (0) (0) (0)	6 0 0 0 0 (12) (0) (0)	9 0 0 0 0 (18) (0) (0)
spinal cord	hemorrhage	49> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)

Grade

1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c)

c : b / a * 100

Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 31

		Group Name Control	400 ppm	2000 ppm	10000 ppm
rgan	Findings	No. of Animals on Study 49 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)	50 1+ 2+ 3+ 4+ (%) (%) (%) (%)
Special sens	se organs/appendage)				
ye	keratitis	<49> 0 0 0 0 (0) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)
arder gl	deposit of pigment	<49> 14 0 0 0 (29) (0) (0) (0)	<pre></pre>	<50> 13 0 0 0 (26) (0) (0) (0)	(50) 1 0 0 0 3 (2) (0) (0) (0)
	hyperplasia	0 0 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (4)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
asolacr d	eosinophilic change	<49> 0 0 0 0 (0) (0) (0) (0)	(50) 0 0 0 0 (0) (0) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
Body cavitie	esl				
peritoneum	inflammation	<49> 0 0 0 0 (0) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>

b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

TABLE L 5

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 15

Organ		oup Name Control of Animals on Study 24 de 1+ 2+ 3+ 4+ (%) (%) (%) (%)	400 ppm 30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Integumentar	y system/appandage}				
skin/app	ulcer	<24> 0 1 0 0 0 0 4) 0 0	<pre></pre>	<pre></pre>	(19) 0 0 0 0 (0) (0) (0) (0)
subcutis	inflammation	\(\lambda 24 \rangle \) 1	<30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<19> 0 0 0 0 (0) (0) (0) (0)
(Respiratory	systeml				
nasal cavit	eosinophilic change:olfactory epithelium	\(\langle 24 \rangle \) \(1 0 0 0 \\ (4) (0) (0) (0) (0) \)	3 0 0 0 (10) (0) (0) (0)	<23> 1 0 0 0 (4) (0) (0) (0)	<pre></pre>
	eosinophilic change:respiratory epitheliu	m 10 2 0 0 (42) (8) (0) (0)	18 1 0 0 (60) (3) (0) (0)	7 3 0 0 (30) (13) (0) (0)	9 2 0 0 (47) (11) (0) (0)
	inflammation:foreign body	1 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	respiratory metaplasia:olfactory epitheli	um 3 0 0 0 0 (13) (0) (0)	5 0 0 0 (17) (0) (0) (0)	2 0 0 0 0 (9) (0) (0)	6 0 0 0 0 (32) (0) (0) (0)

Grade < a >

1+ : Slight 2+ : Moderate

3+ : Marked

a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

(c) Significant difference; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

4+ : Severe

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 16

		Group Name No. of Animals on Stu		Contr	ol 24					400	ppm 3					200	0 pp 2					1	0000	ррп 19	ł	
Organ	Findings	Grade	1+ (%)	2 (%)	+	3+ (%)	4 (%	1+ 6)	1+ (%)		2+ (%)	3 (%		4+ (%)	1+ (%)		2+ (%)	3 (%		4+ (%)		1+ (%)	2· (%)	+	3+ (%)	4+ (%)
{Respiratory s	system)																									
nasal cavit	atrophy:olfactory gland		21 (88)	2	<24>	0	0)		23 (77)	(<3 4 13)	0) (0 0)	15 (65)	(<2 6 26)	0) (0 0)	{		16		0	0 ** (0)
	atrophy:olfactory epithelium		19 (79)	(8)) (0 0)	(0)))	23 (77)	{	5 17)	0 () (0 0)	19 (83)	(0 0)	0 (0)) (0 0)	(0 0)	19 (100)	(0 0)	0 ** (0)
	exudate:respiratory region		1 (4)	(0)		0 0)	(0		3 (10)	(0	0)) (0 0)	3 (13)	(0 0)	0 (0)) (0 0)	(0 0)	(0)	(0 0)	0 (0)
	exudate:olfactory region		2 (8)	(0)		0 0)	0 ()))	0 (0)	(0 0)	0)) (0 0)	0 (0)	(0 0)	0 (0)) (0 0)	(0 0)	(0)	(0 0)	0 (0)
	vacuolic change:olfactory gland		0 (0)	(0)	(0 0)	(0)))	0 (0)	(0 0)	0) (0 0)	11 (48)	(0 0)	0 (0)) (0 ** 0)	(.	9 47)	9 (47)	(0 0)	0 ** (0)
	respiratory metaplasia:olfactory gla	nd	0 (0)	(0)	(0 0)	(0)))	1 (3)	(0 0)	0)) (0 0)	1 (4)	(0 0)	(0)) (0 0)	(:	5 26)	(0)	(0 0)	0 * (0)
	respiratory metaplasia:nasal gland		2 (8)	(8)	(0 0)	0))))	7 (23)	(0 0)	(0) (0 0)	8 (35)	(3 13)	0 (0)) (0 0)	(،	8 42)	4 (21)	(0 0)	0 **
	brown pigment olfactory gland		0 (0)	0 (0)	(0 0)	(0		0 (0)	(0 0)	(0) (0 0)	1 (4)	(0 0)	0 (0)) {	0 0)	(;	5 26)	(0)	(0 0)	0 * (0)

Grade 1+ : Slight 2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b : Number of animals with lesion b

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

< a >

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 17

		Group Name Control	400 ppm	2000 ppm	10000 ppm
)rgan	Findings	No. of Animals on Study 24 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Respiratory :	system)				
nasopharynx	vacuolic change	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<23> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	eosinophilic change	1 1 0 0 (4) (4) (0) (0)	1 0 0 0 0 (3) (0) (0)	3 1 0 0 (13) (4) (0) (0)	3 3 0 0 (16) (16) (0) (0)
lung	congestion	<24> 0 0 0 0 (0) (0) (0) (0)	30> 0 0 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (4) (0) (0)	<pre></pre>
	hemorrhage	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	1 0 0 0 0 (4) (0) (0)	0 1 0 0 (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 0 (9) (0) (0)	5 0 0 0 * (26) (0) (0) (0)
	lymphocytic infiltration	1 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Hematopoietic	: system)				
bone marrow	decreased hematopoiesis	<24> 4 0 0 0 (17) (0) (0) (0)	30> 7 0 0 0 (23) (0) (0) (0)	<23> 4 2 0 0 (17) (9) (0) (0)	<19> 2 1 0 0 (11) (5) (0) (0)

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 18

Organ	Findings	Group Name Control No. of Animals on Study 24 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	400 ppm 30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoiet	ic system)				
bone marrow	erythropoiesis:increased	24> 2 2 0 0 (8) (8) (0) (0)	<30> 4 1 0 0 (13) (3) (0) (0)	<23> 2 0 0 0 (9) (0) (0) (0)	<pre></pre>
	granulopoiesis:increased	0 0 1 0 (0) (4) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
spleen	atrophy	<23> 0 0 0 0 (0) (0) (0) (0)	30> 0 2 1 0 0 0) (7) (3) (0)	<23> 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>
	deposit of hemosiderin	3 0 0 0 (13) (0) (0) (0)	4 0 0 0 0 (13) (0) (0) (0)	4 0 0 0 (17) (0) (0) (0)	5 0 0 0 (26) (0) (0) (0)
	extramedullary hematopoiesis	1 9 1 0 (4) (39) (4) (0)	5 11 0 0 (17) (37) (0) (0)	4 8 0 0 (17) (35) (0) (0)	1 7 0 0 (5) (37) (0) (0)
(Circulatory	systeml				
heart	thrombus	<24> 0 0 0 0 (0) (0) (0) (0)	30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 1 1 0 (0) (4) (4) (0)	(19) 0 1 0 0 (0) (5) (0) (0)
< a > b (c)	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the s b: Number of animals with lesion c: b / a * 100 difference; *: P≤ 0.05 **: P≤				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 19

Organ	Findings	Group Name Control No. of Animals on Study 24 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	400 ppm 30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Circulatory	system}				
heart	deposit of amyloid	24> 1 0 0 0 (4) (0) (0) (0)	<30> 6 0 0 0 (20) (0) (0) (0)	23> 2 0 0 0 (9) (0) (0) (0)	3 0 0 0 (16) (0) (0) (0)
	mineralization	3 0 0 0 (13) (0) (0) (0)	1 1 0 0 (3) (3) (0) (0)	2 0 0 0 (9) (0) (0)	2 0 0 0 0 (11) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (0) (0)
	myocardial fibrosis	1 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (5) (0) (0) (0)
	arteritis	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
{Digestive sy	vstem)				
tooth	dysplasia	6 0 0 1 (25) (0) (0) (4)	<pre></pre>	<23> 8 0 0 0 (35) (0) (0) (0)	<19> 4 1 0 0 (21) (5) (0) (0)
tongue	ulcer	0 1 0 0 (0) (4) (0) (0)	<30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<19> 0 0 0 0 (0) (0) (0) (0)
<pre>< a > b (c)</pre>	1+: Slight 2+: Moderate a: Number of animals examined at the b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

PAGE: 20

	Group Name Control	400 ppm	2000 ppm	10000 ppm
Findings	No. of Animals on Study 24 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
ystem}				
deposit of amyloid	<24> 6 0 0 0 (25) (0) (0) (0)	(30) 19 0 0 0 † (63) (0) (0) (0)	(23) 15 0 0 0 * (65) (0) (0) (0)	<19> 15 0 0 0 ** (79) (0) (0) (0)
mineralization	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	2 0 0 0 (9) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
arteritis	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)
deposit of amyloid	<24> 0 0 0 0 0 (0) (0) (0)	30> 3 0 0 0 (10) (0) (0) (0)	<23> 2 0 0 0 (9) (0) (0) (0)	<19> <19> 0 0 0 (16) (0) (0) (0)
erosion:forestomach	1 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
hyperplasia:forestomach	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0) (0)	1 0 0 0 (4) (0) (0)	2 0 0 0 (11) (0) (0)
erosion:glandular stomach	0 0 0 0 0 (0) (0)	2 0 0 0 (7) (0) (0)	1 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0) (0)
hyperplasia:glandular stomach	0 0 0 0 (0) (0)	3 0 0 0 0 (10) (0) (0)	1 0 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)
	deposit of amyloid mineralization arteritis deposit of amyloid erosion:forestomach hyperplasia:forestomach erosion:glandular stomach	No. of Animals on Study Grade	No. of Animals on Study	No. of Animals on Study

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

a : Number of animals examined at the site < a > b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

PAGE: 21

		Group Name Control No. of Animals on Study 24	400 ppm 30	2000 ppm 23	10000 ppm 19
Organ	Findings	Grade 1+ 2+ 3+ 4+	1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Digestive sy	stem)				
large intes	deposit of amyloid	3 1 0 0 (13) (4) (0) (0)	30> 5 1 0 0 (17) (3) (0) (0)	<23> 6 0 0 0 (26) (0) (0) (0)	(19) 1 1 0 0 (5) (5) (0) (0)
liver	angiectasis	0 0 0 0 (0) (0) (0) (0)	<30> 0 1 0 0 (0) (3) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)
	necrosis:central	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (4) (4) (6) (6)	1 1 0 0 (5) (5) (0) (0)
	fatty change	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (4) (0) (0)	1 0 0 0 (0) (5) (0) (0)
	inflammatory infiltration	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (5) (0) (0)
	intestinal metaplasia:bile duct	1 0 0 0 (4) (4) (6) (6)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (5) (6) (6)
	hepatocellular hypertrophy:central	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (4) (0) (0) (0)	1 0 0 0 (5) (0) (0) (0)

a : Number of animals examined at the site < a >

b b : Number of animals with lesion

⁽c) c : b / a * 100

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$ Test of Chi Square

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

ANIMAL

: FEMALE

Group Name Control 400 ppm 2000 ppm 10000 ppm No. of Animals on Study 24 19 Grade 1+ 2+ 3+ 4+ 2+ 3+ 1+ 2+ 3+ 1+ 2+ 3+ 4+ (%) (%) (%) (%) Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) Organ (Digestive system) liver <24> <30> hyperplasia: Ito-cell 0 0 0 0 n 0 0 0 0 1 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0) (5) (0) (0) (Urinary system) kidney ⟨30⟩ <24> ⟨19⟩ hyaline droplet 0 0 0 5 1 0 0 2 0 0 4 0 0 0 (17) (0) (0) (0) (17) (3) (0) (0) (22) (9) (0) (0) (21) (0) (0) (0) papillomatous polyp 0 0 0 0 2 0 3 0 0 0 0 0 (0)(0)(0)(0) (7) (0) (0) (0) (0)(0)(0)(0) (16) (0) (0) (0) hydronephrosis 2 2 5 0 ** 0 2 2 0 (0)(0)(0)(0) (0)(3)(3)(0) (0) (9) (9) (0) (11) (11) (26) (0) tubular necrosis (0)(0)(0)(0) (0)(0)(0)(0) (0)(4)(0)(0) (0)(0)(0)(0) papillary necrosis (8) (0) (0) (0) (10) (3) (0) (0) (17) (4) (0) (0) (26) (11) (0) (0) mineralization:papilla 0 0 0 1 0 0 0 2 0 (0)(0)(0)(0) (0) (0) (0) (0) (4) (0) (0) (0) (11) (0) (0) (0)

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a > a : Number of animals examined at the site

b: Number of animals with lesion b

(c) c:b/a * 100

Significant difference : $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BAIS5

PAGE: 22

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 23

		up Name Control of Animals on Study 24	400 ppm 30	2000 ppm 23	10000 ppm 19
Organ	Gra Findings		1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%)
{Urinary syst	em)				
k i dney	regeneration:proximal tubule	0 0 0 0 (0) (0) (0) (0)	<30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 1 0 0 0 0 (4) (0) (0)	<19> 0 0 0 0 (0) (0) (0) (0)
	dilated pelvis	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	nephrosclerosis	2 1 1 0 (8) (4) (4) (0)	2 7 1 0 (7) (23) (3) (0)	5 6 0 0 * (22) (26) (0) (0)	3 5 1 0 (16) (26) (5) (0)
urin bladd	dilatation	0 3 0 0 (0) (13) (0) (0)	30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 (0) (0) (0) (0)
	simple hyperplasia:transitional epitheliu	n 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Endocrine sy	stem)				
oituitary	cyst	<pre></pre>	30> 0 0 1 0 0 0) (3) (0)	0 0 0 0 (0) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
<pre>< a > b (c)</pre>	1+: Slight 2+: Moderate 3+: M a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 ifference; *: P ≤ 0.05 **: P ≤ 0.05				

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 24

Organ	Findings	Group Name Control No. of Animals on Study 24 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	400 ppm 30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Endocrine s	ystem}				
pituitary	hyperplasia	<24> 1 0 0 0 (4) (0) (0) (0)	<pre></pre>	222> 1 0 0 0 (5) (0) (0) (0)	(19) 0 1 0 0 (0) (5) (0) (0)
	Rathke pouch	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
adrenal	spindle-cell hyperplasia	<24> 2 20 2 0 (8) (83) (8) (0)	<30> 1 23 5 0 (3) (77) (17) (0)	<23> 0 13 9 0 * (0) (57) (39) (0)	<pre></pre>
(Reproductiv	e system)				
ovary	hematoma	<24> 0 0 0 0 0 0 (0) (0) (0)	<30> 0 0 1 0 0 0 0 3 (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	cyst	0 1 0 0 (0) (4) (0) (0)	1 0 0 0 0 (3) (0) (0)	1 4 1 0 (4) (17) (4) (0)	0 1 0 0 (0) (5) (0) (0)
uterus	cystic endometrial hyperplasia	<24> 2 0 0 0 (8) (0) (0) (0)	30> 6 0 0 0 (20) (0) (0) (0)	<23> 2 0 0 0 (9) (0) (0) (0)	<19> 3 0 0 0 (16) (0) (0) (0)

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 25

		Group Name Control		400 ppm	2000 ppm	10000 ppm
Organ	Findings	No. of Animals on Study 24 Grade 1+ 2+ (%) (%)	3+ 4+ (%) (%)	30 1+ 2+ 3+ 4+ (%) (%) (%) (%)	23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Nervous syst	em)					
orain	hemorrhage	<24) 1 1 (4) (4) (0 0 0 0) (0)	<30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
	mineralization	1 0 (4) (0) (0 0 0) (0)	4 0 0 0 0 (13) (0) (0) (0)	4 0 0 0 0 (17) (0) (0) (0)	2 0 0 0 0 (11) (0) (0) (0)
spinal cord	hemorrhage	(24) 1 0 (4) (0) (0 0 0) (0)	<30> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<19> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
{Special senso	e organs/appendage}					
eye	keratitis	<24> 0 0 (0) (0) (0 0	<30> 1 0 0 0 (3) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>
Harder gl	deposit of pigment	3 0 (13) (0) (0 0	30> 11 0 0 0 (37) (0) (0) (0)	<23> 6 0 0 0 (26) (0) (0) (0)	0 0 0 0 (0) (0) (0) (0)
nasolacr d	eosinophilic change	<24) 0 0 (0) (0) (0 0	<30> 0 0 0 0 (0) (0) (0) (0)	<23> 0 0 0 0 (0) (0) (0) (0)	<19> 0 1 0 0 (0) (5) (0) (0)

< a >

a : Number of animals examined at the site

b

b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 26

No. of Animals on Study	23 1+ 2+ 3+ 4+ (%) (%) (%) (%)	19 1+ 2+ 3+ 4+ (%) (%) (%) (%)
ceritoneum		(19)
inflammation 0 0 0 0 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0)		(19)
ade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
a > a : Number of animals examined at the site b b : Number of animals with lesion c) c : b / a * 100 ignificant difference ; * : P ≤ 0.05 ** : P ≤ 0.01 Test of Chi Square		

TABLE L 6

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS:

FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE: 14

	Group Name					4	100 p					2000					100			
Findings	Grade	1+ :	2+	3+ (%)	4+ (%)	1+ (%)		+	3+ (%)	4+ (%)			2+	3+ (%)	4+ (%)			2+	3+ (%)	4+ (%)
systeml																				
inflammatory infiltration				0	0 (0)	1 (5)	0 (<20>	0 0)	0 (0)	0 (0)	(0	0	0 (0)	(0)) (0	0	0 (0)
eosinophilic change:olfactory epithel))) (0 0) (0 (0)	3 (15)	1 (5) (0 0)	0 (0)	3 (11)	(0 0) (0 0)	0 (0)	13 (42)	(0 0) (0 (0)	0 (0)
eosinophilic change:respiratory epith				0 0) (0 (0)	14 (70)	1 (5) (0 0)	0 (0)	18 (67)	(1	3 1) (0 0)	0 (0)				0 (0)	0 (0)
respiratory metaplasia:olfactory epit			l 1) (0 (0)	0 (0)	4 (20)	(0) (0 0}	0 (0)	5 (19)	(1 4) (0 0)	0 (0)	16 (52)	(1 3) (0 (0)	0 (0)
atrophy:olfactory gland))) (0 0) (0 ()	17 (85)	2 (10) (0 0)	0 (0)	15 (56)	1 (4	2 4) (0 0)	0 **				0 (0)	0 ** (0)
erosion:transitional epithelium	(1 ())) (0 0) (0 ()	0 (0)	0 (0) (0 0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	0 (0)	(0 0) (0 (0)	0 (0)
atrophy:olfactory epithelium				0 (0 (0)	12 (60)	1 (5) {	0 0)	0 (0)	21 (78)	(0 0) (0 0)	0 (0)				0 (0)	0 ** (0)
exudate:respiratory region))) {	0 0) (0	7 (35)	0 (0) (0 0)	0 (0)	4 (15)	(0 0) (0 0)	0 (0)			0 0) (0 ()	0 (0)
S	inflammatory infiltration eosinophilic change:olfactory epithel eosinophilic change:respiratory epith respiratory metaplasia:olfactory epit atrophy:olfactory gland erosion:transitional epithelium atrophy:olfactory epithelium	No. of Animals on Study Grade Findings	No. of Animals on Study Grade 1+ (%) (%) Findings (%) (%) inflammatory infiltration 0 (0) (0) (0) eosinophilic change:olfactory epithelium 8 (32) (0) eosinophilic change:respiratory epithelium 17 (68) (8) respiratory metaplasia:olfactory epithelium 5 (20) (4) atrophy:olfactory gland 25 (100) (6) erosion:transitional epithelium 1 (4) (6) atrophy:olfactory epithelium 1 (4) (6) exudate:respiratory region 9 (36) (6)	No. of Animals on Study Grade	No. of Animals on Study 25 3+ 4+	No. of Animals on Study	No. of Animals on Study 25 3+ 4+	No. of Animals on Study 25 20 27 27 27 27 27 27 27	No. of Animals on Study 25 34 44 14 24 34 44 14 24 34 44 14 24 34 34 44 14 24 34 34 44 14 24 34 34 44 14 24 34 34 34 34 34 34 3	No. of Animals on Study	No. of Animals on Study 25 20 27 27 27 27 27 27 27	No. of Animals on Study 25	No. of Animals on Study 25 20 27 31	No. of Animals on Study						

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

STUDY NO. : 0760 ANIMAL

SEX

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE

PAGE: 15

		Group Name No. of Animals on Stud		ontrol 2					400 p	pm 20			2	000	ppm 27				10	000	ррm 31		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)		1+ (%)		+	3+ (%)	4+ (%)	 1+ (%)	2 (%)	+	3+ (%)	4+ (%)		1+ %)	2+ (%)	;	3+ %)	4+ (%)
{Respiratory	system)																						
nasal cavit	exudate:olfactory region	(0 0)	<2 1 (4)	5> 0 (0)	0 (0)		0 (0)	(0	<20)) (0 0)	0 (0)	0 (0)	0 (0)	<27>	0 0)	0 (0)	()) (0 0 0	31> ()) (0 0)
	vacuolic change:olfactory gland	(0 0)	0 (0)	0 (0)	0 (0)		0 (0)	(0)) (0 0)	0 (0)	18 (67)	0 (0)	+ (0 0)	0 ** (0)	1:	3 2) (17 55)	())) (0 ** 0)
	respiratory metaplasia:olfactory glam	d (1 4)	0 (0)	0 (0)	0 (0)	ı	1 (5)	(0)) (0 0)	0 (0)	2 (7)	0 (0)	(0 0)	0 (0)	20 (6) 5) (1 3)	(())) (0 ** 0)
	respiratory metaplasia:nasal gland	(6 24)	0 (0)	0 (0)			6 (30)	2 (10)) (0 0)	0 (0)	8 (30)	4 (15)	(0 0)	0 (0)	2(6)) 5) (4 13)	(())) (0 ** 0)
	brown pigment olfactory gland	(0 0)	0 (0)	0 (0)	0 (0)	,	0 (0)	(0)) (0 0)	0 (0)	24 (89)	2 (7)	(0 0)	0 ** (0)	17	7 5) (14 45)	())) (0 ** 0)
nasopharynx	eosinophilic change	(0	<2! 1 (4)	0	0 (0)	ļ	1 (5)	0 (0)	<20>	0 0)	0 (0)	2 (7)	0 (0)	(27)	0 0)	0 (0)	(())) ((; 0 0)	31> ())) (0 0)
lung	deposit of amyloid		10 40)	<2! 0 (0)	0	0 (0)	!	9 (45)	0 (0)	<20>	0 0)	0 (0)	12 (44)	0 (0)	(27>	0 0)	0 (0)	18 (58	3 3) (4 13)	31> ())) (0 *

Grade < a > 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion (c)

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE SEX

PAGE: 16

		Group Name No. of Animals on Stud		ntrol 25			4	00 pp	om 20				20	00 pp 2				1	0000	ppm 31		
Organ	Findings	Grade	1+ (%)	2+ (%)	3+ (%)	4+ (%)	1+ (%)	2+ (%)	- ;	3+ %) 	4+ (%)	1 (%	+	2+ (%)	3+ (%)	4+ (%)		1+ (%)		+	3+ (%)	4+ (%)
{Respiratory	system)																					
lung	bronchiolar-alveolar cell hyperplasia	(0 0) (<25 0 0) (> 0 0)	0 (0)	0 (0)	0 (0)	(20> ()) (0 0)	1 (4) (<2 0 0)	7> 0 (0)	0 (0)	(1 3)	0 (0)	<31> ((0 0) (0 : 0)
{Hematopoieti	c system)																					
bone marrow	decreased hematopoiesis	(0 (<25) 1 4) (> 0 0)	0 (0)	0 (0)	(0)	(20> ())) (0	0 (0) ((2° 0 0)	7> 0 (0)	0 (0)	(1 3)	0 (0)	(31>	0 0) (0 (0)
	erythropolesis:increased	(0 (1 4) (0 0)	0 (0)	0 (0)	0 (0)	(())) (0 0)	0 (0) (1 4)	0 (0)	0 (0)	(1 3)	0 (0)	(0 0) (0 0)
	granulopoiesis:increased	(0 (0 0) (1 4)	0 (0)	0 (0)	0 (0)	())) (0 0)	0)) (0 0)	0 (0)	0 (0)	(0 0)	0 (0)	· (0 0) (0 0)
spleen	deposit of hemosiderin	(·	3 12) (<25) 0 0) (0	0 (0)	4 (20)	0 (0)	(20> ())) (0 0)	9 (33) ((2° 0 0)	7> 0 (0)	0 (0)	(22 71)	3 (10)	<31>		0 ** (0)
	deposit of melanin	(·	3 12) (0 0) (0 0)	0 (0)	0 (0)	0 (0)	(())} (0 0)	0 (0) (0 0)	0 (0)	0 (0)	(1 3)	0 (0)	· (0 0) (0 0)

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with lesion

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

STUDY NO. : 0760 ANIMAL : MOUSE

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE

PAGE : 17

		Group Name Control No. of Animals on Study 25	400 ppm 20	2000 ppm 27	10000 ppm 31
Organ		Grade 1+ 2+ 3+ 4+ (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Hematopoie	tic system)				
spleen	extramedullary hematopoiesis	<25> 5 2 0 0 (20) (8) (0) (0)	<pre></pre>	<27> 10 5 0 0 (37) (19) (0) (0)	<pre></pre>
	follicular hyperplasia	2 0 0 0 0 (8) (0) (0)	3 0 0 0 (15) (0) (0) (0)	1 1 0 0 (4) (4) (0) (0)	0 0 0 0 0 (0) (0)
{Circulator	y system}				
heart	deposit of amyloid	<25> 12 0 0 0 (48) (0) (0) (0)	<pre></pre>	<27> 12 0 0 0 (44) (0) (0) (0)	\(\langle 31 \rangle \) 12
	arteritis	0 1 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
(Digestive s	system)				
tooth	dysplasia	<25> 6 1 0 0 (24) (4) (0) (0)	<20> 9 1 0 0 (45) (5) (0) (0)	<27> 10 3 0 1 (37) (11) (0) (4)	<31> 15 0 0 0 (48) (0) (0) (0)
Grade <a> > b (c) Significant	1+: Slight 2+: Moderate 3+ a: Number of animals examined at the si b: Number of animals with lesion c: b/a * 100 difference; *: $P \le 0.05$ **: $P \le 0.05$				

ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 18

Organ	Findings	Group Name Control No. of Animals on Study 25 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	400 ppm 20 1+ 2+ 3+ 4+ (%) (%) (%) (%)	2000 ppm 27 1+ 2+ 3+ 4+ (%) (%) (%) (%)	10000 ppm 31 1+ 2+ 3+ 4+ (%) (%) (%)
(Digestive sy	stem)				
tongue	deposit of amyloid	<25> 16 0 0 0 (64) (0) (0) (0)	20> 12 0 0 0 (60) (0) (0) (0)	20 0 0 0 (74) (0) (0) (0)	<pre></pre>
	arteritis	1 1 0 0 (4) (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
stomach	deposit of amyloid	<25> 1 0 0 0 (4) (0) (0) (0)	20> 1 0 0 0 (5) (0) (0) (0)	<pre></pre>	<pre></pre>
	hyperplasia:forestomach	4 0 0 0 (16) (0) (0) (0)	3 0 0 0 (15) (0) (0) (0)	6 0 0 0 (22) (0) (0) (0)	6 0 0 0 (19) (0) (0)
	erosion:glandular stomach	0 0 0 0 0 (0) (0)	5 0 0 0 * (25) (0) (0) (0)	4 0 0 0 0 (15) (0) (0)	3 0 0 0 0 (10) (10) (10)
	hyperplasia:glandular stomach	11 1 0 0 (44) (4) (0) (0)	12 3 0 0 (60) (15) (0) (0)	16 3 0 0 (59) (11) (0) (0)	14 1 0 0 (45) (3) (0) (0)
large intes	deposit of amyloid	(25) 17 7 0 0 (68) (28) (0) (0)	(20) 12 5 0 0 (60) (25) (0) (0)	\(\langle 27 \rangle \) 13	<31> 14 16 0 0 (45) (52) (0) (0)

Grade < a > 1+ : Slight

2+ : Moderate

3+ : Marked

4+ : Severe

a : Number of animals examined at the site

b b : Number of animals with lesion

c : b / a * 100

(c) Significant difference ; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square

(HPT150)

BA1S5

: MOUSE B6D2F1/Crlj[Crj:BDF1] ANIMAL

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 SEX

: FEMALE

		Group Name Control	400 ppm	2000 ppm	10000 ppm
Organ	Findings	No. of Animals on Study 25 Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	20 1+ 2+ 3+ 4+ (%) (%) (%) (%)	27 1+ 2+ 3+ 4+ (%) (%) (%) (%)	31 1+ 2+ 3+ 4+ (%) (%) (%) (%)
(Digestive s	system)				
liver	angiectasis	0 0 0 0 (0) (0) (0) (0)	<pre></pre>	<27> 0 1 0 0 (0) (4) (0) (0)	<31> 1 0 0 0 (3) (0) (0) (0)
	deposit of amyloid	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)	3 0 0 0 0 (10) (0) (0)
	inflammatory cell nest	8 0 0 0 (32) (0) (0) (0)	10 0 0 0 (50) (0) (0) (0)	9 0 0 0 0 (33) (0) (0)	4 0 0 0 (13) (0) (0) (0)
	extramedullary hematopoiesis	1 0 0 0 (4) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	acidophilic cell focus	1 0 0 0 (4) (0) (0)	2 0 0 0 0 (10) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 0 (3) (0) (0)
	basophilic cell focus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 2 0 0 (0) (7) (0) (0)	1 0 0 0 0 (3) (0) (0)
	hepatocellular hypertrophy:central	2 0 0 0 (8) (0) (0)	2 0 0 0 0 (10) (10) (10)	2 0 0 0 0 (7) (0) (0)	14 0 0 0 *** (45) (0) (0) (0)
{Urinary sys	stem)				
kidney	atrophy	<25> 0 0 0 0 (0) (0) (0) (0)	<20> 0 0 0 0 (0) (0) (0) (0)	<27> 0 1 0 0 (0) (4) (0) (0)	31> 0 1 0 0 (0) (3) (0) (0)

Grade 1+ : Slight 2+ : Moderate

< a > a : Number of animals examined at the site

b : Number of animals with lesion b

c : b / a * 100

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

3+ : Marked

4+ : Severe

PAGE: 19

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

SEX : FEMALE PAGE: 20

		Group Name Control No. of Animals on Study 25	400 ppm 20	2000 ppm 27	10000 ppm 31
Organ	Findings	Grade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)	1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	em)				
kidney	hyaline droplet	<25> 0 0 0 0 (0) (0) (0) (0)	<20> 2 0 0 0 (10) (0) (0) (0)	<27> 1 0 0 0 (4) (0) (0) (0)	<pre></pre>
	lymphocytic infiltration	1 0 0 0 (4) (0) (0) (0)	1 0 0 0 (5) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	papillomatous polyp	0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	4 0 0 0 (15) (0) (0) (0)	3 0 0 0 (10) (0) (0) (0)
	hydronephros i s	0 2 0 0 (0) (8) (0) (0)	0 1 1 0 (0) (5) (5) (0)	0 5 2 0 (0) (19) (7) (0)	1 8 1 0 (3) (26) (3) (0)
	papillary necrosis	4 2 0 0 (16) (8) (0) (0)	1 1 0 0 (5)(5)(0)(0)	5 4 0 0 (19) (15) (0) (0)	5 7 0 0 (16) (23) (0) (0)
	mineralization:papilla	1 0 0 0 (4) (0) (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 (11) (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
	mineralization:pelvis	0 0 0 0 (0) (0) (0)	0 0 0 0 .	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (3) (0) (0)
	nephrosclerosis	1 10 2 0 (4) (40) (8) (0)	3 4 2 0 (15) (20) (10) (0)	1 9 2 0 (4) (33) (7) (0)	0 16 9 0 *
	nephrosclerosis			1 9 2 0 (4) (33) (7) (0)	

Grade

1+ : Slight 2+ : Moderate 3+ : Marked

4+ : Severe

< a >

a : Number of animals examined at the site

b (c) b : Number of animals with lesion c:b/a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (105W)

REPORT TYPE : A1 : FEMALE SEX

PAGE: 21

		oup Name Control	400 ppm	2000 ppm	10000 ppm
Organ		0. of Animals on Study 25 rade 1+ 2+ 3+ 4+ (%) (%) (%) (%)	20 1+ 2+ 3+ 4+ (%) (%) (%) (%)	27 1+ 2+ 3+ 4+ (%) (%) (%) (%)	31 1+ 2+ 3+ 4+ (%) (%) (%) (%)
{Urinary syst	t em)				
ureter	transitional cell hyperplasia	<25> 0 0 0 0 (0) (0) (0) (0)	<20> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<27> 0 0 0 0 (0) (0) (0) (0)	31> 0 1 0 0 (0) (3) (0) (0)
urin bladd	dilatation	<25> 0 0 0 0 0 0 0 0 0 0 0	<20> 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 (0) (4) (0) (0)	31> 0 0 0 0 0 0 0 0 0 0
	deposit of brown pigment	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	3 0 0 0 (10) (0) (0) (0)
(Endocrine sy	vstem)				
oituitary	hyperplasia	<25> 2 2 0 0 (8) (8) (0) (0)	<20> 1 0 0 0 (5) (0) (0) (0)	<27> 3 0 0 0 (11) (0) (0) (0)	<pre></pre>
	Rathke pouch	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (3) (0) (0)
adrenal	spindle-cell hyperplasia	(25) 0 17 8 0 (0) (68) (32) (0)	<pre></pre>	<27> 0 14 13 0 0 0 (52) (48) (0)	<pre></pre>
<a>> b (c)	1+: Slight 2+: Moderate 3+: a : Number of animals examined at the site b : Number of animals with lesion c : $b / a * 100$ lifference; $*$: $P \le 0.05$ **: $P \le 0.05$				

(HPT150)

BAIS5

SEX

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

REPORT TYPE : A1

: FEMALE

PAGE: 22

		Group Name Control No. of Animals on Study 25 Grade 1+ 2+ 3+ 4+	400 ppm 20 1+ 2+ 3+ 4+	2000 ppm 27 1+ 2+ 3+ 4+	10000 ppm 31 1+ 2+ 3+ 4+
rgan	Findings	(%) (%) (%)	(%) (%) (%)	(%) (%) (%) (%)	(%) (%) (%) (%)
Reproductiv	e system)				
vary	hematoma	<25> 0 0 2 0 0 0 (0) (8) (0)	<pre></pre>	<27> 0 0 1 0 (0) (0) (4) (0)	31> 0 0 1 0 (0) (0) (3) (0)
	cyst	0 1 2 0 (0) (4) (8) (0)	2 3 3 0 (10) (15) (15) (0)	3 3 0 0 (11) (11) (0) (0)	0 1 3 0 (0) (3) (10) (0)
terus	dilatation	<25> 0 0 0 0 (0) (0) (0) (0)	<pre></pre>	0 0 0 0 (0) (0) (0) (0)	31> 1 0 0 0 (3) (0) (0) (0)
	cystic endometrial hyperplasia	11 1 0 0 (44) (4) (0) (0)	11 0 0 0 (55) (0) (0) (0)	12 1 0 0 (44) (4) (0) (0)	9 0 0 0 0 (29) (0) (0) (0)
	xanthogranuloma	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 1 0 0 (0) (0)
ammary gl	hyperplasia	<25> 0 0 0 0 (0) (0) (0) (0)	<20> 1 0 0 0 (5) (0) (0) (0)	<27> 0 0 0 0 (0) (0) (0) (0)	31> 0 0 0 0 (0) (0) (0) (0)
Nervous syst	t em}				
rain	mineralization	<25> 6 0 0 0 (24) (0) (0) (0)	3 0 0 0 (15) (0) (0) (0)	<27> 2 0 0 0 (7) (0) (0) (0)	<31> 7 0 0 0 (23) (0) (0) (0)

Significant difference ; $*: P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (105W)

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : FEMALE

REPORT TYPE : A1

PAGE: 23

Ougan	Findings	Group Name No. of Animals on Stud Grade		ntrol 25 2+ (%)	3+ (%)	4+ (%)	41 1+ (%)	00 p 2 %	20 +	3+ (%)	4+ (%)	1+		ppm 27 2+ %)		4· (%)			1+ (%)	0000 2 (%		3+ (%)	4+ (%)
Organ	Findings		(%)	(76)	(76)	(70)	(A)			(70)	(76)	 (%)	'	./0]	(10)	(4)				(//	,	(10)	(76)
(Special sense	e organs/appendage)																						
еуе	keratitis	(0 (<25) 0 0) (0 0 0)	0 (0)	1 (5)	0		0 0)	0 (0)	1 (4)		<27 0 0) (0	0 (0))		0 0)	0 (0	0 0)
Harder gl	deposit of pigment		11 44) (<25) 0 0) (0 0 0)	0 (0)	12 (60)	0		0 0)	0 (0)	7 (26)		<27 0 0) (> 0 0)	0 (0)		(1 3)	0		0 0)	0 ** 0)
	hyperplasia	(0 (0 0) (0 0)	0 (0)	1 (5)	(0) (0 0)	0 (0)	0 (0)	(0 0) (0 0)	0 (0)	1	(0 0)	0 (0		0 0)	0 0)

Grade 1+ : Slight 2+ : Moderate 3+ : Marked 4+ : Severe

< a > a : Number of animals examined at the site

b b : Number of animals with lesion

(c) c : b / a * 100

Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square

(HPT150)

BA1S5

TABLE M 1

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: MALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE

0 - 52 NO. OF EXAMINED ANIMALS 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time-related Weeks	ltems	Group Name	Control	200 ppm	1000 ppm	5000 ppm	
NO OF ANIMALS WITH TUMORS 0 0 0 0 0 0 0 0 0		No. 05 53444455 444444 0		•			•	
NO. OF ANIMALS WITH SUNCE TUMORS 0 0 0 0 0 0 0 0 0	0 - 52	NO. OF EXAMINED ANIMALS		3	0	0	3	
NO. OF ANIMALS WITH MULTIPLE TUMORS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	0	0	0	
NO. OF BENIGN TIMORS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	0	0	0	
NO. OF MALICHANT TUMORS 0		NU. OF ANIMALS WITH MULTIPLE TUMORS		U	U	U	U	
NO. OF TOTAL TUNORS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	0	0	0	
The image				0	0	0	0	
NO. OF ANIMALS WITH TUMORS 2 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 3 3 3 3 3 3 3		NO. OF TOTAL TUMORS		U	U	U	U	
NO. OF ANIMALS WITH TUMORS 2 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 3 3 3 3 3 3 3	53 - 78	NO. OF EXAMINED ANIMALS		3	6	5	15	
NO. OF ANIMALS WITH SINGLE TUMORS 1				v	v	v		
NO. OF ANIMALS WITH MULTIPLE TUMORS				2	2			
NO. OF BENIGN TUMORS 2				1	2	2 n	პ ი	
NO. OF MALIGNANT TUMORS 1		NO. OF ANTIMALS WITH MOLITICE TOMORS		,	U	U	U	
NO. OF TOTAL TUMORS 3				2	0	1	0	
79 - 104 NO. OF EXAMINED ANIMALS NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS NO. OF BENIGN TUMORS NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS NO. OF TOTAL TUMORS NO. OF TOTAL TUMORS NO. OF ANIMALS WITH TUMORS 11 22 25 6 NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4				1	2	1	3	
NO. OF ANIMALS WITH TUMORS 11 10 8 8 8 NO. OF ANIMALS WITH SINGLE TUMORS 4 3 4 7 7 7 4 1 1 1 1 1 1 1 1 1		NO. OF TOTAL TOMORS	***	ა		۷	J	
NO. OF ANIMALS WITH SINGLE TUMORS 4 3 4 7 7 7 7 4 1 1 1 1 1 1 1 1 1	79 - 104	NO. OF EXAMINED ANIMALS		13	11	8	22	
NO. OF ANIMALS WITH SINGLE TUMORS 4 3 4 7 7 7 4 1 1 1 1 1 1 1 1 1		NO. OF ANIMALS WITH TUMORS		11	10	8	8	
NO. OF BENIGN TUMORS 6 10 4 1 1 1 1 1 1 1 1 1		NO. OF ANIMALS WITH SINGLE TUMORS		4		4	7	
NO. OF MALIGNANT TUMORS 13 15 8 9 NO. OF TOTAL TUMORS 19 25 12 10 105 - 105 NO. OF EXAMINED ANIMALS 31 33 37 10 NO. OF ANIMALS WITH TUMORS 21 22 25 6 NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4		NO. OF ANIMALS WITH MULTIPLE TUMORS		7	7	4	1	
NO. OF MALIGNANT TUMORS 13 15 8 9 NO. OF TOTAL TUMORS 19 25 12 10 105 - 105 NO. OF EXAMINED ANIMALS 31 33 37 10 NO. OF ANIMALS WITH TUMORS 21 22 25 6 NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4		NO. OF BENIGN TUMORS		6	10	4	1	
105 - 105 NO. OF EXAMINED ANIMALS 31 33 37 10 NO. OF ANIMALS WITH TUMORS 21 22 25 6 NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4		NO. OF MALIGNANT TUMORS				8	•	
NO. OF ANIMALS WITH TUMORS 21 22 25 6 NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4		NO. OF TOTAL TUMORS		19	25	12	10	
NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4	105 - 105	NO. OF EXAMINED ANIMALS	TO 100 100 100 100 100 100 100 100 100 10	31	33	37	10	
NO. OF ANIMALS WITH SINGLE TUMORS 7 12 15 4		NO. OF ANIMALS WITH THMORS		21	22	25	6	
				7			4	
		NO. OF ANIMALS WITH MULTIPLE TUMORS		14			2	

18

20

38

23

16

39

21

19

40

NO. OF BENIGN TUMORS

NO. OF TOTAL TUMORS

NO. OF MALIGNANT TUMORS

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

REPORT TYPE : A1
SEX : MALE

PAGE: 2

Time-related Weeks	l tems	Group Name	Control	200 ppm	1000 ppm	5000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		50	50	50	50	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		34 12 22	34 17 17	35 21 14	17 14 3	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		26 34 60	33 33 66	26 28 54	8 13 21	
	10. 0. 10.112 10.11010					be (

(HPT070)

BA1S5

TABLE M 2

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS-TIME RELATED: FEMALE

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

SEX : FEMALE

ime-related Weeks	l tems	Group Name	Control	400 ppm	2000 ppm	10000 ppm	
0 - 52	NO. OF EXAMINED ANIMALS		0	1	3	0	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		0 0 0	0 0 0	0 0 0	0 0 0	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 0 0	0 0 0	0 0 0	0 0 0	
53 - 78	NO. OF EXAMINED ANIMALS		7	7	5	5	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		7 6 1	7 7 0	4 3 1	3 2 1	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		0 8 8	0 7 7	0 5 5	0 4 4	
79 - 104	NO. OF EXAMINED ANIMALS		17	22	15	14	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		17 9 8	20 13 7	14 8 6	11 8 3	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		12 17 29	11 20 31	5 17 22	3 11 14	
105 - 105	NO. OF EXAMINED ANIMALS	1	25	20	27	31	
	NO. OF ANIMALS WITH TUMORS NO. OF ANIMALS WITH SINGLE TUMORS NO. OF ANIMALS WITH MULTIPLE TUMORS		19 9 10	18 7 11	25 15 10	19 14 5	
	NO. OF BENIGN TUMORS NO. OF MALIGNANT TUMORS NO. OF TOTAL TUMORS		16 17 33	16 18 34	15 23 38	8 17 25	

NUMBER OF ANIMALS WITH TUMORS AND NUMBER OF TUMORS - TIME RELATED

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1

SEX : FEMALE

PAGE: 4

Time-related Weeks	l tems	Group Name	Control	400 ppm	2000 ppm	10000 ppm	
0 - 105	NO. OF EXAMINED ANIMALS		49	50	50	50	
	NO. OF ANIMALS WITH TUMORS		43	45	43	33	
	NO. OF ANIMALS WITH SINGLE TUMORS		24	27	26	24	
	NO. OF ANIMALS WITH MULTIPLE TUMORS		19	18	17	9	
	NO. OF BENIGN TUMORS		28	27	20	11	
	NO. OF MALIGNANT TUMORS		42	45	45	32	
	NO. OF TOTAL TUMORS		70	72	65	43	
(UDTO70)					5000000 100000 100000 100000 100000 100000 100000 1000000		RAI

(HPT070)

BAIS5

TABLE N 1

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: MALE

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

dage) ell carcinoma : sarcoma -alveolar adenoma		0 0 0	<50> (0%) <50> (0%) (0%) (0%)	0	<50> (0%) (0%) (50> (0%) (2%) (2%)	1	<50> (0%) <50> (2%) (0%)	0	<50> (2%) <50> (0%) (0%)
: sarcoma		0 0 0	(0%) <50> (0%) (0%)	0	(0%) <50> (0%) (2%)	1	(0%) (50> (2%) (0%)	0	(2%) <50> (0%) (0%)
		0 0	(0%)	1	(0%)	0	(2%)	0	(0%)
		0							
			(0%)	0	(0%)	0	(0%)	1	1 201
-alveolar adenoma									(2%)
-alveolar adenoma									
			<50> (6%)	8	<50> (16%)	2	<50> (4%)	1	<50> (2%)
		1	(2%)	1	(2%)	0	(0%)	0	(0%)
-alveolar carcinoma		5	(10%)	4	(8%)	7	(14%)	0	(0%)
coma				3	<50> (6%)	0	<50> (0%)	0	<50> (0%)
				1	<50> (2%)	0	<50> (0%)	0	<50> (0%)
ymphoma		5	(10%)	7	(14%)	9	(18%)	2	(4%)
ben i gn				0	<50> (0%)	0	<50> (0%)	0	<50> (0%)
	coma ymphoma benign of animals examined at the site	ymphoma benign of animals examined at the site	coma 0 ymphoma 5 benign 1	\langle \langle 50 \\ 0 (0\%) \\ \text{ymphoma} \langle 50 \\ \text{benign} \langle 2\% \rangle	coma 0 (0%) 3 <50> 0 (0%) 1 ymphoma 5 (10%) 7 benign 1 (2%) 0 of animals examined at the site	coma 0 (0%) 3 (6%) <50> <50> 0 (0%) 1 (2%) ymphoma 5 (10%) 7 (14%) benign <50> <50> 1 (2%) 0 (0%)	coma 0 (0%) 3 (6%) 0 <50> <50> 0 (0%) 1 (2%) 0 ymphoma 5 (10%) 7 (14%) 9 benign <50> <50> 0 (0%) 0 of animals examined at the site	coma $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	coma $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Organ	Findings	Group Name Control No. of animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50	
(Hematopoiet	ic system)					
spleen	hemangioma	<50> 2 (4%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	
	histiocytic sarcoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)	
	malignant lymphoma	0 (0%)	0 (0%)	1 (2%)	1 (2%)	
	mastcytoma:malignant	2 (4%)	0 (0%)	0 (0%)	0 (0%)	
	hemangiosarcoma	0 (0%)	3 (6%)	0 (0%)	1 (2%)	
(Circulatory	system					
heart	hemangioma	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	
(Digestive sy	ystem)					
stomach	squamous cell papilloma	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	
liver	hemangioma	<50> 7 (14%)	<50> 3 (6%)	<50> 5 (10%)	<50> 0 (0%)	
	hepatocellular adenoma	10 (20%)	9 (18%)	14 (28%)	4 (8%)	
	histiocytic sarcoma	2 (4%)	3 (6%)	0 (0%)	3 (6%)	
	hemangiosarcoma	4 (8%)	4 (8%)	2 (4%)	1 (2%)	
<a>>	a : Number of animals examined at the site b : Number of animals with neoplasm c : b /	′ a * 100				

: MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS: NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

1000 ppm 5000 ppm Group Name Control 200 ppm No. of animals on Study 50 50 50 Organ____ Findings (Digestive system) liver <50> <50> <50> (50) 9 (18%) 7 (14%) 6 (12%) 1 (2%) hepatocellular carcinoma hepatoblastoma 1 (2%) 0 (0%) 1 (2%) 0 (0%) (Urinary system) kidney <50> **<50>** <50> **<50>** 1 (2%) 0 (0%) renal cell adenoma 0 (0%) 0 (0%) <50> **<50>** <50> <50> urin bladd histiocytic sarcoma 1 (2%) 0 (0%) 0 (0%) 0 (0%) (Endocrine system) pituitary ⟨50⟩ <50> <50> <50> adenoma 0 (0%) 0 (0%) 1 (2%) 0 (0%) adrenal **<49>** <50> <50> <50> A-B cell tumor 0 (0%) 1 (2%) 1 (2%) 1 (2%) (Reproductive system) epididymis ⟨50⟩ <50> ⟨50⟩ <50> histiocytic sarcoma 3 (6%) 1 (2%) 0 (0%) 0 (0%) (Nervous system) periph nerv ⟨50⟩ <50> <50> ⟨50⟩ schwannoma:malignant 0 (0%) 0 (0%) 0 (0%) 1 (2%) histiocytic sarcoma 0 (0%) 1 (2%) 0 (0%) 0 (0%) < a > a: Number of animals examined at the site

b: Number of animals with neoplasm

c:b/a * 100

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : MALE

PAGE: 4

Organ	Findings	Group Name Control No. of animals on Study 50	200 ррm 50	1000 ppm 50	5000 ppm 50
(Special sens	se organs/appendage)				
Harder gl	adenoma	<50> 2 (4%)	<50> 5 (10%)	<50> 2 (4%)	<50> 1 (2%)
(Musculoskele	etal system)				
oone	osteosarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
Body cavitie	esl				
leura	histiocytic sarcoma	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
eritoneum	hemangioma	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	leiomyosarcoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
retroperit	histiocytic sarcoma	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
<a>> b (c)	a : Number of animals examined at the site b : Number of animals with neoplasm c : b /	a * 100			

(HPT085)

BA1S5

TABLE N 2

HISTOPATHOLOGICAL FINDINGS:

NEOPLASTIC LESIONS: FEMALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
REPORT TYPE : A1

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
{Integumentar	y system/appandage)				
skin/app	squamous cell carcinoma	<49> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
subcutis	fibroma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)
	hemangioma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
	fibrosarcoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
	leiomyosarcoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
	rhabdomyosarcoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
	schwannoma:malignant	1 (2%)	0 (0%)	1 (2%)	0 (0%)
	histiocytic sarcoma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
	mastcytoma:malignant	0 (0%)	0 (0%)	0 (0%)	1 (2%)
	hemangiosarcoma	0 (0%)	0 (0%)	1 (2%)	1 (2%)
{Respiratory	system)				
nasal cavit	histiocytic sarcoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
lung	bronchiolar-alveolar adenoma	<49> 2 (4%)	<50> 2 (4%)	<50> 1 (2%)	<50> 3 (6%)
<a>>	a : Number of animals examined at the site b : Number of animals with neoplasm c : b / a *	100			1,000,000,000,000,000,000,000,000,000,0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
(Respiratory s	ystem)				
lung	bronchiolar-alveolar carcinoma	<49> 3 (6%)	<50> 2 (4%)	<50> 0 (0%)	<50> 3 (6%)
(Hematopoietic	system				
oone marrow	hemangioma	<49> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	hemangiosarcoma	0 (0%)	0 (0%)	1 (2%)	0 (0%)
lymph node	hemangioma	<49> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	malignant lymphoma	17 (35%)	22 (44%)	18 (36%)	6 (12%)
pleen	mastcytoma:benign	<48> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
	hemangioma	1 (2%)	0 (0%)	1 (2%)	1 (2%)
	malignant lymphoma	0 (0%)	0 (0%)	0 (0%)	1 (2%)
	mastcytoma:malignant	0 (0%)	0 (0%)	1 (2%)	0 (0%)
	hemangiosarcoma	1 (2%)	0 (0%)	2 (4%)	1 (2%)
(Circulatory s	ystem}				
heart	hemangiosarcoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

PAGE: 7

Organ	Findings	Group Name Control No. of animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
{Digestive sys	tem)				
stomach	squamous cell papilloma	<49> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 2 (4%)
liver	hemangioma	<49> 1 (2%)	<50> 3 (6%)	<50> 2 (4%)	<50> 0 (0%)
	hepatocellular adenoma	2 (4%)	3 (6%)	2 (4%)	2 (4%)
	histiocytic sarcoma	3 (6%)	3 (6%)	4 (8%)	1 (2%)
	hemangiosarcoma	2 (4%)	2 (4%)	1 (2%)	0 (0%)
	hepatocellular carcinoma	0 (0%)	1 (2%)	1 (2%)	1 (2%)
gall bladd	papillary adenoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
{Urinary syste	om}				
cidney	renal cell adenoma	<49> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)
	transitional cell carcinoma	0 (0%)	0 (0%)	0 (0%)	2 (4%)
	renal cell carcinoma	0 (0%)	1 (2%)	0 (0%)	0 (0%)
ırin bladd	histiocytic sarcoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
(Endocrine sys	tem)				
oituitary	adenoma	<49> 5 (10%)	<50> 6 (12%)	<49> 5 (10%)	<50> 0 (0%)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
(Endocrine sys	tem)				
thyroid	follicular adenoma	<49> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
drenal	pheochromocytoma	<49> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
(Reproductive	system)				
ovary	cystadenoma	<49> 4 (8%)	<50> 5 (10%)	<50> 3 (6%)	<50> 1 (2%)
	hemangioma	1 (2%)	0 (0%)	0 (0%)	0 (0%)
	histiocytic sarcoma	1 (2%)	0 (0%)	0 (0%)	0 (0%)
terus	l e i omyoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
	endometrial stromal polyp	2 (4%)	3 (6%)	1 (2%)	0 (0%)
	histiocytic sarcoma	9 (18%)	7 (14%)	6 (12%)	11 (22%)
	endometrial stromal sarcoma	0 (0%)	1 (2%)	1 (2%)	0 (0%)
nammary gl	adenocarcinoma	<49> 2 (4%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
(Nervous syste	m)				
eriph nerv	schwannoma:malignant	<49> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)

b (c)

b: Number of animals with neoplasm

c : b / a * 100

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : FEMALE

Organ	Findings	Group Name Control No. of animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Nervous syst	em)				
eriph nerv	histiocytic sarcoma	. <49> 1 (2%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
Special sens	se organs/appendage)				
arder gl	adenoma	<49> 4 (8%)	<50> 3 (6%)	<50> 1 (2%)	<50> 0 (0%)
mbal gl	squamous cell carcinoma	<49> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
luscu loske le	etal system}				
iscle	leiomyosarcoma	<49> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	rhabdomyosarcoma	1 (2%)	1 (2%)	0 (0%)	0 (0%)
ne	osteosarcoma	<49> 0 (0%)	<50> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)
ody cavitie	(ze				
eura	hemangioma	<49> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)	<50> 0 (0%)
diastinum	rhabdomyosarcoma	<49> 0 (0%)	<50> 0 (0%)	<50> 1 (2%)	<50> 0 (0%)
eritoneum	hemangioma	<49> 1 (2%)	<50> 1 (2%)	<50> 0 (0%)	<50> 0 (0%)
	histiocytic sarcoma	1 (2%)	0 (0%)	0 (0%)	0 (0%)

< a >

a : Number of animals examined at the site

b (c) b: Number of animals with neoplasm

c : b / a * 100

TABLE O 1

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: MALE

STUDY No. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : MALE

					7770
Group Name	Control	200 ppm	1000 ppm	5000 ppm	
	SITE : lung TUMOR : bronchiolar-alveol	ar adenoma	•		
Tumor rate	TOMOR : DIONOMOTAL ATTECH	ar additiona			
Overall rates(a)	3/50 (6. 0)	8/50 (16. 0)	2/50 (4. 0)	1/50 (2. 0)	
Adjusted rates (b)	9. 68	20. 00	4. 35	10. 00 1/10 (10. 0)	
Terminal rates(c) Statistical analysis Peto test	3/31 (9. 7)	5/33 (15. 2)	1/37 (2. 7)	1/10 (10. 0)	
Standard method (d)	P =				
Prevalence method(d)	P = 0.8788				
Combined analysis (d)	P =				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.0732	P = 0.0999	P = 0.5000	P = 0.3087	
Turan	SITE : lung TUMOR : bronchiolar-alveol	ar carcinoma			
Tumor rate Overall rates(a)	5/50 (10. 0)	4/50 (8. 0)	7/50 (14. 0)	0/50 (0. 0)	
Adjusted rates (b)	15. 63	10. 53	14. 29.	0. 0	
Terminal rates (c)	4/31 (12. 9)	2/33 (6. 1)	5/37 (13. 5)	0/10 (0. 0)	
Statistical analysis					
Peto test Standard method(d)	P = 0. 2791				
Prevalence method (d)	P = 0. 9347				
Combined analysis(d)	P = 0.9311				
Cochran-Armitage test(e)	P = 0. 0288*	D 0 5000	D 0 2700	D = 0.0001+	
Fisher Exact test(e)	V-318/V-2-16/10/04/04/04/04/04/04/04/04/04/04/04/04/04	P = 0.5000	P = 0. 3798	P = 0. 0281*	
	SITE : lung	ar adenoma, bronchiolar-alveolar carcinom			
Tumor rate	Tomon Dionomoral arreor	ar agenoma, by onemoral arrestar caremonn	u		
Overall rates (a)	7/50 (14. 0)	11/50 (22. 0)	9/50 (18. 0)	1/50 (2. 0)	
Adjusted rates (b)	21. 88	26. 32	17. 39	10.00	
Terminal rates(c) Statistical analysis	6/31 (19. 4)	6/33 (18. 2)	6/37 (16. 2)	1/10 (10. 0)	
Peto test					
Standard method(d)	P = 0. 2791				
Prevalence method(d)	P = 0.9779				
Combined analysis (d)	P = 0.9771				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 0062**	P = 0.2178	P = 0.3929	P = 0.0297*	
		1 0. 2110	1 0.0020	1 0.0007	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]
SEX : MALE

Group Name	Control	200 ppm	1000 ppm	5000 ppm
	SITE : bone marrow TUMOR : hemangiosarcoma			
Tumor rate				
Overall rates (a)	0/50 (0. 0) 0. 0	3/50 (6. 0) 4. 76	0/50 (0.0) 0.0	0/50 (0. 0) 0. 0
Adjusted rates(b) Terminal rates(c)	0/31 (0. 0)	1/33 (3. 0)	0/37 (0. 0)	0/10 (0. 0)
Statistical analysis				
Peto test Standard method(d)	P = 1.0000 ?			
Prevalence method(d)	P = 0.7280			
Combined analysis(d) Cochran-Armitage test(e)	P = 0. 8183 P = 0. 2450			
Fisher Exact test(e)	F ~ U. 2450	P = 0. 1212	P = N. C.	P = N. C.
	SITE : lymph node			
Tumor rate	TUMOR : malignant lymphoma			
Overall rates (a)	5/50 (10. 0)	7/50 (14. 0)	9/50 (18. 0)	2/50 (4. 0)
Adjusted rates (b)	12. 90	13. 89	13. 51	0. 0
Terminal rates (c) Statistical analysis	4/31 (12. 9)	4/33 (12. 1)	5/37 (13. 5)	0/10 (0.0)
Peto test				
Standard method(d)	P = 0. 1257			
Prevalence method(d) Combined analysis(d)	P = 0. 9679 P = 0. 6934			
Cochran-Armitage test (e)	P = 0. 0954			
Fisher Exact test(e)		P = 0.3798	P = 0.1940	P = 0.2180
	SITE : spleen			
	TUMOR : hemangiosarcoma			
Tumor rate Overall rates (a)	0/50 (0.0)	3/50 (6. 0)	0/50 (0.0)	1/50 (2. 0)
Adjusted rates (b)	0.0	6. 06	0/30 (0. 0)	5. 88
Terminal rates (c)	0/31 (0.0)	2/33 (6. 1)	0/37 (0. 0)	0/10 (0.0)
Statistical analysis				
Peto test Standard method(d)	P = 1.0000 ?			
Prevalence method (d)	P = 0. 1922			
Combined analysis (d)	P = 0. 2723			
Cochran-Armitage test (e)	P = 0.8811	D = 0 1212	D = N C	D - 0 E000
Fisher Exact test(e)		P = 0.1212	P = N. C.	P = 0.5000

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

Group Name	Control	200 ppm	1000 ppm	5000 ppm	
	SITE : liver				
Tumor rate	TUMOR : hemangioma				
Overall rates (a)	7/50 (14. 0)	3/50 (6. 0)	5/50 (10. 0)	0/50 (0.0)	
Adjusted rates (b)	15. 15	9. 09	10. 81	0. 0	
Terminal rates (c)	4/31 (12. 9)	3/33 (9. 1)	4/37 (10. 8)	0/10 (0.0)	
Statistical analysis Peto test					
Standard method(d)	P = 0.5899				
Prevalence method (d)	P = 0. 9662				
Combined analysis(d)	P = 0.9728				
Cochran-Armitage test(e)	P = 0.0194*				
Fisher Exact test(e)		P = 0.1589	P = 0. 3798	P = 0. 0062**	
	SITE : liver				
_	TUMOR : hepatocellular adenoma				
Tumor rate Overall rates(a)	10/50/ 20 0)	9/50 (18. 0)	14/50/ 20 0\	4/50 (8. 0)	
Adjusted rates (b)	10/50 (20. 0) 23. 68	9/50 (18. 0) 24. 24	14/50 (28. 0) 35. 14	4/ 50 (8. 0/ 40. 00	
Terminal rates (c)	6/31 (19. 4)	8/33 (24. 2)	13/37 (35. 1)	4/10 (40. 0)	
Statistical analysis					
Peto test	_				
Standard method(d) Prevalence method(d)	P = P = 0. 6202				
Combined analysis (d)	P =				
Cochran-Armitage test (e)	P = 0. 0528				
Fisher Exact test(e)		P = 0.5000	P = 0.2415	P = 0.0739	
, , , , , , , , , , , , , , , , , , ,	OLTE				
	SITE : liver TUMOR : histiocytic sarcoma				
Tumor rate					
Overall rates (a)	2/50 (4. 0)	3/50 (6. 0)	0/50 (0. 0)	3/50 (6. 0)	
Adjusted rates (b) Terminal rates (c)	3. 23 1/31 (3. 2)	6. 06 2/33 (6. 1)	0. 0 0/37 (0. 0)	0. 0 0/10 (0. 0)	
Statistical analysis	1/31(3.2)	2/33 (0. 1)	0/3/ (0. 0)	U/ (U (U. U)	
Peto test					
Standard method(d)	P = 0.0173*				
Prevalence method(d)	P = 0.8688				
Combined analysis (d)	P = 0.0672				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.5689	P = 0.5000	P = 0.2475	P = 0.5000	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj [Crj:BDF1]
SEX : MALE

JEA . WALL					TAGE .
Group Name	Control	200 ppm	1000 ррм	5000 ppm	
	SITE : liver				
Tumor rate	TUMOR : hemangiosarcoma				
Overall rates (a)	4/50 (8. 0)	4/50 (8. 0)	2/50 (4. 0)	1/50 (2. 0)	
Adjusted rates(b)	3. 23	4. 88	2. 70	0. 0	
Terminal rates (c) Statistical analysis Peto test	1/31 (3. 2)	1/33 (3. 0)	1/37 (2. 7)	0/10 (0.0)	
Standard method(d)	P = 0.5485				
Prevalence method (d)	P = 0. 7690				
Combined analysis (d)	P = 0.7281				
Cochran-Armitage test(e)	P = 0.1569			D 0.4044	
Fisher Exact test(e)		P = 0. 6425	P = 0. 3389	P = 0. 1811	
	SITE : liver				
	TUMOR : hepatocellular carcinoma				
Tumor rate					
Overall rates (a)	9/50 (18. 0)	7/50 (14. 0)	6/50 (12. 0)	1/50 (2. 0)	
Adjusted rates(b) Terminal rates(c)	19. 35 6/31 (19. 4)	12. 12 4/33 (12. 1)	14. 63 5/37 (13. 5)	0. 0 0/10 (0. 0)	
Statistical analysis	0/31 (13. 4)	4/ 33 (12. 1/	3/3/(13.3)	0/10 (0. 0)	
Peto test					
Standard method(d)	P = 0.5835				
Prevalence method (d)	P = 0. 9451				
Combined analysis(d) Cochran-Armitage test(e)	P = 0.9281 P = 0.0110*				
Fisher Exact test(e)	P - U. U11U*	P = 0.3929	P = 0.2883	P = 0.0078**	
Tranci Exact Cost (c)		1 - 0. 0010	1 - 0. 2000	1 . 0. 0070**	***************************************
	SITE : liver				
Tuman wata	TUMOR : hemangioma, hemangiosarcoma				
Tumor rate Overall rates (a)	10/50 (20. 0)	7/50 (14. 0)	6/50 (12. 0)	1/50 (2. 0)	
Adjusted rates (b)	16. 13	12. 20	10. 81	0. 0	
Terminal rates (c)	5/31 (16. 1)	4/33 (12. 1)	4/37 (10. 8)	0/10 (0. 0)	
Statistical analysis					
Peto test					
Standard method (d)	P = 0.6515				
Prevalence method(d) Combined analysis(d)	P = 0. 9801 P = 0. 9669				
Cochran-Armitage test (e)	P = 0. 9009 P = 0. 0078**				
Fisher Exact test(e)	. 0.0010	P = 0. 2977	P = 0.2070	P = 0.0039**	

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]
SEX : MALE

Group Name	Control	200 ррт	1000 ppm	5000 mag
	SITE : liver	noma, hepatocellular carcinoma		
umor rate	TOMOR . HEPATOCETTUTAT AGE	noma, nepatocerturar carcinoma		
Overall rates (a)	15/50 (30. 0)	16/50 (32. 0)	17/50 (34. 0)	5/50 (10. 0)
Adjusted rates(b)	30. 56	36. 36	40. 54	40. 00
Terminal rates (c)	8/31 (25. 8)	12/33 (36. 4)	15/37 (40. 5)	4/10 (40. 0)
tatistical analysis				
Peto test Standard method(d)	D = 0 5025			
Prevalence method (d)	P = 0. 5835 P = 0. 8498			
Combined analysis (d)	P = 0. 8628			
Cochran-Armitage test(e)	P = 0.0035**			
Fisher Exact test(e)		P = 0.5000	P = 0.4152	P = 0.0114*
umor rate Overall rates (a) Adjusted rates (b) Terminal rates (c) tatistical analysis Peto test Standard method (d) Prevalence method (d) Combined analysis (d) Cochran-Armitage test (e) Fisher Exact test (e)	SITE : liver TUMOR : hepatocellular car 10/50 (20. 0) 22. 58 7/31 (22. 6) P = 0. 5835 P = 0. 9517 P = 0. 9369 P = 0. 0075**	7/50 (14. 0) 12. 12 4/33 (12. 1) P = 0. 2977	7/50 (14. 0) 17. 07 6/37 (16. 2) P = 0. 2977	1/50 (2. 0) 0. 0 0/10 (0. 0) P = 0. 0039**
umor rate	SITE : liver TUMOR : hepatocellular ade	noma, hepatocellular carcinoma, hepatoblas	toma	
Overall rates (a)	16/50 (32. 0)	16/50 (32. 0)	17/50 (34. 0)	5/50 (10. 0)
Adjusted rates(b)	33. 33	36. 36	40. 54	40. 00
Terminal rates(c)	9/31 (29. 0)	12/33 (36. 4)	15/37 (40. 5)	4/10 (40. 0)
tatistical analysis Peto test				
Standard method(d)	P = 0.5835			
Prevalence method (d)	P = 0. 8705			
Combined analysis (d)	P = 0.8808			
Cochran-Armitage test(e)	P = 0.0025**			
Fisher Exact test(e)		P = 0. 5848	P = 0.5000	P = 0.0064**

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

(HPT360A)

Group Name	Control	200 ppm	1000 mgg	5000 ppm	
	SITE : epididymis				
Tumor rate	TUMOR : histiocytic sarcoma				
Overall rates (a)	3/50 (6. 0)	1/50 (2. 0)	0/50 (0. 0)	0/50 (0. 0)	
Adjusted rates (b)	2. 27	0. 0	0. 0	0. 0	
Terminal rates (c)	0/31 (0. 0)	0/33 (0. 0)	0/37 (0. 0)	0/10 (0. 0)	
Statistical analysis	0, 01 (0.0)	0,00 (0.0,	0, 0. (0, 0,	5, 75 T	
Peto test					
Standard method (d)	P = 0.9014				
Prevalence method(d)	P = 1.0000 ?				
Combined analysis(d)	P = 0.9475				
Cochran-Armitage test(e)	P = 0.1348				
Fisher Exact test(e)		P = 0. 3087	P = 0. 1212	P = 0. 1212	
	SITE : Harderian gland TUMOR : adenoma	`			
Tumor rate	0 (50 (4.0)	E /EQ / 10 Q	0/00/ 4.0	1 (50 (0 0)	
Overall rates (a)	2/50 (4. 0) 6. 45	5/50 (10. 0) 13. 51	2/50 (4. 0) 5. 13	1/50 (2. 0) 10. 00	
Adjusted rates(b) Terminal rates(c)	2/31 (6. 5)	4/33 (12. 1)	1/37 (2. 7)	1/10 (10. 0)	
Statistical analysis	2/31 (0. 3)	4/33 (12.1)	1/31 (2.1)	1/10 (10. 0/	
Peto test					
Standard method(d)	P =				
Prevalence method (d)	P = 0.6138				
Combined analysis (d)	P =				
Cochran-Armitage test(e)	P = 0.2299				
Fisher Exact test(e)		P = 0.2180	P = 0.6913	P = 0.5000	

⁽a): Number of tumor-bearing animals/number of animals examined at the site.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

BA1S5

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{? :} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

Significant difference; $*: P \leq 0.05$ $**: P \leq 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX : MALE

(HPT360A)

Group Name	Control	200 ppm	1000 ppm	5000 ppm	
	SITE : ALL SITE TUMOR : histiocytic sarcoma				
Tumor rate	TUMOR . HISTOCYTIC SATCOMA				
Overall rates (a)	7/50 (14. 0)	4/50 (8. 0)	2/50 (4. 0)	5/50 (10. 0)	
Adjusted rates (b)	7. 14	6. 06	2. 70	2. 63	
Terminal rates (c)	2/31 (6. 5)	2/33 (6. 1)	1/37 (2. 7)	0/10 (0. 0)	
Statistical analysis	2, 01 (0.0)	27 00 (0. 17	17 07 (25 7)	5, 15 (5, 5)	
Peto test					
Standard method(d)	P = 0.0761				
Prevalence method(d)	P = 0.6871				
Combined analysis(d)	P = 0.1908				
Cochran-Armitage test(e)	P = 0.9903				
Fisher Exact test(e)		P = 0.2623	P = 0.0798	P = 0. 3798	
	SITE : ALL SITE TUMOR : malignant lymphoma				
Tumor rate				0 (70 (0 0)	
Overall rates (a)	5/50 (10. 0)	7/50 (14. 0)	10/50 (20. 0)	3/50 (6. 0)	
Adjusted rates(b)	12. 90	13. 89	16. 22	10.00	
Terminal rates (c)	4/31 (12. 9)	4/33 (12. 1)	6/37 (16. 2)	1/10 (10. 0)	
Statistical analysis					
Peto test Standard method(d)	P = 0. 1257				
Prevalence method (d)	P = 0.8120				
Combined analysis (d)	P = 0.4679				
Cochran-Armitage test (e)	P = 0. 1926				
Fisher Exact test (e)		P = 0.3798	P = 0.1312	P = 0.3575	
		·	· · · · · · · · · · · · · · · · · · ·	• • •	

(a): Number of tumor-bearing animals/number of animals examined at the site.

Standard method : Death analysis

Prevalence method: Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

BA1S5

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{? :} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

TABLE O 2

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS: FEMALE

STUDY No. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE PAGE: 7

P = 0.6990 2/50 (4.0) P = 0.6990 2/50 (4.0) 2/20 (10.0)	1/50 (2. 0) 3. 70 1/27 (3. 7) P = 0. 4923	3/50 (6. 0) 7. 14 2/31 (6. 5) P = 0. 5097	
2/50 (4. 0) 10. 00 2/20 (10. 0) P = 0. 6990 chiolar-alveolar carcinoma) 2/50 (4. 0)	3. 70 1/27 (3. 7) P = 0. 4923	7. 14 2/31 (6. 5) P = 0. 5097	
10.00 2/20(10.0) P = 0.6990 (chiolar-alveolar carcinoma) 2/50(4.0)	3. 70 1/27 (3. 7) P = 0. 4923	7. 14 2/31 (6. 5) P = 0. 5097	
10.00 2/20(10.0) P = 0.6990 (chiolar-alveolar carcinoma) 2/50(4.0)	3. 70 1/27 (3. 7) P = 0. 4923	7. 14 2/31 (6. 5) P = 0. 5097	
P = 0.6990 c ichiolar-alveolar carcinoma) 2/50(4.0)	P = 0. 4923 0/50 (0. 0)	P = 0.5097 3/50 (6.0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
c chiolar-alveolar carcinoma) 2/50(4.0)	0/50 (0. 0)	3/50 (6. 0)	
chiolar-alveolar carcinoma) 2/50(4.0)			
) 2/50 (4. 0)			
U 10. UU		V. VL	
2/20 (10. 0)	0/27 (0. 0)	2/31 (6. 5)	
P = 0. 4903	P = 0. 1175	P = 0. 6708	
chiolar-alveolar adenoma, bronchiolar-alveolar carcino	noma		
4/50/ 0.0	1/50/ 0.0	0 (50 / 10 0)	
1/ 60 (60. 0)	., 21 (0.1)	7. 0. (12. 0)	
		D - 0 2022	
0	2) 4/50 (8. 0) 00 20. 00 0) 4/20 (20. 0)	00 20.00 3.70 0) 4/20 (20.0) 1/27 (3.7)	00 20. 00 3. 70 13. 64

STUDY No. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE PAGE :

Group Name	Control	400 ppm	2000 ppm	10000 ppm
	SITE : lymph node TUMOR : malignant lymphoma		,	
Tumor rate	TOMON . MATIGITALL LYMPHOMA			
Overall rates (a)	17/49 (34. 7)	22/50 (44. 0)	18/50 (36. 0)	6/50 (12. 0)
Adjusted rates(b) Terminal rates(c)	36. 00 9/25 (36. 0)	50. 00 10/20 (50. 0)	50. 00 13/27 (48. 1)	14. 71 4/31 (12. 9)
Statistical analysis	37 23 (30. 0)	10/20 (30. 0)	13/21 (40. 1)	47 31 (12. 3)
Peto test				
Standard method(d) Prevalence method(d)	P = 0.9996 P = 0.9986			
Combined analysis (d)	P = 0.9980 P = 1.0000			
Cochran-Armitage test(e)	P = 0.0006**			
Fisher Exact test(e)		P = 0. 2293	P = 0. 5297	P = 0.0069**
0.33533346441.00044.000	SITE : liver	1.00 mg/		
	TUMOR : hemangioma			
Tumor rate	-			
Overall rates (a)	1/49 (2. 0)	3/50 (6. 0)	2/50 (4. 0)	0/50 (0. 0)
Adjusted rates(b) Terminal rates(c)	3. 85 0/25 (0. 0)	11. 11 2/20 (10. 0)	7. 41 2/27 (7. 4)	0. 0 0/31 (0. 0)
Statistical analysis	57 25 (0. 07	27 20 (10. 0)	L) L1 (1. 7)	0,011 3.0,
Peto test	_			
Standard method(d) Prevalence method(d)	P = P = 0.9579			
Combined analysis (d)	P =			
Cochran-Armitage test(e)	P = 0.1680			
Fisher Exact test(e)		P = 0.3163	P = 0. 5077	P = 0. 4949
	SITE : liver			
-	TUMOR : hepatocellular adenoma			
Tumor rate Overall rates(a)	2/49 (4. 1)	3/50 (6. 0)	2/50 (4. 0)	2/50 (4. 0)
Adjusted rates (b)	7. 14	10. 00	4. 88	6. 45
Terminal rates(c)	1/25 (4. 0)	2/20 (10. 0)	1/27 (3. 7)	2/31 (6. 5)
Statistical analysis Peto test				
Standard method (d)	P =			
Prevalence method (d)	P = 0. 6323			
Combined analysis (d)	P =			
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 8113	P = 0.5097	D = 0 6000	D = 0 C000
TISHEL EXACT TEST (E)		r - 0. 3091	P = 0.6990	P = 0.6990

STUDY No. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE PAGE: 9

Group Name	Control	400 ppm	2000 ppm	10000 ppm	
	SITE : liver				
Tumor rate	TUMOR : histiocytic sarcoma				
Overall rates (a)	3/49 (6. 1)	3/50 (6. 0)	4/50 (8. 0)	1/50 (2. 0)	
Adjusted rates (b)	0. 0	5. 00	3. 70	0. 0	
Terminal rates (c)	0/25 (0. 0)	1/20 (5. 0)	1/27 (3. 7)	0/31 (0. 0)	
Statistical analysis					
Peto test Standard method(d)	P = 0.8396				
Prevalence method (d)	P = 0. 7378				
Combined analysis (d)	P = 0.9002				
Cochran-Armitage test(e)	P = 0.2492				
Fisher Exact test(e)		P = 0.6708	P = 0. 5114	P = 0.3010	
	SITE : liver				
TUMOR : hemangioma, hemangiosarcoma					
Tumor rate	2/40/ 4 1)	E/E0/ 10 0)	2/50 /	0.750.7 0.03	
Overall rates (a) Adjusted rates (b)	2/49 (4. 1) 3. 57	5/50 (10. 0) 20. 00	3/50 (6. 0)	0/50 (0. 0) 0. 0	
Terminal rates (c)	0/25 (0. 0)	4/20 (20. 0)	11. 11 3/27 (11. 1)	0. 0 0/31 (0. 0)	
Statistical analysis	0, 23 (0. 0)	47 20 (20. 0)	3/21 (11. 1)	0/31(0.0)	
Peto test					
Standard method(d)	P = 1.0000 ?				
Prevalence method(d)	P = 0. 9801				
Combined analysis (d) Cochran-Armitage test (e)	P = 0. 9887 P = 0. 0641				
Fisher Exact test(e)	r - 0. 0041	P = 0. 2264	P = 0.5097	P = 0.2424	
Tronor Exact Cost (o)		1 - 0. 2204	1 - 0. 3031	1 - 0. 2424	
	SITE : liver				
umor rate	TUMOR : hepatocellular adend	ma, hepatocellular carcinoma			
Overall rates (a)	2/49 (4. 1)	4/50 (8. 0)	3/50 (6. 0)	3/50 (6. 0)	
Adjusted rates (b)	7. 14	15. 00	5. 00	9. 68	
Terminal rates (c)	1/25 (4. 0)	3/20 (15. 0)	1/27 (3. 7)	3/31 (9. 7)	
itatistical analysis					
Peto test					
Standard method (d)	P = 0. 3852				
Prevalence method (d)	P = 0.5304				
Combined analysis (d) Cochran-Armitage test (e)	P = 0. 5772 P = 0. 9875				
Fisher Exact test (e)	1 - 0. 30/3	P = 0.3485	P = 0.5097	P = 0.5097	
		1 0.0700	1 0.0001	1 0.0001	

Group Name

Control

2/49 (4.1)

2/25 (8. 0)

P = ----

P = 0.9793

P = ----

P = 0.1134

8.00

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

2000 ppm

1/50 (2.0)

1/27 (3.7)

P = 0.4923

3. 70

400 ppm

3/50 (6. 0)

2/20 (10. 0)

P = 0.5097

10.71

ANIMAL MOUSE B6D2F1/Crlj [Crj:BDF1] SEX : FEMALE

SITE : pituitary gland TUMOR : adenoma Tumor rate Overall rates (a) 5/49 (10.2) 6/50 (12.0) 5/49 (10.2) 0/50 (0.0) Adjusted rates (b) 18. 52 15.00 13.89 0. 0 Terminal rates (c) 4/25 (16. 0) 3/20 (15.0) 3/27 (11.1) 0/31 (0.0) Statistical analysis Peto test Standard method (d) P = 1.0000 ? Prevalence method (d) P = 0.9975Combined analysis (d) P = 0.9984Cochran-Armitage test (e) P = 0.0161*Fisher Exact test (e) P = 0.5144P = 0.6298P = 0.0267*SITE : ovary TUMOR : cystadenoma Tumor rate Overall rates (a) 4/49 (8. 2) 5/50 (10. 0) 3/50 (6.0) 1/50 (2.0) Adjusted rates (b) 12. 12 14. 29 9. 38 3. 23 Terminal rates (c) 2/25 (8.0) 1/20 (5.0) 2/27 (7.4) 1/31 (3. 2) Statistical analysis Peto test Standard method (d) P = ----Prevalence method (d) P = 0.9713Combined analysis (d) P = ----Cochran-Armitage test (e) P = 0.1116Fisher Exact test(e) P = 0.5130P = 0.4886P = 0.1748SITE : uterus TUMOR : endometrial stromal polyp Tumor rate

Overall rates (a)

Adjusted rates (b)

Terminal rates (c)

Statistical analysis Peto test

Standard method(d) Prevalence method (d)

Combined analysis (d)

Fisher Exact test (e)

Cochran-Armitage test (e)

PAGE: 10

10000 ppm

0/50 (0.0)

0/31 (0.0)

P = 0.2424

0.0

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

SEX	FFMAL

Group Name	Control	400 ppm	2000 ppm	10000 ppm	
	SITE : uterus TUMOR : histiocytic sarcoma				
Tumor rate	TUMUR . HISTOCYTIC SAFCOMA				
Overall rates (a)	9/49 (18. 4)	7/50 (14. 0)	6/50 (12. 0)	11/50 (22. 0)	
Adjusted rates (b)	12. 00	10. 00	7. 41	19. 35	
Terminal rates (c)	3/25 (12. 0)	2/20 (10. 0)	2/27 (7. 4)	6/31 (19. 4)	
Statistical analysis			<u> </u>		
Peto test					
Standard method(d)	P = 0. 5589				
Prevalence method(d)	P = 0.1424				
Combined analysis (d)	P = 0.2888				
Cochran-Armitage test (e)	P = 0.3017				
Fisher Exact test(e)		P = 0. 3758	P = 0. 2737	P = 0. 4213	
	SITE : Harderian gland TUMOR : adenoma				
Tumor rate	4/40/ 0.03	2/50/ 0.0	1/50/ 0.0	0 (50 (0.0)	
Overall rates(a) Adjusted rates(b)	4/49 (8. 2) 12. 00	3/50 (6. 0) 10. 00	1/50 (2. 0) 3. 70	0/50 (0. 0) 0. 0	
Terminal rates (c)	3/25 (12. 0)	2/20 (10. 0)	1/27 (3. 7)	0. 0 0/31 (0. 0)	
Statistical analysis	0, 20 (12. 0)	27 20 (10. 0)	1/2/(3.1)	0/31(0.0)	
Peto test					
Standard method (d)	P =				
Prevalence method(d)	P = 0.9917				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0. 0533				
Fisher Exact test(e)		P = 0.4886	P = 0.1748	P = 0.0563	

(HPT360A)

BA1S5

PAGE: 11

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

⁽a): Number of tumor-bearing animals/number of animals examined at the site.

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{? :} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] SEX : FEMALE

SITE ALL SITE TUMOR inisticocytic sarcoma Tumor rate Overall rates (a) 14/49 (28.6) 10/50 (20.0) 13/50 (26.0) 12/50 (24.0) Adjusted rates (b) 16.00 15.00 14.81 19.35 Terminal rates (c) 4/25 (16.0) 3/20 (15.0) 4/27 (14.8) 6/31 (19.4) Statistical analysis Peto test Standard method (d) P = 0.8253 Prevalence method (d) P = 0.8253 Prevalence method (d) P = 0.7062 Prevalence P = 0.7062 Prevalence P = 0.7062 Prevalence P = 0.7062 Prevalence P = 0.8237 Prevalence P = 0.8266 P = 0.8866 P = 0.88666 P = 0.886666 P =	Group Name	Control	400 ppm	2000 ppm	10000 mqq	
Tumor rate Overall rates (a) 14/49 (28 6) 10/50 (20 0) 13/50 (26 0) 12/50 (24 0) Adjusted rates (b) 16 00 15 00 14 81 19 .35 Terminal rates (c) 4/25 (16 0) 3/20 (15 0) 4/27 (14 .8) 6/31 (19 .4) Statistical analysis Peto test Standard method (d) P = 0 .8253 Pervalence method (d) P = 0 .7062 Cochran-Armitage test (e) P = 0 .9140 Fisher Exact test (e) P = 0 .9140 SITE : ALL SITE TUMOR: malignant lymphoma Tumor rate Overall rates (a) 17/49 (34 .7) 22/50 (44 .0) 18/50 (36 .0) 7/50 (14 .0) Adjusted rates (b) 36 .00 50 .00 50 .00 17/65 Statistical analysis Peto test Standard method (d) P = 0 .996 Prevalence method (d) P = 0 .996 Combined analysis (d) P = 0 .996 Combined analysis (d) P = 0 .9986 Combined analysis (d) P = 0 .9986 Combined analysis (d) P = 0 .9996 Prevalence method (d) P = 0 .9996 Combined analysis (d) P = 0 .0000 Cochran-Armitage test (e) P = 0 .0016**						
Overall rates (a) 14/49 (28. 6) 10/50 (20. 0) 13/50 (26. 0) 12/50 (24. 0) Adjusted rates (b) 16. 00 15. 00 14. 81 19. 35 Terminal rates (c) 4/25 (16. 0) 3/20 (15. 0) 4/27 (14. 8) 6/31 (19. 4) Statistical analysis Peto test 8 4/27 (14. 8) 6/31 (19. 4) Standard method (d) P = 0. 8253 Prevalence method (d) P = 0. 3537 Pe 0. 7062 Pe 0. 2237 P = 0. 4754 P = 0. 3866 SITE : ALL SITE TUMOR : malignant lymphoma Tumor rate Overall rates (a) 17/49 (34. 7) 22/50 (44. 0) 18/50 (36. 0) 7/50 (14. 0) Adjusted rates (b) 36. 00 50. 00 50. 00 17. 65 Statistical analysis Peto test 9/25 (36. 0) 10/20 (50. 0) 13/27 (48. 1) 5/31 (16. 1) Standard method (d) P = 0. 9996 Prevalence method (d) P = 0. 9996 P = 0. 9962 Combined analysis (d) P = 1. 0000 Cochran-Armitage test (e) P = 0. 0016s*		TUMOR : histiocytic sarcoma				
Adjusted rates (b) 16.00 15.00 14.81 19.35 Terminal rates (c) 4/25 (16.0) 3/20 (15.0) 4/27 (14.8) 6/31 (19.4) Statistical analysis Peto test Standard method (d) P = 0.8253 Pervalence method (d) P = 0.3537 Combined analysis (d) P = 0.7062 Cochran-Armitage test (e) Fisher Exact test (e) P = 0.9140 P = 0.2237 P = 0.4754 P = 0.3866 SITE : ALL SITE TUMOR : malignant lymphoma Tumor rate Overall rates (a) 17/49 (34.7) 22/50 (44.0) 18/50 (36.0) 7/50 (14.0) Adjusted rates (b) 36.00 50.00 17.65 Terminal rates (c) 9/25 (36.0) 10/20 (50.0) 13/27 (48.1) 5/31 (16.1) Statistical analysis Peto test Standard method (d) P = 0.9996 P = 0.9996 Combined analysis (d) P = 0.0016**		14/40/ 00 0	10/50/ 00 0	12/50/ 00 0	10 (50 (0.4 0)	
Terminal rates (c) 4/25 (16.0) 3/20 (15.0) 4/27 (14.8) 6/31 (19.4) Statistical analysis Peto test Standard method (d) P = 0.8253 Prevalence method (d) P = 0.5367 Combined analysis (d) P = 0.7062 Cochran-Armitage test (e) P = 0.9140 Prevalence Exact test (e) P = 0.9140 Prevalence Exact test (e) P = 0.9140 Prevalence method (d) P = 0.2237 P = 0.4754 P = 0.3866 Prevalence Exact test (e) P = 0.9140 Prevalence Exact test (e) P = 0.9996 Prevalence Exact						
Retaistical analysis Peto test Standard method (d)						
Peto test Standard method (d)		4/25 (16. 0)	3/20 (15. 0)	4/27 (14. 8)	6/31 (19. 4)	
Standard method (d)						
Prevalence method (d)		D 0.0070				
Combined analysis (d)						
Cochran-Armitage test (e) Fisher Exact test (e) SITE : ALL SITE TUMOR : malignant lymphoma SITE : ALL SITE TUMOR : malignant lymphoma Tumor rate Overall rates (a) Adjusted rates (b) Terminal rates (c) Statistical analysis Peto test Standard method (d) P = 0.996 Prevalence method (d) P = 0.9996 Combined analysis (d) Cochran-Armitage test (e) P = 0.016** P = 0.2237 P = 0.4754 P =						
Fisher Exact test(e) P = 0.2237 P = 0.4754 P = 0.3866						
SITE : ALL SITE TUMOR : malignant lymphoma umor rate Overall rates (a) 17/49 (34. 7) 22/50 (44. 0) 18/50 (36. 0) 7/50 (14. 0) Adjusted rates (b) 36. 00 50. 00 50. 00 17. 65 Terminal rates (c) 9/25 (36. 0) 10/20 (50. 0) 13/27 (48. 1) 5/31 (16. 1) tatistical analysis Peto test Standard method (d) P = 0. 9996 Prevalence method (d) P = 0. 9996 Combined analysis (d) P = 1. 0000 Cochran-Armitage test (e) P = 0. 0016**	-	P = 0.9140				
TUMOR : malignant lymphoma Tumor rate Overall rates (a) 17/49 (34. 7) 22/50 (44. 0) 18/50 (36. 0) 7/50 (14. 0) Adjusted rates (b) 36. 00 50. 00 50. 00 17. 65 Terminal rates (c) 9/25 (36. 0) 10/20 (50. 0) 13/27 (48. 1) 5/31 (16. 1) Statistical analysis Peto test Standard method (d) P = 0. 9996 Prevalence method (d) P = 0. 9962 Combined analysis (d) P = 1. 0000 Cochran-Armitage test (e) P = 0. 0016**	isher Exact test(e)		P = 0. 2237	P = 0. 4754	P = 0. 3866	
Tumor rate Overall rates (a) 17/49 (34. 7) 22/50 (44. 0) 18/50 (36. 0) 7/50 (14. 0) Adjusted rates (b) 36. 00 50. 00 50. 00 17. 65 Terminal rates (c) 9/25 (36. 0) 10/20 (50. 0) 13/27 (48. 1) 5/31 (16. 1) Statistical analysis Peto test Standard method (d) P = 0. 9996 Prevalence method (d) P = 0. 9962 Combined analysis (d) P = 1. 0000 Cochran-Armitage test (e) P = 0. 0016**						
Overall rates (a) 17/49 (34. 7) 22/50 (44. 0) 18/50 (36. 0) 7/50 (14. 0) Adjusted rates (b) 36. 00 50. 00 50. 00 17. 65 Terminal rates (c) 9/25 (36. 0) 10/20 (50. 0) 13/27 (48. 1) 5/31 (16. 1) Statistical analysis Peto test Standard method (d) P = 0. 9996 Prevalence method (d) P = 0. 9962 Combined analysis (d) P = 1. 0000 Cochran-Armitage test (e) P = 0. 0016**		TUMOR : malignant lymphoma				
Adjusted rates (b) 36.00 50.00 17.65 Terminal rates (c) 9/25 (36.0) 10/20 (50.0) 13/27 (48.1) 5/31 (16.1) Statistical analysis Peto test Standard method (d) P = 0.9996 Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**						
Terminal rates (c) 9/25 (36.0) 10/20 (50.0) 13/27 (48.1) 5/31 (16.1) Itatistical analysis Peto test Standard method (d) P = 0.9996 Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**						
tatistical analysis Peto test Standard method (d) P = 0.9996 Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**						
Peto test Standard method (d) P = 0.9996 Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**		9/25 (36. 0)	10/20 (50. 0)	13/27 (48. 1)	5/31 (16. 1)	
Standard method (d) P = 0.9996 Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**	• • • • • • • • • • • • • • • • • • • •					
Prevalence method (d) P = 0.9962 Combined analysis (d) P = 1.0000 Cochran-Armitage test (e) P = 0.0016**						
Combined analysis (d) P = 1.0000 Cochran-Armitage test(e) P = 0.0016**					,	
Cochran-Armitage test(e) P = 0.0016**						
• • • • • • • • • • • • • • • • • • • •						
		P = 0. 0016**				
Fisher Exact test(e) P = 0. 2293 P = 0. 5297 P = 0. 0145*	isher Exact test(e)		P = 0.2293	P = 0. 5297	P = 0.0145*	
IPT360A)	T2COAL	9 (M. 3)				BA

(a): Number of tumor-bearing animals/number of animals examined at the site.

Standard method : Death analysis

Prevalence method : Incidental tumor test

Combined analysis: Death analysis + Incidental tumor test

Significant difference; $*: P \le 0.05$ **: $P \le 0.01$

N.C.: Statistical value cannot be calculated and was not significant.

⁽b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

⁽c): Observed tumor incidence at terminal kill.

⁽d): Beneath the control incidence are the P-values associated with the trend test.

⁽e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

^{? :} The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

^{----:} There is no data which should be statistical analysis.

TABLE P 1

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: MALE

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1
SEX : MALE

{ Integumentary s	Findingssystem/appandage				
skin/app					
	1.1				
	leukemic cell infiltration	<50> 0	<50> 0	<50> 1	<50> 0
subcutis	metastasis:peritoneum tumor	<50> 0	<50> 1	<50> 0	<50> 0
	metastasis:bone tumor	1	0	0	0
{Respiratory sys	stem)				
nasal cavit	metastasis:liver tumor	<50> 0	<50> 0	<50> 0	<50> 1
	metastasis:peripheral nerve tumor	0	0	1	0
lung	leukemic cell infiltration	<50> 0	<50> 3	<50> 4	<50> 3
	metastasis:liver tumor	2	3	0	3
	metastasis:subcutis tumor	0	0	0	1
	metastasis:bone tumor	1	0	0	0
	metastasis:epididymis tumor	1	0	0	0
	metastasis:pleura tumor	1	0	0	0
(Hematopoietic s	system)				
bone marrow	leukemic cell infiltration	<50> 1	<50> 3	<50> 6	<50> 2
	metastasis:liver tumor	0	1	0	2
	a : Number of animals examined at the sit b : Number of animals with lesion	te			

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 : MALE SEX

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

					11.
Organ	Findings	Group Name Control No. of Animals on Study 50	200 ppm 50	1000 ppm 50	5000 ppm 50
Hematopoieti	c system)				
one marrow	metastasis:subcutis tumor	<50>	<50> 0	<50> 0	<50>
	metastasis:subcutis tumor	?	0	0	1
	metastasis:retroperitoneum tumor	0	0	1	0
	metastasis:epididymis tumor	2	0	0	0
ymph node	metastasis liver tumor	<50> 0	<50> 1	<50> 0	<50> 0
	metastasis:epididymis tumor	1	0	0	0
pleen	leukemic cell infiltration	<50> 2	<50> 4	<50> 4	<50> 2
	metastasis:liver tumor	0	2	0	0
	metastasis:peritoneum tumor	0	1	0	0
	metastasis:retroperitoneum tumor	0	0	1	0
Circulatory :	system)				
eart	leukemic cell infiltration	<50> 0	<50> 1	<50> 2	<50> 0
	metastasis:liver tumor	0	1	0	0
	metastasis:spleen tumor	0	0	0	1
	metastasis:pleura tumor	1	0	0	0
Digestive sys	stem)				
ongue	leukemic cell infiltration	<50> 0	<50> 1	<50> 0	<50> 1
(a > b	a : Number of animals examined at th b : Number of animals with lesion	ne site			

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS: METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX : MALE

Group Name Control 200 ppm 1000 ppm 5000 ppm No. of Animals on Study Organ___ Findings_ (Digestive system) salivary gl <50> **<50>** <50> ⟨50⟩ leukemic cell infiltration 0 0 stomach **<50> <50>** <50> <50> leukemic cell infiltration 0 metastasis:peritoneum tumor metastasis:spleen tumor 0 0 0 small intes <50> **<50>** ⟨50⟩ **<50>** leukemic cell infiltration 1 liver **<50>** <50> **<50>** ⟨50⟩ leukemic cell infiltration metastasis:peritoneum tumor 0 metastasis:subcutis tumor metastasis:retroperitoneum tumor metastasis:epididymis tumor metastasis:pleura tumor pancreas ⟨50⟩ **<50> <50>** ⟨50⟩ leukemic cell infiltration (Urinary system) kidney <50> **<50> <50> 〈50〉** leukemic cell infiltration

b : Number of animals with lesion

metastasis:liver tumor

(JPT150)

BAIS5

< a > a : Number of animals examined at the site

STUDY NO.

: 0760

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1] HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: MALE

PAGE: 4 1000 ppm 5000 ppm Group Name Control 200 ppm No. of Animals on Study Organ_ Findings_ (Urinary system) kidney ⟨50⟩ <50> <50> <50> metastasis:epididymis tumor 0 1 urin bladd <50> <50> ⟨50⟩ ⟨50⟩ leukemic cell infiltration (Endocrine system) pituitary ⟨50⟩ ⟨50⟩ ⟨50⟩ <50> metastasis:peripheral nerve tumor adrenal **〈50〉** ⟨50⟩ <50> ⟨50⟩ leukemic cell infiltration 0 metastasis:peritoneum tumor 0 0 metastasis:epididymis tumor (Reproductive system) epididymis ⟨50⟩ <50> <50> <50> leukemic cell infiltration semin ves ⟨50⟩ <50> ⟨50⟩ **<50>** leukemic cell infiltration 0 0 0 prostate <50> ⟨50⟩ <50> <50> leukemic cell infiltration 1 (Special sense organs/appendage) Harder gl <50> **<50> <50> <50>** leukemic cell infiltration < a > a : Number of animals examined at the site b: Number of animals with lesion

ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : MALE HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 5 1000 ppm 5000 ppm Group Name Control 200 ppm No. of Animals on Study 50 50 Findings_ Organ__ (Musculoskeletal system) muscle ⟨50⟩ <50> <50> <50> leukemic cell infiltration 1 metastasis:peripheral nerve tumor (Body cavities) pleura ⟨50⟩ **〈50〉** <50> ⟨50⟩ metastasis:peritoneum tumor mediastinum ⟨50⟩ **<50>** <50> <50> leukemic cell infiltration 3 1 metastasis:liver tumor 0 metastasis:pleura tumor 0 0 peritoneum **<50>** ⟨50⟩ ⟨50⟩ **<50>** leukemic cell infiltration metastasis:liver tumor metastasis:epididymis tumor metastasis:pleura tumor 0 < a > a : Number of animals examined at the site b b : Number of animals with lesion

(JPT150)

BA1S5

TABLE P 2

HISTOPATHOLOGICAL FINDINGS:

METASTASIS OF TUMOR: FEMALE

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W) $\,$

		Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
rgan	Findings				
Integumentar	y system/appandage)				
skin/app	leukemic cell infiltration	<49> 0	<50> 1	<50> 0	<50> 0
	metastasis:uterus tumor	0	0	0	1
subcutis	leukemic cell infiltration	<49> 0	<50> 2	<50> 1	<50> 0
	metastasis:uterus tumor	2	0	0	1
	metastasis:Zymbal gland tumor	0	1	0	0
(Respiratory	system)				
nasal cavit	leukemic cell infiltration	<49> 2	<50> 3	<50> 0	<50> 0
	metastasis:peripheral nerve tumor	1	0	0	0
arynx	leukemic cell infiltration	<49> 1	<50> 0	<50> 0	<50> 0
ung	leukemic cell infiltration	<49> 10	<50> 12	<50> 6	⟨50⟩ 5
	metastasis:liver tumor	2	4	2	0
	metastasis:uterus tumor	5	2	2	2
	metastasis:subcutis tumor	0	0	0	1
	metastasis:bone tumor	0	1	0	0
	metastasis:peripheral nerve tumor	0	0	1	0

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

SEX	: FEMALE				PAGE
rgan	Findings	Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Respiratory	system)				
ung	metastasis:muscle tumor	<49> 1	<50> 1	<50> 0	<50> 0
	metastasis:skin/appendage tumor	0	0	0	1
	metastasis:mediastinum tumor	0	0	1	0
Hematopoiet	ic system)				
one marrow	leukemic cell infiltration	<49> 7	<50> 15	<50> 4	<50> 4
	metastasis:liver tumor	2	0	3	0
	metastasis:uterus tumor	3	3	1	3
mph node	metastasis:liver tumor	<49> 0	<50> 1	<50> 0	<50> 0
	metastasis:uterus tumor	1	0	0	0
	metastasis:subcutis tumor	1	0	0	0
p I een	leukemic cell infiltration	<49> 10	<50> 15	<50> 8	<50> 1
	metastasis:liver tumor	2	0	1	0
	metastasis:uterus tumor	1	0	0	0
Circulatory	system)				
eart	leukemic cell infiltration	<49> 5	<50> 2	<50> 2	<50> 0
a > b	a : Number of animals examined at t b : Number of animals with lesion	ne site			

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

PAGE: 8

Organ	Findings	Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
7: 6u.ı	1111011150				
Digestive sy	rstem)				
ongue	leukemic cell infiltration	<49> 2	<50> 3	<50> 2	<50> 2
alivary gl	leukemic cell infiltration	<49> 3	<50> 4	<50> 1	<50> 1
tomach	leukemic cell infiltration	<49>	<50> 3	<50> 1	<50> 0
small intes	leukemic cell infiltration	<49> 0	<50> 1	<50> 0	<50> 0
large intes	metastasis:subcutis tumor	<49> 0	<50> 0	<50> 1	<50> 0
liver	leukemic cell infiltration	<49>	<50> 10	<50> 4	<50> 4
	metastasis:uterus tumor	6	5	5	6
	metastasis:subcutis tumor	0	0	2	1
	metastasis:peripheral nerve tumor	1	0	0	0
pancreas	leukemic cell infiltration	<49> 2	<50> 0	<50> 1	<50> 0
	metastasis:uterus tumor	0	0	0	1
{Urinary syst	em}				
kidney	leukemic cell infiltration	<49> 7	<50> 15	<50> 9	<50> 4
	metastasis:liver tumor	0	0	2	0
(a > b	a : Number of animals examined at the s b : Number of animals with lesion	ite			

(JPT150)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crij[Crj:BDF1]

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W)

REPORT TYPE : A1 SEX

: FEMALE

Organ	Findings	Group Name Control No. of Animals on Study 49 	400 ppm 50	2000 ppm 50	10000 ppm 50
(Urinary sys	:em)				
kidney	metastasis:uterus tumor	<49> 0	<50> 1	<50> 1	<50> 0
	metastasis:peripheral nerve tumor	0	1 .	1	0
urin bladd	leukemic cell infiltration	<49> 4	<5 0 > 7	<50> 1	<50> 0
{Endocrine s	rstem)				
pituitary	leukemic cell infiltration	<49> 0	<50> 0	<50> 1	<50> 0
	metastasis:liver tumor	0	0	1	0
	metastasis:uterus tumor	0	. 0	0	. 1
	metastasis:peripheral nerve tumor	1	0	0	0
adrenal	leukemic cell infiltration	<49> 0	<50> 2	<50> 0	<50> 0
	metastasis:uterus tumor	1	0	0	0
	metastasis:peripheral nerve tumor	0	0	1	. 0
(Reproductive	system)				
ovary	leukemic cell infiltration	<49> 5	<50> 7	<50> 2	<50> 0
	metastasis:liver tumor	0	1	1	0
	metastasis:uterus tumor	5	4	2	3

ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1 SEX : FEMALE HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY)

ALL ANIMALS (0-105W)

SEX :	FEMALE				PAGE :
Irgan	Findings	Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
Reproductive	system)				
vary	metastasis:peripheral nerve tumor	<49> 0	<50> 1	<50> 1	<50> 0
terus	leukemic cell infiltration	<49> 2	<50> 2	<50> 1	<50> 0
agina	metastasis:uterus tumor	<49> 0	<50> 0	<50> 0	<50> 1
lervous syst	em}				
ain	leukemic cell infiltration	<49> 0	<50> 1	<50> 0	<50> 0
	metastasis:liver tumor	1	0	0	0
riph nerv	metastasis:Zymbal gland tumor	<49> 0	<50> 1	<50> 0	<50> 0
pecial sens	e organs/appendage)				
e	leukemic cell infiltration	<49> 0	<50> 1	<50> 0	<50> 0
	metastasis:peripheral nerve tumor	1	0	0	0
rder gl	leukemic cell infiltration	<49> 2	<50> 2	<50> 1	<50> 0
	metastasis:peripheral nerve tumor	1	0	0	0
usculoskele	tal system}				
scle	leukemic cell infiltration	<49>	<50> 3	<50> 1	<50> 0
a > b	a : Number of animals examined at the b : Number of animals with lesion	esite		A	

(JPT150)

STUDY NO. : 0760 ANIMAL : MOUSE B6D2F1/Crlj[Crj:BDF1]

REPORT TYPE : A1
SEX : FEMALE

HISTOPATHOLOGICAL FINDINGS : METASTASIS OF TUMOR (SUMMARY) ALL ANIMALS (0-105W) $\,$

SEX :	FEMALE				PAGE :
Organ	Findings	Group Name Control No. of Animals on Study 49	400 ppm 50	2000 ppm 50	10000 ppm 50
(Musculoskele	tal system}				
nuscle		49 >	<50>	<50>	<50>
	metastasis:liver tumor	0	0	0	1
	metastasis:bone tumor	0	1	0	0
	metastasis:peripheral nerve tumor	0	0	1	1
Body cavitie	s)				
leura	metastasis:muscle tumor	<49> 0	<50> 1	<50> 0	<50> 0
	metastasis:mediastinum tumor	0	0	1	0
ediastinum	leukemic cell infiltration	<49> 5	<50> 5	<50> 2	<50> 2
	metastasis:liver tumor	0	0	1	0
	metastasis:subcutis tumor	0	0	0	1
	metastasis:muscle tumor	0	1	0	0
eritoneum	leukemic cell infiltration	<49> 5	<50> 4	<50> 2	<50> 1
	metastasis:subcutis tumor	0	0	1	1
	metastasis:peripheral nerve tumor	0	1	0	0
	metastasis:muscle tumor	0	2	0	0
etroperit	metastasis:peripheral nerve tumor	<49> 0	<50> 1	<50> 0	<50> 0
(a >	a : Number of animals examined at th b : Number of animals with lesion	e site		***************************************	

TABLE Q

HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: $B6D2F1/Crlj \; MALE \; MICE$

TABLE Q HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: B6D2F1/Crlj MALE MICE

Organs Tumors	No. of animals examined	No. of animals bearing tumor	Incidence (%)	Min Max. (%)
Liver	2545			
Histiocytic sarcoma		92	3.6	0 - 12

51 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.: 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190,

 $0206,\,0211,\,0225,\,0243,\,0268,\,0270,\,0279,\,0285,\,0297,\,0319,\,0329,\,0343,\,0348,\\$

 $0366,\,0372,\,0402,\,0406,\,0418,\,0422,\,0438,\,0449,\,0458,\,0462,\,0498,\,0515,\,0561,\\$

0580, 0611, 0613, 0642, 0676, 0685, 0705, 0712, 0732, 0740, 0754, 0775

TABLE R 1

CAUSE OF DEATH: MALE

STUDY NO. : 0760 ANIMAL

: MOUSE B6D2F1/Crlj[Crj:BDF1]

COUSE OF DEATH (SUMMARY)

(0-105W)

SEX : MALE PAGE: 1

Group Name	Control	200 ppm	1000 ppm	5000 ppm
Number of Dead and Moribund Animal	19	17	13	40
no microscop confirm	0	1	1	0
hepatic lesion	1	0	0	0
renal lesion	0	. 0	0	2
urinary retention	0	4	3	25
hydronephrosis	6	1	1	4
tumor d:leukemia	0	2	4	2
tumor d:subcutis	0	0	0	1
tumor d:lung	0	0	1	0
tumor d:spleen	0	1	0	0
tumor d:liver	8	6	2	5
tumor d:epididymis	2	1	0	0
tumor d:periph nerv	0	0	0	1
tumor d:bone	1	0	0	0
tumor d:pleura	1	0	0	0
tumor d:peritoneum	0	1	0	0
tumor d:retroperit	0	0	1	0
(D + 0 + 0 0)				

(B10120) BA1S5

TABLE R 2

CAUSE OF DEATH: FEMALE

STUDY NO. : 0760 ANIMAL

COUSE OF DEATH (SUMMARY)

(0-105W)

SEX

: MOUSE B6D2F1/Crlj[Crj:BDF1] : FEMALE PAGE: 2

Group Name	Control	400 ppm	2000 ppm	10000 ppm
Number of Dead and Moribund Animal	24	30	23	19
no microscop confirm	0	1	4	1
renal lesion	1	1	1	1
urinary retention	1	0	0	0
hydronephrosis	0	1	1	5
peritonitis	0	1	0	0
tumor d:leukemia	8	12	3	1
tumor d:skin/app	0	0	0	1
tumor d:subcutis	1	1	3	2
tumor d:bone marrow	0	0	1	0
tumor d:spleen	0	0	1	1
tumor d:liver	4	2	4	1
tumor d:pituitary	0	1	0	0
tumor d:uterus	6	5	4	5
tumor d:mammary gl	1	0	0	0
tumor d:periph nerv	1	1	1	1
tumor d:Zymbal gl	0	ĺ	0	0
tumor d:muscle	1	2	0	0
tumor a.mastre		_		

(B10120)

BAIS5