Summary of Inhalation Carcinogenicity Study

of Glycidol

in F344 Rats

March 2003

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on March 25 2003.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Inhalation Carcinogenicity Study of Glycidol in F344 Rats

Purpose, materials and methods

Glycidol (CAS No. 556-52-5) is colorless liquid with a boiling point of 166-167°C. It is soluble in water, ethanol and diethyl ether.

The carcinogenicity and chronic toxicity of glycidol were examined by inhalation exposure of groups of 50 F344/DuCrj (Fischer) rats of both sexes to glycidol vapor at a target concentration of 0 (clean air), 3, 10 or 30 ppm (v/v) for 6 hours/day, 5 days/week for 2 years (104 weeks). The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. Glycidol was analyzed for purity and stability by both infrared spectrometry and gas chromatography before and after its use. Stainless-steel inhalation exposure chambers (volume: 7600 L) were used throughout the 2-year exposure period. Glycidol vapor-air mixture was generated by bubbling clean air through the glycidol liquid, and supplied to the inhalation exposure chambers. Air concentrations of glycidol vapor in the inhalation exposure chambers were monitored at 15 min intervals by gas chromatography. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year exposure period underwent complete necropsy. Urinalysis was performed near the end of the exposure period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of the doseresponse relation for the neoplastic incidence was analyzed by Peto's test. Incidences of nonneoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

(Study No.0342)

Results

There was a significant difference in survival rate between the 30 ppm-exposed groups of both sexes and the respective controls. The decreased survival rates were attributed to the increased number of deaths due to the peritoneal mesothelioma and nasal cavity tumors in the males and due to the uterine tumor in the females. Body weights of the 30 ppm-exposed male and female groups were slightly decreased as compared with the respective controls.

The incidences of nasal cavity tumors (squamous cell carcinomas, adenomas, adenocarcinomas and basal cell carcinomas) and peritoneal tumors (mesotheliomas) were increased markedly in the males. The incidences of mammary gland tumors (fibroadenomas) and skin tumors (squamous cell papillomas) were increased in the males. In females, the incidences of nasal cavity tumors (adenomas, adenocarcinomas, squamous cell carcinomas), uterine tumors (endometrial stromal sarcomas), and mammary gland tumors (fibroadenomas) were increased. The significantly increased incidences of peritoneal tumors (mesotheliomas) occurred in the males exposed to 10 ppm and above, while those of nasal cavity tumors (squamous cell carcinomas, adenomas) and mammary gland tumors (fibroadenomas) appeared in the 30 ppm-exposed males. The increased incidence of mammary gland tumors (fibroadenomas) was observed in the females exposed to 10 ppm and above, while nasal cavity tumors (adenomas) and uterine tumors (endometrial stromal sarcomas) were observed in the 30 ppm-exposed females. As pre-neoplastic lesions, hyperplasia in the transitional and respiratory epithelia, and squamous cell metaplasia and squamous cell hyperplasia in the respiratory epithelium were observed, and those nasal lesions were accompanied by atypia. In addition, inflammation in the respiratory epithelium, thickening of bone in the turbinate and atrophy in the olfactory epithelium were also observed. Those histopathological lesions were observed primarily in the 30ppm-exposed groups, while thickening of bone in the turbinate and hyperplasia in the transitional epithelium were observed at 10 ppm and above.

Conclusions

In rats, there was clear evidence of carcinogenic activity of glycidol in males and females, based on the increased incidences of nasal cavity tumors (squamous cell carcinomas, adenomas, adenocarcinomas and basal cell carcinomas) and peritoneal tumors (mesotheliomas) in the males, and based on the increased incidences of nasal cavity tumors (adenomas, adenocarcinomas and squamous cell carcinomas), and uterine tumors (endometrial stromal sarcomas) in the females. Additionally, hyperplasia in the transitional and respiratory epithelia accompanied by atypia, squamous cell metaplasia and squamous cell hyperplasia in the respiratory epithelium were observed in the glycidol-exposed males and females, and those lesions were thought to be pre-neoplastic. Thickening of bone in the turbinate was also observed.

TABLES

- TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OFMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- TABLE 3INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL
OBSERVATION OF MALE RATS IN THE 2-YEAR INHALATION STUDY
OF GLYCIDOL
- TABLE 4INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL
OBSERVATION OF FEMALE RATS IN THE 2-YEAR INHALATION
STUDY OF GLYCIDOL
- TABLE 5FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEARINHALATION STUDY OF GLYCIDOL
- TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEARINHALATION STUDY OF GLYCIDOL
- TABLE 7ORGAN WEIGHT OF MALE RATS IN THE 2-YEAR INHALATION
STUDY OF GLYCIDOL
- TABLE 8ORGAN WEIGHT OF FEMALE RATS IN THE 2-YEAR INHALATIONSTUDY OF GLYCIDOL
- TABLE 9INCIDENCES OF SELECTED LESIONS OF MALE RATSIN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- TABLE 10INCIDENCES OF SELECTED LESIONS OF FEMALE RATSIN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- TABLE 11NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS INMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

3

TABLES (CONTINUED)

- TABLE 12NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS IN
FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- TABLE 13CAUSE OF DEATH OF MALE AND FEMALE RATS IN THE 2-YEARINHALATION STUDY OF GLYCIDOL
- TABLE 14HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONSIN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj MALE RATS

)

)

TABLE 15HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONSIN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

Weeks on Study 0 12 1 16 2 18 3 20 4 22 5 24 6 26 7 27 8 28 9 28 10 29 11 30 12 31 13 31 14 32 26 36 30 37 34 38 38 39 42 40	22 52 80 04 21 42 56 70 80 89 97 04 11 17 24 40	7t. 50) 50) 50) 50) 50) 50) 50) 50)	No.of Surviv. <50> 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	Av.V 122 152 180 202 219 238 252 265 276 284		cont. <50> 100 100	No.of Surviv. 50/50 50/50 50/50 50/50 50/50 50/50	Av. 122 152 180 203 212	50) 50) 50)		50/50 50/50 50/50	Av.V 122 152 179		% of cont. <50> 100 100 99	No.of Surviv 50/50 50/50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 80 04 21 42 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50) 50) 50)	<50> 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	152 180 202 219 238 252 265 276	50) 50) 50) 50) 50) 50) 50) 50)	<50> 100 100 99 99 99 98	50/50 50/50 50/50 50/50 50/50	$\begin{array}{c} 152 \\ 180 \\ 203 \end{array}$	50) 50)	<50> 100 100 100	50/50 50/50 50/50	$\begin{array}{c} 152 \\ 179 \end{array}$	50)	<50> 100 100	50/50 50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 80 04 21 42 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	152 180 202 219 238 252 265 276	50) 50) 50) 50) 50) 50) 50) 50)	100 100 100 99 99 99 98	50/50 50/50 50/50 50/50	$\begin{array}{c} 152 \\ 180 \\ 203 \end{array}$	50) 50)	100 100 100	50/50 50/50	$\begin{array}{c} 152 \\ 179 \end{array}$	50)	100 100	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 80 04 21 42 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	152 180 202 219 238 252 265 276	50) 50) 50) 50) 50) 50) 50) 50)	100 100 99 99 99 98	50/50 50/50 50/50 50/50	$\begin{array}{c} 152 \\ 180 \\ 203 \end{array}$	50) 50)	100 100	50/50 50/50	$\begin{array}{c} 152 \\ 179 \end{array}$	50)	100	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 04 21 42 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	 180 202 219 238 252 265 276 	50) 50) 50) 50) 50) 50) 50)	100 99 99 98	50/50 50/50 50/50	180 203	50)	100	50/50	179			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 21 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50	202 219 238 252 265 276	50) 50) 50) 50) 50)	99 99 98	50/50 50/50	203					50)	99	ENIEN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 21 \\ 42 \\ 56 \\ 70 \\ 80 \\ 89 \\ 97 \\ 04 \\ 11 \\ 17 \\ 24 \end{array}$	50) 50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50 50/50	219 238 252 265 276	50) 50) 50) 50)	99 98	50/50		E ON		FOIFO	001		00	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50 50/50	238 252 265 276	50) 50) 50)	98		010	9U)	100	50/50	201	50)	99	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50 50/50	252 265 276	50) 50)		50/50	219	50)	99	50/50	217	50)	98	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 80 89 97 04 11 17 24	50) 50) 50) 50) 50) 50)	50/50 50/50 50/50 50/50	$\frac{265}{276}$	50)	98		238	50)	98	50/50	235	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 89 97 04 11 17 24	50) 50) 50) 50) 50)	50/50 50/50 50/50	276			50/50	251	50)	98	50/50	249	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89 97 04 11 17 24	50) 50) 50) 50)	50/50 50/50		50	98	50/50	264	50)	98	50/50	261	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97 04 11 17 24	50) 50) 50)	50/50	284	90)	99	50/50	274	50)	98	50/50	271	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 11 17 24	50) 50)			50)	98	50/50	283	50)	98	50/50	279	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$11 \\ 17 \\ 24$	50)	50/50	292	50)	98	50/50	291	50)	98	50/50	288	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{17}{24}$,	00.00	299	50)	98	50/50	298	50)	98	50/50	295	50)	97	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	50)	50/50	305	50)	98	50/50	305	50)	98	50/50	300	50)	96	50/50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~~/	50/50	314	50)	99	50/50	312	50)	98	50/50	307	50)	97	50/50
22 35 26 36 30 37 34 38 38 39 42 40	40	50)	50/50	319	50)	98	50/50	317	50)	98	50/50	313	50)	97	50/50
26 36 30 37 34 38 38 39 42 40		50)	50/50	337	50)	99	50/50	333	50)	98	50/50	328	50)	96	50/50
30 37 34 38 38 39 42 40	54	50)	50/50	350	50)	99	50/50	347	50)	98	50/50	341	50)	96	50/50
34 38 38 39 42 40	68	50)	50/50	365	50)	99	50/50	359	50)	98	50/50	351	50)	95	50/50
38 39 42 40	78	50)	50/50	376	50)	99	50/50	368	50)	97	50/50	360	50)	95	50/50
42 40	87	50)	50/50	385	50)	99	50/50	378	50)	98	50/50	370	50)	96	50/50
	93	50)	50/50	393	50)	100	50/50	384	50)	98	50/50	377	50)	96	50/50
	01	50)	50/50	400	50)	100	50/50	391	50)	98	50/50	385	50)	96	50/50
46 40	06	50)	50/50	405	50)	100	50/50	395	50)	97	50/50	390	50)	96	50/50
50 41	12	50)	50/50	411	50)	100	50/50	402	50)	98	50/50	397	50)	96	50/50
54 41	16	50)	50/50	415	50)	100	50/50	407	50)	98	50/50	401	50)	96	50/50
58 42	20	50)	50/50	417	49)	99	49/50	409	50)	97	50/50	404	50)	96	50/50
62 42	22	50)	50/50	420	49)	100	49/50	411	50)	97	50/50	402	50)	95	50/50
66 42	23	50)	50/50	419	49)	99	49/50	411	50)	97	50/50	401	50)	95	50/50
70 42	27	49)	49/50	421	48)	99	48/50	414	50)	97	50/50	400	48)	94	48/50
74 42	27	49)	49/50	419	48)	98	48/50	415	50)	97	50/50	395	47)	93	47/50
78 42	26	49)	49/50	423	46)	99	46/50	413	50)	97	50/50	389	46)	91	46/50
82 42	22	47)	47/50	421	46)	100	46/50	408	48)	97	48/50	393	44)	93	43/50
86 42	21	46)	46/50	423	46)	100	46/50	408	47)	97	46/50	386	42)	92	42/50
90 41	19	46)	46/50	419	44)	100	44/50	406	46)	97	46/50	376	39)	90	39/50
94 41		44)	44/50	415		100	43/50	403	44)	98	44/50	370	37)	90	36/50
98 41		42)	42/50	415	42)		42/50	395	42)	96	42/50	349	33)	85	31/50
102 40		40)	40/50	413		102	42/50	395	39)	97	39/50	347	26)	85	25/50
104 40		40)	40/50		42)		42/50		38)	98	38/50		23)	84	23/50

)

)

TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

5

			Control			3ppn	1			10pp	m			30pp	m
Weeks on Study	Av.V	Vt.	No.of Surviv. <50>	Av.V	Wt.		No.of Surviv.	Av.'	Wt.	% of cont. <49>	No.of Surviv.	Av.'	Wt.	% of cont. <50>	No.ot Surviv
0	96	50)	50/50	96	50)	100	50/50	96	49)	100	50/50	96	50)	100	50/50
1	110	50)	50/50	109	50)	99	50/50	110	49)	100	50/50	110	50)	100	50/50
2	122	50)	50/50	122	50)	100	50/50	122	49)	100	50/50	121	50)	99	50/50
3	133	50)	50/50	132	50)	99	50/50	132	49)	99	50/50	132	50)	99	50/50
4	139	50)	50/50	138	50)	99	50/50	138	49)	99	50/50	137	50)	99	50/50
5	150	50)	50/50	148	50)	99	50/50	148	49)	99	50/50	147	50)	98	50/50
6	156	50)	50/50	154	50)	99	50/50	153	49)	98	50/50	152	50)	97	50/50
7	162	50)	50/50	159	50)	98	50/50	158	49)	98	50/50	157	50)	97	50/50
8	165	50)	50/50	161	50)	98	50/50	161	49)	98	50/50	159	50)	96	50/50
9	170	50)	50/50	166	50)	98	50/50	166	49)	98	50/50	164	50)	96	50/50
10	176	50)	50/50	172	50)	98	50/50	171	49)	97	49/49	168	50)	95	50/50
11	180	50)	50/50	175	50)	97	50/50	174	49)	97	49/49	171	50)	95	50/50
12	182	50)	50/50	178	50)	98	50/50	176	49)	97	49/49	173	50)	95	50/50
13	185	50)	50/50	182	50)	98	50/50	180	49)	97	49/49	177	50)	96	50/50
14	188	50)	50/50	182	50)	97	50/50	182	49)	97	49/49	179	50)	95	50/50
18	192	50)	50/50	188	50)	98	50/50	185	49)	96	49/49	183	50)	95	50/50
22	197	50)	50/50	195	50)	99	50/50	190	49)	96	49/49	188	50)	95	50/50
${26}$	205	50)	50/50	204	50)	100	50/50	198	49)	97	49/49	195	50)	95	50/50
30	211	50)	50/50	209	50)	99	50/50	203	49)	96	49/49	200	50)	95	50/50
34	216	50)	50/50	215		100	50/50	208	49)	96	49/49	206	50)	95	50/50
38	217	50)	50/50	216	50)	100	50/50	211	49)	97	49/49	206	50)	95	50/50
42	221	50)	50/50	210		100	50/50	214	49)	97	49/49	200	50)	95	50/50
46	$221 \\ 224$	50)	50/50	225	50)	100	50/50	219	49)	98	49/49	$211 \\ 215$	50)	96	50/50
50	227	50)	50/50	230	50)	100	50/50	210	49)	98	49/49	210	50)	97	50/50
50	232	50)	50/50	234		101	50/50	228	49)	98	49/49	225	50)	97	50/50
54 58	$\frac{232}{234}$	50)	50/50 50/50	234 235	50)		50/50 50/50	230	49)	98	49/49	226	50)	97	50/50
62	240 240	49)	49/50	239	•	100	50/50	233	47)	97	47/49	$\frac{220}{229}$	50)	95	50/50
66	$\frac{240}{243}$	49)	49/50	$\frac{233}{244}$		100	50/50 50/50	238	47)	98	47/49	$225 \\ 235$	50)	95 97	
70			43/50 48/50	244 250						99	47/49				50/50
70 74		48)		$\frac{250}{254}$			50/50 40/50	244	•			239	•	97 96	50/50
	250 254	47)	47/50				49/50	247	47)	99 00	47/49	240	,	96 96	49/50
78	254	47)	47/50	259			49/50	252 950	47)	99 00	47/49	243	47)	96 07	47/50
82	258	46)	46/50	262		102	48/50		47)	99	47/49	249	45)	97	45/50
86	262	46)	46/50		•	102	48/50	262	47)		47/49	252	45)	96 02	45/50
90	266	45)	45/50			100	43/50	267	45)		45/49	256		96	43/50
94	266	45)	45/50			102	41/50	267	•	100	45/49	256		96	40/50
98	269	42)	42/50	274		102	38/50	266	43)	99	43/49	254		94	34/50
102		41)	41/50	272		101	38/50	267	· · ·	99	39/49	255		94	33/50
104	267	41)	41/50	271	38)	101	38/50	271	39)	101	39/49	251	32)	94	32/50

Ì)

)

TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

6

Time of mass occurrence (week)	0~13	$14 \sim 26$	$27 \sim 39$	$40 \sim 52$	$53 \sim 65$	$66{\sim}78$	79~91	92~104	0~104
External mass									
0ppm	0/50	0/50	1/50	3/50	5/50	6/50	6/48	12/45	16/50 (4/10)
3ppm	0/50	0/50	0/50	0/50	2/50	8/49	8/46	11/43	15/50 (3/8)
10ppm	0/50	0/50	0/50	2/50	4/50	6/50	11/50	11/44	16/50 (6/12)
30ppm	0/50	0/50	0/50	0/50	3/50	11/50	12/46	22/38	29/50 (15/27)
Internal mass									
Oppm	0/50	0/50	0/50	0/50	0/50	1/50	2/48	3/45	6/50 (5/10)
3ppm	0/50	0/50	0/50	0/50	0/50	0/49	0/46	0/43	0/50 (0/8)
10ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/50	1/44	1/50 (0/12)
30ppm	0/50	0/50	0/50	0/50	0/50	0/50	0/46	2/38	2/50 (1/27)

TABLE 3INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OFMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

)

)

TABLE 4	INCIDENCE OF EXTERNAL AND INTERNAL MASS IN CLINICAL OBSERVATION OF
	FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

Time of mass occurrence (week)	0~13	$14 \sim 26$	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	66~78	79~91	92~104	0~104
External mass									
0ppm	0/50	0/50	0/50	0/50	0/50	3/49	5/47	7/45	10/50 (1/9)
3ppm	0/50	0/50	0/50	0/50	0/50	0/50	4/48	7/43	7/50 (2/12)
10ppm	0/50	0/49	0/49	0/49	1/49	1/47	6/47	17/45	20/49 (5/10)
30ppm	0/50	0/50	0/50	1/50	2/50	4/50	10/46	22/42	23/50 (8/18)
Internal mass									
0ppm	0/50	0/50	0/50	0/50	0/50	1/49	2/47	1/45	2/50 (2/9)
3ppm	0/50	0/50	0/50	0/50	0/50	0/50	1/48	2/43	3/50 (1/12)
10ppm	0/50	0/49	0/49	0/49	0/49	0/47	1/47	6/45	7/49 (5/10)
30ppm	0/50	0/50	0/50	0/50	0/50	1/50	2/46	5/42	8/50 (5/18)

No. of animals with mass / No. of surviving animals at the first week in each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

		ntrol		3pp	m		10pp			30pp	m
	Av.FC	•	Av.FC.	•	% of	Av.FC.		% of	Av.FC	•	% of
Weeks					cont.			cont.			cont.
on Study		<50>		<50>	•		<50>			<50>	•
1	15.2	(50)	15.4	(50)	101	15.3	(50)	101	15.1	(50)	99
2	15.8	(50)	16.1	(50)	102	16.0	(50)	101	16.1	(50)	102
3	16.9	(50)	17.0	(50)	101	16.9	(50)	100	17.5	(50)	104
4	17.5	(50)	17.1	(50)	98	17.1	(50)	98	17.2	(50)	98
5	17.3	(50)	16.8	(50)	97	16.8	(50)	97	17.1	(50)	99
6	17.1	(50)	16.5	(50)	96	16.3	(50)	95	16.9	(50)	99
7	17.6	(50)	16.9	(50)	96	17.0	(50)	97	17.1	(50)	97
8	17.4	(50)	16.8	(50)	97	16.8	(50)	97	17.1	(50)	98
9	17.1	(50)	16.6	(50)	97	16.6	(50)	97	16.6	(50)	97
10	16.8	(50)	16.4	(50)	98	16.1	(50)	96	16.1	(50)	96
11	16.8	(50)	16.2	(50)	96	16.0	(50)	95	16.5	(50)	98
12	16.4	(50)	15.7	(50)	96	16.1	(50)	98	16.2	(50)	99
13	16.6	(50)	16.2	(50)	98	16.2	(50)	.98	16.2	(50)	98
14	16.7	(50)	16.0	(50)	96	16.0	(50)	96	15.9	(50)	95
18	16.4	(50)	16.4	(50)	100	16.2	(50)	99	15.9	(50)	97
22	16.4	(50)	16.2	(50)	99	16.2	(50)	99	16.1	(50)	98
26	16.8	(50)	16.6	(50)	99	16.7	(50)	99	16.4	(50)	98
30	16.4	(50)	16.3	(50)	99	16.2	(50)	99	16.3	(50)	99
34	16.9	(50)	16.7	(50)	99	16.7	(50)	99	16.5	(50)	98
38	17.2	(50)	17.2	(50)	100	16.9	(50)	98	16.7	(50)	97
42	17.4	(50)	17.3	(50)	99	17.0	(50)	98	17.1	(50)	98
46	17.1	(50)	17.0	(50)	99	16.7	(50)	98	16.9	(50)	99
50	17.4	(50)	17.2	(50)	99	16.9	(50)	97	16.9	(50)	97
54	17.4	(50)	17.4	(50)	100	17.0	(50)	98	17.1	(50)	98
58	17.5	(50)	17.3	(49)	99	16.8	(50)	96	16.7	(50)	95
62	17.8	(50)	17.6	(49)	99	17.1	(50)	96	16.9	(50)	95
66	17.8	(50)	17.7	(49)	99	17.3	(50)	97	17.0	(50)	96
70	17.9	(49)	17.8	(48)	99	17.4	(50)	97	16.8	(48)	94
74	17.8	(49)	17.4	(48)	98	17.2	(50)	97	16.6	(47)	93
78	17.9	(49)	17.6	(46)	98	17.2	(50)	96	16.7	(46)	93
82	17.9	(47)	17.9	(46)	100	16.7	(48)	93	16.7	(44)	93
86	17.3	(46)	17.4	(46)	101	16.9	(46)	98	15.8	(42)	91
90	17.1	(46)	17.0	(44)	99	16.4	(46)	96	16.2	(39)	95
94	16.1	(44)	16.9	(43)	105	16.3	(43)	101	16.1	(37)	100
98	17.2	(42)	17.7	(42)	103	16.5	(42)	96	14.7	(33)	85
102	17.4	(39)	18.3	(42)	105	17.0	(39)	98	16.2	(25)	93
104	17.2	(39)	18.1	(42)	105	16.9	(37)	98	16.2	(23)	94
			o.of effect								v.FC. :

TABLE 5FOOD CONSUMPTION CHANGES OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

)

	Co	ntrol		3pp1	m		10pp		ab.	30pp	m
	Av.FC	•	Av.FC.		% of	Av.FC.		% of	Av.FC.		% of
Weeks					cont.			cont.			cont.
on Study		<50>		<50>	•		<49>			<50>	
1	11.0	(50)	11.3	(50)	103	11.1	(49)	101	11.0	(50)	100
2	10.8	(50)	10.5	(50)	97	10.7	(49)	99	10.7	(50)	99
3	11.3	(50)	11.4	(50)	101	11.4	(49)	101	11.6	(50)	103
4	11.7	(50)	11.4	(50)	97	11.5	(49)	98	11.3	(50)	97
5	11.8	(50)	11.6	(50)	98	11.6	(49)	98	11.6	(50)	98
6	11.5	(50)	11.2	(50)	97	11.0	(49)	96	11.2	(50)	97
7	11.9	(50)	11.4	(50)	96	11.3	(49)	95	11.2	(50)	94
8	10.9	(50)	10.8	(50)	99	10.9	(49)	100	10.5	(50)	96
9	11.8	(50)	11.4	(50)	97	11.1	(49)	94	11.0	(50)	93
10	12.1	(50)	11.8	(50)	98	11.1	(49)	92	10.9	(50)	90
11	12.2	(50)	11.5	(50)	94	11.2	(49)	92	11.1	(50)	91
12	11.5	(50)	11.1	(50)	97	11.3	(49)	98	11.1	(50)	97
13	11.6	(50)	11.6	(50)	100	11.4	(49)	98	11.2	(50)	97
14	11.7	(50)	11.1	(50)	95	11.3	(49)	97	10.9	(50)	93
18	11.2	(50)	11.2	(50)	100	10.6	(49)	95	10.9	(50)	97
22	11.2	(50)	11.2	(50)	100	10.8	(49)	96	10.7	(50)	96
26	11.6	(50)	11.9	(50)	103	11.5	(49)	99	11.3	(50)	97
30	11.6	(50)	11.6	(50)	100	11.0	(49)	95	11.2	(50)	97
34	11.7	(50)	12.1	(50)	103	11.8	(49)	101	11.8	(50)	101
38	11.8	(50)	11.9	(50)	101	11.6	(49)	98	11.2	(50)	95
42	11.8	(50)	11.8	(50)	100	11.4	(49)	97	11.5	(50)	97
46	11.8	(50)	12.2	(50)	103	11.8	(49)	100	11.6	(50)	98
50	12.1	(50)	12.3	(50)	102	11.8	(49)	98	12.0	(50)	99
54	11.9	(50)	12.1	(50)	102	11.9	(49)	100	11.7	(50)	98
58	12.0	(50)	11.9	(50)	99	11.6	(49)	97	11.6	(50)	97
62	12.6	(49)	12.4	(50)	98	11.7	(47)	93	11.5	(50)	91
66	12.7	(49)	12.8	(50)	101	12.4	(47)	98	12.4	(50)	98
70	13.0	(48)	13.1	(50)	101	12.8	(47)	98	12.3	(50)	95
74	12.8	(47)	12.5	(49)	98	12.2	(47)	95	11.8	(49)	92
78	12.8	(47)	12.8	(49)	100	12.5	(47)	98	12.0	(47)	94
82	12.9	(46)	12.9	(48)	100	12.5	(47)	97	12.4	(45)	96
86	12.9	(46)	12.4	(48)	96	12.7	(47)	98	12.2	(45)	95
90	12.7	(45)	12.1	(44)	95	12.5	(45)	98	12.1	(43)	95
94	12.2	(45)	12.1	(42)	99	12.0	(45)	98	11.7	(40)	96
98	13.0	(42)	13.0	(38)	100	12.6	(43)	97	12.6	(35)	97
102	13.4	(41)	13.2	(38)	99	12.8	(40)	96	12.3	(33)	92
104	12.9	(41)	12.7	(38)	98	13.1	(39)	102	11.9	(32)	92
						():No.c					.FC. :

TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE RATSIN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

)

)

9

Group Name	Control	3 ppm	10 ppm	30 ppm
No. of examined animals	40	42	38	23
Body weight (g)	376 ± 50	384 ± 52	365 ± 48	313 ± 36 **
Adrenals (g)	0.081 ± 0.024	0.078 ± 0.013	0.079 ± 0.015	0.076 ± 0.011
Adrenals (%)	0.022 ± 0.007	0.021 ± 0.004	0.022 ± 0.005	0.025 ± 0.006 *
Testes (g)	3.360 ± 1.462	3.577 ± 1.744	4.051 ± 1.426	4.043 ± 1.752
Testes (%)	0.917 ± 0.421	0.943 ± 0.480	1.140 ± 0.464	1.282 ± 0.514 **
Heart (g)	1.167 ± 0.098	1.190 ± 0.107	$1.179 ~\pm~ 0.121$	1.177 ± 0.110
Heart (%)	0.313 ± 0.031	0.314 ± 0.045	0.325 ± 0.027	0.382 ± 0.063 **
Lung (g)	1.421 ± 0.171	1.391 ± 0.104	1.400 ± 0.135	1.493 ± 0.306
Lung (%)	0.381 ± 0.050	0.367 ± 0.046	0.387 ± 0.035	0.482 ± 0.107 **
Kidneys (g)	2.680 ± 0.224	2.701 ± 0.240	2.681 ± 0.275	2.779 ± 0.365
Kidneys (%)	0.720 ± 0.080	0.711 ± 0.079	0.741 ± 0.080	$0.898 \pm 0.150 **$
Liver (g)	11.254 ± 2.244	11.201 ± 1.654	10.938 ± 1.569	10.865 ± 1.906
Liver (%)	3.013 ± 0.601	2.937 ± 0.403	3.009 ± 0.370	3.488 ± 0.621 **
Brain (g)	1.955 ± 0.050	1.957 ± 0.061	1.940 ± 0.057	1.932 ± 0.070
Brain (%)	0.527 ± 0.055	0.516 ± 0.052	0.539 ± 0.063	0.626 ± 0.084 **

 TABLE 7
 ORGAN WEIGHT OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

 $Mean \pm S.D.$

)

)

Significant difference: *:p<0.05 **:p<0.01 Test of Dunnett

TABLE 8 ORGAN WEIGHT OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GL
--

Group Name	Control	3 ppm	10 ppm	30 ppm
No. of examined animals	41	38	39	32
Body weight (g)	$249~\pm~25$	251 ± 22	$252~\pm~25$	235 ± 22 *
Kidneys (g)	1.721 ± 0.112	1.797 ± 0.270	1.788 ± 0.147	$1.874 \pm 0.167 **$
Kidneys (%)	0.698 ± 0.067	0.723 ± 0.141	0.713 ± 0.060	$0.803 \pm 0.096 **$
Spleen (g)	0.628 ± 0.840	0.611 ± 0.500	0.648 ± 0.972	0.836 ± 0.935 *
Spleen (%)	0.252 ± 0.326	0.248 ± 0.222	0.255 ± 0.368	$0.362 \pm 0.410 *$
Heart (g)	0.834 ± 0.067	0.836 ± 0.054	0.838 ± 0.061	0.854 ± 0.075
Heart (%)	0.338 ± 0.033	0.335 ± 0.029	0.335 ± 0.024	$0.366 \pm 0.050 **$
Lung (g)	1.014 ± 0.176	0.990 ± 0.071	0.978 ± 0.071	1.055 ± 0.187
Lung (%)	0.411 ± 0.074	0.397 ± 0.038	0.391 ± 0.038	$0.453 \pm 0.100 *$
Liver (g)	6.434 ± 1.080	6.695 ± 0.890	6.507 ± 0.880	6.593 ± 0.933
Liver (%)	2.596 ± 0.392	2.683 ± 0.367	2.583 ± 0.225	$2.817 \pm 0.423 **$
Brain (g)	1.792 ± 0.057	1.785 ± 0.057	1.790 ± 0.050	1.797 ± 0.048
Brain (%)	0.728 ± 0.079	0.717 ± 0.061	0.717 ± 0.068	$0.771 \pm 0.075 *$

Mean \pm S.D.

Significant difference: *: p<0.05 **: p<0.01 Test of Dunnett

TABLE 9INCIDENCES OF SELECTED LESIONS OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

)

Group Number of examined animals		Control 50	3ppm 50	10ppm 50	30ppm 50	Peto	Cochran- Armitage
Organ Findings	Grade of Nonneoplastic lesion	;			·······		
Skin/Appendage Squamous cell papilloma		0	0	1	3	**	
Subcutis Fibroma		10	2 *	10	9		
Nasal cavity Inflammation: transitional epithelium	+	9	15	3	0 **		
Hyperplasia: transitional epithelium	+ 2+	0 0	0 0	11 ** 0	5 * 1		
Hyperplasia with atypia: transitional epithelium	+	0	0	3	4		
Inflammation: respiratory epithelium	+ 2+	7 0	6 0	5 1	9 ** 23		
Necrosis: respiratory epithelium	+ 2+ 3+	0 0 0	0 0 0	1 0 0	4 2 1		
Hyperplasia: respiratory epithelium	+ 2+	0 0	0 0	0 0	6 * 1		
Hyperplasia with atypia: respiratory epithelium	+	0	0	0	5		
Squamous cell metaplasia: respiratory epithelium	+ 2+ 3+	1 0 0	2 0 0	3 0 0	1 0 1		
Squamous cell metaplasia with atypia: respiratory epithelium	+ 2+	0 0	1 0	5 0	9** 38		
Squamous cell hyperplasia	+ 2+	0 0	0 0	0 · 0	2 2		
Squamous cell hyperplasia with atypia	+ 2+	0 0	0 0	0 0	$15 \ ^{**}$ 15		
Hyperplasia with atypia: nasal gland	2+	0	0	0	3		
Necrosis: olfactory epithelium	+	0	1	0	3		
Atrophy: olfactory epithelium	+	0	0	0	11 *		
Eosinophilic change: olfactory epithelium	+ 2+ 3+	24 17 3	28 15 2	19 16 5	33 ** 2 0		
Thickening of bone: turbinate	+ 2+	0 0	3 0	24 ** 14	15 ** 6		
Adenoma 1) Adenocarcinoma 2) 1) +2) Squamous cell carcinoma Basal cell carcinoma		0 0 0 0 0	0 0 0 0 0	3 0 3 0 0	5 * 1 6 * 14 ** 1	** ** **	** **
Bone marrow Erythropoiesis: increased	+ 2+	0 3	3 1	3 4	5 ** 8		

TABLE 9INCIDENCES OF SELECTED LESIONS OF MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

)

Group Number of examined animals		Control 50	3ppm 50	10ppm 50	30ppm 50	Peto	Cochran- Armitage
Organ Findings	Grade of Nonneoplast lesion	cic [.]					-
Spleen							
Deposit of hemosiderin	+	17	4 **	2 **	9		
•	2+	1	0	Ō	1		
Extramedullary hematopoiesis	+	18	29	23	19 *		
	2+	3	2	7	9		
	3+	1	3	3	6		
Fibrosis	+	0	5	3	10 **		
	2+	0	0	0	0		
	3+	0	0	0	1		
Heart							
Myocardial fibrosis	+	18	34 **	29	35 **		
	2+	28	15	16	9		
Liver							
Acidophilic cell focus	+	6	16	4	5		
	2+	1	1	1	0		
Basohilic cell focus	+	3	21 **	16 **	3		
	2+	1	0	2	1		
Hepatocellular adenoma		٥	0	1	0		
Hepatocellular carcinoma		0 1	2 0	1 0	0		
Pancreas							
Islet cell adenoma 1)		4	0	1	2		
Islet cell adenocarcinoma 2)		2	0	0	0		
1)+2)		6	0 *	1	2		
Pituitary							
Hyperplasia	+	11	7	6	1 **		
	2+	2	2	5	1		
Thyroid							
Follicular adenoma 1)		0	1	2	0		
Follicularl adenocarcinoma 2) 1)+2)		0	1	0	4	**	**
1)+2)		0	2	2	4	×	
Testis							
Interstitial cell tumor		41	37	44	47	**	*
Mammary gland							
Adenoma 1)		0	0	0	1		
Fibroadenoma 2)		0	0	0	6*	**	**
1)+2)		0	0	0	7 **	**	**
Eye							
Retinal atrophy	+	45	46	40	34 **		
	2+	0	0	0	0		
	3+	2	0	1	2		
Peritoneum							
Mesothelioma		2	3	12 **	22 **	**	**
Chodo		• 01:1 •	0.113/	01.74.1.1	4		
Grade		-: Slight	2+: Moderate		4+: Severe	a 1 ·	
Significant difference	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	′∶p<0.05		**:p<0.01		Chi squa	ire test

TABLE 10INCIDENCES OF SELECTED LESIONS OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

)

Group Number of examined animals		Control 50	3ppm 50	10ppm 49	30ppm 50	Peto	Cochran- Armitage
Organ Findings	Grade of Nonneoplas lesion	tic					
Nasal cavity							
Inflammation: transitional epithelium	+ 2+	61	16 * 0	13 0	7 0		
transitional epithenum	2+	1	0	0	U		
Hyperplasia: transitional epithelium	+ 2+	0 0	2 0	8 ** 0	${13}^{**}{2}$		
Hyperplasia with atypia: transitional epithelium	+	0	0	0	4		
Inflammation:	+	1	1	3	21 **		
respiratory epithelium	2+	Ō	0	0	5		
Necrosis: respiratory epithelium	+	0	0	2	3		
	2+	0	0	0	1		
Squamous cell metaplasia: respiratory epithelium	+	0	0	2	6 *		
Squamous cell metaplasia with	+	0	0	2	10 **		
atypia: respiratory epithelium	2+	0	0	0	26		
Squamous cell hyperplasia	+	0	0	0	3		
Squamous cell hyperplasia with	+	0	0	0	8 **		
atypia	2+	0	0	0	2		
Eosinophilic change: respiratory epithelium	+ 2+	36 6	36 2	37 1	27 * 2		
Hyperplasia: nasal gland	+	0	0	0	1		
Hyperplasia with atypia: nasal gland	+	0	0	0	1		
Necrosis: olfactory epithelium	+	0	0	0	2		
Atrophy: olfactory epithelium	+ 2+	0 0	0 0	0 0	12 ** 1		
Eosinophilic change:	+	10	1 **	2 *	9		
olfactory epithelium	2+ 3+	29 10	18 30	27 20	37 3		
Thickening of bone: turbinate	+ 2+	0 0	0 0	17 ** 0	20 ** 22		
Mineralization	+	43	13 **	21 **	38		
Adenoma 1)		0	0	4	8 **	**	**
Adenocarcinoma 2)		0	0	0	2		
1) +2) Squamous cell carcinoma		0 0	0 0	4 0	10 ** 2	**	**
Nasolacrimal duct							
Inflammation	+ 2+	$\frac{22}{6}$	13 6	8 ** 0	4 ** 0		
Spleen							
Deposit of hemosiderin	+ 2+	40 0	41 0	41 1	28 * 0		

TABLE 10INCIDENCES OF SELECTED LESIONS OF FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

)

Group Number of examined animals		Control	3ppm 50	10ppm	30ppm	Peto	Cochran
Organ	Grade of	50	50	49	50		Armitag
Organ	Nonneoplas	tio					
Findings	lesion	LIC					
	1051011						
Mononuclear cell leukemia		3	3	. 1	8	**	*
Liver							
Granulation	+	28	22	23	12 **		
	2+	2	6	4	4		
	3+	0	1	0	0		
Herniation	+	15	4 *	14	4 *		
Kidney			-				
Mineralization: pelvis	+	9	2	1 *	2		
Adrenal							
Peliosis-like lesion	+	23	28	29 *	27 **		
	2+	19	11	7	6		
	3+	1	0	0	0		
Focal fatty change: cortex	+	8	12	11	10 *		
	2+	2	1	6	10		
	3+	0	0	0	1		
Pheochromocytoma 1)		3	3	1	0		
Pheochromocytoma:		0	2	0	0		
malignant 2)							
1)+2)		3	5	1	0		*
Uterus							
Endometrial stromal polyp		6	11	11	13	*	
Endometrial stromal sarcoma		1	4	4	7 *	*	*
Mammary gland							
Adenoma 1)		2	1	3	2		
Fibroadenoma 2)		8	6	18 *	17 *	**	*
Adenocarcinoma 3)		2	1	1	2		
1)+2)		10	7	20 *	17	*	*
1)+2)+3)		10	8	21 *	19 *	**	*
Grade		+: Slight	2+: Moderate	3+: Marked	4+: Severe		
Significant difference		*:p<0.05		**:p<0.01		Chi squ	are test

Group Name	Control	3ppm	10ppm	30ppm
SITE : skin/ap	pendage			ere er et <mark>telen men sone kommen om om en </mark>
TUMOR : squamo	us cell papilloma			
Tumor rate				
Overall rates(a)	0/50(0.0)	0/50(0.0)	1/50(2.0)	3/50(6.0)
Adjusted rates(b)	0.0	0.0	2.63	8.70
Terminal rates(c)	0/40(0.0)	0/42(0.0)	1/38(2.6)	2/23(8.7)
Statistical analysis				
Peto test	_			
Standard method(d)	P=			
Prevalence method(d)	P=0.0069**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0138*	DNG	D 0 7000	D 0 1010
Fisher Exact test(e)		P=N.C.	P=0.5000	P=0.1212
SITE : nasal ca				
TUMOR : adenom	a			
Tumor rate	$\alpha r \alpha (\alpha \alpha)$			F/F0(10 0)
Overall rates(a)	0/50(0.0)	0/50(0.0)	3/50(6.0)	5/50(10.0)
Adjusted rates(b)	0.0	0.0 0/42(0.0)	7.89	17.39
Terminal rates(c)	0/40(0.0)	0/42(0.0)	3/38(7.9)	4/23(17.4)
Statistical analysis Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0006**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0037**			
Fisher Exact test(e)	1 -0.0007	P=N.C.	P=0.1212	P=0.0281*
	•.			
SITE : nasal ca TUMOR : squamo				
Tumor rate	us cell carcinoma			
Overall rates(a)	0/50(0.0)	0/50(0.0)	0/50(0.0)	14/50(28.0)
Adjusted rates(b)	0.0	0.0	0.0	34.78
Terminal rates(c)	0/40(0.0)	0.0	0/38(0.0)	8/23(34.8)
Statistical analysis	0/40(0.0/		0/00\ 0.0/	0/20(04.0/
Peto test				
Standard method(d)	P<0.0001**f)			
Prevalence method(d)	P<0.0001**f)			
Combined analysis (d)	P<0.0001**f)			
Cochran-Armitage test(e)	P<0.0001**			
Fisher Exact test(e)		P=N.C.	P=N.C.	P<0.0001**
	• 2			
SITE : nasal ca	VILV			
SITE : nasal ca TUMOR : adenom				
$ extsf{TUMOR}$: adenom	vity a, adenocarcinoma			
TUMOR : adenom Tumor rate	a, adenocarcinoma	0/50(0.0)	3/50(6.0)	6/50(12.0)
TUMOR : adenom Tumor rate Overall rates(a)		0/50(0.0) 0.0	3/50(6.0) 7.89	6/50(12.0) 21.74
TUMOR : adenom Tumor rate Overall rates(a) Adjusted rates(b)	a, adenocarcinoma 0/50(0.0) 0.0	0/50(0.0) 0.0 0/42(0.0)	7.89	21.74
TUMOR : adenom Tumor rate Overall rates(a)	a, adenocarcinoma 0/50(0.0)	0.0		
TUMOR : adenom Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	a, adenocarcinoma 0/50(0.0) 0.0	0.0	7.89	21.74
TUMOR : adenom Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	a, adenocarcinoma 0/50(0.0) 0.0	0.0	7.89	21.74
TUMOR : adenom Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test	a, adenocarcinoma 0/50(0.0) 0.0 0/40(0.0) P=	0.0	7.89	21.74
TUMOR : adenom Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d)	a, adenocarcinoma 0/50(0.0) 0.0 0/40(0.0)	0.0	7.89	21.74
TUMOR : adenom Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	a, adenocarcinoma 0/50(0.0) 0.0 0/40(0.0) P= P<0.0001**	0.0	7.89	21.74

)

)

TABLE 11NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

Group Name	Control	3ppm	1 0 ppm	30ppm
SITE : lung				
	olar-alveolar adeno	ma		
Tumor rate		<i>,</i> ,	<i>,</i> ,	
Overall rates(a)	2/50(4.0)	4/50(8.0)	5/50(10.0)	3/50(6.0)
Adjusted rates(b)	4.76	8.33	13.16	10.34
Terminal rates(c)	1/40(2.5)	3/42(7.1)	5/38(13.2)	2/23(8.7)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.3220			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.9716		_	
Fisher Exact test(e)		P=0.3389	P=0.2180	P=0.5000
SITE : lung				
TUMOR : bronchi	olar-alveolar carcin	oma		
Tumor rate				
Overall rates(a)	4/50(8.0)	3/50(6.0)	2/50(4.0)	0/50(0.0)
Adjusted rates(b)	10.00	4.76	2.63	0.0
Terminal rates(c)	4/40(10.0)	2/42(4.8)	1/38(2.6)	0/23(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P=0.5903			
Prevalence method(d)	P=0.9683			
Combined analysis (d)	P=0.9624			
Cochran-Armitage test(e)	P=0.0481*	D 0 7000	D 0 0000	
Fisher Exact test(e)		P=0.5000	P=0.3389	P=0.0587
SITE : lung				
Nata Inig				
TUMOR : bronchi	olar-alveolar adeno	ma, bronchiolar-alve	eolar carcinoma	
TUMOR : bronchi Fumor rate				<i>.</i>
TUMOR : bronchi Fumor rate Overall rates(a)	6/50(12.0)	7/50(14.0)	7/50(14.0)	3/50(6.0)
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b)	6/50(12.0) 14.29	7/50(14.0) 12.77	7/50(14.0) 15.79	10.34
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	6/50(12.0)	7/50(14.0)	7/50(14.0)	3/50(6.0) 10.34 2/23(8.7)
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	6/50(12.0) 14.29	7/50(14.0) 12.77	7/50(14.0) 15.79	10.34
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test	6/50(12.0) 14.29 5/40(12.5)	7/50(14.0) 12.77	7/50(14.0) 15.79	10.3 4
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903	7/50(14.0) 12.77	7/50(14.0) 15.79	10.3 4
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d)	6/50(12.0) 14.29 5/40(12.5)	7/50(14.0) 12.77	7/50(14.0) 15.79	10.3 4
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756	7/50(14.0) 12.77	7/50(14.0) 15.79	10.3 4
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406	7/50(14.0) 12.77 5/42(11.9)	7/50(14.0) 15.79 6/38(15.8)	10.34 2/23(8.7)
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756	7/50(14.0) 12.77	7/50(14.0) 15.79	10.34
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756	7/50(14.0) 12.77 5/42(11.9)	7/50(14.0) 15.79 6/38(15.8)	10.34 2/23(8.7)
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756	7/50(14.0) 12.77 5/42(11.9)	7/50(14.0) 15.79 6/38(15.8)	10.34 2/23(8.7)
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091	7/50(14.0) 12.77 5/42(11.9)	7/50(14.0) 15.79 6/38(15.8)	10.34 2/23(8.7)
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma	7/50(14.0) 12.77 5/42(11.9) P=0.5000	7/50(14.0) 15.79 6/38(15.8) P=0.5000	10.34 2/23(8.7) P=0.2435
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091	7/50(14.0) 12.77 5/42(11.9)	7/50(14.0) 15.79 6/38(15.8)	10.34 2/23(8.7) P=0.2435 4/50(8.0)
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0)	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0)	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0)	10.34 2/23(8.7)
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29
TUMOR : bronchi Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0 0/40(0.0) P=	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0 0/40(0.0)	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29
TUMOR : bronchi Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis (d) Cochran-Armitage test(e) Fisher Exact test(e) SITE : thyroid TUMOR : follicula Fumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)	6/50(12.0) 14.29 5/40(12.5) P=0.5903 P=0.7406 P=0.7756 P=0.2091 r adenocarcinoma 0/50(0.0) 0.0 0/40(0.0) P= P=0.0014**	7/50(14.0) 12.77 5/42(11.9) P=0.5000 1/50(2.0) 2.38	7/50(14.0) 15.79 6/38(15.8) P=0.5000 0/50(0.0) 0.0	10.34 2/23(8.7) P=0.2435 4/50(8.0) 14.29

)

)

TABLE 11NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

16

Group Name	Control	3ppm	10ppm	3 0 ppm
SITE : thyroid				
TUMOR : follicula	ur adenoma, follicula	r adenocarcinoma		
Tumor rate				
Overall rates(a)	0/50(0.0)	2/50(4.0)	2/50(4.0)	4/50(8.0)
Adjusted rates(b)	0.0	4.76	5.26	14.29
Terminal rates(c)	0/40(0.0)	2/42(4.8)	2/38(5.3)	3/23(13.0)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0114*			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0640			
Fisher Exact test(e)		P=0.2475	P=0.2475	P=0.0587
SITE : testis				
	tial cell tumor			
Tumor rate			11100000	
Overall rates(a)	41/50(82.0)	37/50(74.0)	44/50(88.0)	47/50(94.0)
Adjusted rates(b)	90.91	80.95	97.44	97.30
Terminal rates(c)	36/40(90.0)	34/42(81.0)	37/38(97.4)	22/23(95.7)
Statistical analysis				
Peto test Standard method(d)	P=			
Prevalence method(d)	P= P=0.0001**			
	P=			
Combined analysis (d) Cochran-Armitage test(e)	P=0.0159*			
Fisher Exact test(e)	1-0.0155	P=0.2348	P=0.2883	P=0.0606
· ·		1 0.4010		
SITE : mamma				
TUMOR : fibroade	enoma			
Tumor rate				
Overall rates(a)	0/50(0.0)	0/50(0.0)	0/50(0.0)	6/50(12.0)
Adjusted rates(b)	0.0	0.0	0.0	16.67
Terminal rates(c)	0/40(0.0)	0/42(0.0)	0/38(0.0)	3/23(13.0)
Statistical analysis				
Peto test				
Standard method(d)	P=0.0805 P<0.0001**f)			
Prevalence method(d)	P<0.0001**f) P<0.0001**f)			
Combined analysis (d)	P<0.0001**1) P<0.0001**			
Cochran-Armitage test(e) Fisher Exact test(e)	P<0.0001	P=N.C.	P=N.C.	P=0.0133*
		1 1		
	ry gland			
	enoma, adenoma			
Tumor rate				
Overall rates(a)	0/50(0.0)	0/50(0.0)	0/50(0.0)	7/50(14.0)
Adjusted rates(b)	0.0	0.0	0.0	20.00
Terminal rates(c)	0/40(0.0)	0/42(0.0)	0/38(0.0)	4/23(17.4)
Statistical analysis				
Peto test Standard mathed(d)	D-0 0005			
Standard method(d) Brownlance method(d)	P=0.0805			
Prevalence method(d)	P<0.0001**f)			
Combined analysis (d)	P<0.0001**f) P<0.0001**			
Cochran-Armitage test(e) Fisher Exact test(e)	r<0.0001""	P=N.C.	P=N.C.	P=0.0062**
risher Exact lest(e)		r - n.0.	I	r-0.0002""

TABLE 11NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

•

)

Group Name	Control	3ppm	10ppm	30ppm
SITE : peritone		199 <u>9</u>	***************************************	
TUMOR : mesother	elioma			
Tumor rate				
Overall rates(a)	2/50(4.0)	3/50(6.0)	12/50(24.0)	22/50(44.0)
Adjusted rates(b)	5.00	4.76	25.00	32.00
Terminal rates(c)	2/40(5.0)	2/42(4.8)	9/38(23.7)	7/23(30.4)
Statistical analysis				
Peto test				
Standard method(d)	P<0.0001**			
Prevalence method(d)	P=0.0003**			
Combined analysis (d)	P<0.0001**			
Cochran-Armitage test(e)	P<0.0001**			
Fisher Exact test(e)		P=0.5000	P=0.0038**	P<0.0001**

TABLE 11NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN MALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONVINUED)

(a):Number of tumor bearing animals/number of animals examined.

(b):Kaplan-Meire-estimated tumor incidence at the time of terminal necropsy after adjusting for intercurrent mortality.

(c):Observed tumor incidence at the time of terminal necropsy.

(d):P-value of the trend tests was given in the colum of control incidence.

Standard method :Death analysis

)

)

Prevalence method :Incidental tumor test

Combined analysis : Death analysis + Incidental tumor test

(e):Cochran-Armitage test and Fisher exact test were applied to directly with the overall incidence rates.

f) :indicates either the case that the upper or lower limit of the probability is not given or the case that the P-value exceeds the expected one.

-----: The P-value can not be caluculated because the number of tumor-bearing animals was zero.

Significant difference; $*:P \leq 0.05 **:P \leq 0.01$

N.C. Statistical value cannot be calculate.

Significant difference; $*:P \leq 0.05 **:P \leq 0.01$

N.C. Statistical value cannot be calculated and was not significant.

Group Name	Control	3ppm	10ppm	3 0 ppm
SITE : nasal ca				
TUMOR : adenom	a			
Tumor rate				
Overall rates(a)	0/50(0.0)	0/50(0.0)	4/49(8.2)	8/50(16.0)
Adjusted rates(b)	0.0	0.0	9.52	21.21
Terminal rates(c)	0/41(0.0)	0/38(0.0)	3/39(7.7)	6/32(18.8)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0001**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0001**			
Fisher Exact test(e)		P=N.C.	P=0.0563	P=0.0029**
SITE : nasal ca	vity			
	a, adenocarcinoma			
Tumor rate				
Overall rates(a)	0/50(0.0)	0/50(0.0)	4/49(8.2)	10/50(20.0)
Adjusted rates(b)	0.0	0.0	9.52	21.43
Terminal rates(c)	0/41(0.0)	0/38(0.0)	3/39(7.7)	6/32(18.8)
Statistical analysis				
Peto test				
Standard method(d)	P=0.1407			
Prevalence method(d)	P<0.0001**			
Combined analysis (d)	P<0.0001**			
Cochran-Armitage test(e)	P<0.0001**			
Fisher Exact test(e)	1 .0.0001	P=N.C.	P=0.0563	P=0.0006**
SITE : spleen		-		
	clear cell leukemia			
Tumor rate				
Overall rates(a)	3/50(6.0)	3/50(6.0)	1/49(2.0)	8/50(16.0)
Adjusted rates(b)	4.88	2.63	0.0	12.50
Terminal rates(c)	2/41(4.9)	1/38(2.6)	0/39(0.0)	4/32(12.5)
Statistical analysis				
Peto test				
Standard method(d)	P=0.0599			
Prevalence method(d)	P=0.0398*			
Combined analysis (d)	P=0.0097**			
Cochran-Armitage test(e)	P=0.0252*			
Fisher Exact test(e)		P=0.6611	P=0.3163	P=0.0999
SITE : adrenal	gland			
	omocytoma			
Tumor rate				
Overall rates(a)	3/50(6.0)	3/50(6.0)	1/49(2.0)	0/50(0.0)
Adjusted rates(b)	7.32	7.89	2.56	0.0
Terminal rates(c)	3/41(7.3)	3/38(7.9)	1/39(2.6)	0/32(0.0)
Statistical analysis	U/II(1.0)	0/00(4.0)	1/00(4.0/	0/02(0.0)
Peto test				
	P=			
Standard method(d)				
Prevalence method(d)	P=0.9717			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0647	P=0.6611	P=0.3163	D
Fisher Exact test(e)				P=0.1212

)

)

TABLE 12NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

Group Name	Control	3ppm	10ppm	30ppm
SITE : adrena	l gland			
		hromocytoma: malign	nant	
Tumor rate			•	
Overall rates(a)	3/50(6.0)	5/50(10.0)	1/49(2.0)	0/50(0.0)
Adjusted rates(b)	7.32	10.53	2.56	0.0
Terminal rates(c)	3/41(7.3)	4/38(10.5)	1/39(2.6)	0/32(0.0)
Statistical analysis				
Peto test				
Standard method(d)	P=0.5280			
Prevalence method(d)	P=0.9796			
Combined analysis (d)	P=0.9855			
Cochran-Armitage test(e)	P=0.0367*		D	
Fisher Exact test(e)		P=0.3575	P=0.3163	P=0.1212
SITE : uterus				
	trial stromal polyp			
Tumor rate				
Overall rates(a)	6/50(12.0)	11/50(22.0)	11/49(22.4)	13/50(26.0
Adjusted rates(b)	14.63	26.19	26.83	34.2
Terminal rates(c)	6/41(14.6)	9/38(23.7)	9/38(23.1)	10/23(31.3)
Statistical analysis				
Peto test	D			
Standard method(d)	P=			
Prevalence method(d)	P=0.0471*			
Combined analysis (d)	P=			
Cochran-Armitage test(e) Fisher Exact test(e)	P=0.1685	P=0.1434	P=0.1330	P=0.0624
· ·		1-0.1434	1-0.1330	r -0.0024
SITE : uterus				
	trial stromal sarco	na		
Tumor rate				
Overall rates(a)	1/50(2.0)	4/50(8.0)	4/49(8.2)	7/50(14.0)
Adjusted rates(b)	0.0	5.26	2.56	3.13
Terminal rates(c)	0/41(0.0)	2/38(5.3)	1/39(2.6)	1/32(3.1)
Statistical analysis Peto test				
Standard method(d)	P=0.0152*			
Prevalence method(d)	P=0.3505			
Combined analysis (d)	P=0.0201*			
Cochran-Armitage test(e)	P=0.0454*			
Fisher Exact test(e)	1 0.0101	P=0.1811	P=0.1748	P=0.0297*
		•		
SITE : mamma TUMOR : adenom	ry gland			
TUMOR · adenom Tumor rate	a			
Overall rates(a)	2/50(4.0)	1/50(2.0)	3/49(6.1)	2/50(4.0)
Adjusted rates(b)	2/50(4.0) 4.26	2.56	3/49(6.1) 7.14	2/50(4.0) 6.25
Terminal rates(c)	4.26 1/41(2.4)	2.56 0/38(0.0)	2/39(5.1)	6.25 2/32(6.3)
Statistical analysis	1/71 4.4/		2/00(0.1/	4104 (U.J)
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.3835			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.8301			
Fisher Exact test(e)	1 010001	P=0.5000	P=0.4903	P=0.6913
		* ******	T 0.T000	r 0.0010

)

)

TABLE 12NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

Group Name	Control	3ppm	10ppm	30ppm
SITE : mamma TUMOR : fibroade	ary gland			<u>. </u>
Tumor rate	moma			
Overall rates(a)	8/50(16.0)	6/50(12.0)	18/49(36.7)	17/50(34.0)
Adjusted rates(b)	19.51	15.79	38.46	43.75
Terminal rates(c)	8/41(19.5)	6/38(15.8)	15/39(38.5)	14/32(43.8)
Statistical analysis		0, 0 0 (m 0 t 0)	20100 (0010)	
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0014**			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0110*			
Fisher Exact test(e)	1-0.0110	P=0.3871	P=0.0167*	P=0.0317*
		1-0.3071	1-0.0107	1-0.0317
SITE : mamma	ry gland			
TUMOR : adenom	a, fibroadenoma			
Tumor rate				
Overall rates(a)	10/50(20.0)	7/50(14.0)	20/49(40.8)	17/50(34.0)
Adjusted rates(b)	21.95	17.95	42.55	43.75
Terminal rates(c)	9/41(22.0)	6/38(15.8)	16/39(41.0)	14/32(43.8)
Statistical analysis				
Peto test				
Standard method(d)	P=			
Prevalence method(d)	P=0.0112*			
Combined analysis (d)	P=			
Cochran-Armitage test(e)	P=0.0409*			
Fisher Exact test(e)		P=0.2977	P=0.0205*	P=0.0880
SITE : mamma	rv gland			
	a, fibroadenoma, ad	enocarcinoma		
Tumor rate	a, 1010000010110, 00			
Overall rates(a)	10/50(20.0)	8/50(16.0)	21/49(42.9)	19/50(38.0)
Adjusted rates(b)	21.95	20.51	44.68	46.88
Terminal rates(c)	9/41(22.0)	7/38(18.4)	17/39(43.6)	15/32(46.9)
Statistical analysis	0, 12 (1110)		11/00/10.0/	10/02(10.0/
Peto test				
Standard method(d)	P=0.1346			
Prevalence method(d)	P=0.0073**			
Combined analysis (d)	P=0.0038**			
Cochran-Armitage test(e)	P=0.0164*			
Fisher Exact test(e)	1-0.0104	P=0.3976	P=0.0123*	P=0.0385*

TABLE 12NEOPLASTIC LESIONS INCIDENCES AND STATISTICAL ANALYSIS IN FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL (CONTINUED)

(a):Number of tumor bearing animals/number of animals examined.

(b):Kaplan-Meire-estimated tumor incidence at the time of terminal necropsy after adjusting for intercurrent mortality.

(c):Observed tumor incidence at the time of terminal necropsy.

(d):P-value of the trend tests was given in the colum of control incidence.

Standard method :Death analysis

)

)

Prevalence method :Incidental tumor test

Combined analysis :Death analysis + Incidental tumor test

(e):Cochran-Armitage test and Fisher exact test were applied to directly with the overall incidence rates.

 f) :indicates either the case that the upper or lower limit of the probability is not given or the case that the P-value exceeds the expected one.

.....: The P-value can not be caluculated because the number of tumor bearing animals was zero.

Significant difference; *: $P \leq 0.05$ **: $P \leq 0.01$

N.C. Statistical value cannot be calculate.

Significant difference; $*:P \leq 0.05 **:P \leq 0.01$

N.C. Statistical value cannot be calculated and was not significant.

TABLE 13CAUSE OF DEATH OF MALE AND FEMALE RATS
IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

)

	Male				Female			
Group		3ppm	10ppm	30ppm	0ppm	3ppm	10ppm	30ppm
Number of dead or moribund animals	10	8	12	27	9	12	10	18
No microscopical confirmation	0	1	0	2	2	2	0	0
Central nervous system lesion	0	0	1	0	0	0	0	1
Renal lesion	0	0	0	1	0	0	0	0
Thrombosis	0	0	0	0	0	0	0	1
Tumor death : peritoneum	0	1	2	12	0	0	0	0
nasal cavity	0	0	0	5	0	0	0	1
leukemia	5	1	3	2	1	2	2	4
skin/appendage	0	1	0	0	0	0	0	0
subcutis	2	0	1	0	0	0	0	1
lung	0	1	1	0	0	0	0	0
spleen	1	0	0	0	0	0	0	0
oral cavity	0	0	1	0	0	0	0	0
tongue	0	0	0	0	0	• 0	0	1
salivary gland	0	1	0	0	0	0	0	0
pancreas	0	0	0	0	1	0	0	1
urinary bladder	0	0	0	0	1	0	0	0
pituitary gland	1	0	0	1	3	4	1	1
adrenal gland	0	1	1	0	0	1	1	0
uterus					1	2	4	6
ovary					0	1	0	0
mammary gland	0	0	0	1	0	0	0	1
preputial/clitoral gland	0	0	1	0	0	0	0	0
brain	0	0	0	1	0	0	1	0
Zymbal gland	0	1	1	1	0	0	1	0
retroperitoneum	1	0	0	1	0	0	0	0

Organs Tumors	No. of animals examined	No. of tumor- bearing animals	Incidence (%)	Min Max. (%)
Skin/Appendage	<1248>			
Squamous cel papilloma		14	1.1	0 - 4
Nasal cavity	<1249>			
Adenoma		2	0.2	0 - 2
Adenocarcinoma		0	0.0	0 - 0
Squamous cell carcinoma		0	0.0	0 - 0
Basal cell carcinoma		0	0.0	0 - 0
Lung	<1249>			
Bronchiolar-alveolar carcino	ma	12	1.0	0 - 4
Pancreas	<1249>			
Islet cell adenoma 1)		75	6.0	0 - 14
Islet cell adenocarcinoma 2)		5	0.4	0 - 2
1)+2)		80	6.4	0 - 14
Thyroid	<1243>			
Follicular adenoma 1)		12	1.0	0 - 4
Follicular adenocarcinoma 2))	27	2.2	0 - 8
1)+2)		39	3.1	0 - 8
Testis	<1249>			
Interstitial cell tumor		1099	88.0	74 - 98
Mammary gland	<1249>			
Adenoma 1)		8	0.6	0 - 4
Fibroadenoma 2)		27	2.2	0 - 6
1)+2)		35	2.8	0-8
Subcutis	<1249>			
fibroma		90	7.2	2 - 14
Peritoneum	<1249>			
Mesothelioma		31	2.5	0 - 8

TABLE 14 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj MALE RATS

)

)

25 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No. : 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0284, 0288, 0294, 0296, 0318

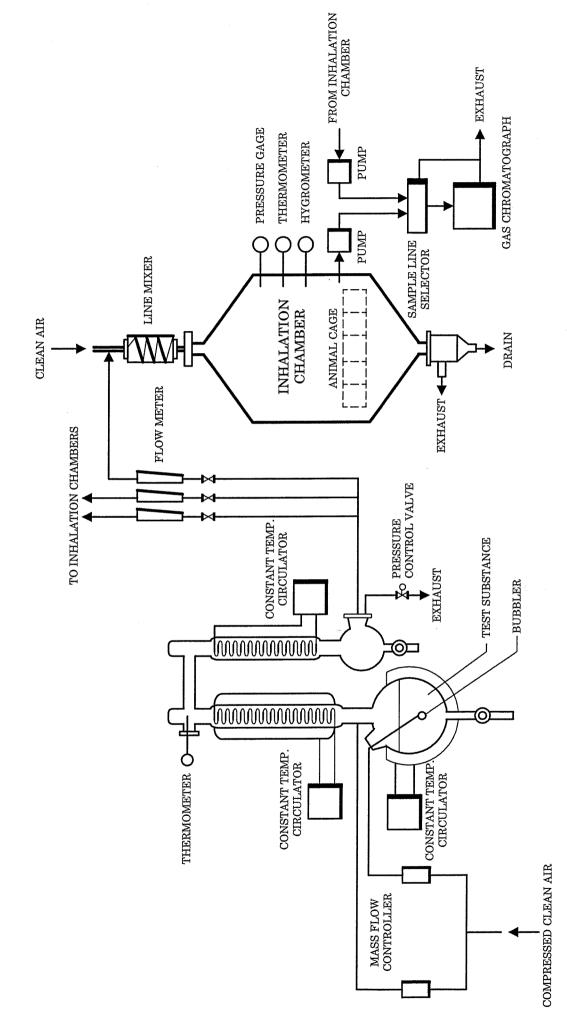
.

Organs Tumors	No. of animals examined	No. of tumor- bearing animals	Incidence (%)	Min Max. (%)
Nasal cavity	<1197>			
Adenoma		0	0.0	0-0
Adenocarcinoma		0	0.0	0 - 0
Squamous cell carcinoma		0	0.0	0 - 0
Spleen	<1197>			
Mononuclear cell leukemia		160	13.4	2 - 26
Adrenal	<1197>			
Pheochromocytoma		48	4.0	0 - 16
Pheochromocytoma : malignant	t	13	1.1	0-6
1)+2)		61	5.1	0 - 18
Uterus	<1197>			
Endometrial stromal polyp		172	14.4	2 - 28
Endometrial stromal sarcoma		7	0.6	0 - 2
Mammary gland	<1197>			
Adenoma		45	3.8	0 - 18
Fibroadenoma		130	10.9	0 - 20
Adenocarcinoma		19	1.6	0-6

TABLE 15 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : F344/DuCrj FEMALE RATS

)

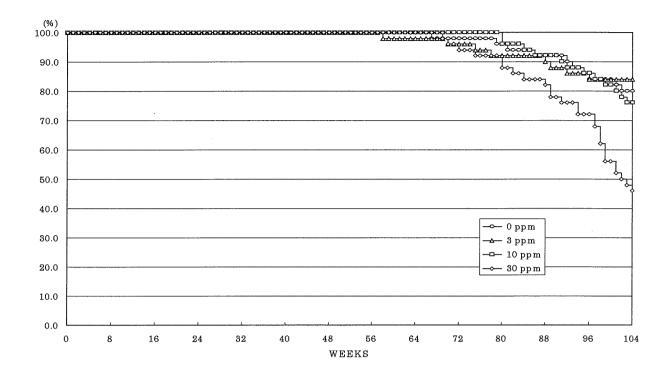
)

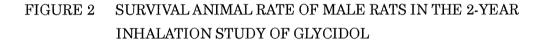

24 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No. : 0043, 0059, 0061, 0063, 0065, 0067, 0095, 0104, 0115, 0130, 0141, 0158, 0162, 0189, 0205, 0210, 0224, 0242, 0267, 0269, 0284, 0296, 0303, 0318

FIGURES

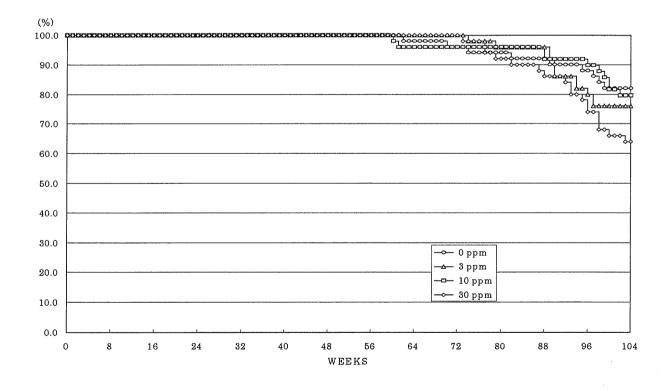
- FIGURE 1 GLYCIDOL VAPOR GENERATION SYSTEM AND INHALATION SYSTEM
- FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

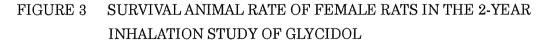
)

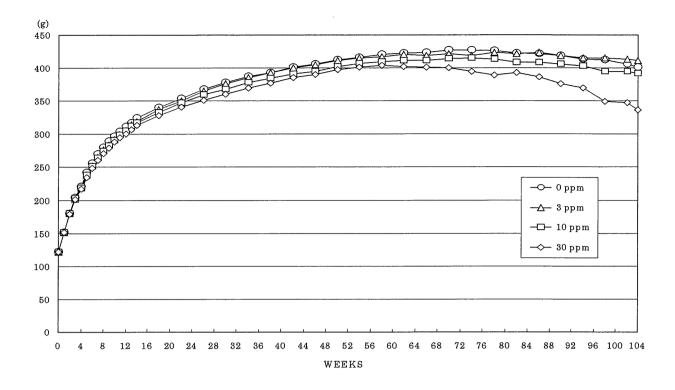

- FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL
- FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL



)


)


FIGURE 1 GLYCIDOL VAPOR GENERATION SYSTEM AND INHALATION SYSTEM



)

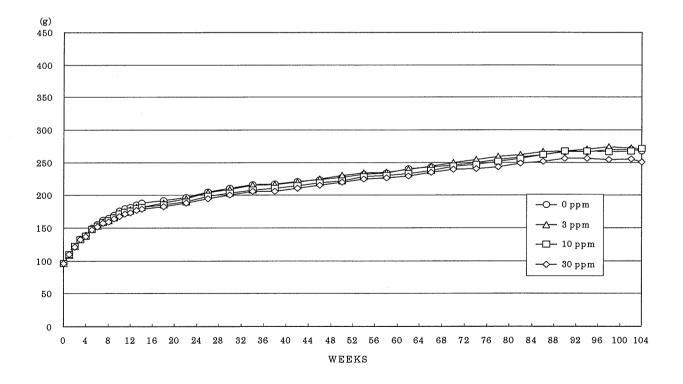
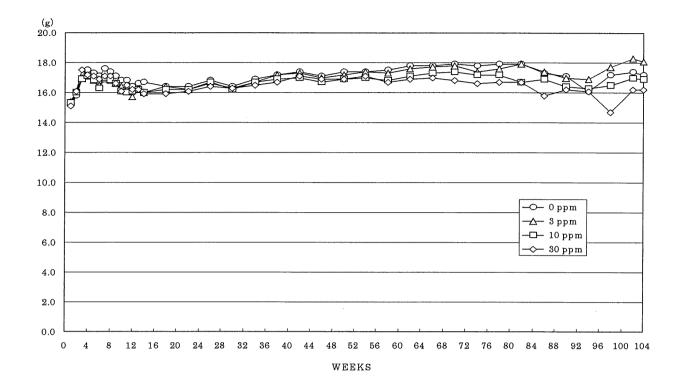

27

FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL


)

)

FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

28

FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

Ì

}

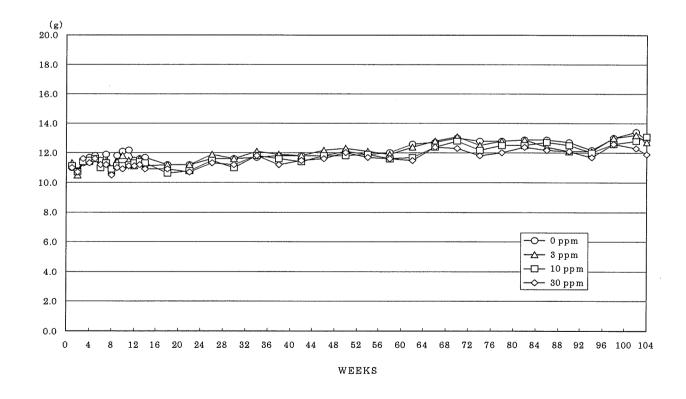


FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF GLYCIDOL

PHOTOGRAPHS

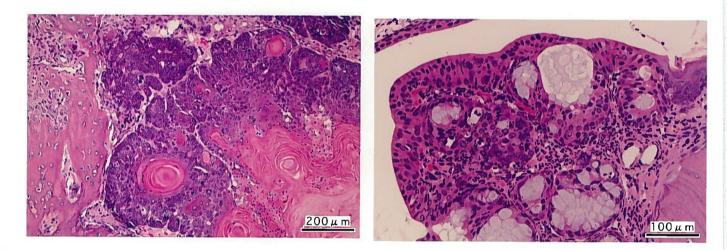
PHOTOGRAPH 1	NOSE : NODULE (ARROW) RAT, MALE, 30ppm, ANIMAL No. 0342-1347
PHOTOGRAPH 2	NASAL CAVITY : SQUAMOUS CELL CARCINOMA (ARROW) RAT, MALE, 30ppm, ANIMAL No. 0342-1345 (H&E)
PHOTOGRAPH 3	NASAL CAVITY : SQUAMOUS CELL CARCINOMA HIGHER MAGNIFICATION OF PHOTOGRAPH 2 RAT, MALE, 30ppm, ANIMAL No. 0342-1345 (H&E)
PHOTOGRAPH 4	NASAL CAVITY : ADENOMA RAT, MALE, 30ppm, ANIMAL No. 0342-1330 (H&E)
PHOTOGRAPH 5	NASAL CAVITY : ADENOCARCINOMA RAT, MALE, 30ppm, ANIMAL No. 0342-1317 (H&E)
PHOTOGRAPH 6	NASAL CAVITY : BASAL CELL CARCINOMA RAT, MALE, 30ppm, ANIMAL No. 0342-1306 (H&E)
PHOTOGRAPH 7	NASAL CAVITY : A: NORMAL TRANSITIONAL EPITHELIUM B: NORMAL RESPIRATORY EPITHELIUM RAT, MALE, CONTROL, ANIMAL No. 0342-1001 (H&E)
PHOTOGRAPH 8	NASAL CAVITY : TRANSITIONAL CELL HYPERPLASIA WITH ATYPIA RAT, MALE, 30ppm, ANIMAL No. 0342-1307 (H&E)
PHOTOGRAPH 9	NASAL CAVITY : SQUAMOUS CELL METAPLASIA WITH ATYPIA OF THE RESPIRATORY EPITHELIUM (ARROW) RAT, MALE, 30ppm, ANIMAL No. 0342-1341 (H&E)
PHOTOGRAPH 10	NASAL CAVITY : SQUAMOUS CELL HYPERPLASIA WITH ATYPIA (ARROW) RAT, MALE, 30ppm, ANIMAL No. 0342-1336 (H&E)
PHOTOGRAPH 11	NASAL CAVITY (NASOTURBINATE) : NORMAL (ARROW) RAT, MALE, CONTROL, ANIMAL No. 0342-1001 (H&E)
PHOTOGRAPH 12	NASAL CAVITY (NASOTURBINATE) : THICKENING OF THE BONE (ARROW) RAT, MALE, 30ppm, ANIMAL No. 0342-1302 (H&E)

1


PHOTOGRAPHS (CONTINUED)

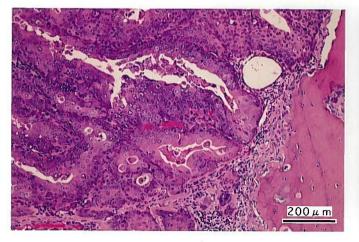
PHOTOGRAPH 13	PERITONEUM : MESOTHELIOMA RAT, MALE, 30ppm, ANIMAL No. 0342-1312 (H&E)
PHOTOGRAPH 14	UTERUS: ENDOMETRIAL STROMAL SARCOMA RAT, FEMALE, 30ppm, ANIMAL No. 0342-2331 (H&E)
PHOTOGRAPH 15	MAMMARY GLAND : FIBROADENOMA RAT, FEMALE, 30ppm, ANIMAL No. 0342-2334 (H&E)
PHOTOGRAPH 16	SKIN : SQUAMOUS CELL PAPILLOMA

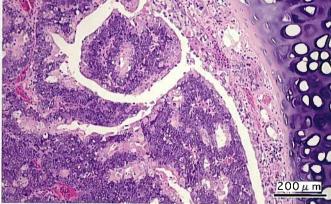
RAT, MALE, 30ppm, ANIMAL No. 0342-1330 (H&E)


)

(Study No. 0342)

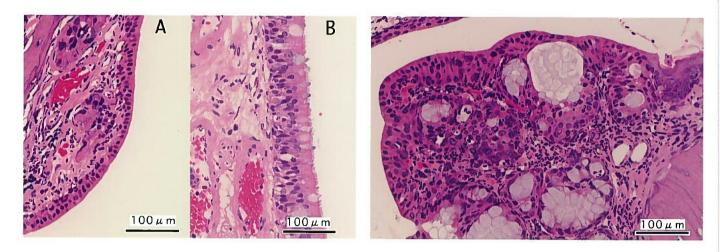
PHOTOGRAPH 1

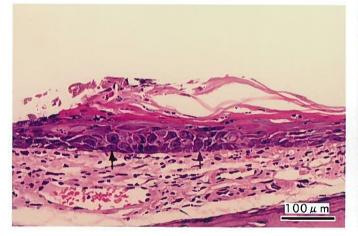

PHOTOGRAPH 2



PHOTOGRAPH 3

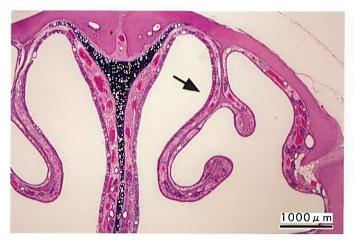
PHOTOGRAPH 5

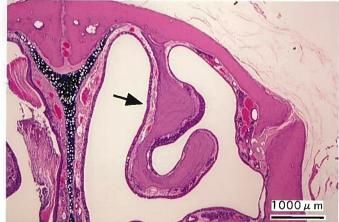

PHOTOGRAPH 4

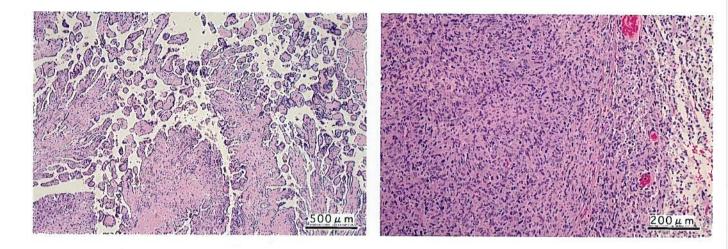

PHOTOGRAPH 6

(Study No. 0342)

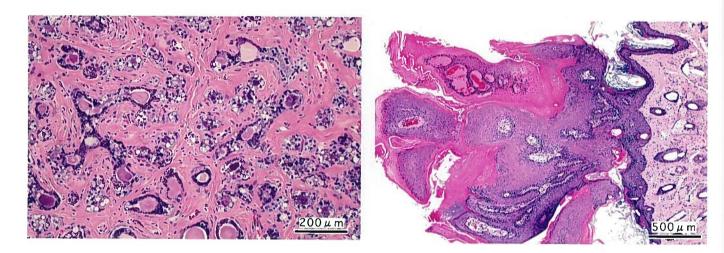
PHOTOGRAPH 7


PHOTOGRAPH 8


PHOTOGRAPH 9


PHOTOGRAPH 10

PHOTOGRAPH 11



PHOTOGRAPH 12

PHOTOGRAPH 13

PHOTOGRAPH 14

PHOTOGRAPH 15

PHOTOGRAPH 16