Summary of Inhalation Carcinogenicity Study

of 2-Methallyl Chloride

in F344 Rats

June 1998

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Labour of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Labour of Japan on June 30 1998.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Inhalation Carcinogenicity Study of 2-Methallyl Chloride in F344 Rats

Purpose, materials and methods

2-Methallyl chloride (MAC, 3-chloro-2-methylpropene, CAS No.563-47-3) is a colorless liquid with a boiling point of 71-72°C and a vapor pressure of 101.7 mm Hg at 20°C, and is insoluble in water, but soluble in chloroform, acetone, alcohol, ether and benzene.

The carcinogenicity and chronic toxicity of MAC were examined by inhalation exposure of groups of 50 F344/DuCrj (Fischer) rats of both sexes to MAC vapor at a target concentration of 0 (clean air), 50, 100 or 200 ppm (v/v) for 6 hours/day, 5 days/week for 2 years (104 weeks). The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. MAC was analyzed for purity and stability by both infrared spectrometry and gas chromatography before and after its use. Stainless-steel inhalation exposure chambers (volume: 7600 L) were used throughout the 2-year exposure period. MAC vapor-air mixture was generated by bubbling clean air through the MAC liquid, and supplied to the inhalation exposure chambers. Air concentrations of MAC vapor in the inhalation exposure chambers were monitored at 15 min intervals by gas chromatography. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year exposure period underwent complete necropsy. Urinalysis was performed near the end of the exposure period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of the dose-response relation for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present study was conducted with reference to the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

Survival rates of the MAC-exposed males were decreased at the end of the 2-year exposure period in an exposure concentration-related manner as compared with the male control, whereas the survival rates of the MAC-exposed females tended to increase over the female control. However, these changes occurring in both sexes were considered not to be related to the effects of exposure to MAC. Growth rates of the 100 and 200 ppm-exposed males and the 200 ppm-exposed females were slightly suppressed as compared with the respective controls.

The incidence of follicular cell adenomas in the thyroid was slightly increased in the MACexposed male groups, and the increased tumor incidence might possibly be related to the effects of exposure to MAC. As a non-neoplastic lesion in the nasal cavity, the incidence and severity of eosinophilic change in the olfactory epithelium were increased in an exposure concentrationrelated manner in all the MAC-exposed groups of both sexes. Since the eosinophilic change in the olfactory epithelium is known to be age-related, this nasal lesion was considered to be enhanced by the exposure to MAC. As an age-related lesion in the kidney, the incidences of chronic progressive nephropathy (chronic nephropathy) were suppressed in the females exposed to 100 and 200 ppm.

Conclusions

In rats, there was equivocal evidence of carcinogenic activity of MAC in males, based on the slightly increased incidence of follicular cell adenomas in the thyroid, which might possibly be related to the effects of exposure to MAC. There was no evidence of carcinogenic activity of MAC in females, based on no increase in the incidence of neoplastic lesions.

TABLES

- TABLE 1EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE 2-YEARINHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN THE
2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 3SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN
THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 4INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OFMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 5INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OFFEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 6FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY
OF 2-METHALLYL CHLORIDE
- TABLE 7FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATIONSTUDY OF 2-METHALLYL CHLORIDE
- TABLE 8NEOPLASTIC LESIONS INCIDENCE AND STATISTICAL ANALYSIS OF MALE RATS IN
THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 9NUMBER OF RATS WITH SELECTED NON-NEOPLASTIC LESIONS IN THE 2-YEARINHALATION STUDY OF 2-METHALLYL CHLORIDE
- TABLE 10CAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL
CHLORIDE

.

TABLE 1EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE 2-YEARINHALATION STUDY OF 2-METHALLYL CHLORIDE

2-year	study	
<method administra<="" of="" th=""><th>ition></th><th></th></method>	ition>	
Inhalation		
<number groups="" of=""></number>		
Male 4, Female 4		
<size groups="" of=""></size>		
50 males and 50 f	emales of eac	h group
<animals></animals>	0	9- «P
Strain and Specie	e	
	o JuCrj (Fischer	r) rat
Animal Source	Jucij (Pischel	1)14
	s River Japan,	Inc
Duration Held Be		, mc.
	lore Study	
2 wk	Charles	
Age When Placed	on Study	
6 wk		
Age When Killed		
110~1	11 wk	
<doses></doses>		
	100, or 200 p	
	100, or 200 p	pm
<duration dosing="" of=""></duration>		
6h/d, 5d/wk, for 1		
<animal maintenance=""></animal>	>	
Feed		
	(Oriental Yea	
	$xed by \gamma - ray$,
	ole ad libitum	
Water		
		ed by ultraviolet ray
	-	system in duration of quarantine
Availat	ole <i>ad libitum</i>	
Animal per Cage		
-	(stainless ste	el wire)
Animal Room Env	vironment	
	system	
Tempe	rature	:23±3°C
Fluore	scent light 12	h/d
Chamber Environ	ment	
Tempe	rature	$:22\pm2$ °C
Humid	ity	$:55 \pm 15\%$
Air cha	nges	$:12 \pm 1/h$
Pressu	re	:0~-15mmAq
<type and="" frequency="" of<="" th=""><th>of Observation</th><th>1></th></type>	of Observation	1>
Clinical Sign		
Observ	red 1 per d	
Body Weight	-	
• •	ed 1 per wk fo	or 14wk
	ed 1 per 4wks	
Food Consumptio	-	
	ed 1 per wk fo	r 14wk
-	ed 1 per 4wks	
 ff Cigin	T POL TWEE	

)

TABLE 1EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE 2-YEAR(continued)INHALATION STUDY OF 2-METHALLYL CHLORIDE

2-year study <Hematology> Red blood cell (RBC), Hemoglobin, Hematocrit, Mean Corpuscular Volume (MCV), Mean Corpuscular hemoglobin (MCH), Mean Corpuscular hemoglobin concentrate (MCHC), Platelet, White blood cell (WBC), Differential WBC. <Biochemistry> Total protein, Albumin, A/G ratio, Total bilirubin, Glucose, Total cholesterol Triglyceride, Phospholipid, Glutamic oxaloacetic transaminase (GOT), Glutamic pyruvic transaminase (GPT), Lactate dehydrogenase (LDH), Alkaline phosphatase (ALP), γ -Glutamyl transpeptidase (γ -GTP), Creatine phosphokinase (CPK), Urea nitrogen, Creatinine, Sodium, Potassium, Chloride, Calcium, Inorganic phosphorus. <Urinalysis> pH, Protein, Glucose, Ketone body, Bilirubin, Occult blood, Urobilinogen. <Necropsy> Necropsy performed on all animals. <Organ Weight> Organ weight measurement performed on scheduled sacrificed animals. The following organs were weighed; brain, lung, liver, spleen, heart, kidney, adrenal, testis, ovary. <Histopathologic Examination> Histopathologic examination performed on all animals. The following organs were examined; skin, nasal cavity, trachea, lung, bone marrow, lymph node, thymus, spleen, heart, tongue, salivary gland, esophagus, stomach, small intestine, large intestine, liver, pancreas, kidney, urinary bladder, pituitary, thyroid, adrenal, testis, epididymis, seminal vesicle, prostate, ovary, uterus, vagina, mammary gland, brain, spinal cord, peripheral nerve,

eye, Harderian gland, muscle, bone, other organs/tissues with gross lesions.

TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS IN
THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

	Cant	rol			50	ppm		1	00 ppm		2	00 ppm		
Week on Study	Au.Wt.	5	No.of Surviv. 50>	AU. Wt		% of cont. <50>	No.of Surviv.	Au.Wt.	% of cont. <50>	No.of Surviv.	Au.Wt.	% of cont. <50>	No.of Surviv.	
0	119 ((50)	50/50	118	(50)	99	50/50	119 (50) 100	50/50	119 (50		50/50	
1	122 (50/50	122	(50)	100	50/50	123 (50) 101	50/50	123 (50) 101	50/50	
1	149 (50/50	149	(50)	100	50/50	151 (50) 101	50/50	146 (50) 98	50/50	
2	183 ((50)	50/50	184	(50)	101	50/50	185 (50) 101	50/50	177 (50		50/50	
3	209 ((50)	50/50	211	(50)	101	50/50	211 (50) 101	50/50	200 (50		50/50	
4	229 ((50)	50/50	234	(50)	102	50/50	231 (50) 101	50/50	216 (50		50/50	
5	246 ((50)	50/50	252	(50)	102	50/50	246 (50) 100	50/50	230 (50		50/50	
6	264 ((50)	50/50	267	(50)	101	50/50	261 (50		50/50	243 (50		50/50	
7	280 (50/50		(50)	101	50/50	275 (50		50/50	257 (50		50/50	
8	291 (50/50	295	(50)	101	50/50	287 (50) 99	50/50	267 (50		50/50	
9	304 ((50)	50/50	306	(50)	101	50/50	299 (50) 98	50/50	278 (50		50/50	
10	314 (50/50		(50)	100	50/50	305 (50) 97	50/50	287 (50		50/50	
11	322 (50/50	321	(50)	100	50/50	313 (50) 97	50/50	295 (50		50/50	
12	328 ((50)	50/50	328	(50)	100	50/50	320 (50) 98	50/50	301 (50) 92	50/50	
13	337 (50/50	338	(50)	100	50/50	329 (50) 98	50/50	310 (50		50/50	
14	344 ((50)	50/50	345	(50)	100	50/50	336 (50) 98	50/50	317 (50) 92	50/50	
18	372 ((49)	49/50	372	(50)	100	50/50	362 (50) 97	50/50	337 (50) 91	50/50	
22	389 (49/50	388	(50)	100	50/50	379 (50) 97	50/50	348 (50) 89	50/50	
26	398 (49/50	397	(50)	100	50/50	385 (50) 97	50/50	357 (50) 90	50/50	
30	403 ((49)	49/50	403	(50)	100	50/50	391 (50) 97	50/50	365 (50) 91	50/50	
34	420 (49/50	419	(50)	100	50/50	404 (50) 96	50/50	381 (50) 91	50/50	
38	436 ((49)	49/50	438	(50)	100	50/50	420 (50) 96	50/50	394 (50) 90	50/50	
42	444 ((49)	49/50	446	(50)	100	50/50	429 (50) 97	50/50	402 (50) 91	50/50	
46	450 (49/50	449	(50)	100	50/50	433 (50) 96	50/50	403 (50) 90	50/50	
50	454 (49/50	458	(50)	101	50/50	440 (50		50/50	412 (50		50/50	
54	463 (49/50	466		101	50/50	445 (50) 96	50/50	418 (50) 90	50/50	
58	470 (49/50	471		100	50/50	451 (50		50/50	420 (50)) 89	50/50	
62	469 (49/50	474		101	49/50	452 (50) 96	50/50	423 (50)) 90	50/50	
66	469 (49/50	476		101	49/50	452 (50) 96	50/50	422 (50)) 90	50/50	
70	470 (49/50	476		101	49/50	454 (50) 97	50/50	425 (50)		50/50	
74	471 ((48)	48/50	477	(49)	101	49/50	455 (50) 97	50/50	425 (50)		50/50	
78	471 (48/50	474		101	48/50	452 (50		50/50	424 (50)		50/50	
82	466 (47/50	474		102	48/50	452 (50) 97	50/50	424 (49)	91	49/50	
86	464 (47/50	472		102	47/50	458 (49		49/50	428 (46)	92	46/50	
90	457 (47/50	471	(45)	103	45/50	460 (49) 101	49/50	427 (44)		44/50	
94	446 (46/50	459		103	44/50	444 (44		44/50	421 (41)	94	41/50	
98		(46)	45/50	450		104	42/50	436 (43		43/50	408 (38)		38/50	
102		41)	41/50	441		103	38/50	420 (37		37/50	405 (32)		32/50	
104	423 (39/50	430		102	35/50	417 (33		33/50	402 (30)	95	30/50	

< >:No.of effective animals,():No.of measured animals

)

Au.Wt.:g

TABLE 3SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS IN
THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

	Contra	ol		50	ppm			100 pp	m			200	ppm		
ileek on Study	Au.Wt.	No.of Surviv. <50>	AU.W	t.	% of cont. <50>	No.of Surviv.	Au.Wt.	c	% of cont. (50>	No.of Surviv.	Au.Wt	•	% of cont. <50>	No.of Surviv.	
0	97 (5	0) 50/50	97	(50)	100	50/50	97 (100	50/50		(50)	100	50/50	
1	99 (5	0) 50/50	99	(50)	100	50/50	100 (101	50/50	100		101	50/50	
1	115 (5	0) 50/50	113	(50)	98	50/50	115 (100	50/50	112		97	50/50	
2	129 (5			(50)	100	50/50	130 (101	50/50	126		98	50/50	
3	139 (5	0) 50/50		(50)	101	50/50	141 (101	50/50	136		98	50/50	
4	146 (5		148	(50)	101	50/50	149 (102	50/50	142		97	50/50	
5	154 (5	0) 50/50	156	(50)	101	50/50	156 (101	50/50	148		96	50/50	
6	163 (5		162	(50)	99	50/50	162 (•	99	50/50	154		94	50/50	
7	170 (5	0) 50/50		(50)	100	50/50	169 (99	50/50	162		95	50/50	
8	176 (5	0) 50/50	175	(50)	99	50/50	173 (98	50/50	167		95	50/50	
9	180 (5			(50)	99	50/50	177 (98	50/50	170		94	50/50	
10	184 (5	0) 50/50	183	(50)	99	50/50	180 (50)	98	50/50	174		95	50/50	
11	188 (5		188	(50)	100	50/50	184 (98	50/50	178		95	50/50	
12	190 (5	0) 50/50	190	(50)	100	50/50	187 (50)	98	50/50	181		95	50/50	
13	194 (5		194	(50)	100	50/50	191 (50)	98	50/50	184		95	50/50	
14	195 (5		195	(50)	100	50/50	193 (50)	99	50/50	184		94	50/50	
18	203 (5		204	(50)	100	50/50	200 (50)	99	50/50	193		95	50/50	
22	211 (5			(50)	100	50/50	207 (50)	98	50/50	200		95	50/50	
26	223 (5			(50)	100	50/50	219 (50)	98	50/50	212		95	50/50	
30	229 (5		231	(50)	101	50/50	225 (50)	98	50/50	217	(50)	95	50/50	
34	237 (5		238	(50)	100	50/50	232 (50)	98	50/50	225	(49)	95	49/50	
38	243 (5			(50)	102	50/50	238 (50)	98	50/50	230	(49)	95	49/50	
42	247 (5			(50)	102	50/50	242 (50)	98	50/50	233	(49)	94	49/50	
46	251 (5			(50)	102	50/50	247 (50)	98	50/50	238	(49)	95	49/50	
50	259 (5			(50)	103	50/50	253 (50)	98	50/50	242	(49)	93	49/50	
54	265 (5			(50)	103	50/50	259 (50)	98	50/50	249		94	49/50	
58	271 (5			(50)	103	50/50	265 (50)	98	50/50	253	(48)	93	48/50	
62 ·	278 (4			(50)	103	50/50	270 (97	50/50	259		93	48/50	
66	285 (4			(50)	102	50/50	276 (97	50/50	265	(48)	93	48/50	
70	290 (4			(49)	103	49/50	282 (97	50/50	270		93	48/50	
74	291 (4			(47)	105	47/50	287 (99	50/50	275	(48)	95	48/50	
78	297 (4			(47)	103	47/50	290 (98	50/50	279		94	48/50	
82	300 (4			(47)	104	47/50	294 (98	50/50	286		95	48/50	
86	307 (4	• •		(47)	103	47/50	303 (99	49/50	292	(48)	95	48/50	
90	306 (4			(45)	105	45/50	308 (101	49/50	290		95	47/50	
90 94	306 (4			(45)	106	45/50	310 (101	48/50	296		97	46/50	
94 98	311 (3			(45)	100	44/50	312 (100	48/50	295		95	46/50	
102	312 (3			(41)	104	40/50	311 (100	47/50	299		96	44/50	
102	309 (3			(41)	104	40/50	311 (101	45/50	297		96	44/50	

< >:No.of effective animals,():No.of measured animals

}

Au.Wt.:g

Time of mass occurrence (week)	0~13	14~26	27~39	40~52	53~65	66~78	79~91	92~104	0~104
External mass									
Control	0/50	0/50	0/49	3/49	2/49	2/49	4/48	6/46	12/50(1/11)
50ppm	0/50	1/50	1/50	2/50	4/50	2/49	3/48	8/44	12/50(7/15)
100ppm	0/50	0/50	0/50	0/50	1/50	2/50	8/50	18/47	18/50(6/17)
200ppm	0/50	0/50	0/50	0/50	1/50	2/50	7/50	10/41	11/50(5/20)
Internal mass									
Control	0/50	0/50	0/49	0/49	0/49	0/49	1/48	3/46	3/50(2/11)
50ppm	0/50	0/50	0/50	0/50	0/50	0/49	1/48	2/44	3/50(1/15)
100ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/50	1/47	1/50(1/17)
200ppm	0/50	0/50	0/50	0/50	0/50	0/50	2/50	3/41	4/50(3/20)

TABLE 4INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OF MALE RATS
IN THE 2-YEAR STUDY OF 2-METHALLYL CHLORIDE

No. of animals with mass / No. of survival animals at first week on each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 5INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OF FEMALE RATSIN THE 2-YEAR STUDY OF 2-METHALLYL CHLORIDE

Time of mass occurren	ce (week)	0~13	14~26	27~39	40~52	53~65	66~78	79 ~ 91	92~104	0~104
External mass										
	Control	0/50	0/50	0/50	0/50	0/50	1/49	3/47	9/43	11/50(3/12)
	50ppm	0/50	0/50	0/50	0/50	2/50	2/50	4/47	6/45	8/50(2/10)
)	100ppm	0/50	0/50	0/50	0/50	0/50	1/50	3/50	13/48	14/50(2/ 5)
	200ppm	0/50	0/50	0/50	0/49	0/49	1/48	3/48	7/47	8/50(2/ 6)
Internal mass										
	Control	0/50	0/50	0/50	0/50	0/50	0/49	3/47	3/43	5/50(5/12)
	50ppm	0/50	0/50	0/50	0/50	1/50	1/50	1/47	2/45	4/50(2/10)
	100ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/50	1/48	1/50(1/ 5)
	200ppm	0/50	0/50	1/50	0/49	0/49	0/48	1/48	4/47	5/50(3/ 6)

No. of animals with mass / No. of survival animals at first week on each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

TABLE 6FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATIONSTUDY OF 2-METHALLYL CHLORIDE

	Control			50 ppm		10) ppm		200	ppm		
Week on Study		Na.af Surviv. 50>	Au.FC	. % of cont. <50>	No.of Surviv.	AU.FC.	% of cont. <50>	No.of Surviv.	AU.FC.	% of cont. <50>	No.of Surviv.	
1	16.0 (50)		16.2		50/50	15.8 (50)	99	50/50	14.5 (50)	91	50/50	
2	17.2 (50)		17.6		50/50	17.9 (50)	104	50/50	17.2 (50)	100	50/50	
3	17.8 (50)	50/50	18.6		50/50	18.4 (50)	103	50/50	17.1 (50)	96	50/50	
4	17.5 (50)	50/50	18.5	(50) 106	50/50	18.0 (50)	103	50/50	16.5 (50)	94	50/50	
5	18.1 (50)	50/50	18.4	(50) 102	50/50	17.9 (50)	99	50/50	16.8 (50)	93	50/50	
6	18.6 (50)	50/50	18.4	(50) 99	50/50	17.7 (50)	95	50/50	17.2 (50)	92	50/50	
7	18.8 (50)	50/50	18.7	(50) 99	50/50	18.2 (50)	97	50/50	17.5 (50)	93	50/50	
8	18.4 (50)	50/50	18.8	(50) 102	50/50	18.3 (50)	99	50/50	17.1 (50)	93	50/50	
9	18.3 (50)	50/50	18.4		50/50	18.2 (50)	99	50/50	17.2 (50)	94	50/50	
10	18.8 (50)	50/50	18.2		50/50	18.0 (50)	96	50/50	17.7 (50)	94	50/50	
11	18.2 (50)	50/50	18.0		50/50	18.1 (50)	99	50/50	17.7 (50)	97	50/50	
12	17.6 (50)	50/50	18.0		50/50	17.8 (50)	101	50/50	17.3 (50)	98	50/50	
13	18.5 (50)	50/50	18.9		50/50	18.6 (50)	101	50/50	17.9 (50)	97	50/50	
14	17.7 (50)	50/50	18.3		50/50	18.3 (50)	103	50/50	17.2 (50)	97	50/50	
18	17.9 (49)	49/50	17.8		50/50	17.7 (46)	99	50/50	16.8 (50)	94	50/50	
22	18.0 (49)	49/50	17.8		50/50	17.8 (50)	99	50/50	17.0 (50)	94	50/50	
26	18.0 (49)	49/50	18.1		50/50	17.8 (50)	99	50/50	17.3 (50)	96	50/50	
30	18.4 (49)	49/50	18.0		50/50	18.8 (50)	102	50/50	18.5 (50)	101	50/50	
34	18.2 (49)	49/50	17.9		50/50	17.8 (50)	98	50/50	17.8 (50)	98	50/50	
38	18.5 (49)	49/50	18.0		50/50	18.0 (50)	97	50/50	17.4 (50)	94	50/50	
42	18.8 (49)	49/50	18.0		50/50	18.3 (50)	97	50/50	18.0 (50)	96	50/50	
46	18.5 (49)	49/50	18.0		50/50	18.5 (50)	100	50/50	17.6 (50)	95	50/50	
50	18.8 (49)	49/50	18.8		50/50	18.8 (50)	100	50/50	18.2 (50)	97	50/50	
54	18.7 (49)	49/50	18.2		50/50	18.0 (50)	96	50/50	17.9 (50)	96	50/50	
58	18.4 (49)	49/50	18.2		50/50	18.5 (50)	101	50/50	17.8 (50)	97	50/50	
62	18.4 (49)	49/50	18.5		49/50	18.3 (50)	99	50/50	17.9 (50)	97	50/50	
66	18.6 (49)	49/50	18.5		49/50	18.2 (50)	98	50/50	17.9 (50)	96	50/50	
70	18.7 (49)	49/50	18.8	(49) 101	49/50	18.9 (50)	101	50/50	18.6 (50)	99	50/50	
74	18.7 (48)	48/50	18.6		49/50	19.1 (50)	102	50/50	18.4 (50)	98	50/50	
78	19.5 (48)	48/50	19.1 ((48) 98	48/50	18.9 (50)	97	50/50	18.7 (50)	96	50/50	
82	18.9 (47)	47/50	18.6 ((48) 98	48/50	18.9 (50)	100	50/50	18.7 (49)	99	49/50	
86	19.3 (47)	47/50	18.6 (47/50	19.3 (49)	100	49/50	18.9 (46)	98	46/50	
90	19.4 (47)	47/50	19.5 (45/50	19.5 (49)	101	49/50	19.1 (44)	98	44/50	
94	18.7 (46)	46/50	18.4 (44/50	18.9 (44)	101	44/50	19.4 (40)	104	41/50	
98	18.9 (46)	45/50	19.5 (42/50	19.8 (43)	105	43/50	19.0 (38)	101	38/50	
102	19.0 (41)	41/50	18.0 (38/50	18.6 (37)	98	37/50	18.2 (32)	96	32/50	
104	18.5 (39)	39/50	17.7 (35/50	18.9 (33)	102	33/50	18.5 (30)	100	30/50	

< >:No.of effective animals,():No.of measured animals

)

)

Av.FC.:g

9

TABLE 7FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATIONSTUDY OF 2-METHALLYL CHLORIDE

	Control	•	50	ppm		100	ppm		200	ppm		
₩eek on Study		Na.of Surviv. 50>	AU.FC.	% of cont. <50>	No.of Surviv.	AU.FC.	% of cont. <50>	No.of Surviv.	AU.FC.	% of cont. <50>	No.of Surviu.	-
1	13.0 (50)	50/50	12.5 (50)	96	50/50	12.8 (50)	98	50/50	11.7 (50)	90	50/50	
2	12.9 (50)	50/50	13.0 (50)	101	50/50	13.7 (50)	106	50/50	13.3 (50)	103	50/50	
3	12.3 (50)	50/50	13.0 (50)	106	50/50	13.3 (50)	108	50/50	12.5 (50)	102	50/50	
4	12.2 (50)	50/50	12.3 (50)	101	50/50	12.5 (48)	102	50/50	11.8 (50)	97	50/50	
5	12.8 (50)	50/50	12.6 (50)	98	50/50	12.5 (50)	98	50/50	11.8 (50)	92	50/50	
6	12.9 (50)	50/50	12.5 (50)	97	50/50	12.2 (50)	95	50/50	12.0 (50)	93	50/50	
7	12.8 (50)	50/50	12.8 (50)	100	50/50	12.5 (50)	98	50/50	12.7 (50)	99	50/50	
8	12.8 (50)	50/50	12.8 (50)	100	50/50	12.2 (50)	95	50/50	12.6 (50)	98	50/50	
9	12.6 (50)	50/50	11.9 (50)	94	50/50	11.8 (50)	94	50/50	12.3 (50)	98	50/50	
10	12.4 (50)	50/50	12.2 (50)	98	50/50	12.0 (50)	97	50/50	12.3 (50)	99	50/50	
11	12.5 (50)	50/50	12.6 (50)	101	50/50	12.5 (50)	100	50/50	12.3 (50)	102	50/50	
12	12.3 (50)	50/50	12.8 (50)	101		12.3 (50)	100	50/50	12.1 (50)	99	50/50	
				102 98	50/50		100	50/50		99		
13	12.7 (50)	50/50	12.4 (50)		50/50	12.9 (50)			12.6 (50)		50/50	
14	11.6 (50)	50/50	11.7 (50)	101	50/50	11.8 (50)	102	50/50	11.7 (50)	101	50/50	
18	12.0 (50)	50/50	11.8 (50)	98	50/50	12.1 (50)	101	50/50	12.2 (50)	102	50/50	
22	12.2 (50)	50/50	11.8 (50)	97	50/50	12.1 (50)	99	50/50	12.7 (50)	104	50/50	
26	13.7 (50)	50/50	13.6 (50)	99	50/50	13.8 (50)	101	50/50	14.0 (50)	102	50/50	
30	13.4 (50)	50/50	13.0 (50)	97	50/50	13.1 (50)	98	50/50	13.6 (50)	101	50/50	
34	13.1 (50)	50/50	12.7 (50)	97	50/50	13.1 (50)	100	50/50	13.4 (49)	102	49/50	
38	12.2 (50)	50/50	12.5 (50)	102	50/50	12.2 (50)	100	50/50	12.4 (49)	102	49/50	
42	13.0 (50)	50/50	12.6 (50)	97	50/50	12.5 (50)	96	50/50	13.1 (49)	101	49/50	
46	13.1 (50)	50/50	13.0 (50)	99	50/50	13.1 (50)	100	50/50	13.2 (49)	101	49/50	
50	14.1 (50)	50/50	13.7 (50)	97	50/50	13.2 (50)	94	50/50	13.1 (49)	93	49/50	
54	13.1 (50)	50/50	13.0 (50)	99	50/50	12.9 (50)	98	50/50	12.9 (49)	98	49/50	
58	13.2 (50)	50/50	13.3 (50)	101	50/50	13.0 (50)	98	50/50	12.9 (48)	98	48/50	
62	13.8 (49)	49/50	13.0 (50)	94	50/50	13.1 (50)	95	50/50	13.4 (48)	97	48/50	
66	14.0 (49)	49/50	13.5 (50)	96	50/50	13.5 (50)	96	50/50	13.3 (48)	95	48/50	
70 ·	14.4 (48)	48/50	13.8 (49)	96	49/50	13.9 (50)	97	50/50	13.9 (48)	97	48/50	
74	13.6 (48)	48/50	14.1 (47)	104	47/50	13.9 (50)	102	50/50	14.0 (48)	103	48/50	
78	14.4 (47)	47/50	13.7 (47)	95	47/50	13.9 (50)	97	50/50	14.0 (48)	97	48/50	
82	14.2 (47)	47/50	13.9 (47)	98	47/50	13.8 (50)	97	50/50	14.3 (48)	101	48/50	
86	14.2 (47)	47/50	13.3 (47) 14.1 (47)	90 97	47/50	13.8 (30)	97 99	49/50	14.3 (48) 14.4 (48)	99	48/50	
90	14.3 (45) 14.3 (45)	45/50	14.1 (47) 14.4 (45)				101	49/50	14.4 (48) 13.7 (48)	99 96	48/50	
				101	45/50	14.4 (49)						
94	14.4 (42)	41/50	14.1 (45)	98	45/50	13.8 (48)	96	48/50	14.5 (46)	101	46/50	
98	14.7 (39)	39/50	14.7 (45)	100	44/50	14.7 (48)	100	48/50	14.4 (46)	98	46/50	
102	14.7 (38)	38/50	14.5 (41)	99	40/50	13.7 (47)	93	47/50	14.0 (44)	95	44/50	
104	14.5 (38)	38/50	14.1 (40)	97	40/50	13.5 (46)	93	45/50	14.0 (44)	97	44/50	

< >:No.of effective animals,():No.of measured animals

)

)

Au.FC.:g

Group Name	Control	50ppm	100ppm	200ppm
SITE : thyroid				
TUMOR : follicula	r adenoma ^(f)			
Tumor rate				
Overall rates(a)	2/50(4.0)	0/50(0.0)	2/50(4.0)	6/50(12.0)
Adjusted rates(b)	5.13	0.0	6.06	19.35
Terminal rates(c)	2/39(5.1)	0/35(0.0)	2/33(6.0)	5/30(16.7)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0052**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.00213*			
Fisher Exact test(e)		P=0.2574	P=0.3088	P=0.1606
SITE : thyroid	Addinational characteristic and a static child a film more resourcements.			
TUMOR : follicula	r adenoma, follicular ade	enocarcinoma		
Tumor rate				
Overall rates(a)	4/50(8.0)	4/50(8.0)	3/50(6.0)	10/50(20.0)
Adjusted rates(b)	10.26	11.43	9.09	27.27
Terminal rates(c)	4/39(10.3)	4/35(11.4)	3/33(9.1)	7/30(23.3)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0080**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0388*			
Fisher Exact test(e)		P=0.3579	P=0.4895	P=0.1108

TABLE 8NEOPLASTIC LESIONS INCIDENCE AND STATISTICAL ANALYSIS IN MALE RATSIN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

(a):Number of tumor-bearing animals/number of animals examined at the site.

(b):Kaplan-Meire estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.

(c):Observed tumor incidence at terminal kill.

)

(d):Beneath the control incidence are the P-values associated with the trend test.

Standard method :Death analysis

Prevalence method :Incidental tumor test

Combined analysis :Death analysis + Incidental tumor test

(e):The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

(f):Historical incidence for 2-year studies: 8/899(0.9%); range 0% to 4%

?: The conditional probabities of the largest and smallest possible out comes can not be estimated or this P-value is beyond the estimated P-value.

-----: There is no data which should be statistical analysis.

Significant difference; $*:P \leq 0.05 **:P \leq 0.01$

NUMBER OF RATS WITH SELECTED NON-NEOPLASTIC LESIONS IN THE 2-YEAR INHALATION STUDY **OF 2-METHALLYL CHLORIDE TABLE 9**

)

)

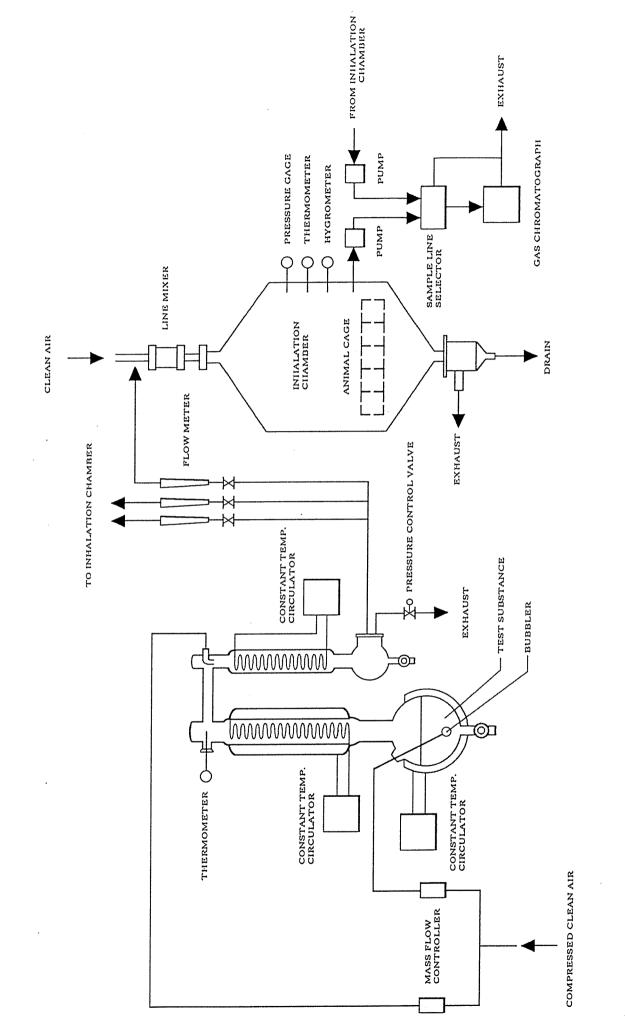
			Male	le			Fem	Female	
Group name		Control	50ppm	100ppm	200ppm	Control	50ppm	100ppm	200pm
Nasal cavity		<50>(39)	<50>(35)	<50>(33)	<50>(30)	<50>(38)	<50>(40)	<50>(45)	<50>(44)
eosinophilic change:olfactory ep.	p.	28 (24)	46**(35)**	49**(33)**	46**(30)**	41 (32)	50 ** (40) **	50**(45)**	49**(44)**
	+	22 (18)	2 (0)	(0) 0	2 (0)	24 (17)	1 (1)	(0)	
	2+	(9)9	10 (6)	9 (1)	10 (6)	11 (9)	3 (2)	3 (2)	1 (0)
	3+	(0) 0	32 (28)	34 (26)	30 (21)	6 (6)	32 (24)	39 (35)	35 (32)
	4+	(0)0	2 (1)	6 (6)	4 (3)	(0) 0	14 (13)	8 (8)	13 (12)
Kidney		<50>(39)	<50>(35)	<50>(33)	<50>(30)	<50>(38)	<50>(40)	<50>(45)	<50>(44)
chronic nephropathy		47 (39)	47 (35)	50 (33)	47 (30)	45 (38)	43 (36)	34* (30)**	27**(27)**
	+	1 (1)	(0)0	1 (1)	2 (0)	14 (10)	18 (12)	19 (17)	22 (22)
	2+	3 (2)	1 (0)	5 (0)	2 (0)	18 (17)	11 (10)	6)6	3 (3)
	3+	31 (28)	36 (31)	30 (25)	31 (20)	(6.) 11	14 (14)	5 (4)	2 (2)
	4+	12 (8)	10 (4)	14 (7)	12 (10)	2 (2)	(0) 0	1 (0)	(0) 0
Grade +:Slight 2+:Moderate 3+:Marked 4+:Severe	3+:Mar	ked 4+:9	èvere						
<pre><>:Number of animals examined at the site</pre>	e site								
():>acrinced animals									

*:P≦0.05 **:P≦0.01 Test of Chi square

Significant difference

TABLE 10

)


)

CAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

			М	ale			Fei	nale	
Group		Control	50ppm	100ppm	200ppm	Control	50ppm	100ppm	200ppn
Number of dea	d or moribund animals	11	15	17	20	12	10	5	6
No microscopi	cal confirmation	0	0	0	0	0	0	0	1
Chronic nephro	opathy	4	6	6	2	0	0	0	0
Urinary retenti	ion	0	1	0	0	0	0	0	0
Tumor death:	leukemia	2	1	2	4	3	4	1	2
	skin/apendage	0	0	0	1	0	0	0	0
	subcutis	0	0	3	0	0	0	0	0
	lung	0	0	0	1	0	0	0	0
	thymus	0	0	0	0	0	1	0	0
	oral cavity	0	1	0	0	0	0	0	0
	salivary gland	0	0	0	1	0	0	0	0
	small intestine	0	0	0	1	0	0	0	1
	large intestine	0	0	0	1	0	0	0	0
	liver	0	1	0	0	0	0	0	1
	pituitary	1	0	2	2	4	2	3	1
	thyroid	0	0	1	0	1	0	0	0
	adrenal	0	2	0	0	3	0	0	0
	prostate	1	0	0	0	_		-	_
	uterus	-	-	-	-	0	1	1	0
	mammary gland	0	0	0	0	0	2	0	0
	brain	2	0	0	2	0	0	0	0
	Zymbal gland	0	0	2	1	0	0	0	0
	muscle	0	1	0	0	• 0	0	0	0
	bone	0	0	0	1	1	0	0	0
	mediastinum	0	0	0	1	0	0	0	0
	peritoneum	1	2	1	2	0	0	0	0

FIGURES

- FIGURE 1 2-METHALLYL CHLORIDE VAPOR GENERATION SYSTEM AND INHARATION SYSTEM
- FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE
- FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

Ì)

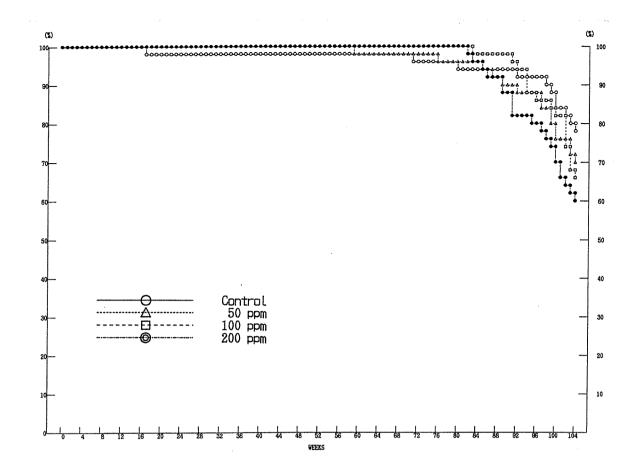


FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

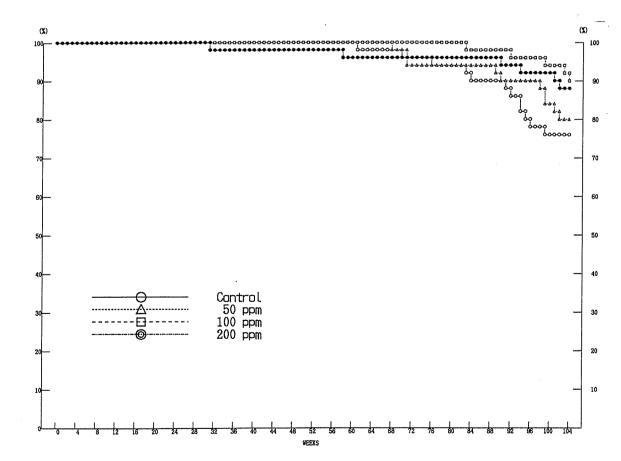


FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

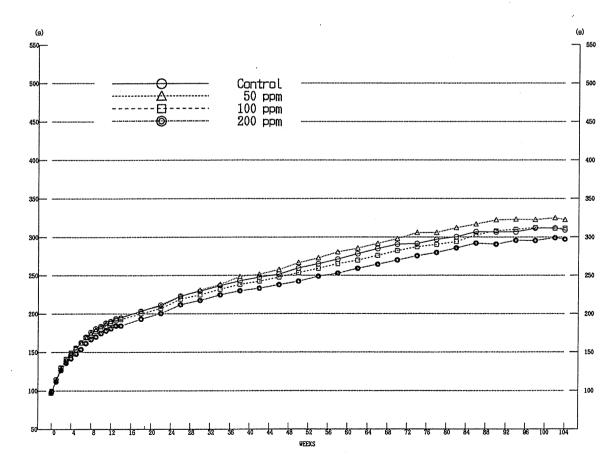


FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

(Study No. 0269)

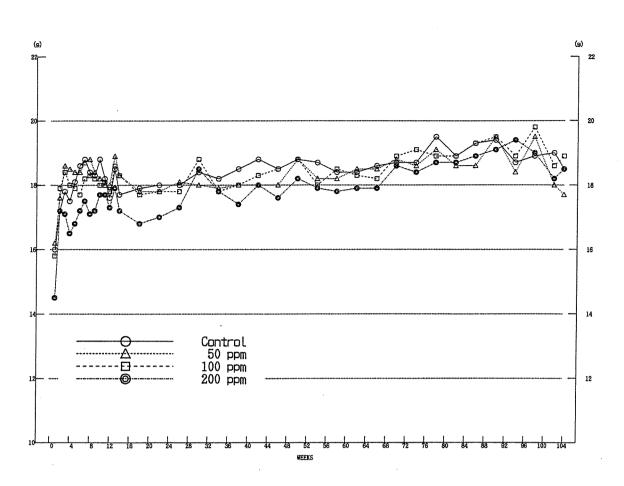


FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

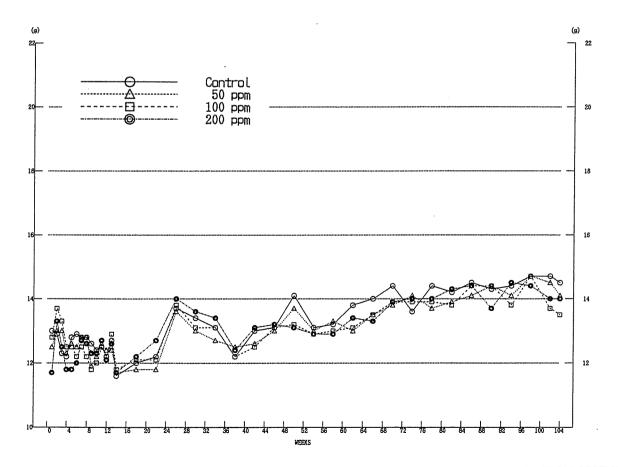
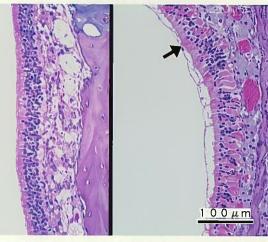


FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF 2-METHALLYL CHLORIDE

PHOTOGRAPHS


PHOTOGRAPH 2

)

LEFT	NASAL CAVITY : NORMAL
	RAT, MALE, CONTROL, ANIMAL No. 0269-1006 (H&E)
RIGHT	NASAL CAVITY : EOSINOPHILIC CHANGE : OLFACTORY EPITHELIUM (†)
	RAT, MALE, 200ppm, ANIMAL No. 0269-1306 (H&E)

(Study No. 0269)

PHOTOGRAPH. 1

PHOTOGRAPH. 2