Summary of Inhalation Carcinogenicity Study of Isopropyl Acetate in F344 Rats

March 2009

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on March 31, 2009.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Inhalation Carcinogenicity Study of Isopropyl Acetate in F344 Rats

Purpose, materials and methods

Isopropyl acetate (CAS No. 108-21-4) is a colorless liquid with a boiling point of 88.6°C. It is soluble in ethanol, acetone and water.

The carcinogenicity and chronic toxicity of isopropyl acetate (greater than 99.9% pure) were examined by inhalation exposure using F344/DuCrlCrlj (Fischer) rats. Groups of test animals were exposed to isopropyl acetate vapor at target concentrations of 0 (clean air), 1000, 2000 or 4000 ppm (v/v) for 6 hours/day, 5 days/week for 2 years (104 weeks). Each group of test animals consisted of either 50 male or 50 female rats. Both sexes were exposed to each concentration of isopropyl acetate vapor. The highest dose level was chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in a previous 13week toxicity study. The identity of the isopropyl acetate used in these experiments was confirmed by both infrared spectrometry and mass spectrometry, and it was analyzed by gas chromatography before and after its use to affirm its stability. Stainless-steel inhalation exposure chambers (volume: 7600 L) were used throughout the 2-year exposure period. Isopropyl acetate vapor-air mixtures were generated by bubbling clean air through isopropyl acetate liquid and the mixtures supplied to the inhalation exposure chambers. Air concentrations of isopropyl acetate vapor in the inhalation exposure chambers were monitored at 15 min intervals by gas chromatography. The animals were observed daily for clinical signs and mortality. Body weight and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. All animals, including those found dead or in a moribund state as well as those surviving to the end of the 2-year exposure period, underwent complete necropsy. Urinalysis was performed near the end of the exposure period. For hematology and blood biochemistry at the terminal necropsy, surviving animals were fasted overnight and bled under deep ether anesthesia. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were then fixed and embedded in paraffin. Five µm thick tissue sections were prepared and stained with hematoxylin and eosin and examined microscopically. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. Any positive dose-response trends of isopropyl acetate induction of neoplastic lesions were analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by the Chi-square test. Changes in body weight, food consumption, hematological and blood biochemical parameters, and organ weights were analyzed by Dunnett's test. The present studies

were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

Results

No significant differences in survival rates were found between any of the groups exposed to isopropyl acetate and their respective controls. In males, the body weights of the exposed groups were similar to their respective controls throughout the exposure period, except that the body weights of the 4000 ppm-exposed males were suppressed at week 98 and thereafter of the 104 week exposure period: the terminal body weights of the 4000 ppm-exposed males was 94% of the control. Similarly, in females, the body weights of the exposed groups were similar to their respective controls throughout the exposure period, except that the body weights of the 4000 ppm-exposed females were suppressed at week 74 and thereafter of the 104 week exposure period: the terminal body weights of the 4000 ppm-exposed females was 92% of the control. Food consumption was slightly decreased in the 4000 ppm-exposed males and females toward the end of the 2-year exposure period. There were no significant differences in other clinical signs between the groups exposed to isopropyl acetate and their respective controls.

Peritoneum mesotheliomas were observed in males, and the incidence of peritoneal mesotheliomas in the 4000 ppm-exposed males was higher than the historical control data of the Japan Bioassay Research Center (JBRC). No significant increase in the incidence of neoplastic lesions was found in any of the isopropyl acetate-exposed groups of females. Changes in the nasal cavity were noted in both sexes: an increased incidence of eosinophilic change of the respiratory epithelium and olfactory epithelium in males and an increased incidence of eosinophilic change of the respiratory epithelium in females.

Conclusions

There was some evidence of carcinogenic activity of inhaled isopropyl acetate in male rats, as showen by an increased incidence of peritoneal malignant tumors. There was no evidence of carcinogenic activity of isopropyl acetate in female rats.

Incidences of selected neoplastic lesions of male rats in the 2-year inhalation carcinogenicity study of isopropyl acetate

	Dose (ppm)	0	1000	2000	4000	Peto test	Cochran- Armitage test
	Number of examined animals	50	50	50	50		
benign tumor							
subcutis	fibroma	4	8	5	3		
pancreas	islet cell adenoma	2	6	2	2		
pituitary	adenoma	10	13	5	3 *		\downarrow
thyroid	C-cell adenoma	7	5	6	9		
adrenal	pheochromocytoma	10	1 **	4	0 **		\downarrow \downarrow
testis	interstitial cell tumor	41	44	46	47		
malignant tun	nor						
spleen	mononuclear cell leukemia	4	1	6	3		
thyroid	C-cell carcinoma	1	2	3	1		
peritoneum	mesothelioma	2	2	1	7	1	<u> </u>

Incidences of selected neoplastic lesions of female rats in the 2-year inhalation carcinogenicity study of isopropyl acetate

	Dose (ppm)	0	1000	2000	4000	Peto test	Cochran- Armitage test
	Number of examined animals	50	50	50	50		
benign tumo	or						
pituitary	adenoma	12	8	7	5		
thyroid	C-cell adenoma	6	5	4	3		
adrenal	pheochromocytoma	0	4	4	1		
uterus	endometrial stromal polyp	6	6	3	8		
mammary gland	fibroadenoma	8	8	5	5		
clitoral gland	adenoma	1	2	4	0		
malignant tu	imor						
spleen	mononuclear cell leukemia	9	5	4	4		
uterus	endometrial stromal sarcoma	3	2	1	1		

Significant difference

 $\begin{array}{lll} \uparrow: p \leqq 0.05 & \text{increase} & \uparrow \uparrow: p \leqq 0.01 & \text{increase} \\ \downarrow: p \leqq 0.05 & \text{decrease} & \downarrow \downarrow: p \leqq 0.01 & \text{decrease} \end{array} \qquad \begin{array}{ll} (\text{Peto, Cochran-Armitage test}) \\ \text{(Cochran-Armitage test)} \end{array}$

SELECTED TABLES

TABLE A	CONCENTRATIONS OF ISOPROPYL ACETATE IN THE
	INHALATION CHAMBER OF THE 2-YEAR INHALATION STUDY
TABLE D1	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS :
	MALE
TABLE D2	BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS :
	FEMALE
TABLE D3	BODY WEIGHT CHANGES: MALE
TABLE D4	BODY WEIGHT CHANGES: FEMALE
TABLE E1	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL
	NUMBERS: MALE
TABLE E2	FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL
	NUMBERS: FEMALE
TABLE E3	FOOD CONSUMPTION CHANGES: MALE
TABLE E4	FOOD CONSUMPTION CHANGES: FEMALE
TABLE F1	HEMATOLOGY: MALE
TABLE F2	HEMATOLOGY: FEMALE
TABLE G1	BIOCHEMISTRY: MALE
TABLE G2	BIOCHEMISTRY: FEMALE
TABLE H1	URINALYSIS: MALE
TABLE H2	URINALYSIS: FEMALE

TABLE J1	ORGAN WEIGHT, ABSOLUTE: MALE
TABLE J2	ORGAN WEIGHT, ABSOLUTE: FEMALE
TABLE K1	ORGAN WEIGHT, RELATIVE: MALE
TABLE K2	ORGAN WEIGHT, RELATIVE: FEMALE
TABLE L1	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC
	LESIONS : MALE: ALL ANIMALS
TABLE L4	HISTOPATHOLOGICAL FINDINGS: NON-NEOPLASTIC
	LESIONS: FEMALE: ALL ANIMALS
TABLE O1	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL
	ANALYSIS: MALE
TABLE O2	NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL
	ANALYSIS: FEMALE
TABLE Q	HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC
	LESIONS IN JAPAN BIOASSAY RESEARCH CENTER :
	F344/DuCrlCrlj MALE RATS
TABLE R	CAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION
	STUDY OF ISOPROPYL ACETATE

TABLE A

CONCENTRATIONS OF ISOPROPYL ACETATE IN THE INHALATION CHAMBER OF THE 2-YEAR INHALATION STUDY

CONCENTRATIONS OF ISOPROPYL ACETATE IN THE INHALATION CHAMBER OF THE 2-YEAR INHALATION STUDY

Group Name	Concentration(ppm) $Mean \pm S.D.$
Control	0.0 ± 0.0
1000 ppm	1000.6 ± 7.8
$2000~\mathrm{ppm}$	2003.2 ± 12.5
$4000~\mathrm{ppm}$	4001.9 ± 30.2

TABLE D1

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL NUMBERS: MALE

(BI0040)

MEAN BODY WEIGHTS AND SURVIVAL

: 0610 : RAT F344/DuCrlCrlj[F344/DuCr]] : g

0610	RAT F344/DuCrlCrlj[]		Al 104	MALE
9	2	Ø	A)	\geq
• •	• •	• •	٠.	٠.
STUDY NO.			REPORT TYPE	
~	ANIMAL	UNIT	RT	

ay		1012100	7	1000 ррш			2000 ppm	5		4000 ppm	A	
	Av. Wt. No. of Surviv. <50>		Av. Wt.	% of cont. S <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	Av. Wt.	% of cont. <50>	No. of Surviv.	
	(20)	50/50 12	1 -	100	50/50	- 1 -	100	50/50		100	50/50	***************************************
1-7	(20)	_	_	101	50/50	_	102	50/50		30	50/50	
	(20)		187 (50)	102	50/50	_	103	50/50	186 (50)	102	50/50	
3-7 20		•••	_	102	50/50	216 (50)	103	50/50		102	50/50	
	(20)	•	_	102	50/50	_	102	50/50	_	101	50/50	
	(20)		_	102	20/20	254 (50)	102	50/50	_	102	50/50	
	264 (50) 50	50/50 26	269 (50)	102	20/20		102	50/50	268 (50)	102	50/50	
	(20)			101	20/20		102	20/20		102	50/50	
	(20)		295 (50)	102	20/20	297 (50)	102	50/50		102	20/20	
	(20)			102	50/50		102	50/50		102	50/50	
)/50 315		102	50/50		102	50/50	315 (50)	102	50/50	
	(20)			102	20/20		102	50/50		102	50/50	
	(20)			101	50/50		102	50/50		102	50/50	
				102	20/20		102	50/50		102	50/50	
	(20))/50 339		101	20/20		102	20/20		102	50/50	
	(20)		28 (20)	101	50/50		102	20/20	359 (50)	102	50/50	
22-7 36	(20)			102	50/50		102	20/20		102	50/50	
	(49)			102	50/50		103	20/20		102	20/20	
30-7	(43)			102	20/20		103	20/20		102	50/50	
	(49)	49/50 407		102	50/50		103	20/20	403 (50)	101	50/50	
	(49)			102	20/20		103	50/50		101	50/50	
42-7 41	(49)	49/50 424		103	50/50	426 (50)	103	20/20		101	50/50	
	(49)			103	50/50		103	20/20		101	50/50	
50-7 42	(48)	48/50 435	35 (50)	103	20/20		103	20/20	430 (48)	102	48/50	
	(48)			103	20/20		102	20/20		101	48/50	
58-7 43	(48)		13 (50)	102	50/50		102	20/20		100	48/50	
	(48)	,		102	20/20		101	20/20		101	48/50	
	(41)		_	102	50/50		101	20/20		100	48/50	
	(41)	•		102	20/20	447 (50)	101	20/20	443 (48)	100	48/50	
	(46)	,	_	103	20/20	446 (50)	101	50/50		100	48/50	
•	(44)			100	49/50		100	50/50	439 (47)	66	47/50	
	(44)	•	_	102	47/50		66	49/50	_	66	46/50	
	4	44/50 448	-	102	46/50	435 (49)	66	49/50	432 (46)	86	46/50	
	(41)	41/50 443	13 (45)	102	45/50	430 (48)	66	48/50	_	86	46/50	
	(36)	•	37 (44)	100	44/50	422 (47)	26	47/50	_	26	45/50	
	(38)	•	_	66	44/50	412 (44)	96	44/50	_	96	44/50	
	(36)	36/50 413	(3 (42)	66	42/50	401 (41)	96	41/50	402 (42)	96	42/50	
104-7 42	420 (33) 33,	1/50 407	7 (42)	26	42/50	403 (38)	96	38/20	394 (42)	94	42/50	

TABLE D2

BODY WEIGHT CHANGES AND SURVIVAL ANIMAL

NUMBERS: FEMALE

PAGE:

MEAN BODY WEIGHTS AND SURVIVAL

STUDY NO. : 0610

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]
UNIT : g

REPORT TYPE : A1 104

SEX : FEMALE

ш	No. of Surviv.	50/50 50/50
4000 ррш	% of cont. <50>	100 100 100 100 100 100 100 100 100 100
	Av. Wt.	98 (50) 110 (50) 110 (50) 124 (50) 136 (50) 144 (50) 151 (50) 151 (50) 162 (50) 167 (50) 171 (50) 171 (50) 171 (50) 172 (50) 173 (50) 174 (50) 175 (50) 176 (50) 177 (50) 178 (50) 179 (50) 170 (50) 170 (50) 170 (50) 171 (50) 171 (50) 172 (50) 173 (50) 174 (50) 175 (50) 176 (50) 177 (50) 178 (50) 179 (50) 170
s	No. of Surviv.	50/50 50/50
2000 ppm	% of cont. <50>	100 101 102 102 103 103 104 104 104 107 108 109 109 100 100 100 100 100 100 100 100
	Av. Wt.	98 (50) 112 (50) 113 (50) 125 (50) 137 (50) 143 (50) 150 (50) 150 (50) 166 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 180 (50) 180 (50) 181 (50) 182 (50) 183 (50) 184 (50) 185 (50) 186 (50) 187 (60) 187 (60) 187 (60) 188 (60) 189 (60) 189 (60) 180
明	No. of Surviv.	50/50 50/50
1000 ppm	% of cont. <50>	100 100 101 102 101 101 101 103 103 103 104 104 104 107 108 109 109 109 109 109 109 109 109 109 109
	Av. Wt.	98 (50) 111 (50) 123 (50) 124 (50) 144 (50) 145 (50) 165 (50) 165 (50) 165 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 170 (50) 180
Control	No.of Surviv. <50>	50/50 50/50
ර	Av.Wt. S <5	98 (50) 111 (50) 111 (50) 122 (50) 132 (50) 141 (50) 141 (50) 146 (50) 158 (50) 168 (50) 171 (50) 177 (50) 177 (50) 178 (50) 178 (50) 179 (50) 170 (50) 171 (50) 172 (50) 173 (50) 174 (50) 175 (50) 176 (50) 177 (50) 178 (50) 179 (50) 170
	Week-Day on Study	0-0 1-7 2-7 3-7 4-7 6-7 6-7 10-7 112-7 113-7 113-7 114-7 118-7 1-7 1-7 1-7 1-7 1-7 1-7 1-7 1-7 1-7 1

BAIS 4

Av. Wt. : g

< >:No. of effective animals, ():No. of measured animals

(BI0040)

TABLE D3

BODY WEIGHT CHANGES: MALE

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE	j[F344/DuCr.j]			ALL ANIMALS (STANOES) (SOUMMAN)	(SOURAIN)				PAGE: 1
Group Name	Administrat	Administration week-day			THE PERSON NAMED IN COLUMN NAM	The second secon			
7 (1700)	00	1-7		2-7	3-7	4-7	2–2	2–9	
						THE PROPERTY OF THE PROPERTY O	Transfer and Association and A		
Control	125± 5	153±	_∞	183± 10	209± 10	$232\pm$ 11	248± 12	264± 13	
1000 ppm	125± 5	155±	8	187± 9*	214± 9*	236± 10	252± 11	269± 11	
2000 ррш	125± 5	156±	7	189± + 8	216± 8**	237 ± 9	254± 10*	269± 11	
4000 ppm	125± 5	153±	9	186± 8	214± 9*	235± 10	253± 10	268± 12	
Significant difference;	* : P ≤ 0.05	* : P ≤ 0.01		77.77.77.77.77.77.77.77.77.77.77.77.77.	Test of Dunnett		The state of the s		
(HAN260)		and the state of t		The second secon			ALA CAL		BATS 4

STUDY NO. : 0610 ANIMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE	j[F344/DuCr.j]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			PAGE :	
Group Name	Administration week-day_7-7	week-day8-7	7-6	10-7	11-7	12-7	13-7	
Control	278± 13	290土 14	300± 15	309± 16	316± 17	324± 16	329± 16	
1000 ppm	282± 12	295 ± 13	306± 13	315± 14	322± 15	328± 16	334± 17	
2000 ppm	283± 11	297± 11*	* 307± 11*	316± 12*	323± 11	330± 12	336± 12	
4000 ppm	283± 13	297± 13*	* 307± 14*	315± 15	323± 16	329± 16	335± 16	
Significant difference;	*: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett	The state of the s		AND THE RESERVE OF THE PROPERTY OF THE PROPERT	
(HAN260)		The second secon	Transport Advisor		The state of the s		BA	BAIS 4

BAIS 4

Group Name Administration week-day 14-7 18-7 26-7 36-7 36-7 34-7 38-7 38-7 Control 335± 17 353± 19 366± 20 380± 21 399± 23 407± 25 1000 ppm 339± 17 358± 18 373± 14 390± 15 409± 16 419± 17 4000 ppm 341± 12 359± 19 372± 20 387± 22 396± 24 409± 16 419± 17 4000 ppm 341± 16 359± 19 372± 20 387± 22 396± 24 403± 25 413± 27	ANIMAL KAI F344/DUCFICFIJ [F344/DUCFJ] UNIT E REPORT TYPE: AI 104 SEX: MALE	lj[F344/DuCrj]		ALL ANIMALS				PAGE:
335± 17 353± 19 366± 20 380± 21 389± 21 399± 23 408± 339± 17 358± 18 373± 19 386± 21 396± 23 407± 23 416± 341± 12 361± 13 374± 14 390± 15 409± 16 419± 341± 16 359± 19 372± 20 387± 22 396± 24 403± 25 413± * : P ≤ 0.05 ** : P ≤ 0.01 Test of Punnett Test of Punnett 360± 24 403± 25 413±	up Name	Administrati 14-7	on week-day	22-7	26-7	30-7	34-7	
339± 17 358± 18 373± 19 386± 21 396± 23 407± 23 416± 341± 12 361± 13 374± 14 390± 15 399± 15 499± 16 419± 341± 16 359± 19 372± 20 387± 22 396± 24 403± 25 413± $1 \times 1 $	Control							
$341\pm$ 12 $361\pm$ 13 $374\pm$ 14 $390\pm$ 15 $399\pm$ 15 $409\pm$ 16 $419\pm$ 341 \pm 16 $359\pm$ 19 $372\pm$ 20 $387\pm$ 22 $396\pm$ 24 $403\pm$ 25 $413\pm$ 8 \pm 18 \pm 18 \pm 18 \pm 19 \pm 10 \pm	1000 ppm							
$341\pm$ 16 $359\pm$ 19 $372\pm$ 20 $387\pm$ 22 $396\pm$ 24 $403\pm$ 25 $413\pm$ *: P \leq 0.05 **: P \leq 0.01	2000 ppm							
*: P ≤ 0.05 **: P ≤ 0.01	4000 ppm							
*: P ≤ 0.05 **: P ≤ 0.01								
	Significant difference ;	*:P ≤ 0.05	★ : P ≤ 0.01		Test of Dunnett			

STUDY NO.: 0610 ANIMAL: RAT F344/DuCrlCrlj[F344/DuCrj] UNIT: g REPORT TYPE: AI 104 SEX: MALE	j[F344/DuCrj]		BODY WEIGHT CHANGES ALL ANIMALS	(SUMMARY)			Δ.	PAGE: 4
Group Name	Administrat 42-7	Administration week-day 42-7	20-7	54-7	28-7	2-29	2-99	
Control	413± 25	419± 28	423± 26	4 29± 27	434± 28	437± 29	440± 30	
1000 ррш	424± 24	430± 25	435± 25	440± 24	443± 26	447± 28	448± 28	
2000 ppm	426± 16*	431± 18	434± 21	439± 21	441± 22	443± 22	446± 23	
4000 ррш	419± 29	424± 32	430± 26	435 ± <i>27</i>	435± 27	440± 27	442± 29	
9 100								
Significant difference ;	*: P \le 0.05	. P ≤ 0.01	-	Test of Dunnett		***************************************		

BAIS 4

PAGE: 5						
	2.	34	36	46	27	
	2-7-6	435±	437 ±	422±	422±	
		37	92	39	25	
	2-06	435±	443±	430±	428±	
		59	56	32	24	
	2-98	439±	448±	435±	432±	
_		59	27	28	24	hunnett
(SUMMARY)	2-28	442±	449 🛨	439+	436±	Test of Dunnett
CHANGES		30	41	59	25	
BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS	7-87	444±	443 ±	443±	439±	
		31	54	25	25	
	Administration week-day 70-7	442±	454±	446±	441±	* : P S 0.01
	istrati	30	62	24	26	0.05
j[F344/DuCr.j	Admini 70-7	442±	450±	447 ±	443±	* : P ≤ 0.05
STUDY NO.: 0610 ANIMAL : RAT F344/DuCrlJ;[F344/DuCrJ] UNIT : g REPORT TYPE : A1 104 SEX : MALE	Group Name	Control	1000 ppm	2000 ppm	4000 ppm	Significant difference;

(HAN260)

SIDDI NO. : 0010 ANIMAL : RAF F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE	j[F344/DuCr.j]		BODY WEIGHT CHANGES ALL ANIMALS	CHANGES (SUMMARY) PAGE :
Group Name	Administra 98-7	Administration week-day 98-7	104-7	
Control	431± 33	417士 4	46 420±	34
1000 ppm	426± 29	413± 30	30 407±	34
2000 ppm	412± 43	401 ± 40	45 403± 4	41
4000 ppm	412± 27**	402±	28* 394± 3	31**
	PARALL THE PARALLES	- mayorila		
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett
(HAN260)				BATS4

TABLE D4

BODY WEIGHT CHANGES: FEMALE

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE	.j[F344/DuCrj]			BO: AL)	BODY WEIGHT CHANGES ALL ANIMALS	CHANGES	(SUMMARY)								PAGE: 7
Group Name	Administ 0-0	tration	Administration week-day 0-0		2-7		3-7		4-7		2-2		L-9	7	
Control	∓86	8	111 ±	വ	122±	4	132±	വ	141±	9	146±	۲-	153±	&	
1000 ppm	+86	ಣ	111±	4	123±	ro	134±	۷	142±	∞	148±	œ	155±	6	
2000 ppm	+86	m	112±	ro	125±	*/	135±	*	143±	6	150±	10	156±	10	
4000 ppm	+1	es	110±	rc	124±	* 9	136±	*	144 ±	7	151±	*/	157±	8	
Significant difference;	*:P≤0.05		* : P ≤ 0.01				Test of Dunnett	unnett							
(HAN260)			Paragraphic		Carrie		***************************************								BAIS 4

ANIMAL : RAT F344/DuCrICrIj[F344/DuCrj] UNIT : g REPORT TYPE : AI 104 SEX : FEMALE Groun Name	[F344/buCr.j]	1	ALL ANTMALS				PA	PAGE :
מוסקל ומחום	Auministration week-day	311 Week-day8-7	L-6	10–7	11-7	12-7	13–7	
Control	158± 8	161 ± 10	166± 10	169± 11	171± 12	175± 12	177 ± 12	
1000 ppm	160± 9	165± 10	170± 11	174± 11	178± 11*	180± 12	183± 12*	
2000 ррт	161± 12	166± 12	170± 13*	175± 14*	178± 14*	180± 15	183± 14	
4000 ppm	162± 8	167 ± 8*	171± 9*	175± 9*	177± 9*	180 = 9	182± 9	
		The state of the s	and the second s					
Significant difference ;	*: P ≤ 0.05	‡ : P ≤ 0.01		Test of Dunnett				

BAIS 4

ANNMAL : KAT F344/DuCr1Cr1j[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE	j[F344/DuCrj]	_		ALL	ANIMALS	ALL ANIMALS									PAGE: 9
Group Name	Admini 14-7	stration	Administration week-day 14-7		22-7		26-7		30-7		34-7		38–7	<i>L</i> -	
Contro]	178±	13	186+	13	192±	14	197±	13	202土	14	208±	15	212 ±	15	
1000 ppm	185 ±	13**	193±	13**	700 ∓	14*	203±	13	708±	14	214±	14	219±	15	
2000 ppm	185±	15*	193±	15*	198±	16	204±	17	708	17	213±	18	218±	18	
4000 ppm	184±	*6	190+	10	196±	11	201±	11	205±	11	708 ±	12	213±	11	
Significant difference ;	*:P≤0.05		** : P ≤ 0.01	Ī			Test of Dunnett	unnett			Palayera				
(HAN260)															DATC A

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE	j[F344/DuCrj			BOL ALJ	Y WEIGHT , ANIMALS	CHANGES	BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS							PAGE: 10	10
Group Name	Admini 42-7	Administration week-day_42-7	week-day_46-7		50-7	77	54-7	PAAA.	28-7		62-7		2–99		
Control	215±	17	219±	18	222 ±	18	227 ±	19	234±	21	240十	22	246±	24	
1000 ppm	225±	15**	228±	17**	233∓	17**	238±	18★	244±	19*	250±	20 *	255±	21	
2000 թթո	223±	19	526±	20	230±	20	235±	22	239±	23	245±	24	250±	25	
4000 ppm	218±	12	220∓	13	223±	14	227±	15	$231\pm$	15	736±	17	239∓	18	
Significant difference;	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		: P > 0.01	-			Test of Dunnett	in net t							

(HAN260)

SIUMY NO. : 0610 ANIMAL : RAT F344/DucrlCrlj[F344/Ducrj] UNIT : g REPORT TYPE : Al 104 SEX : FEMALE	i[F344/DuCrj	Ĺi.		BOI ALI	DY WEIGHT L ANIMALS	BODY WEIGHT CHANGES (SUMMARY) ALL ANIMALS	(SUMMARY)							PAGE: 11
	Admini 70-7	nistration 7	Administration week-day 70-7		78-7		82-7	- Constitution	2-98		2-06		94-7	
	252±	27	257±	27	261±	24	566±	26	274±	24	280±	25	279土	25
	559±	23	∓292	28	270±	21	275±	24	279±	25	283±	32	293±	44
	255±	27	790∓	27	267±	29	∓697	28	273±	28	276±	59	277±	31
	243 ±	19	245±	19**	248±	19**	249±	19**	252±	20**	255±	18**	257±	19**
rence :	Significant difference: *: P S 0 05	0 80 80	\ \ \ :				6							

BAIS 4

(HAN260)

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : AI 104 SEX : FFMAI F	.j[F344/DuCrj]		ALL A	ALL ANIMALS		,
Carina Mana	A		TANKS CO.		PAGE : 1Z	12
oroup name	Administrati 98-7	Administration Week-day 98-7 102-7		104-7		
Control	278± 27	271±	34	275± 31		
1000 ppm	290∓ 23	585 +1	25*	589 ∓ 26		
2000 ppm	280 ± 28	7622	28	278± 28		
4000 ppm	556± 20**	254±	25*	253 ± 25**		
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01			Test of Dunnett	
(HAN260)	er ericery and a second a second and a second a second and a second and a second and a second and a second an					BAIS 4

TABLE E1

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL

NUMBERS: MALE

(BI0040)

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

PAGE :																																			
4000 nmm			cont. Surviv. <50>	96 50/50			96 50/50	98 50/50 100 E0/E0					98 50/50						98 50/50	94 50/30 98 50/50			96 48/50					96 48/50	96 47/50 85 46/50		96 46/50		-	104 42/50	97 42/50
4		Av. FC.	٥ ٧	14.8 (50)		_		16.4 (50)	_	_	_	_	16.3 (50)		16. 5 (50)			16.6 (50)	16.5 (50)	1 2	16.7 (50)		16.6 (48)			-			16.4 (47)			_	~	9	16.7 (42)
2000 ppm			cont. Surviv. <50>	98 50/50	100 50/50		99 50/50	98 50/50						98 50/50				101 50/50		101 50/50			97 50/50						98 50/50				92 44/50		98 38/50
2		Av. FC.	0 V	15.1 (50)	ر ب		16.7 (50)	16.3 (50)					16.4 (50)	-	_	16.3 (50)	16.3 (50)	16.8 (50)		17.1 (50)			16.7 (50)	16.8 (50)				16.9 (50)	16. (30)						16.8 (38)
mdd			ourviv.	50/50	50/50	20/20	50/50	50/50	50/50	20/20	20/20	50/50	50/50	50/50	50/50	20/20	50/50	50/50	50/30	50/50	20/20	50/50	50/50	50/50	20/20	50/50	20/20	50/50	49/50	46/50	45/50	44/50	44/50	42/50	42/50
44/DuCrj]		Av. FC. % of	CON (4	5 (50)	(50) 1	(50)	16.5 (50) 99 17.0 (50) 99	(20)	_	(20)	(20)	16.7 (50) 101 16.8 (50) 101	(20)	(20)	(20)			(20)	(20)	(20)	(20)	17.5 (50) 101 17.4 (50) 102		(20)	(20)	(20)	17.2 (50) 99		(46)	(45)	(44)	_	6 (42)	8 (42)
RAT F344/DuCrlCrlj[F344/DuCrj] g A1 104 MALE Control	7	No. of	<50>		50/50	20/20	(50) 50/50 16	50/50	20/20	20/20	50/50	50/50	50/50	50/50	20/20	20/20	50/50	49/50	49/50	49/50	49/20	49/50	(48) $48/50$ 17. (48) $48/50$ 17.	48/50	48/50	47/50	47/50	(46) 46/50 17.	44/50	44/50	41/50	39/20	38/20	36/50	(33) 33/50 16.
ANIMAL : RAT F34 UNIT : g REPORT TYPE : AI 104 SEX : MALE	100 -14	Av. FC. Wook~Day	on Study		16.3	17.1	4-7 16.9 (10.7	16.6	17.0	16.6		16.0	16.5	16.4	16.3	16.2	20-7 16.7 (30-7 16.9 (17.2	17.0	17.2	17.5	54-7 17 1 (17.1	17.2	17.2	17.1	74-7 17.3 (17.0	17.1	17.0	17.2	17.0	15.9	104-7 17.2 (

TABLE E2

FOOD CONSUMPTION CHANGES AND SURVIVAL ANIMAL

NUMBERS: FEMALE

Av. FC.: g

< >:No. of effective animals, ():No. of measured animals

(BI0040)

MEAN FOOD CONSUMPTION (FC) AND SURVIVAL

STUDY NO. : 0610
ANIMAL : RAT F344/DuCrlCrlj[F344/DuCr]]
UNIT : g
REPORT TYPE : A1 104
SEX : FEMALE

	1011100	101		1000 ppm	s		2000 ppm	E		4000 ррп	5
on Study	Av. FC. No. of Surviv. <50>		Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.	Av. FC.	% of cont. <50>	No. of Surviv.
1-7 11. 2-7 11.	0 (50) 50	50/50 1 50/50 1	1.0 (50)	100	50/50	11.2 (50)	102	50/50		66	50/50 50/50
	(20)			101	50/50 50/50	11.5 (50) 10.8 (50)	102 98	50/50 50/50		101 95	50/50 50/50
	(20)	50/50 1 50/50 1		102 102	50/50 50/50	10.7 (50) 11.1 (50)	100 10 1	50/50 50/50		97 100	50/50 50/50
7-7 10.6 8-7 10.6	(20)			103	50/50	10.5 (50)	96	50/50	10.5 (50)	66	50/50
	(20)			104	50/50		97	50/50		08 86	50/50
10-7 10.5	9 20		10.9 (50)	104	50/50		100	50/50		66	50/50
	(20)			105	50/50		101 99	50/50 50/50	10.5 (50)	00 8	50/50
	(20)			105	20/20		100	20/20		66	20/20
	(20)			107	50/50		102	20/20		101	20/20
18-7 10. b 22-7 10. 7	(2) (2) (2)		10.9 (50) $11.1 (50)$	103 104	50/50	10, 4 (50)	& &	50/50	10.3 (50)	96 96	50/50
	(20)			102	20/20		102	50/50		88	50/50
	(20)			103	20/20		100	20/20		26	20/20
	(20)			101	20/20		26	20/20		91	50/50
38-7 11.0	(20)			105	50/50		102	20/20	10.6 (50)	96	20/20
42-l II. 0	(20)				50/50	11.2 (50)	102	50/50		86	50/50
, .	(20)		11. ((50)	103	50/50		103	50/50		96	50/50
54-7 11.2	(20)			104	50/50	11. 2 (50)	100	30/30 50/50	10.6 (50)	66 90	50/50
	(20)		~	102	50/50		66	50/50	_	96	50/50
62-7 11.6	(20)			103	50/50		26	50/50	_	36	50/50
	(20)			102	20/20		66	20/20	_	85	50/50
70-7 12.0	(49)		12.2 (50)	102	20/20	တ	86	20/20		93	50/50
	(48)			102	20/20	12.0 (50)	100	20/20	_	94	48/50
	(41)			105	49/20	_	103	20/20	_	26	47/50
	(46)	46/50 1		104	49/50	12.2 (49)	100	49/50	_	93	46/50
	(43)		13.0 (48)	105	48/20	0	86	49/20		93	46/50
	(43)			101	46/20	12.5 (47)	86	47/50	11.8 (45)	93	45/50
	(41)		_	109	42/50	7	66	47/50		94	45/50
98-7 12.2	(38) (38)	38/50	13.4 (38)	110	38/50	~	104	44/50	_	96	45/50
	(37)		3.1 (37)	108	37/50	12.6 (44)	104	44/50	12.1 (45)	100	45/50
104-7	(34)			105	35/50	6	101	43/50	12.3 (44)	96	44/50

TABLE E3

FOOD CONSUMPTION CHANGES: MALE

SEX : MALE							PAGE :
Group Name	Administration 1-7(7)	Administration week-day(effective) 1-7(7)	3-7(7)	4-7(7)	5-7(7)	(1) 2-9	(1) 1-1
Control	15.4± 1.2	16.3± 1.5	17.1± 1.3	16.9± 1.0	16.7± 1.1	17.2± 1.1	16.6± 0.9
1000 ppm	15.4± 0.9	16.5± 1.2	17.3± 1.1	16.8± 1.0	16.5± 0.9	17.0± 0.9	16.8± 0.8
2000 ppm	15.1± 0.9	16.3± 0.8	17.5± 1.0	16.7± 0.9	16.3± 0.8	17.0± 0.9	16.6± 0.8
4000 ppm	14.8± 0.8**	15.9± 0.8	17.3± 1.0	16.3± 0.9**	16.4 ± 0.9	17.2± 0.9	16.9 ± 1.0
Significant difference;	*: P ≤ 0.05	‡ : P ≤ 0.01		Test of Dunnett			

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE	j [F344/DuCr.j.]	AI.	FOUR CONSUMELLON CHANGES (SUMMARY) ALL ANTMALS	ies (summaky)			. PAGE
Group Name	Administration 8-7(7)	Administration week-day(effective)	10-7 (7)	11-7(7)	12-7(7)	13-7(7)	14-7 (7)
Control	17.0± 1.1	16.6 ± 1.1	16.6± 1.1	16.6± 0.9	16.7± 0.8	16.5± 0.9	16.4 ± 0.9
1000 ppm	17.2± 0.9	16.9± 1.0	17.0± 1.1	16.7± 1.0	16.8± 1.0	16.7± 1.1	16.6 ± 1.0
2000 ppm	17.0± 0.9	16.7± 0.8	16.6± 0.8	16.4± 0.7	16.5± 0.7	16.1± 0.7*	16.4± 0.8
4000 ppm	17.0± 0.9	16.6± 1.0	16.5± 1.1	16.3± 1.1	16.5± 1.1	16.3± 1.1	16.5± 1.1
Significant difference ;	*: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			

(HAN260)

Group Name Administration week-day/effective) $26-7(7)$ $36-7(7)$ $36-7(7)$ $34-7(7)$	ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : MALE	l j [F344/DuCr j]	ALL	ALL ANIMALS	CONTRACTOR			PAGE:
$16.3\pm$ 1.0 $16.2\pm$ 0.9 $16.7\pm$ 1.0 $16.9\pm$ 0.9 $17.2\pm$ 1.1 $17.0\pm$ 1.2 $16.4\pm$ 1.0 $16.6\pm$ 1.1 $17.0\pm$ 1.2 $17.3\pm$ 1.0 $17.3\pm$ 1.1 $16.3\pm$ 0.9 $16.8\pm$ 0.8 $16.6\pm$ 0.9 $17.0\pm$ 0.9 $17.1\pm$ 0.9 $16.1\pm$ 1.1 $16.1\pm$ 1.1 $16.5\pm$ 1.3 $16.1\pm$ 1.1** $16.7\pm$ 1.3	roup Name	Administration 18-7(7)	week-day(effective)	26-7(7)	30-7(7)	34-7(7)	38-7(7)	42-7(7)
$16.4\pm$ 1.0 $16.6\pm$ 1.1 $17.0\pm$ 1.1 $17.1\pm$ 1.2 $17.3\pm$ 1.0 $17.3\pm$ 1.0 $17.3\pm$ 1.1 $16.3\pm$ 0.9 $16.8\pm$ 0.8 $16.6\pm$ 0.9 $17.0\pm$ 0.9 $17.1\pm$ 0.9 $16.1\pm$ 1.1 $16.1\pm$ 1.2 $16.5\pm$ 1.3 $16.1\pm$ 1.1** $16.7\pm$ 1.3	Control	16.3± 1.0		16.7± 1.0		17.2± 1.1	17.0± 1.2	17.2± 1.1
$16.3\pm$ 0.9 $16.8\pm$ 0.8 $16.6\pm$ 0.9 $17.0\pm$ 0.9 $17.1\pm$ 0.9 $16.1\pm$ 1.1 $16.6\pm$ 1.2 $16.5\pm$ 1.3 $16.1\pm$ $1.1**$ $16.7\pm$ 1.3 $**: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett	1000 ррш	16.4 ± 1.0				17.3± 1.0	17.3± 1.1	17.4± 1.0
$16.1\pm~1.1$ $16.1\pm~1.1$ $16.6\pm~1.2$ $16.5\pm~1.3$ $16.1\pm~1.1**$ $16.7\pm~1.3$ ** 16	2000 ppm							
*: P ≤ 0.05 **: P ≤ 0.01	4000 ppm	16.1± 1.1	16.1± 1.1				16.7± 1.3	16.7± 1.3*
*: P ≤ 0.05 **: P ≤ 0.01								
	Significant difference;	: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			

Group Name Administration week-day(effective) $54-7(7)$ $54-7(7)$ $58-7(7)$ $66-7(7)$	UNIT : g REPORT TYPE : Al 104 SEX : MALE							PAGE:
1trol $17.5\pm$ 1.0 $17.3\pm$ 1.1 $17.1\pm$ 1.1 $17.1\pm$ 1.1 $17.1\pm$ 1.1 $17.1\pm$ 1.1 $17.2\pm$ 1.0	Group Name	Administration	week-dav(effective)					
Control I7.5 \pm 1.0 I7.3 \pm 1.1 I7.1 \pm 1.1 I7.1 \pm 1.1 I7.1 \pm 1.1 I7.1 \pm 1.1 I7.2 \pm 1.1 I7.2 \pm 1.1 I7.2 \pm 1.1 I7.2 \pm 1.2 I7.2 \pm 1.0 I7.2 \pm 1.1 I7.2 I7.1 I7.1 I7.1 I7.1 I7.1 I7.1 I7.1 I7.1	Topological Topolo	46-7 (7)	50-7(7)	54-7(7)	28-7 (7)	(2) (2)	(2) 2-99	(2) 2-02
Contacts 1.5 = 1.0	1000+000	\ - - -	-	,				
.000 ppm 17.7± 1.2 17.5± 1.0 17.4± 0.9 17.3± 1.0 17.2± 1.5 17.2± 1.5 17.2± 1.5 17.2± 1.5 17.2± 1.5 17.2± 1.5 17.1± 0.7 16.8± 0.9 16.9± 0.9 17.1± 0.7 16.8± 0.9 16.9± 0.9 17.1± 0.7 :000 ppm 16.9± 1.3* 16.6± 1.1** 16.7± 1.2* 16.5± 1.2* 16.4± 1.1** 16.5± ifficant difference : *: P ≤ 0.05 ** : P ≤ 0.01 Test of Dunnett Test of Dunnett	1017100	7(.34	17.3 ± 1.1	I(.1± 1.1	17.1± 1.1	17.2 ± 1.1		17.1 ± 1.2
17.2 \pm 0.9 ppm 17.2 \pm 0.9 16.7 \pm 1.2* 17.1 \pm 0.7 16.8 \pm 0.9 16.9 \pm 0.9 17.1 \pm 10.0 ppm 16.9 \pm 1.3* 16.6 \pm 1.1** 16.7 \pm 1.2 16.5 \pm 1.2* 16.4 \pm 1.1** 16.5 \pm 1.6.5 \pm 1.1** 16.5 \pm 16	1000 ррт	17.7 ± 1.2	17.5± 1.0					17.2± 1.2
10.00 ppm 17.2 \pm 0.9 16.7 \pm 1.2* 17.1 \pm 0.7 16.8 \pm 0.9 16.9 \pm 0.9 17.1 \pm 10.00 ppm 16.9 \pm 1.3* 16.6 \pm 1.1** 16.7 \pm 1.2 16.5 \pm 1.2* 16.4 \pm 1.1** 16.5 \pm 16								
1000 ppm $16.9\pm 1.3*$ $16.6\pm 1.1**$ 16.7 ± 1.2 $16.5\pm 1.2*$ $16.4\pm 1.1**$ $16.5\pm 1.5\pm 1.5$ $16.6\pm 1.1**$ $16.5\pm 1.1**$ $16.9\pm $	2000 ррш	17.2± 0.9					17.1 ± 0.9	17.1 ± 0.9
1000 ppm $16.9\pm 1.3*$ $16.6\pm 1.1**$ 16.7 ± 1.2 $16.5\pm 1.2*$ $16.4\pm 1.1**$ $16.5\pm 1.5*$ $16.5\pm 1.2*$ $16.5\pm 1.2*$ $16.5\pm 1.1**$								
uificant difference; *:P≤0.05 **:P≤0.01	4000 ppm	$16.9 \pm 1.3 *$				16.4± 1.1**		16.8± 1.0
ifficant difference ; $*:P \leq 0.05$ **: $P \leq 0.01$								
ificant difference ; * : P \leq 0.05 ** : P \leq 0.01	The state of the s					To the state of th		
(HINDON)	Significant difference;	*:P≤0.05	**: P ≤ 0.01		Test of Dunnett			
	(HAN260)		THE PROPERTY OF THE PROPERTY O				WAS THE LOCAL PROPERTY OF THE LOCAL PROPERTY	

BAIS 4

SEX : MALE		THE PARTY OF THE P					PAGE :
Group Name	Administration 74-7(7)	Administration week-day(effective)	82-7(7)	(4) 2-98	(2) 2-06	94-7(7)	(<i>L</i>) <i>L</i> –86
Control	17.3± 1.0	17.0± 1.1	17.0± 1.1	17.1± 1.2	17.0± 1.6	17.2± 1.4	17.0± 1.2
1000 ррж	17.2± 1.5	16.7± 2.1	17.0± 1.2	17.2± 1.1	17.3± 1.1	17.0± 1.3	16.5± 2.1
2000 ppm	16.9± 1.1	16.7± 1.5	16.6± 1.2	16.6± 1.2	16.6± 1.7	16.1± 2.3*	15.7± 3.2*
4000 ppm	16.6± 1.0**	16.4± 1.2	16.2± 0.9**	16.4± 1.2*	16.4± 1.2*	15.9± 1.4**	16.2± 1.8*
Significant difference ;	×	 10 10 10 10 10 10 10 10 10 10 10 10 10		Test of Dunett			

Group Name Administration week-day(effective) 102-7(7) 104-7(7) Control 15.9± 3.4 17.2± 1.4 1000 ppm 16.6± 1.7 16.8± 2.1 2000 ppm 16.0± 2.9 16.8± 1.8 4000 ppm 16.6± 1.6 16.7± 2.0 Significant difference: *:P ≤ 0.05 **:P ≤ 0.01	UNIT : g REPORT TYPE : A1 104 SEX : MALE			PAGE :
15.9 \pm 3.4 17.2 \pm 1.4 16.6 \pm 1.7 16.8 \pm 2.1 16.0 \pm 2.9 16.8 \pm 1.8 16.6 \pm 1.6 16.7 \pm 2.0 *: $P \le 0.05$ **: $P \le 0.01$	roup Name	Administration 102-7(7)	week-day(effective)	
$16.6\pm$ 1.7 $16.8\pm$ 2.1 $16.0\pm$ 2.9 $16.8\pm$ 1.8 $16.6\pm$ 1.6 $16.7\pm$ 2.0 $*: P \le 0.05$ $**: P \le 0.01$	Control	15.9 ± 3.4	17.2 ± 1.4	
16.0 \pm 2.9 16.8 \pm 1.8 16.6 \pm 1.6 16.7 \pm 2.0 *: P \leq 0.05 **: P \leq 0.01	1000 ppm			
16.6± 1.6 16.7± 2.0 *: P ≤ 0.05 **: P ≤ 0.01	2000 ppm			
*: P ≤ 0.05 **: P ≤ 0.01	4000 ppm	16.6± 1.6	16.7± 2.0	
*: P ≤ 0.05 **: P ≤ 0.01				
	Significant difference ;		*#: P ≤ 0.01	Test of Dunnett

TABLE E4

FOOD CONSUMPTION CHANGES: FEMALE

SEX : FEMALE							d	. 700
Group Name	Administration 1-7(7)	Administration week-day(effective)	3-7(7)	4-7(7)	5-7(7)	(2) 2-9	7-7 (7)	
Control	11.0± 0.9	11.1± 0.7	11.3± 0.7	11.0± 0.7	10.7± 0.8	11.0± 0.9	10.6+	
1000 ppm	11.0± 0.6	11.3± 0.8	11.4± 0.9	11.0± 0.8	10.9± 0.9	11.2± 1.0	10.9± 0.9	
2000 ppm	11.2± 0.6	11.1± 0.9	11.5± 1.0	10.8± 1.2		11.1± 0.9	10.5± 0.9	
4000 ppm	10.9± 1.0							
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.01	THE	Test of Dunnett		A CONTRACTOR OF THE CONTRACTOR		

SEX : FEMALE							PAGE :
Group Name	Administration 8-7(7)	Administration week-day(effective)8-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	14-7 (7)
Control	10.6± 1.0	10.6± 1.1	10.5± 0.9	10.5士 1.0	10.6± 1.0	10.5± 1.0	10.5± 1.0
ndd 0001	11.0± 1.0	11.0± 1.3	10.9 ± 1.1	11.0± 1.1	11.1± 1.0*	11.0± 1.1*	11.2± 1.4**
2000 ppm	10.6± 1.2	10.3± 1.1	10.5± 1.2	10.6± 1.3	10.5± 1.1	10.5± 0.9	10.7± 0.9
4000 ppm	10.4± 0.8	10.4 ± 1.0	10.4 ± 0.9	10.5± 0.8	10.5± 0.7	10.4± 0.8	10.6 ± 1.0
1000							
Significant difference ;	*: P ≤ 0.05	* : P ≤ 0.01		Test of Dunnett			

Group Name Administration week-day(effective) $26-7(7)$ $36-7(7)$ $34-7(7)$ $34-7(7)$ $34-7(7)$ $34-7(7)$ $42-7(7)$ Control 10.6± 0.9 10.7± 1.1 10.6± 0.8 10.8± 0.9 11.6± 1.1 11.0± 0.9 11.0± 0.9 1000 ppm 10.4± 1.1 10.6± 0.9 10.8± 0.9 10.8± 0.9 11.2± 1.0 11.2± 1.0 11.2± 0.9* 4000 ppm 10.3± 0.8 10.4± 0.8 10.4± 0.8 10.5± 0.8 10.5± 0.8* 10.5± 0.8* 10.5± 0.8* 10.5± 0.8 Significant difference: *: P ≤ 0.05 **: P ≤ 0.01	UNIT : g REPORT TYPE : AI 104 SEX : FEMALE							PAGE:
$10.6\pm$ 0.9 $10.7\pm$ 1.1 $10.6\pm$ 0.8 $10.8\pm$ 0.9 $11.6\pm$ 1.1 $11.0\pm$ 0.8 $11.0\pm$ 0.9	roup Name	Administration 18-7(7)	week-day(effective)	26-7(7)	30-7(7)	34-7(7)	38–7(7)	42-7(7)
$10.9\pm\ 1.0$ $11.1\pm\ 1.1$ $10.8\pm\ 0.8$ $11.1\pm\ 0.7$ $11.7\pm\ 0.9$ $11.6\pm\ 1.0*$ $11.5\pm$ $1.0*$ $11.5\pm$ $1.0*$ $11.5\pm$ $1.0*$ $11.2\pm$	Control	10.6± 0.9	10.7± 1.1		10.8± 0.9		11.0± 0.8	
10.4 ± 1.1 10.6 ± 0.9 10.8 ± 0.9 10.8 ± 0.9 11.2 ± 1.0 11.2 ± 1.0 11.2 ± 1.0 11.2 ± 1.0 11.2 ± 1.0 11.2 ± 1.0 10.3 ± 0.8 10.3 ± 0.8 10.4 ± 0.8 10.5 ± 0.8 10.8 ± 0.8	1000 ррш	10.9± 1.0	11.1± 1.1				11.6± 1.0*	
$10.3\pm \ 0.8$ $10.3\pm \ 0.8$ $10.4\pm \ 0.8$ $10.5\pm \ 0.8**$ $10.5\pm \ 0.8**$ $10.6\pm \ 0.8$ $10.8\pm \ 0.08\pm \ 0.05\pm \ 0.08\pm \ 0.05\pm \ 0.08\pm \ 0.08$	2000 ppm	10.4± 1.1						
*: P ≤ 0.05 **: P ≤ 0.01	4000 ppm	10.3± 0.8						
*: P ≤ 0.05 **: P ≤ 0.01								
	Significant difference;		**: P ≤ 0.01		Test of Dunnett	7744	T T T T T T T T T T T T T T T T T T T	

REPORT TYPE : A1 104 SEX : FEMALE							PAGE :
Group Name	Administration 46-7(7)	Administration week-day(effective)	54-7(7)	58-7 (7)	(2) (2)	(1) 1-99	70-7 (7)
Control	$11.1\pm$ 0.9	11.1± 0.8	11.2± 1.1	11.5± 0.9	11.6± 0.9	11.8± 1.3	12.0± 1.4
1000 ррш	11.7± 1.0**	11.5± 0.8	11.7± 0.9*	11.7± 1.1	12.0± 1.0	12.0± 1.4	12.2± 1.1
2000 ppm	11.4± 1.1	11.1± 1.1	11.2± 1.0	11.4 ± 1.2	11.3± 1.0	11.7± 1.2	11.8± 1.2
4000 ppm	10.7 ± 0.8	10.6± 0.8**	10.8± 0.8	10.8± 0.9**	10.7 ± 1.2**	10.9± 0.9**	11.1± 1.7**
Significant difference ;	*: P ≤ 0.05 *	★ : P ≤ 0.01		Test of Dunnett			

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlJ[F344/DuCrj] UNIT : g REPORT TYPE : A1 104 SEX : FEMALE	j [F344/DuCr.j]	A A	FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS	SS (SUMMARY)			PAGE: 11
Group Name	Administration 74-7(7)	Administration week-day(effective)74-7(7)	82-7(7)	(2) 2-98	(2) 2-06	94-7(7)	(2) 2-86
Control	12.0± 1.3	11.7± 0.8	12.2± 1.4	12.4± 1.0	12.7± 1.2	12.3± 1.9	12.2#
1000 ppm	12.2± 1.2	12.3± 1.1*	12.7± 1.4	13.0± 1.4	12.8± 2.1	13.4± 1.9	
2000 ppm	12.0± 1.2	12.1± 1.2	12.2± 1.2			12.2± 1.7	
4000 ppm	11.3± 1.0*	11.3± 1.0	11.4± 0.9**	11.5± 0.8**	11.8± 0.9**		
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett	THE PARTY OF THE P		
(HAN260)	100000000000000000000000000000000000000					TOTAL CONTINUES.	BAIS 4

				PAGE: 12
Group Name	Administration 102-7(7)	Administration week-day(effective)		
Control	12.1± 2.2	12.8± 1.3		
1000 ppm	13.1± 1.6	13.4± 1.6		
2000 ppm	12.6± 1.6	12.9± 1.3		
4000 ppm	12.1± 1.4	12.3± 1.8		
Significant difference;	* : P ≥ 0.05	* : P ≤ 0.01	Test of Dunnett	

TABLE F1

HEMATOLOGY: MALE

STUDY NO. : 0610 ANIMAL : RAT F MEASURE. TIME : 1	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] TIME : 1	lj[F344/DuCr	[:		HE) AL)	HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)	JMMARY) 105W)									
SEX : MALE		REPORT TYPE : A1													PAGE:	 ເມ
Group Name	NO. of Animals	RED BLOOD 1 O ⁶ ∕ μℓ	RED BLOOD CELL 1 O ^E /µl	HEMOCLOBIN g / dl)BIN	HEMATOCRIT	RIT	MCV f 2		MCH p g		MCHC g / dle		PLATELET 1 0³∕µℓ	ET	
							177 177 177 177 177 177 177 177 177 177									
Control	33	8. 46±	1.51	$14.5 \pm$	2.8	43. 0±	7.1	51.0±	2.1	17.0±	1.0	$33.4\pm$	1.6	1017土	290	
поо 1000	42	8.09士	2.05	13.8±	3.6	41.2±	9.6	52.1±	8.5	17.2±	2.0	$33.1\pm$	2.2	$\pm 1091 \pm$	478	
2000 ppm	38	8.16±	2.03	13.8±	3.5	41.3±	9.4	51.0±	2.9	17.0±	1.1	33.3±	1.4	1029±	325	
4000 ррш	42	8.06±	2.08	13.8+	3.8	41.2±	9.7	52.3±	8.4	17.1±	1.8	33.0±	2.9	1031±	393	
Significant difference ; * : P ≦ 0.05	ifference ;	VII a₁ *		‡ : P ≤ 0.01)1			Test of Dunnett	nett	· · · · · · · · · · · · · · · · · · ·						

(HCL070)

SIUDY NO. : U610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] NFASHRF TYMF : 1	F344/DuCrlCrl	.j[F344/DuCrj]		HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)		
SEX : WALE	REPORT	REPORT TYPE : A1			PAGE :	23
Group Name	NO. of Animals	RETICULOCYTE %	TTB			
Control	33	4.37	3.6			
1000 рр	42	4.3±	% &			
2000 ppm	38		4. 5			
4000 ppm	42	5.3#	6.0			
Significant	Significant difference ;	* : P ≤ 0.05	0 0 V	Test of Dumett	most	
(HCL070)						BAIS 4

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1	344/DuCrlCr	1j[F344/DuCrj]			HEMATOLOG	HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)	λ)									
SEX : MALE	REPORT	REPORT TYPE : A1													PAGE:	··
Group Name	NO. of Animals	WBC 1 0³∕μℓ	Dif N-BAND	Differential	WBC (%)	(1	EOSINO		BASO		MONO		LYMPHO		OTHER	
Control	33	7.07± 2.23	11	1	49 ±	80	2±	1	+0	0	+1	2	42+	∞	H +I	2
1000 ррш	42	7.97 ± 9.13	1+	1	48±	12	5 + -	1	† 0	0	#1	63	40±	10	4+	12
2000 ррш	38	10.52 ± 18.47	+!	1	48 +	11	1 2	-	∓0	0	+19	63	37.±	10	+19	18
4000 ppm	42	13.37± 40.73	1 1	1	43+	10*	5 +		+10	0	+ 9	က	44±	10	1 2	17
Significant d	ifference ;	Significant difference ; * : P ≤ 0.05	** : P ≤ 0.01	0.01	Printed Annual Control		Test	Test of Dunnett	12							

(HCL070)

TABLE F2

HEMATOLOGY: FEMALE

Group Name NO. of Animals	RED BLOOD CELL $10^6/\mu\ell$	HEMOGLOBIN g / d0	HEMATOCRIT %	MCV f &		MCH pg	A THE STATE OF THE	MCHC g / dl		PLATELET 1 03/µl	T. g
Control 34	8.14 1.24	15.2± 2.1	43.2± 5.0	53.7± 5	5.0	18.8±	1.7	35.0±	2.3	720±	182
1000 ppm 35	8.18± 0.57	15.1± 1.0	43.3± 2.4	53.0 ± 1	1.5	18.5±	0.6	35.0±	8.0	730±	120
2000 ppm 43	8.34± 0.72	15.4± 1.2	43.9± 3.0	52.8± 1	1.9	18.6±	0.8	35.1±	0.7	744±	118
4000 ppm 43	8.16± 1.10	15.0± 2.2	43.2± 5.0	53.3±	4.1	18.4±	1.2	34.6±	1.8	746±	202

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] WFASHRP TYWR : 1	F344/DuCrlCrl	j[F344/DuCrj]		HEMATOLOGY (SUMMARY) ALL ANIMALS (105W)	
SEX : FEMALE	REPORT	REPORT TYPE : A1			PAGE: 5
Group Name	NO. of Animals	RETICULOCYTE %	OCYTE		
Control	34	3.8	8.8		
1000 ppm	35	3.0±	1.3		
2000 ppm	43	2.8+	1.7		
4000 ppm	43	3.9+	5.2		
Significant o	difference ;	Significant difference; *:P≤ 0.05	. 05	**: P ≤ 0.01 Test of Dunnett	
(HCL070)					BAIS 4

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1	344/DuCrlCr	rlj[F344/DuCrj]			HEMATOLOC ALL ANIMA	HEMATOLOGY (SUMMARY) ALL ANIMALS (105%)	(X)									
SEX : FEMALE		REPORT TYPE : A1													PAGE :	9
Group Name	NO. of Animals	ΨΒC 1 0³/μℓ	D N-BAND	Differential	WBC (%)		EOSINO		BASO		MONO		LYMPHO		OTHER	
Control	34	4.59± 4.38	1+	. →	39+	12	1 2	1	∓0	0	12	23	48+	14	+19	19
1000 ppm	35	3.79± 1.87	#1	1	42±	6	5+1	-	+0	0	+19	2	20 ∓	6	†1	-
2000 ppm	43	3.64± 1.58	+1	1	39±	∞	5+2	-	+0	0	+19	2	53+	∞	+1	-
4000 ppm	43	4.99 ± 5.35	+0	1	40±	12	2+	-	+0	0	+19	2	70∓	14	 	14
Significant d	lifference ;	Significant difference; *:P ≤ 0.05	‡ : P ≤ 0.01	≤ 0.01			Test c	Test of Dunnett								

(HCL070)

TABLE G1

BIOCHEMISTRY: MALE

	PAGE: 1							
	PAG	TRIGLYCERIDE mg/dl		77	107	109	154*	
		TRIGLYC mg/dl		$132\pm$	137±	159±	± 622	
		T-CHOLESTEROL mg/dl		20	71	63	127*	Accide the second
		T-CHOLI		194	212±	202∓	784∓	
			Approximation of the state of t	20	30	24	21	
		GLUCOSE mg/dl		$163\pm$	148±	157±	156±	
		RUBIN		0.02	1.30	0.13	2. 79	mett
		T-BILIRUBIN mg/d2		0.15±	0.35±	0.18±	0.59±	Test of Dunnett
(SUMMARY) 105W)		rio		0.1	0.1	0.1	0.1	A CANADA A C
BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)		A/G RATIO		0.7±	0.7土	0.7±	0.7±	
BI AL		×		0.3	0.2	0.3	0.3**	01
		ALBUMIN g / d&		2.8+	2.7±	2.7±	2.6+	*#: P ≤ 0.01
£;		TOTAL PROTEIN g/dl		0.3	0.4	0.4	0. 4	
j[F344/DuCr.	KEPUKI TYPE : AI	TOTAL P g / dl		6.7±	€.6±	6.6±	6.6±	VII
344/D	KEPOKI	NO. of Animals		33	42	38	42	fference ;
STUDY NO. : 0610 ANIMAL : RAT F3 MEASURE. TIME : 1	SEA . MALE	Group Name		Control	1000 ppm	2000 ppm	4000 ppm	Significant difference ; * : P \leq 0.05

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1	344/DuCrlCrl	[j[F344/DuCrj	0			BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	JMMARY) 5W)									
SEX : MALE	REPORT	REPORT TYPE : A1													PAGE:	2
Group Name	NO. of Animals	PHOSPHOLIPID mg/dl	LIPID	AST I U / g	ê	ALT I U / 2		LDH	6	ALP I U / 2		G-GTP I U / g		CK IU/£		
Control	ç	+396	G	1 66	9	- 0							7			
TO 171100	ŝ	₩ 007	<u> </u>	(3∓	61	77.∓	∞	163 =	6£	184±	83	+ 9	က	104±	22	
1000 ppm	42	599∓	109	138±	301	52±	95	380±	1034	198±	132	7±	4	126±	105	
2000 ppm	38	279±	83	= 26	88	38±	21	194±	215	196±	29	+6	*	121±	44	
4000 ppm	42	341±	126**	149±	427	+89	123	443±	1747	207±	149	11#	7**	141 ±	124	
				The second secon				HAMA				A STATE OF THE STA		A PROPERTY OF THE PROPERTY OF		
Significant difference ; * : P \leq 0.05	ifference ;	*: P ≤ 0.	. 05	**: P ≤ 0.01	01		•	Test of Dunnett	nett							

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrICrlj[F344/DuCrj] MEASTED TITE : 1	344/DuCrICr1	lj[F344/DuCrj	Ĺį		BI	BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	JMMARY) 5W)								
SEX : MALE		REPORT TYPE : A1													PAGE: 3
Group Name	NO. of Animals	UREA NI mg/dk	UREA NITROGEN mg/dl	CREATININE mg/d2	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	SODIUM m.Eq./l		POTASSIUM m.Eq./ &	EUM E	CHLORIDE m Eq / L		CALCIUM mg/dl	F	INORGANI mg/dl	INORCANIC PHOSPHORUS
Control	33	20.7±	3.2	0.6±	0.1	143±	1	3.7±	0.3	106±	8	10.7±	0.3	4.2±	0.5
1000 ppm	42	28.2±	16.2*	0.7±	0.2	142±	2	3.7±	0.3	105±	23	10.8±	0.5	4.5±	1.1
2000 ppm	38	23.1±	5.5	+9.0	0.1	142±	1	3.6±	0.3	105±	83	10.8±	0.4	4.3+	0.6
4000 ppm	42	26.1±	8. 2**	0.7±	0.2	142土		3.7±	0.3	105±	83	11.0±	9.0	4.5+	1.0
Significant difference ; * : P \leq 0.05	lifference ;	0		*# : P ≤ 0.01		1	I	Test of Dunnett	mett						

TABLE G2

BIOCHEMISTRY: FEMALE

STUDY NO. : 0610 ANIMAL : RAT F? MEASURE. TIME : 1	344/DuCrlCrl	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] IME : 1	ĹĹ			BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	SUMMARY) JSW)									
SEX : FEMALE	REPORT	REPORT TYPE : A1													PAGE:	4
Group Name	NO. of Animals	TOTAL P g /dl	TOTAL PROTEIN g/dl	ALBUMIN g / de	-	A/G RATIO	0]	T-BILIRUBIN mg/d2	RUBIN	GLUCOSE mg/dl		T-CHOLESTEROL mg/dl	TEROL	TRIGLYCERIDE mg/dl	ERIDE	
												-				
Control	34	6.9	0.4	3.4±	0.3	1.0±	0.1	0.16±	0.18	152±	13	154±	36	∓56	65	
1000 ppm	35	€.9	0.4	3.4±	0.3	1.0±	0.1	0.13±	0.02	149±	13	173±	55	128±	98	
2000 ppm	43	€.9	0.4	3.3±	0.4	0.9±	0.2	0.13±	0.02	148±	18	187 ±	101	134±	207	
4000 ррш	43	6.8+	0.5	3.3	0.4	0.9	0.1	0.14±	0.05	145±	26	175	2.2	112±	196	
Significant difference; *:P ≤ 0.05	fference ;)	0.05	# : P ≤ 0.01)1		To the second se	Test of Dunnett	nett							

STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] MEASURE. TIME : 1 SEX : FEMALE REPORT TYPE : A1	344/DuCrlCrl	nCrlCrlj[F344/DuCrj REPORT TYPE : Al	Ξ.		BI AL	BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	SUMMARY) 05W)								85 V Q
Group Name	NO. of Animals	PHOSPHOLIPID)LIPID	AST I U / L		ALT I U / 2		грн I U / g	Б	ALP I U / &	8	G-GTP I U / L	6	CK I U / 2	1
Control	34	264±	52	131±	154	55 ±	27	207±	148	130±	75	#I 8	1	十26	27
1000 ppm	32	$295\pm$	98	124±	65	+99	25	190 ±	56	114#	38	3	83	∓06	18
2000 ррш	43	308±	141	109±	63	47±	18	192±	77	132±	118	3+	23	91±	21
4000 ppm	43	$291\pm$	117	141 ±	122	∓19	46	232±	138	139+	102	3+	77	125±	184
Significant difference : *:P ≤ 0.05	ifference :	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	05	V a			- TANKANANA	Tret of Diversett	++						
(HCL074)					-			D7 10 2891	219111						BAIS 4

STUDY NO.: 0610 ANIMAL: RAT F: MEASURE. TIME: 1	344/DuCrlCri	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] TME : 1	Ē		BIOC ALL	BIOCHEMISTRY (SUMMARY) ALL ANIMALS (105W)	JMMARY) 5W)								
SEX : FEMALE	REPORT	REPORT TYPE : A1			٠										PAGE: 6
Group Name	NO. of Animals	UREA NI mg/d&	UREA NITROGEN mg/dl	CREATININE mg/dl	NINE	SODIUM m Eq ∕ 2	The state of the s	POTASSIUM m.Eq./2	MO C	CHLORIDE m Eq ∕ ℓ		CALCIUM mg/dl		INORGAN mg / d2	INORGANIC PHOSPHORUS
										AND		TT TT TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO	**************************************		
Control	34	18.0±	2.4	0.5	0.1	142±	1	3.3+	0.3	103±	ო	10.6±	0.3	3.8+	7.0
1000 ppm	35	18.2±	2.3	0.5±	0.0	141 ±	23	3.5±	0.4	103±	2	10.7±	0.4	3.7±	0.8
2000 ррт	43	18.7±	1.8	0.5±	0.0	141 ±	-	3.5+	0.3	103±	2	10.7±	0.5	4.0±	0.6
4000 ррш	43	19.6±	4.1	0.5±	0.1	141±	82	3.6±	0.3**	104±	23	10.6±	0.5	4.2+	1.3
Significant difference ; * : P ≦ 0.05	fference ;	* : P ≤	0. 05	** : P ≤ 0.01	01			Test of Dunnett	nett						

TABLE H1

URINALYSIS: MALE

TOWN . VIO												
Group Name	NO. of Animals	рН 5.0 6.0 6.5 7.0 7.5 8.0 8.5	0 6.5	7.0	7.5	8.0 8	8.5 CHI	Protein - ± + 2+ 3+ 4+ CHI	Glucose	Ketone body I - ± + 2+ 3+ 4+ CHI	Bilirubin - + 2+3+ CHI	I
Control	35	0 1	0	9	=======================================	8	6	0 0 0 1 27 7	35 0 0 0 0 0	33 2 0 0 0 0	34 0 0 1	
1000 ppm	42	0 0	1	12	15	2	2	0 0 1 3 33 5	42 0 0 0 0 0	41 0 1 0 0 0	42 0 0 0	
2000 ppm	41	0	0	4	16	6 1	12	0 0 0 2 33 6	41 0 0 0 0 0	40 0 0 1 0 0	41 0 0 0	
4000 ppm	42	0 1	4	4	12	8 1	13	0 0 0 0 32 10	42 0 0 0 0 0	41 0 1 0 0 0	42 0 0 0	

(HCL101)

SEX : MALE	KEFUKI .	KEFUKI IIFE - AI		PAGE:
Group Name	NO. of Animals	0ccult blood - ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+	CHI
Control	35	34 0 1 0 0	35 0 0 0 0	
1000 ppm	42	41 0 0 1 0	42 0 0 0 0	
2000 ррш	41	41 0 0 0 0	41 0 0 0 0	
4000 ppm	42	42 0 0 0 0	42 0 0 0 0	
Significant d	ifference ;	Significant difference ; *: P ≤ 0.05	* : P ≤ 0.01	Test of CHI SQUARE

TABLE H2

URINALYSIS : FEMALE

	J.	17							-					
Animals	als	5.0	5.0 €	. 5 7.	0 7.	5 8.(5.0 6.0 6.5 7.0 7.5 8.0 8.5	CHI		CHI	Glucose — ± + 2+ 3+ 4+ CHI	Ketone body — ± + 2+ 3+ 4+ CHI	Bilirubin [- + 2+ 3+ CHI	IH
Control 36	ဖ	0	0	23	2 8	20	4		0 0 2 8 12 14		36 0 0 0 0 0	19 17 0 0 0 0	35 0 0 I	
1000 ppm 37	7	0	0	2	1 2	20	4		0 1 4 4 21 7		37 0 0 0 0 0	26 10 1 0 0 0	37 0 0 0	
2000 ppm 44	4	0	0	1	8 1	25	6		0 0 2 9 17 16		44 0 0 0 0 0	28 16 0 0 0 0	44 0 0 0	
4000 ppm 45	2	0	0	7	2 5	27	10		0 0 2 8 15 20		45 0 0 0 0 0	22 23 0 0 0 0	45 0 0 0	

ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]	F344/DuCrlCrlj	[F344/DuCrj]	UKINALISIS	
SEX : FEMALE		REPORT TYPE : A1	•	PAGE:
Group Name	NO. of Animals	Occult blood - ± + 2+ 3+ CHI	Urobilinogen [± + 2+ 3+ 4+ CHI	
Control	36	34 1 0 0 1	36 0 0 0 0	
1000 ppm	37	35 0 0 1 1	37 0 0 0 0	
2000 ppm	44	43 0 0 0 1	44 0 0 0 0	
4000 ppm	45	44 0 0 0 1	45 0 0 0 0	
Significant d	difference ;	Significant difference ; *: P ≤ 0.05	** : P ≤ 0.01	Test of CHI SQUARE
(HCL101)	THE PROPERTY OF THE PROPERTY O	The state of the s		

TABLE J1

ORGAN WEIGHT, ABSOLUTE: MALE

oea . male UNIT: g														PAGE:
Group Name	NO. of Animals	Body Weight	eight	ADRENALS	AALS	TESTES	స	HEART		LUNGS		KIDNEYS	YS	
Control	33	394±	34	0.080±	0.036	4. 292±	1. 454	1. 225±	0.091	1.385±	0.079	2.774±	0.226	
1000 ррш	42	379±	37	$0.102\pm$	0. 185	3. 793±	0.967	1.238±	0.173	1.422±	0.173	2.904±	0.476	
2000 ррш	88	377±	39	0.075±	0.037	$4.511\pm$	1. 177	1.190±	0.073	1.501±	0.230*	2.845±	0.282	
4000 ppm	42	368±	33**	0.069±	0.009	5.362±	2.889	1.200±	0.110	1.500±	0.229**	3.087±	0.748**	

PAGE: 2						BAIS 4
ORGAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)	BRAIN	2.107 ± 0.047	2.101± 0.048	2.104 ± 0.049	2.086± 0.037	Test of Dunnett
ORGAN WI SURVIVA	LIVER	11.452± 1.325	11.920± 1.450	11.993 ± 1.796	12. 577 ± 2. 009	** : P ≤ 0.01
[j[F344/DuCr.j]	SPLEEN	1.035士 0.219	1.476 ± 1.965	1.212 ± 0.406	1.455± 1.529	. P № 0.05
STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE UNIT: g	Group Name NO. of Animals	Control 33	1000 ppm 42	2000 ppm 38	4000 ppm 42	Significant difference ; (HCL040)

TABLE J2

ORGAN WEIGHT, ABSOLUTE: FEMALE

!	PAGE:				
	KIDNEYS	1.836± 0.168	1.906± 0.159	1.873± 0.211	1.856± 0.143
	LUNGS	0.997± 0.227	0.968± 0.063	0.983± 0.080	1.058 ± 0.389
	HEART	0.875± 0.069	0.882± 0.062	0.862± 0.082	0.841± 0.079
ORCAN WEIGHT:ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (105W)	OVARIES	0.122 ± 0.023	0.120± 0.016	0.144± 0.115	0.141± 0.079
ORGAN WE SURVIVAL	ADRENALS	0.071± 0.025	0.071± 0.022	0.101 ± 0.237	0.075± 0.050
344/bucr j]	Body Weight	257± 30	272± 26	260± 26	238± 24**
344/DuCrlCrlj[F	NO. of Animals	34	35	43	43
STUDY NO. : 0610 ANTMAL : RAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE	Group Name	Control	1000 ppm	2000 ppm	4000 ppm

Test of Dunnett

** : P ≤ 0.01

Significant difference ; * : P \leq 0.05

(HCL040)

UNIT: g		NEFOR LIFE - AL SEX : FEMALE UNIT: &		- PAGE
Group Name No	NO. of Animals	SPLEEN	LIVER	BRAIN
Control	34	0.874± 1.613	6.976± 1.552	1.914± 0.046
1000 ppm	35	0.591 ± 0.250	7.350± 1.121	1.906± 0.040
2000 ppm	43	0.596± 0.238	7.038± 1.400	1.908 ± 0.040
4000 ppm	43	0.675± 0.478	6.982± 1.209	1.890± 0.035
Significant difference ;		* : P ≤ 0.05 ** :	* *: P ≤ 0.01	Test of Dunnett

TABLE K1

ORGAN WEIGHT, RELATIVE : MALE

	PAGE:					
	KIDNEYS	0.708± 0.070	0.782± 0.236	0.764± 0.130*	0.845± 0.218**	
	LUNGS	0.353± 0.023	0.379± 0.071	0.404± 0.090**	0.411± 0.083**	
(X	HEART	0.312± 0.025	0.330± 0.059	0.319 ± 0.041	0.328± 0.039	Test of Dunett
ORCAN WEIGHT:RELATIVE (SUMMARY) SURVIVAL ANIMALS (105W)	TESTES	1.108± 0.442	$1.004\pm\ 0.254$	1.202 ± 0.305	1.433± 0.728**	Tes
ORGAN Y SURVIV	ADRENALS	0.021± 0.011	0.027 ± 0.051	$0.020\pm\ 0.010$	0.019 ± 0.004	* : P ≤ 0.01
[F344/DuCr.j.]	Body Weight (g)	394± 34	379± 37	377± 39	368± 33**	* : P ≤ 0.05 *
F344/DuCrlCrlj	NO. of Animals	33	42	38	42	Significant difference ;
STUDY NO. : 0610 ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj] REPORT TYPE : A1 SEX : MALE	UNIT: % Group Name	Control	1000 ppm	2000 ppm	4000 ppm	Significant

BAIS 4

73

(HCL042)

	BRAIN	0.539± 0.044	$0.560\pm \ 0.063$	0.565± 0.073	· 0.571± 0.056*	Test of Dunnett	
	LIVER	2.909士 0.234	3.173± 0.522*	3.193± 0.459**	3.425± 0.525**	**: P ≤ 0.01	
	SPLEEN	0.263± 0.050	$0.408\pm\ 0.615$	0.324± 0.107*	0.403± 0.466**	*: P ≤ 0.05	The state of the s
	NO. of Animals	33	42	38	42	ifference ;	
SEX : MALE UNIT: %	Group Name	Control	1000 ррш	2000 ppm	4000 ppm	Significant difference;	(HCL042)

TABLE K2

ORGAN WEIGHT, RELATIVE : FEMALE

() () 26 26 24**	ANIMAL : KAT F344/DuCr1Cr1j[F344/DuCrj] REPORT TYPE : A1 SEX : FEMALE UNIT: %	F344/ DuCr1Cr1_	[F344/Ducr]]	AT ANDO	SOLVIYAL AVARALES (1038)				PAGE: 3
$257\pm 30 \qquad 0.029\pm 0.019 \qquad 0.048\pm 0.010 \qquad 0.345\pm 0.051 \qquad 0.394\pm 0.111$ $272\pm 26 \qquad 0.026\pm 0.007 \qquad 0.045\pm 0.008 \qquad 0.327\pm 0.030 \qquad 0.359\pm 0.036$ $260\pm 26 \qquad 0.040\pm 0.099 \qquad 0.056\pm 0.046 \qquad 0.332\pm 0.024 \qquad 0.380\pm 0.033$ $238\pm 24** \qquad 0.034\pm 0.037 \qquad 0.059\pm 0.030** \qquad 0.356\pm 0.029** \qquad 0.450\pm 0.174**$ $*: P \leq 0.05 \implies *: P \leq 0.01$ Test of Dunnett	Group Name	NO. of Animals	Body Weight (g)	ADRENALS	OVARIES	HEART	TUNGS	KIDNEYS	
$272\pm 26 \qquad 0.026\pm 0.007 \qquad 0.045\pm 0.008 \qquad 0.327\pm 0.030 \qquad 0.359\pm 0.036$ $260\pm 26 \qquad 0.040\pm 0.099 \qquad 0.056\pm 0.046 \qquad 0.332\pm 0.024 \qquad 0.380\pm 0.033$ $238\pm 24** \qquad 0.034\pm 0.037 \qquad 0.059\pm 0.030** \qquad 0.356\pm 0.029** \qquad 0.450\pm 0.174**$ $*: P \leq 0.05 \qquad **: P \leq 0.01$ Test of Dunnett	Control	34		$0.029\pm\ 0.019$	0.048± 0.010	0.345± 0.051	$0.394\pm\ 0.111$	0.728± 0.150	
$260\pm 26 \qquad 0.040\pm 0.099 \qquad 0.056\pm 0.046 \qquad 0.332\pm 0.024 \qquad 0.380\pm 0.033$ $238\pm 24** \qquad 0.034\pm 0.037 \qquad 0.059\pm 0.030** \qquad 0.356\pm 0.029** \qquad 0.450\pm 0.174**$ $*: P \leq 0.05 \implies : P \leq 0.01$ Test of Dunnett	1000 ppm	35		0.026± 0.007	0.045土 0.008	0.327 ± 0.030	0.359± 0.036	0.706 ± 0.071	
$238\pm$ $24**$ $0.034\pm$ 0.037 $0.059\pm$ $0.030**$ $0.356\pm$ $0.029**$ $0.450\pm$ $0.174**$ $*: P \leq 0.05$ $**: P \leq 0.01$ Test of Dunnett	2000 ppm			$0.040\pm\ 0.099$	$0.056\pm\ 0.046$	0.332± 0.024	$0.380\pm\ 0.033$	0.721 ± 0.052	
*: P ≤ 0.05 **: P ≤ 0.01	4000 ppm			$0.034\pm\ 0.037$	0.059± 0.030**	0.356± 0.029**	0.450± 0.174**	0.788± 0.096**	
	Significant	difference ;	* : P ≤ 0.05	* : P ≤ 0.01	Test	of Dunnett			

Group Name NO. of Animals SPLEEN LIVER BRAIN Control 34 0.353± 0.683 2.755± 0.743 0.756± 0.100 1000 ppm 35 0.219± 0.091 2.719± 0.430 0.708± 0.065 2000 ppm 43 0.228± 0.083 2.697± 0.391 0.741± 0.078 4000 ppm 43 0.286± 0.204 2.950± 0.486** 0.805± 0.097** Significant difference; * : P ≤ 0.05 ** : P ≤ 0.01 Test of Dunnett	Group Name NO. of Animals				PAGE: 4
0.353 \pm 0.693 2.755 \pm 0.743 0.756 \pm 0.100 0.219 \pm 0.991 2.719 \pm 0.430 0.708 \pm 0.065 0.228 \pm 0.083 2.697 \pm 0.391 0.741 \pm 0.078 0.286 \pm 0.204 2.950 \pm 0.486** 0.805 \pm 0.097** * : P \leq 0.05 ** : P \leq 0.01		SPLEEN	LIVER	BRAIN	
0.219 ± 0.091 2.719 ± 0.430 0.708 ± 0.065 0.228 ± 0.083 2.697 ± 0.391 0.741 ± 0.078 0.286 ± 0.204 $2.950\pm0.486**$ $0.805\pm0.097**$		$0.353\pm\ 0.693$	2.755± 0.743	$0.756\pm\ 0.100$	
0. 228 \pm 0. 083 2. 697 \pm 0. 391 0. 741 \pm 0. 078 0. 286 \pm 0. 204 2. 950 \pm 0. 486** 0. 805 \pm 0. 097***		0.219± 0.091	2.719± 0.430	0.708± 0.065	
0.286± 0.204 2.950± 0.486** 0.805± 0.097*** * : P ≤ 0.05 ** : P ≤ 0.01		$0.228\pm\ 0.083$	$2.697\pm\ 0.391$	$0.741\pm\ 0.078$	
*: P ≤ 0.05		$0.286\pm\ 0.204$	2.950± 0.486**	0.805± 0.097**	
			P ≤ 0.01	Test of Dunnett	

TABLE L1

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : MALE

ALL ANIMALS

(HPT150)

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : A1 : MALE	HIS	HISTOPATHOLOGICAL FINDINGS : ALL ANIMALS (0-105W)	ISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) L ANIMALS (0-105%)		PAGE: 1
Organ	Findings.	Group Name No. of Animals on Study Grade	control 50 (%) (%) (%) (%)	1000 ppm 50 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%)
{Integumentary skin/app	[Integumentary system/appandage] skin/app basal cell hyperplasia	Ü	<pre></pre>	(0) (0) (0) (0) 0 0 0 0 (0) (0) (0)	<50> 0 1 0 (0) (2) (0) (0)	<00 (0) (0) (0) (0) (0) (0) (0) (
	fibrosis:focal	J	(0)(2)(0)(0)			(0)(2)(0)
	sebaceous hyperplasia		1 0 0 0 (2) (2) (3) (4)	0 1 0 0 (0) (0) (0) (0)		
(Respiratory system) nasal cavit thro	system} thrombus		<50> 0 1 0	(50) 0 0 0	06	
	eosinophilic change:olfactory epithelium		17 0 (34) (0) (24 1 (48) (2) (27 0 (54) (0) (
	eosinophilic change:respiratory epithelium		19 0 0 0 0 (38) (38) (0) (0) (0)	18 0 0 0 (36) (36) (36) (36)	29 1 0 0 (58) (2) (0) (0)	30 3 0 0 **
	inflammation:foreign body		15 1 0 0 (30) (2) (0) (0)	15 1 0 0 (30) (2) (0) (0)	13 1 0 0 (26) (26) (2) (0) (0)	8 1 0 0 (16) (2) (0) (0)
Grade 1 : Slight <a> a : Number b b : Number (c) c : b / a * Significant difference;	1: Slight 2: Moderate 3: has a :Number of animals examined at the site b : Number of animals with lesion c: b / a * 100 ifference; $*$: P \leq 0.05 **: P \leq 0.07	farked 4:9	Severe			

REPORT TYPE : SEX	: A1 : WALE					PAGE :
Organ	Gro No. Gra Findings	Group Name No. of Animals on Study Grade (%) (Control 50 2 3 4 (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Respiratory system)	system}					
nasal cavit	inflammation:respiratory epithelium	0 0	<50> 0 0 0 0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 (0) (0)	<50> (0) (0) (0) (0) (0)	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	respiratory metaplasia:olfactory epithelium	1 (2) ((0) (0) (0 0 0			1 0 0 0 (2) (2) (3) (4) (4)
	respiratory metaplasia:gland	6) (81)	(0) (0) (0 0 0	8 0 0 0 0 (16) (16) (16) (16) (16) (16) (16) (16)	12 0 0 0 (24) (34) (0) (0) (0)	13 1 0 0 (26) (26) (2) (0) (0)
	squamous cell metaplasia:respiratory epithelium	1 (2) ((0) (0) (0 0 0	(0)(0)(0)(0)(0)		
larynx	inflammatory infiltration	0	(0) (0) (0 0 0 0 20\$	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) (0) (0) (0)
trachea	inflammatory infiltration	0 0	<50> 0 0 0 0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 000
lung	hemorrhage) (0)	<50> 1 0 0 2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 000
Grade 1 : Slight <a> a : Number b b : Number (c) c : b / a > Significant difference :	2: Moderate of animals examined at the of animals with lesion 100	3: Marked 4: Severe site				

(SUMMARY)	
FINDINGS : NON-NEOPLASTIC LESIONS	
HISTOPATHOLOGICAL FINDING	ALL ANIMALS (0-105W)

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCr1Cr1j[F344/DuCrj] : A1 : MALE	HISTOPAT ALL ANIM	HOLOCICAL FINDINGS :N ALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE: 3
Organ	Findings	Group Name No. of Animals on Study Grade 1 (%)	Control 50 2 3 4 (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%)
(Respiratory system)	system)					
lung	едета	0 0	<50> 1 0 0 (2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 <09>
·	inflammatory infiltration	0	(0) (0) (0)		0 1 0 0 (0) (0) (0) (0)	(0)(0)(0)(0)
	bronchiolar-alveolar cell hyperplasia	ia 4 (8)		4 0 0 0 0 (8) (8) (9) (9)	2 0 0 0 (4) (4) (6) (6) (6)	1 1 0 0 (2) (2) (3) (6)
{Hematopoietic system}	c system}					
bone marrow	granulation	1 (2)	(20) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 3 1 0 0 (6) (2) (0) (0)
	increased hematopoiesis	0)	1 0 0 (2) (2) (3) (4)	3 2 0 0 (6) (7) (9) (9)	3 2 0 0 (6) (6) (7) (7)	3 3 0 0 (9) (9) (9)
	granulopoiesis:increased	0)	(0) (0) (0)			1 0 0 0 (2) (2) (0) (0)
lymph node	lymphadenitis	0)	<50> (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 0 1 0 (0) (2) (0) (0)	<05> <60> (0) (0) (0) (0)
Grade 1 : Slight <a>> a : Number b b : Number (c) c : b / a * Significant difference :	1: Slight 2: Moderate 3: 1 a : Number of animals examined at the site b: Number of animals with lesion $c:b/a*100$ ifference; $*:P \le 0.05$ **: $P \le 0.05$	3: Marked 4: Severe site ≤ 0.01 Test of Chi Square	0 0			

STUDY NO. ANIMAL REPORT TYPE		HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		
SEX	: MALE				PAGE: 4
		Control 50	1000 ppm 50	2000 ppm 50	4000 ppm 50
Organ	Findings	(%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%)	(%) (%) (%)	(%) (%) (%)
(Hematopoie	(Hematopoietic system)				
spleen	atrophy	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0) (0) (0) (0) 0 0 0 0 0 <05>
	congestion	0 1 0 0 (0) (2) (0) (0)	0 2 0 0 (0) (4) (0) (0)	0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 0 0 (2) (2) (6) (0) (0)
	deposit of hemosiderin	3 0 0 0 0 (0) (0) (0) (0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 (2) (3) (4) (4)	4 1 0 0 (8) (2) (0) (0)
	fibrosis				0 1 0 0 (0) (0) (0)
	extramedullary hematopoiesis	0 3 0 0 (0) (0) (0) (0)	3 1 0 0 (6) (2) (0) (0)	5 1 0 0 * (10) (2) (0) (0)	4 4 0 0 (8)(8)(0)(0)
(Circulatory system)	y system)				
heart	thrombus	(0) (0) (0) (0) (0) (0)	(0)(0)(0)(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0) (0) (0) (0) 0 0 0 0 0 0 0 0
	mineralization			0 2 0 0 (0) (4) (0) (0)	
Grade < a > b	1: Slight 2: Moderate a: Number of animals examined at the b: Number of animals with lesion	3 : Marked 4 : Severe the site			
(c) Significant	(c) c: b/a * 100 Significant difference; $*:P \le 0.05$ **:	: P ≤ 0.01 Test of Chi Square			

★ : P ≤ 0.01

(HPT150)

4 : Severe

3 : Marked

(SUMMARY)	
:NON-NEOPLASTIC LESIONS (SUMM	
HISTOPATHOLOGICAL FINDINGS :	ALL ANIMALS (0-105W)

STUDY NO. : 0610 ANIMAL : RAT REPORT TYPE : A1 SEX : MALE	: 0610 : RAT F344/DuCr1Cr1;[F344/DuCr.j] : A1 : MALE	HISTOPATHOLOGICAL FINDINGS :N ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-1059)		PAGE : 5
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade	1000 ppm 50 3 4 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%) (%)	4000 ppm 50 (%) (%) (%) (%)
{Circulatory system}	system)				
heart	myocardial fibrosis	<50> 15 0 0 0 (30) (0) (0) (0)	<50> 16 0 0 0 (32) (0) (0) (0)	<50> 19 0 0 0 (38) (0) (0) (0)	(50) 15 0 0 0 (30) (0) (0) (0)
	subendocardial fibrosis			1 0 0 0 (2) (2) (3) (4)	
artery/aort	mineralization	(0)(0)(0)(0) (0)(0)(0) (0)(0)(0)	<pre></pre>	<50> 0 2 0 0 (0) (4) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 <05>
(Digestive system)	stem)				
tooth	cyst	(0) (0) (0) (0) 0 0 0 0 <02>	(0)(0)(0)(0) 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 (0) (0) (0)
tongue	squamous cell hyperplasia	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0	<pre></pre>	<50> 0 0 0 0 (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0
	arteritis		2 0 0 0 (4) (4) (6) (6)	2 0 0 0 (4) (4) (6) (6)	(0)(0)(0)(0)

4 : Severe

3 : Marked

Grade 1: Slight 2: Moderate 3: Marked $\langle a \rangle$ a : Number of animals examined at the site b : Number of animals with lesion (c) c: b/a*100 Significant difference; *: P \leq 0.05 **: P \leq 0.01

HISTOPATHOLOGICAL FINDINGS :NON-NEOF ALL ANIMALS (0-105W)	NON-NEOPLASTIC LESIONS (SUMMARY)	
	HISTOPATHOLOGICAL FINDINGS : NON-NEOPI	ANTMALS (0

STUDY NO. ANIMAL REPORT TYPE : SEX	: 0510 : RAT F344/DuCrlCrlj[F344/DuCrj] : A1 : MALE	HISTOPATHOLOGICAL FINALL (0-105)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE : 6
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 (%) (%) (%)	1 1000 ppm 50 4 4 1 2 3 4 4 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive system}	stem)				
stomach	mineralization	<05> (0) (0) (0) (0) (0) (0)	(50) (0) (0) (0) (0) (0) (0) (0)	<50> 0 2 0 (0) (4) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 (0) (0) (0)
	ulcer:forestomach		0 1 1 0 0 0 0 0 (2) (2) (0) (0)	1 0 0 0 (2) (2) (3) (4)	(0)(0)(0)(0)
	hyperplasia:forestomach	0 0 0	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 (4) (4) (6) (6)	
	erosion:glandular stomach	2 0 0 (4) (4) (6) (7) (7)	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 (9)	6 0 0 0 (12) (12) (13) (14) (15) (15)
	ulcer:glandular stomach		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	hyperplasia:glandular stomach	0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 (0) (0) (0) (0)	
small intes	inflammatory infiltration	<50> 0 0 0 (0) (0) (0)	(0) (0) (0) (0) (0) 0 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)	<50> (0) (0) (0) (0) (0)
	hyperplasia	0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(0) (0) (0) (0)
			Administration of the second s	- A STATE OF THE S	The state of the s

Grade 1: Slight 2: Moderate 3: Marked 4: Severe $\langle a \rangle$ a : Number of animals examined at the site b : Number of animals with lesion (c) c: b/a*100 Significant difference : *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square

(SUMMARY)	
:NON-NEOPLASTIC LESIONS (
HISTOPATHOLOGICAL FINDINGS :N	ALL ANIMALS (0-105W)

STUDY NO. : 061 ANIMAL : RAT REPORT TYPE : A1 SEX : MAL	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : A1 : MALE	HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE : 7
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%) (%) (%)	2000 ppm 50 (%) (%) (%) (%) (%)	4000 ppm 50 (%) (%) (%) (%)
{Digestive system}	tem}				
large intes	inflammatory infiltration	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)	(6) (0) (0) (0) (0)
liver	herniation	3 0 0 0 (0) (0) (0) (0)	<50> 8 0 0 0 (16) (0) (0) (0)	<50> 7 0 0 0 (14) (0) (0) (0)	<50> 2 0 0 0 (4) (0) (0) (0)
	necrosis:central	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 (2) (2) (3) (4)	0 1 0 0 (0) (0) (0) (0)	2 1 0 0 (4) (5) (7) (7)
	necrosis:focal	2 0 0 0 (4) (0) (0) (0)	1 0 0 0 (2) (2) (3) (4)		1 1 0 0 (2) (2) (3) (6)
	fatty change:peripheral	(0)(0)(0)(0)	0 1 0 0 (0) (0) (0) (0)	(0)(0)(0)(0)(0)	
	granulation	7 0 0 0 (14) (14) (15) (15) (15)	9 0 0 0 0 (18) (18) (19) (19) (19)	8 0 0 0 0 (16) (16) (0) (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	clear cell focus	5 0 0 0 (10) (10) (10) (10) (10)	10 0 0 0 (20) (20) (30) (30)	7 0 0 0 0 (14) (14) (15) (15)	9 1 0 0 (18) (18) (2) (0) (0)
	acidophilic cell focus	(2) (0) (0) (0)	(2)(0)(0)		(8)(0)(0)(0)

Grade 1: Slight 2: Moderate 3: Marked 4: Severe $\langle a \rangle$ a : Number of animals examined at the site b : Number of animals with lesion (c) c: b/a*100 Significant difference : *: P \leq 0.05 **: P \leq 0.01 Test of Chi Square

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : Al : MALE	HISTOPATHOLOGICAL FINDINGS :1 ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE : 8
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 3 4 (%) (%) (%) (%)
(Digestive system)	stem)				
liver	basophilic cell focus	<50> 5 1 0 0 (10) (2) (0) (0)	<50> 4 0 0 (8) (0) (0) (0)	<50> 3 0 0 0 (6) (0) (0) (0)	<50> 6 3 0 0 (12) (6) (0) (0)
	mixed cell focus			0 1 0 0 (0) (0) (0) (0)	1 0 0 0 (2) (2) (3) (4)
	spongiosis hepatis	2 0 0 0 (4) (4) (0) (0)		1 1 0 0 (2) (2) (2) (0) (0)	2 0 0 0 (4) (4) (0) (0) (0)
	bile duct hyperplasia	3 45 0 0 (9) (9) (0) (0)	1 48 0 0 (2) (96) (0) (0)	4 45 0 0 (8) (90) (0) (0)	0 47 0 0 (0) (0) (0)
	biliary cyst				0 1 0 0 (0) (0) (0)
pancreas	atrophy	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\langle 50 \rangle$ 27 1 0 0 (54) (2) (0) (0)	<pre></pre>	<50> 19 5 1 0 (38) (10) (2) (0)
	inflammatory infiltration			0 1 0 0 (0) (0) (0) (0)	
	arteritis		(0)(0)(0)(0)	0 1 0 0 (0) (0) (0) (0)	(0) (0) (0) (0) (0) 0 0

(SUMMARY)	
:NON-NEOPLASTIC LESIONS	
HISTOPATHOLOGICAL FINDINGS :	ALL ANIMALS (0-105W)

STUDY NO. ANIMAL REPORT TYPE : SEX	: 0610 : RAT F344/DuCrICrlj[F344/DuCrj] : A1 : MALE	HISTOPA ALL ANI	THOLOGICAL FINDINGS :NO MALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE: 9
Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 50 2 3 4 (%) (%) (%)	1000 ppm 50 x 4 x (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Digestive system) pancreas	stem) islet cell hyperplasia	1 (2)	(0) (0) (0) 0 0 0 0 <0\$>	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0 0
{Urinary system} kidney	em) deposit of hemosiderin	0 0	<50> 1 0 0 (2) (0) (0)	(0)(0)(0)(0)	<50> 0 1 0 (0) (2) (0) (0)	(5) (2) (0) (0)
	scar	(0)	1 0 0 (2) (2) (3) (4)			
	chronic nephropathy	14 (28)	23 8 1 (46) (16) (2)	14 23 8 5 (28) (46) (16) (10)	12 24 9 5 (24) (48) (18) (10)	7 24 14 2 (14) (48) (28) (4)
	tubular necrosis	(0) 0	(0)(0)(0)		0 1 0 0 (0) (0) (0)	
	mineralization:papilla	(O)	(0)(0)(0)	(0)(0)(0)(0)(0)		1 0 0 0 (2) (2) (3) (4)
	urothelial hyperplasia:pelvis	(6) 0	(0)(0)(0)	1 0 0 0 (2) (2) (0) (0) (0)	1 0 0 0 (2) (2) (3) (4)	1 0 0 0 (2) (2) (3) (3)
Grade 1 : Slight <a> a : Number b b : Number (c) c : b / a * Significant difference;	1: Slight 2: Moderate 3: N a : Number of animals examined at the site b : Number of animals with lesion c: b / a * 100 lifference; *: P ≤ 0.05 **: P ≤ 0.	3: Marked 4: Severe site ≥ 6.01 Test of Chi Square	o Pg			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#)

STUDY NO. ANIMAL REPORT TYPE SEX	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : A1 : MALE	HISTO ALL A	HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE : 10	
Organ	Findings	Group Name No. of Animals on Study Grade	Control 50 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 3 4 (%) (%) (%) (%)	4000 ppm 50 3 4 (%) (%) (%) (%)	
{Urinary system} kidney	tem) atypical tubule hyperplasia		(0) (0) (0) (0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 <20>	(50) 2 0 0 0 (4) (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 <20>	
	dilated pelvis		0 0 0 0 0		0 1 0 0 (0) (0) (0)		
urin bladd	simple hyperplasia:transitional epithelium		<pre></pre>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	papillary hyperplasia:transitional epithelium			0 1 0 0 (0) (0) (0) (0)		1 0 0 0 (2) (2) (3) (4)	
{Endocrine system} pituitary	ystem) angiectasis		<pre></pre>	(6) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) 0 0 0 0 <0\$>	(0) (0) (0) 0 0 0 0 0 0 0 0	•
	hyperplasia		1 0 (2) (3) (6 5 0 (12) (10) (0) (2 0 (4) (0) (2 0 (4) (0) (
Grade < a > b	Grade 1: Slight 2: Moderate 3 < a > a: Number of animals examined at the s b : Number of animals with lesion (c) c:b/a*100 Significant difference; *:P≦0.05 **:P≦	3: Marked 4: Severe site ≤ 0.01 Test of Chi Square	Severe Square				
(HPT150)						BAIS4	

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCr1Cr1j[F344/DuCrj] : A1 : MALE	HIS	HISTOPATHOLOGICAL FINDINGS :1 ALL ANIMALS (0-105#)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#)		PAGE: 11
Organ	Findings	Group Name No. of Animals on Study Grade	dy 50 Control 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%) (%)	2000 ppm 50 (%) (%) (%) (%)	4000 ppm 50 (%) (%) (%) (%)
{Endocrine system}	/stem}		(2 <u>0</u> 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(9)	(UZ)
	Rathke pouch		8) (0) (0) (0)	3 0 0 0 (0) (0) (0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 0 0 (4) (4) (6) (6) (6)
thyroid	ultimibranchial body remanet		<50> 1 0 0 0 2) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 <05>	(0)(0)(0)(0) 0 0 0 0 0 0 0 0
	C-cell hyperplasia	•	15 4 0 0 30) (8) (0) (0)	7 3 0 0 (14) (6) (0) (0)	13 2 0 0 (26) (26) (4) (0) (0)	10 1 0 0 (20) (20) (2) (0) (0)
	focal follicular cell hyperplasia	Š	1 0 0 0 0 2) (0) (0) (0)		1 0 0 0 (2) (2) (0) (0)	
parathyroid	hyperplasia	J	<50> (0) (0) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0	<50> 2 0 0 0 (4) (0) (0) (0)	(0)(0)(0)(0) (0)(0)(0) (0)(0)(0)
adrenal	hyperplasia:medulla		<50> 0 1 0 0 0) (2) (0) (0)	<50> 3 4 0 0 (6) (8) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 0 1 0 0 (0) (2) (0) (0)
	focal fatty change:cortex	Š	1 0 0 0 0 2) (0) (0) (0)	(0) (0) (0) (0) . 0 0 0 0	0 1 0 0 (0) (0) (0) (0)	1 0 0 0 (2) (2) (0) (0) (0)
Grade 1 : Slight <a> a : Number b b : Number (c) c : b/a* Significant difference;	1 : Slight 2 : Moderate 3 :) a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 a : P \leq 0.05 **: P \leq 0.05	<pre>farked 4:5 01 Test of Chi</pre>	Severe			

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlj[F344/DuCrj] : Al : MALE	HISTOPATHOLOGICAL FINDIN ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	C	PAGE: 12
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade (%) (%) (%) (%) (%) (%)	1000 ppm 50 (%) (%) (%) (%) (%)	2000 ppm 50 3 4 (%) (%) (%) (%)	4000 ppm 50 (%) (%) (%) (%)
(Reproductive system)	s system)				
testis	mineralization	<50> 1 0 0 0 (2) (0) (0) (0	<pre></pre>	<50> (0) (0) (0) (0) (0)	<50> 2 0 0 (4) (0) (0) (0)
	arteritis	(2) (0) (0) (0	0) 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 (2) (3) (4) (5)	1 0 0 0 (2) (2) (3) (4) (4)
	interstitial cell hyperplasia	6 1 0 0 (12) (2) (0) (0	0) (0)(0)(0)(0)	10 0 0 0 (20) (20) (0) (0)	3 0 0 0 0 (9) (9)
semin ves	inflammation	<05> (50) (0) (0) (0) (0)	(0) (0) (0) (0) (0 0 0 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> 0 1 0 0 (0) (2) (0) (0)
prostate	inflammation	(50) 0 1 0 0 (0) (2) (0) (0	(0) (0) (9) (0) 0	<pre></pre>	<50> 0 0 1 0 (0) (0) (2) (0)
	hyperplasia	7 0 0 0 (14) (14) (15) (15) (15)	0 13 0 0 0 0) (26) (0) (0) (0)	9 3 0 0 (18) (6) (0) (0)	11 0 0 0 (22) (22) (0) (0) (0)
(Special sens	(Special sense organs/appendage)				
eye	squamous cell metaplasia	<50> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0	<pre></pre>	<50> 1 0 0 0 (2) (0) (0) (0)
Grade 1 : Slight <a>a> a : Number b b : Number (c) c : b / a > Significant difference :	2 : Moderate of animals examined at of animals with lesion 100 *:P ≤ 0.05 ***	3: Marked 4: Severe the site : P ≤ 0.01 Test of Chi Square			

(SUMMARY)	
:NON-NEOPLASTIC LESIONS (SUMM	
HISTOPATHOLOGICAL FINDINGS :	ALL ANTWALS (0-105W)

STUDY NO. : 061 ANIMAL : RAT REPORT TYPE : A1 SEX : MAL	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : Al : MALE	HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	C	PAGE: 13
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%)
(Special sense	(Special sense organs/appendage)				
eye	cataract	<50> 2 0 0 0 (4) (0) (0) (0)	<50> 4 0 0 0 (8) (0) (0) (0)	<50> 5 0 0 0 (10) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)
	retinal atrophy	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4 0 0 (0) (0) (0)	0 3 1 0 (0) (6) (2) (0)	1 6 0 0 (2) (12) (0) (0)
	keratitis			0 1 0 0 (0) (0) (0) (0)	
	mineralization:cornea		1 0 0 0 (2) (2) (3) (4) (4)		(0)(0)(0)(0)(0)
nasolacr d	inflammation	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0	<00 (0) (0) (0) (0) (0) (0) (0)	<50> 0 1 0 (0) (2) (0) (0)	<pre></pre>
{Musculoskeletal system}	tal system}	(O5)	<0 5 >	< 5 00>	(50)
	ostitis fibrosa			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Grade 1 : Slight	1: Slight 2: Moderate 3: 1 a : Number of animals examined at the site b : Number of animals with lesion c: b / a * 100 ifference; $*: P \le 0.05$ **: $P \le 0.05$	3: Marked 4: Severe ne site P ≤ 0.01 Test of Chi Square			

HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)	ALL ANIMALS (0-105W)		
STUDY NO. : 0610	ANIMAL : RAT F344/DuCrlCrlj[F344/DuCrj]	REPORT TYPE : A1	

OrganFindings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Musculoskeletal system)				
bone osteosclerosis	<20> 0 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 0 0 0 0 0 0 0 0 0 0	<50> 0 0 1 0 (0) (0) (2) (0)	(0)(0)(0)(0) 0 0 0 0 (0)(0)(0)
(Body cavities)				
peritoneum inflammation	<50> 0 0 0 0 (0) (0) (0)	(50) (0) (0) (0) (0)	<50> 0 0 1 0 (0) (0) (2) (0)	(0)(0)(0)(0) 0 0 0 0 0 0 0 0
mesothelial hyperplasia				2 0 0 0 (4) (4) (6) (7)
Grade 1: Slight 2: Moderate 3: Standard at the site b : Number of animals examined at the site b : Number of animals with lesion c: b/a*100	3 : Marked 4 : Severe site			

BAIS4

TABLE L4

HISTOPATHOLOGICAL FINDINGS:

NON-NEOPLASTIC LESIONS : FEMALE

ALL ANIMALS

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANTMALS $(0\!-\!105\%)$

STUDY NO. : 0610
ANIMAL : RAT F344/DuCrlj[F344/DuCrj]
REPORT TYPE : A1
SEX : FEMALE

15	
AGE:	4 8
a.	4000 ppm 50 3 4 (%) (%) (%)
	50 (%)
	(%)
	2pm 4 (%)
	2000 ppm 50 2 3 4 (%) (%) (%)
	88
	1 (%)
	# 36
	1000 ppm 50 3 4 (%) (%)
	100 50 2 %) (%
	1 (%) (%)
	1 (%)
	Control
	50 2 (%)
	udy 1 (%)
	on Str
	Group Name No. of Animals on Study Grade (%
	Findings
: FEMALE	Findi
EX)rgan

	Group Name No. of Animals on Study	Control 50	1000	2000 ppm 50	4000 ppm 50
Organ	Grade Findings	(9)	$\frac{1}{(\%)}$ $\frac{2}{(\%)}$ $\frac{3}{(\%)}$ $\frac{4}{(\%)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 (%) (%) (%) (%)
{Integumentar	[Integumentary system/appandage]				
subcutis	epidermal cyst	<pre></pre>	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<pre></pre>	<pre></pre>
(Respiratory system)	system)				
nasal cavit	thrombus	<pre></pre>	<pre></pre>	<pre></pre>	\$\\ \frac{50}{2} \\ \tag{60} \
	eosinophilic change:olfactory epithelium	5 43 2 0 (10) (86) (4) (0)	2 42 5 0 (4) (84) (10) (0)	(0) (0) (001) (0)	4 45 0 0 (8) (90) (0) (0)
	eosinophilic change:respiratory epithelium	42 2 0 0 (84) (4) (0) (0)	49 0 0 0 ** (98) (0) (0) (0)	49 1 0 0 * (98) (2) (0) (0)	49 0 0 0 *** (98) (0) (0) (0)
	inflammation:foreign body	1 1 0 0 (2) (2) (2) (0) (0)	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 (4) (4) (6) (6)	5 0 0 0 (10) (10) (10)
	inflammation:respiratory epithelium			(0)(0)(0)(0)	1 0 0 0 (2) (2) (3) (4)
	respiratory metaplasia:olfactory epithelium			2 0 0 0 0 (4) (4) (6) (6)	
Transmitter of the state of the					

4 : Severe 3 : Marked Grade 1 : Slight 2 : Moderate 3 : Ma < a > a : Number of animals examined at the site b : Number of animals with lesion (c) c : b / a * 100 Significant difference ; * : P \leq 0.05 ** : P \leq 0.0

(HPT150)

Test of Chi Square **: P ≤ 0.01

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

	16			
	PAGE: 16	5	4	%
		4000 ppm	ო	88
		4 7	3	(%) (%) (%) (%)
			1	8
		s	4	(%)
		2000 ppm	က	<u>8</u>
		9 6	8 8	(%) (%) (%) (%)
			1	<u>%</u>
(SUMMARY)		Ē	4	%
SIONS		1000 ррш	က	જે
TIC LE		10	8	(%) (%) (%) (%)
-NEOPLAS			1	8
HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		1	4	(%)
NL FINI 105W)		Control	က	(%)
OLOGIC LS (0-		, C	8	(%) (%) (%)
HISTOPATHOLOGICAL FI ALL ANIMALS (0-105W)		Study	1	(%)
H. A.		Group Name No of Animals on S	Grade	
NO. AL XT TYPE	SEX : FEWALE			OrganFindings

{Respiratory system}	system)				
nasal cavit	respiratory metaplasia:gland	<50> 11 0 0 0 (22) (0) (0) (0)	<50> 10 0 0 (20) (0) (0) (0)	<50> 13 0 0 (26) (0) (0) (0)	<50> 13 0 0 0 (26) (0) (0) (0)
	atrophy:olfactory epithelium	(0)(0)(0)(0)		0 (0) (0)	0 1 0 0 (0) (0) (0)
lung	mucocele	<50> 0 1 0 0 (0) (2) (0) (0)	(6) (6) (6) (6) 0 0 0 0 0 0 (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0	<50> 0 0 0 0 (0) (0) (0)
	inflammatory infiltration	(0)(0)(0)(0)	0 1 0 0 (0) (0) (0)	0 1 0 0 (0) (0) (0)	1 0 0 0 (2) (3) (4) (4) (4)
	bronchiolar-alveolar cell hyperplasia		2 0 0 0 (4) (4) (6) (6) (7)	0 (0)	1 0 0 0 (2) (3) (4) (4)
{Hematopoietic system}	ic system)				
bone marrow	granulation	<50> 4 0 0 0 (8) (0) (0) (0)	<pre></pre>	<pre></pre>	<50> 6 1 0 0 (12) (2) (0) (0)
Grade 1 : Slight <a> a : Number b b : Number (c) c : b / a ' Significant difference ;	1 : Slight 2 : Moderate 3 : Marked a : Number of animals examined at the site b : Number of animals with lesion c : b / a * 100 difference ; * : P ≤ 0.05 *** : P ≤ 0.01 Test	4 : Sovere t of Chi Square			

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS $(0{\text{--}}105\%)$

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : Al : FEMALE	HISTOPATHOLOGICAL FINDINGS :N ALL ANIMALS (0-105%)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE: 17
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 4 (%) (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
(Hematopoietic system)	c system)				
bone marrow	increased hematopoiesis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<50> 5 0 0 0 (10) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	<50> 2 1 0 0 (4) (2) (0) (0)
spleen	congestion	(0)(0)(0)(0)	(0) (0) (0) (0) 0 0 0 0 0 000	<50> 0 1 0 0 (0) (2) (0) (0)	<50> (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
	deposit of hemosiderin	23 2 0 0 (46) (4) (0) (0)	19 1 0 0 (38) (2) (0) (0)	20 3 0 0 (40) (6) (0) (0)	20 4 0 0 (40) (8) (0) (0)
	fibrosis	0 1 0 0 (0) (2) (0) (0)			
	extramedullary hematopoiesis	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5 0 0 (6) (10) (0) (0)	3 0 0 0 0 0 0 0 0 0	3 3 0 0 (6) (7) (8) (8) (8) (8)
(Circulatory system) heart myoo	system) myocardial fibrosis	(50) 8 0 0 0 (16) (0) (0) (0)	<50> 11 0 0 0 (22) (0) (0) (0)	<50> 7 0 0 0 (14) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)
Grade 1 : Slight (a > a > Number b Number b Number (c) c : b / a Significant difference :	1: Slight 2: Moderate 3: 1 a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.	3 : Marked 4 : Severe e site P ≤ 0.01 Test of Chi Square			

(SUMMARY)	
:NON-NEOPLASTIC LESIONS	
HISTOPATHOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)	ALL ANTWALS (O-105W)

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlcrlj[F344/DuCrj] : A1 : FEMALE	HISTOPATHOLOGICAL FINDINGS : ALL ANIMALS (0-105#)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105#)		PAGE : 18
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%)
{Circulatory system} artery/aort arte	system) arteritis	$\begin{pmatrix} <50 > & & \\ 0 & 1 & 0 & 0 \\ (& 0) & (& 2) & (& 0) & (& 0) \end{pmatrix}$	(0)(0)(0)(0)(0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 000	(0)(0)(0)(0) 0 0 0 0 0 0 0 0
{Digestive system} oral cavity sq	rstem) squamous cell hyperplasia		(0) (0) (0) (0) 0 0 0 0 0 (05)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0
tongue	epidermal cyst arteritis	0 1 0 0 (0) (2) (0) (0) (0) (0) (0) (0) (0) (0	(0)(0)(0)(0)(0) 0 0 0 0 0 (0)(0)(0)(0)(0) 0 0 0 0	0 0 0 0 (0) (0) (0) (0) (0) (0) ((0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0)(0) (0)(0)(0)(0)(0) (0)(0)(0)(0)(0)(0)
stomach	ulcer:forestomach	<50> 2 0 0 0 (4) (0) (0) (0)	(50) 1 2 0 0 (2) (4) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)	(0)(0)(0)(0) 0 0 0 0 \$\delta 20\$
	hyperplasia:forestomach	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 0 0 (2) (3) (4) (6) (6)	3 0 0 0 (0) (9) (0)	1 0 0 0 (2) (3) (4) (5)
Grade 1 : Slight <a>> a : Number b b : Number (c) c : b/a * Significant difference;	2: Moderate of animals examined at of animals with lesion : 100 *:P ≤ 0.05 ***	3 : Marked 4 : Severe the site : P ≤ 0.01 Test of Chi Square			

(HPT150)

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS $(0{\text{--}}105\%)$

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : A1 : FEMALE	HISTOPA ALL ANI	OPATHOLOGICAL FINDINGS :N ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		PAGE : 19
Organ	Findings	Group Name No. of Animals on Study Grade (%)	Control 50 2 3 4 (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%) (%)	. 4000 ppm 50 1 2 3 4 (%) (%) (%) (%)
{Digestive system}	ystem)					
stomach	erosion:glandular stomach	2 (4)	(0)(0)(0)	<50> 0 1 0 0 (0) (2) (0) (0)	<pre></pre>	<50> 2 0 0 (4) (0) (0) (0)
liver	herniation	6 (12)	(0)(0)(0)	<50> 7 0 0 0 (14) (0) (0) (0)	<50> 11 0 0 0 (22) (0) (0) (0)	<50> 11 0 0 0 (22) (0) (0) (0)
	necrosis:central	(0) 0	(0)(0)(0)	1 0 0 0 (2) (2) (0) (0) (0)		(0)(0)(0)(0)
	necrosis:focal	2 (4)	(0)(0)(0)(0)(0)	2 0 0 0 (4) (4) (6) (6) (6)	1 0 0 0 (2) (2) (3) (4) (4)	1 0 0 0 (2) (3) (0) (0)
	fatty change:central	(0)	(0)(0)(0)(0 0 1 0 (0) (0) (0)		(0)(0)(0)(0)
	lymphocytic infiltration	(6) 0	(0)(0)(0)(0)	(0)(0)(0)(0)		0 1 0 0 (0) (0) (0) (0)
	granulation	10 (20)	4 0 0 (0) (0)	9 4 0 0 (18) (18) (19) (19) (19)	7 6 0 0 (14) (12) (0) (0)	10 9 0 0 (20) (18) (0) (0)
	clear cell focus	(0)	2 0 0 (4) (4) (6) (7)		0 1 0 0 (0) (0) (0) (0)	0 1 0 0 (0) (0) (0) (0)
Grade <a>> b c (c) Significant	Grade 1 : Slight 2 : Moderate 3 : N < a > a : Number of animals examined at the site b : Number of animals with lesion (c) c : b / a * 100 c : b / a * 100 c : b / a * 200 c : b / a * 300 c : b / a / a * 300 c : b / a / a / a / a / a / a / a / a / a /	3: Marked 4: Severe the site : P ≤ 0.01 Test of Chi Square	re are			

Grade 1: Slight 2: Moderate 3: Marked $\langle a \rangle$ a: Number of animals examined at the site b : Number of animals with lesion (c) c: b/a*100 Significant difference; *: P \leq 0.05 **: P \leq 0.01 7

(HPT150)

· 4 : Severe

(SUMMARY)	
FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY	
HISTOPATHOLOGICAL FINDINGS	ALL ANIMALS (0-105W)

STUDY NO. : 061 ANIMAL : RAT REPORT TYPE : A1 SEX : FEM	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : Al : FEMALE	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	ON-NEOPLASTIC LESIONS (SUMMARY	C	PAGE: 20
Organ	Findings	Group Name No. of Animals on Study Grade (%) (%) (%) (%) (%)	1000 ppm 50 1 2 3 4 (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%) (%)	4000 ppm 50 (%) (%) (%) (%)
{Digestive system} liver ba	system) basophilic cell focus	<50> 21 2 0 0	<50> 26 1 0 0	<50> 19 7 0 0	<50> 24 4 0 0
	bile duct hyperplasia	(4) (0) (2 0 (4) (0) ((2) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	(14) (0) (2 0 (4) (0) ((8) (0) (1 0 (2) (0) (
	cholangiofibrosis			1 0 0 0 (2) (3) (4) (4)	0 1 0 0 (0) (0) (0) (0)
pancreas	atrophy	<pre></pre>	<50> (6) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	<50> 4 1 0 0 (8) (2) (0) (0)	<50> 5 1 i 0 (10) (2) (2) (0)
	islet cell hyperplasia		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(Urinary system) kidney	stem) cyst	(0) (0) (0) (0) (0) (0)	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)	(0) (0) (0) (0) 0 0 0 0 <20>

HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)

STUDY NO. ANIMAL REPORT TYPE SEX	: 0610 : RAT F344/DuCr1Cr1j[F344/DuCrj] : A1 : FEMALE		HISTOPATHOL ALL ANIMALS	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)	S :NON-NEOPL	ASTIC LESI	ONS (SUMMARY)						P ₄	PAGE: 21
Organ	Findings	Group Name No. of Animals on Study Grade	1 2 1	Control 50 2 3 4 (%) (%) (%)	(%)	(%)	1000 ppm (0 3 4 (%) (%)	(%) (%)	2000 ppm 50 3 3 (%) (%)	m 4 4 (%)	(%)	40 2 (%)	4000 ppm	4 8
{Urinary system} kidney	rem} deposit of hemosiderin		0 3	0 3	0 6	(5 (5 (6 (7)	0 0	0 0	20\$	0 3	0.3	\$ °2	0 6	0 0
	scar				(2)						(4)			6 06
	chronic nephropathy		30 (09)	4 2 0 8) (4) (0)	27 (54)	9 (18)	(O) (O	30 9 (60) (18)	3 (6) (0 (0	33 (66)	5 (10) (1 2) (0 0
,	mineralization:pelvis		1 (2) ((0) (0) (0	(î) (i)	0 0	(0) (0	(0) (0)	0 (0) (0 (0	0 0	0 (0)	0 (0	0 (0
	desquamation:pelvis		1 (2) ((0) (0) (0	(0)) (0 0	0 (0)	(0) (0)	0)	0 (0)	0 O	0 0)	0 (0	0 6
	urothelial hyperplasia:pelvis		1 (2) ((0) (0) (0	0 0	0 0	(0) (0	(0) (0) 0 0	0 (0) (0 (0	0 0)	0 0 0	0 0	0 (0
	atypical tubule hyperplasia		0	(0)(0)(0	1 (2)	0 (0)	(0) (0	(0) (0)	0 0	(0)	0 0	• 6 • •	0 (0)	0 (0
	dilated pelvis		0 0)	(0) (0) (0	6)	1 (2) ((0) (0 0 0	(0) (0)	0 0	(O)	0 0	1 (2) (0 0	0 (0
Grade (a) b (c) Significant	Grade 1: Slight 2: Moderate (a) a: Number of animals examined at the b b: Number of animals with lesion (c) c: b / a * 100 Significant difference: *: P < 0.05 **: P	3 : Marked site S 0.01	4 : Severe							The second secon				
	: 	:												

(SUMMARY)	
:NON-NEOPLASTIC LESIONS	
HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS	ALL ANIMALS (0-105W)

STUDY NO. : ANIMAL : REPORT TYPE :	: 0610 : RAT F344/DuCr1Cr1j[F344/DuCrj]	HISTOPATHOLOGICAL FINDINGS ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105W)		
	· FEMALE				PAGE : 22
Organ	Findings	Group Name No. of Animals on Study Grade (%) (%) (%) (%) (%)	1000 ppm 50 3 4 (%) (%) (%) (%)	2000 ppm 50 $\frac{1}{(\%)}$ $(\%)$ $(\%)$ $(\%)$	4000 ppm 50 3 4 (%) (%) (%)
(Endocrine system)	(stem)				
pi tui tary	angiectasis	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	<50> 1 1 0 0 (2) (2) (0) (0)	<50> 5 2 0 0 (10) (4) (0) (0)	<50> 1 1 0 0 (2) (2) (0) (0)
	cyst	5 2 0 0 (10) (4) (0) (0)	5 3 0 0 (10) (6) (0) (0)	6 2 0 0 (12) (4) (0) (0)	5 2 0 0 (10) (4) (0) (0)
	hyperplasia	8 6 0 0 (16) (12) (0) (0)	11 3 0 0 (22) (6) (0) (0)	4 5 0 0 (8) (10) (0) (0)	11 4 0 0 (22) (8) (0) (0)
	Rathke pouch	1 0 0 0 (2) (3) (0) (0)			3 0 0 0 (0) (9)
thyroid	ultimibranchial body remanet	<50> 2 0 0 0 (4) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	<50> (0) (0) (0) (0) (0)	<pre></pre>
	C-cell hyperplasia	5 0 0 0 (10) (10) (10) (10) (10)	5 1 0 0 (10) (2) (0) (0)	8 5 0 0 * (16) (10) (0) (0)	6 3 0 0 (12) (6) (0) (0)
	focal follicular cell hyperplasia		1 0 0 0 (2) (2) (3) (4)	(0)(0)(0)(0)	0 1 0 0 (0) (0) (0) (0)
adrenal	peliosis-like lesion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre></pre>	<50> (0) (0) (0) (0) (0)	(0)(0)(0)(0) 0 0 0 0 <000
Grade <a>> b c c c c Significant o	Grade 1: Slight 2: Moderate 3: $ \cdot $	3: Marked 4: Severe the site : P ≤ 0.01 Test of Chi Square			

INS (SUMMARY)	
:NON-NEOPLASTIC LESION	
HISTOPATHOLOGICAL FINDINGS	ALL ANIMALS (0-105W)

STUDY NO. : ANIMAL : REPORT TYPE : SEX :	: 0610 : RAT F344/DuCrICrlj[F344/DuCrj] : A1 : FEMALE	HISTOPATHOLOGICAL FINDING ALL ANIMALS (0-105W)	HISTOPATHOLOGICAL FINDINGS :NON-NEOPLASTIC LESIONS (SUMMARY) ALL ANIMALS (0-105%)		PAGE : 23
Organ	Findings	Group Name Control No. of Animals on Study 50 Grade 1 2 3 4 (%) (%) (%) (%) (%)	1000 ppm 50 (%) (%) (%) (%)	2000 ppm 50 1 2 3 4 (%) (%) (%)	4000 ppm 50 1 2 3 4 (%) (%) (%)
{Endocrine system}	(stem)				
adrenal	hyperplasia:cortical cell	<50> 0 1 0 0 (0) (2) (0) (0)	<50> (0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 <0\$>
	hyperplasia:medulla			1 2 0 0 (2) (3) (4) (0) (0)	0 1 0 0 (0) (0) (0) (0)
	focal fatty change:cortex	4 1 0 0 (8) (2) (0) (0)	5 2 0 0 (10) (4) (0) (0)	3 1 0 0 (6) (7) (8) (8) (7)	1 0 0 0 0 (2) (3) (4) (5)
{Reproductive system}	system)				
ovary	cyst	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre></pre>	<pre></pre>	<50> 0 1 0 0 (0) (2) (0) (0)
uterus	cystic endometrial hyperplasia	<50> 0 1 0 0 (0) (2) (0) (0)	<50> 2 1 0 0) (4)(2)(0)(0)	<50> 2 3 0 0 (4) (6) (0) (0)	<50> 3 3 0 0 (6) (6) (0) (0)
[Nervous system]	rem)				
brain	hemorrhage	(0) (0) (0) (0) (0) (0) (0) (0)	<50> (0) (0) (0) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0
Grade 1: Slight <a>> a: Number b b: Number (c) c: b/a> Significant difference;	1: Slight 2: Moderate 3:): a: Number of animals examined at the site b: Number of animals with lesion c: b / a * 100 difference; *: P ≤ 0.05 **: P ≤ 0.	3: Marked 4: Severe he site P ≤ 0.01 Test of Chi Square			

PAGE: 24

Harder gl	degeneration	(0)(0)(0)(0) 0 0 0 0 0 0 0 0 0	<50> 1 0 0 0 (2) (0) (0) (0)	(0) (0) (0) (0) 0 0 0 0 0 0 0 0	(0) (0) (0) (0) 0 0 0 0 0 0 0 0 0
	lymphocytic infiltration	(0)(0)(0)(0)(0)		0 1 0 0 (0) (0) (0)	0 1 0 0 (0) (0) (0) (0)
nasolacr d	inflammation	<50> 10 0 0 (20) (0) (0) (0)	<50> 18 0 0 0 (36) (0) (0) (0)	<50> 11 0 0 0 (22) (0) (0) (0)	<50> 6 0 0 0 (12) (0) (0) (0)
(Musculoskeletal system)	al system)				
bone	osteosclerosis	<50> 1 0 0 0 (2) (0) (0) (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<50> 2 1 0 0 (4) (2) (0) (0)	<50> 1 0 0 0 (2) (0) (0) (0)

Test of Chi Square 4 : Severe 3 : Marked **★**: P ≤ 0.01 Grade 1: Slight 2: Moderate 3: Mk \langle a \rangle a : Number of animals examined at the site b b : Number of animals with lesion (c) c: b/a*100 Significant difference; *: P \leq 0.05 **: P \leq 0.0

(HPT150)

TABLE O1

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: MALE

V = 0.308/	The state of the s	
P = 0, $P = 0$	THE THE PROPERTY OF THE PROPER	

Group Name	Control	1000 ppm	2000 ppm	4000 ppm	
	SITE : subcutis TUMOR : fibroma				
Tumor rate Overall rates(a)	4/50(8.0)	8/50 (16.0)	5/50(10.0)	3/50(6.0)	
Adjusted rates(b)	8.82	16.67	10.87		
Terminal rates(c)	2/33(6.1)	7/42(16.7)	4/38(10.5)	3/42(7.1)	
ratistical analysis Peto test					
Standard method(d)	P = 0.8857				
Prevalence method(d)	P = 0.7368				
Combined analysis(d)	P = 0.8427 $P = 0.08427$				
Fisher Exact test(e)		P = 0.1783	P = 0.5000	P = 0.5000	
,	SITE : subcutis TUMOR : fibroma, fibrosarcoma	ота			
lumor rate	(0 0 /01/1	(0.01,01,0	3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(0 0 /01/7	
Overall rates(a)	4/50(8.0)	8/50(Ib. 0) 15 c7	5/50(10.0)	4/50(8.0)	
	8.82	15. 5/	10.53	1.14	
lerminai rates(c) Statistical analysis	2/33(b. I)	(/42(15. /)	4/38(10.5)	3/42((.1)	
Peto test					
Standard method(d)	P = 0.5032				
Prevalence method(d)	P = 0.7607				
Combined analysis(d)	P = 0.7434				
Cochran-Armitage test(e) Fisher Fyact test(e)	P = 0.6680	P = 0 17883	0005 0 = 0.	P = 0.6425	
		2011			
	SITE : lung	and the second s			
Timor rate		Dronchiolar alveolar auenoma, Dronchiolar alveolar carcinoma			
Overall rates(a)	1/50(2.0)	1/50(2.0)	3/50(6.0)	0/20(0.0)	
Adjusted rates(b)	3.03			0.0	
Terminal rates(c)	1/33(3.0)	1/42(2.4)	2/38(5.3)	0/42(0.0)	
Statistical analysis					
ero test Standard method(d)	P == P				
Prevalence method(d)	P = 0.7361				
Combined analysis(d)					
	P = 0.5920	ć			

ANALYSIS
STATISTICAL
AND AND
LESIONS-INCIDENCE
NEOPLASTIC 1

	· ·				rade · 6
croup name	Control	1000 ppm	ZOOO DDM	4000 ppm	
	SITE : spleen TUMOR : mononuclear cell leukemia	mia			
Tumor rate					
Overall rates(a)	4/50(8.0)	1/50(2.0)	6/50(12.0)	3/50(6.0)	
Adjusted rates(b)	3.03		10. 53		
Terminal rates(c)	1/33(3.0)	1/42(2.4)	4/38 (10.5)	2/42(4.8)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.7781				
Prevalence method(d)	P = 0.2904				
Combined analysis(d)	P = 0.5388				
Cochran-Armitage test(e)	P = 0.9254				
Fisher Exact test(e)		P = 0.1811	P = 0.3703	P = 0.5000	
	SITE : pancreas TUMOR : islet cell adenoma				
Tumor rate					
Overall rates(a)	2/50 (4.0)	6/50(12.0)	2/50(4.0)	2/50(4.0)	
Adjusted rates(b)	5.26	14. 29		4.65	
Terminal rates(c)	1/33(3.0)	6/42(14.3)	2/38(5.3)	1/42(2.4)	
Statistical analysis					
reto test	ŕ				
Standard method(d)					
Frevalence method(d)	F = 0.7629				
Combined analysis(d)					
Cochran-Armitage test(e)	P = 0.5459	n – 0	0 - 0 6012	D - 0 6013	
risher Exact test(e)			0.0010		
	CITE ' TOTOGO				
		pancieas islet cell adenoma,islet cell adenocarcinoma			
Timor rate					
Overall rates(a)	2/50(4.0)	7/50 (14.0)	2/50(4.0)	2/50(4.0)	
Adjusted rates (h)	5.26	16. 67			
Terminal rates(c)	1/33(3.0)	7/42(16. 7)	2/38(5.3)	1/42 (2.4)	
Statistical analysis		````````\			
Peto test					
Standard method(d)	= d				
Prevalence method(d)	P = 0.8023				
Combined analysis(d)	P =				
Cochran-Armitage test(e)	P = 0.4671				
()		0000	0100	0,00	

SEA : MALE					PAGE:
Group Name	Control	пост 1000	2000 ppm	4000 ppm	
	SITE : pituitary gland TUMOR : adenoma				
Tumor rate Overall rates(a)	10/50(20.0)	13/50 (26. 0)	5/50(10.0)	3/50(6.0)	
Adjusted rates(b) Terminal rates(c) Statistical analysis	13. 33 3/33(9. 1)	22. 73 9/42(21. 4)	10.53 4/38(10.5)	4.76 2/42(4.8)	
Peto test Standard method(d) Prevalence method(d) Combined analysis(d)	P = 0.9501 P = 0.9796 P = 0.9959				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.0110*	P = 0.3176	P = 0.1312	P = 0.0357*	
	SITE : thyroid TUMOR : C-cell adenoma				
Tumor rate	2/50(14 0)	5/50(10.0)	6/50/ 12 0)	0/50/ 10 0)	
Adjusted rates(b)	18. 42	10.87	0, 30, 12, 0, 0, 15, 79	21. 43	
lerminal rates(c) Statistical analysis	b/33(_18. <i>2</i>)	4/42(9.5)	6/38(15.8)	9/42 (21. 4)	
Peto test Standard method(d)	- d				
Prevalence method(d)	P = 0.2799				
Cochran-Armitage test(e)	P = $P = 0.4211$				
Fisher Exact test(e)		P = 0.3798	P = 0.5000	P = 0.3929	
	SITE : thyroid TUMOR : C-cell carcinoma				
Tumor rate					
Overall rates(a)	1/50(2.0)	2/50(4.0) 4 08	3/50(6.0) 7 89	1/50(-2.0)	
Terminal rates(c)	0/33(0.0)	1/42(2.4)	3/38(7.9)	1/42(2.4)	
Standard method(d)	H :				
<pre>// Frevalence method(d/ Combined analysis(d)</pre>	<i>P</i> = 0.5353 <i>P</i> =				
Cochran-Armitage test(e)	P = 0.9481	P = 0 5000	. D = 0 3087	P = 0.7525	

BAIS4

roup Name SITE TUMC tes(a) ates(b) ates(c) analysis					
SITE TUMC tes(a) ates(b) ates(c) analysis	Control	1000 ppm	2000 ppm	4000 ppm	
ites(a) rates(b) rates(c) analysis	: thyroid : C-cell adenoma, C-cell carcinoma	ircinoma			
tes(a) ates(b) ates(c) analysis					
ates(b) ates(c) analysis	8/50(16.0)	7/50(14.0)	9/50(18.0)	10/50(20.0)	
ates(c <i>)</i> analysis	21.05	14. 29	23.68	23.81	
	6/33(18.2)	5/42(11.9)	9/38(23.7)	10/42(23.8)	
Peto test					
	Ann				
	= 0.2968				
Combined analysis(d) $P = \frac{1}{2}$	0000				
	. 4059	P = 0.5000	P = 0.5000	P = 0.3976	
	: adrenal gland				
TUMOR :	: pheochromocytoma				
lumoi rate Overall rates(a) 10/50	10/50(30 0)	1/50(20)	4/50(8 0)	0 (20 () 0)	
	25. 64	1,50(2:0)	4,30, 0,0)	0.0	
	7/33 (21. 2)	0/42(0.0)	3/38(7.9)	0/42(0.0)	
is					
Peto test					
Ъ	THE STATE OF THE S				
<u>م</u> ۱	= 0.9999				
<u>σ</u> 6					
Cochran-Armitage test(e) $P = 0$. Fisher Exact test(e)	**/INO **	P = 0.0039**	P = 0.0739	P = 0.0006**	
	adrenal gland	;			
TUMOR :	: pheochromocytoma, pheochromocytoma:malignant	romocytoma:malignant			
ites(a)	12/50(24.0)	2/50(4.0)	5/50(10.0)	0/20(0.0)	
	25.64	4.55	11.63	0.0	
	7/33(21.2)	1/42(2.4)	4/38(10.5)	0/42(0.0)	
Statistical analysis					
٩					
ביינ	= 0.9786 ;				
e method(d) P	= 0.9998				
<u>ч</u> 4	= 1.0000				
Cochran-Armitage test(e) $F = 0$. E_{1} , E_{2} , E_{3} , E_{4} , E_{3}	= 0.0005**	**8600 0 = Q	D = 0 0549	P = 0 0001**	

PAGE :		
	4000 ppm	47/50 (94. 0) 100. 00 42/42 (100. 0) P = 0. 0606
FICAL ANALYSIS	2000 ppm	46/50(92.0) 97.56 37/38(97.4) P = 0.1168
NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS	1000 ppm	44/50 (88. 0) 100.00 $42/42$ (100. 0) $42/2$ P = 0.2883
0610 RAT F344/DuCrlCrlj[F344/DuCrj] MALE	Control	SITE : testis TUMOR : interstitial cell tumor 41/50(82.0) 97.06 32/33(97.0) P = P = 0.1113 P = P = 0.0561
STUDY No. : 0610 ANIMAL : RAT F344/DuCr1v SEX : MALE	Group Name	Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)

	0/50(0.0) 0.0 0/42(0.0)	P = N. C.
	1/50(2.0) 2.38 0/38(0.0)	P = 0.5000
	4/50(8.0) 9.52 4/42(9.5)	P = 0.0587
SITE : mammary gland TUMOR : adenoma, fibroadenoma	0/50(0.0) 0.0 0/33(0.0) P = P = 0.8210 P = P =	
	Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitace test(e)	Fisher Exact test(e)

BAIS4

(HPT360A)

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

STUDY No. ANIMAL

	KAI F344/DUCFICFIJ[F344/DUCF]] WAIE				PAGE: 6
Group Name	Control	1000 ppm	2000 ppm	4000 ppm	
S	ITE : peritoneum				
	TUMOR : mesothelioma				
Tumor rate					
Overall rates(a)	2/50(4.0)	2/50(4.0)	1/50(2.0)	7/50(14.0)	
Adjusted rates(b)	3.03	4.55	2.27	7.14	
Terminal rates(c)	1/33(3.0)	1/42(2.4)	0/38(0.0)	3/42(7.1)	
Statistical analysis					
Peto test					
Standard method(d)	P = 0.0193*				
Prevalence method(d)	P = 0.1879				
Combined analysis(d)	P = 0.0213*				
Cochran-Armitage test(e)	P = 0.0268*				
Fisher Exact test(e)		P = 0.6913	P = 0.5000	P = 0.0798	
(HPT360A)	THE				BAIS4

(a): Number of tumor-bearing animals/number of animals examined at the site.

(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test.

Prevalence method : Incidental tumor test Standard method : Death analysis

Combined analysis : Death analysis + Incidental tumor test
(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.

? The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.

----- : There is no data which should be statistical analysis. Significant difference ; * : P \leq 0.05 ** : P \leq 0.01

N.C.:Statistical value cannot be calculated and was not significant.

TABLE O2

NEOPLASTIC LESIONS-INCIDENCE

AND STATISTICAL ANALYSIS: FEMALE

133 6 P =	Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d)
SITE	at a
, G, G,	rrevalence method (d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)
9 B	2 2 2
9	

ANALYSIS
STATISTICAL
AND
LESI ONS-INCIDENCE
NEOPLASTIC

The state of the s					
Group Name	Control	1000 ррш	2000 ppm	4000 ppm	
	SITE : spleen TUMOR : mononuclear cell leukemia				
Tumor rate Overall rates(a)	9/50(18 0)	5/50(10.0)	4/50(8.0)	4/50(80)	
Adjusted rates(b)	11.76	5.71	4.65	4.55	
Terminal rates(c) Statistical analysis Peto test	4/34(11.8)	2/35(5.7)	2/43(4.7)	2/44(4.5)	
Standard method(d)	P = 0.9025				
Prevalence method(d)	P = 0.8632 D = 0.0673				
Cochran-Armitage test(e)	$\Gamma = 0.9573$ P = 0.1466				
Fisher Exact test(e)		P = 0.1940	P = 0.1168	P = 0.1168	
	SITE : pituitary gland TUMOR : adenoma				
Tumor rate					
Overall rates(a)	12/50(24.0)	8/50(16.0)	7/50(14.0)	5/50(10.0)	
Terminal rates(c)	6/34(17.6)	6/35(17.1)	4/43(9.3)	5/44(11.4)	
Statistical analysis Peto test					
Standard method(d)	P = 0.9930				
Prevalence method(d)	P = 0.8456				
Combined analysis(d)	P = 0.9848				
Cochran-Armitage test(e) Fisher Exact test(e)	P = 0.0679	P = 0.2270	P = 0.1540	P = 0.0542	
	SITE : pituitary gland				
	TUMOR : adenoma, adenocarcinoma				
Tumor rate	19/50/ 96 0)	0/50/ 10 0)	7/50(14 0)	7/50(14.0)	
Overall Jales(a)	13/ 30(20, 0)	30.00	1,504 14.0)	13.00 13.07	
Adjusted rates(b) Terminal rates(c)	6/34(17.6)	7/35(20. 0)	4/43(9.3)	13.04 6/44(13.6)	
reto test Standard method(d)	P = 0.9827				
Prevalence method(d)	P = 0.7975				
Combined analysis(d)	P = 0.9705				
Į.	P = 0.1354				
Fisher Fract test(a)		0 - 0 - 0	7 LO F O Q	101010	

STUDY No. : 0610 ANIMAL : RAT F344/DuCrIC SEX : FEMALE	0610 RAT F344/DuCrlCrlj[F344/DuCrj] FEMALE
Group Name	Control
	SITE : thyroid TUMOR : C-cell adenoma
Tumor rate	•
	6/50(12.0)
-	14.71
	5/34(14.7)
Statistical analysis	
reto test Standard mathod(4)	- C
ř	
Combined analysis(d)	Ш
- 5	P = 0.2775
Fisher Exact test(e)	
	TUMOR : C-cell adenoma, C-cell carcinoma
77	
_	6/50(12.0)
	14. 71
Ľ	5/34(14.7)
Statistical analysis	
	ſ
Standard method(d)	П
	P = 0.8151
Combined analysis(d)	P ==
Cochran-Armitage test(e)	P = 0.4883
Fisher Exact test(e)	
	SITE : adrenal gland TUMOR : pheochromocytoma
Tumor rate	
Ξ	0/50(0.0)
Adjusted rates(h)	

4/50(8.0) 9.09 4/44(9.1)

4/50(8.0) 8.70 3/43(7.0)

P = 0.2435

P = 0.3703

P = 0.5000

∞

PAGE:

4000 ррш

ppm

2000

1000 ppm

NEOPLASTIC LESIONS-INCIDENCE AND STATISTICAL ANALYSIS

3/50(6.0) 6.82 3/44(6.8)

4/50(8.0) 8.70 3/43(7.0)

14. 29 5/35 (14. 3) 5/50(10.0)

BAIS4

P = 0.5000

P = 0.0587

1/50(2.0) 2.27 1/44(2.3)

4/50(8.0) 9.30 4/43(9.3)

P = 0.3703

P = 0.3703

0610 RAT F344/Duckiclj[F344/Duckj] FBMALE	ONS-INCIDENCE AND STATISTICAL ANALYSIS		
	NEOPLASTIC LESIO	uCrlCrlj[F344/DuCrj]	
	5. : 0610	• •	••
	STUDY No	ANIWAL	SEX

Group Name	Control	шdd 0001	2000 ррш	4000 ppm	
	SITE : adrenal gland TUMOR : pheochromocytoma, pheochromocytoma:malignant	ocytoma:malignant			
Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	0/50(0.0) 0.0 0/34(0.0)	4/50(8.0) 9.52 2/35(5.7)	5/50(10. 0) 11. 63 5/43(11. 6)	2/50(4.0) 4.55 2/44(4.5)	
Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)	P = P = 0.3311 P = P = 0.5641	P = 0.0587	P = 0.0281*	P = 0.2475	
	SITE : uterus TUMOR : endometrial stromal polyp				
lumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test	6/50(12.0) 15.00 4/34(11.8)	6/50(12. 0) 11. 43 4/35(11. 4)	3/50(6. 0) 6. 52 2/43(4. 7)	8/50(16.0) 17.02 7/44(15.9)	
Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)	P = 0. 7534 P = 0. 2512 P = 0. 3455 P = 0. 5741	P = 0, 6202	P = 0.2435	P = 0.3871	
•	SITE : uterus TUMOR : endometrial stromal sarcoma				
lumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis	3/50(6.0) 0.0 0/34(0.0)	2/50(4.0) 0.0 0/35(0.0)	1/50(2.0) 0.0 0/43(0.0)	1/50(2.0) 0.0 0/44(0.0)	
Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e)	P = 0.8723 P = P = 0.8723 P = 0.2689	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7000 V = U	7006 0 - 0	

ANALYSIS
STATISTICAL
AND
LESIONS-INCIDENCE
NEOPLASTIC

: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj]

STUDY No. ANIMAL

	4000 ppm
	2000 man
	1000 ppm
	Control
SEX : FEMALE	Group Name

2

PAGE:

		BAISA
4000 ppm	5/50 (10. 0) 9. 09 4/44 (9. 1) P = 0. 2768	0/50(0.0) 0.0 0/44(0.0) P = 0.5000
2000 mdd	5/50(10. 0) 11. 63 5/43(11. 6) P = 0. 2768	4/50(8.0) 9.30 4/43(9.3) P = 0.1811
1000 ppm	8/50 (16. 0) 17. 14 6/35 (17. 1) P = 0. 6071	2/50(4.0) 2/35(5.7) 2/35(5.7) P = 0.5000
Control	SITE : meanmary gland TUMOR : fibroadenoma 8/50(16.0) 20.59 7/34(20.6) P = 0.4284 P = 0.9501 P = 0.9502 P = 0.2863	SITE : preputial/clitoral gland TUMOR : adenoma 1/50(2.0) 2.94 1/34(2.9) P = P = P = 0.7995 P = 0.5583 P = 0.5583
Group Name	Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)	Tumor rate Overall rates(a) Adjusted rates(b) Terminal rates(c) Statistical analysis Peto test Standard method(d) Prevalence method(d) Combined analysis(d) Cochran-Armitage test(e) Fisher Exact test(e)

(a): Number of tumor-bearing animals/number of animals examined at the site.
(b): Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality.
(c): Observed tumor incidence at terminal kill.
(d): Beneath the control incidence are the P-values associated with the trend test. Standard method : Death analysis

Prevalence method : Incidental tumor test Combined analysis : Death analysis + Incidental tumor test

(e): The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates.
?: The conditional probabilities of the largest and smallest possible out comes can not estimated or this P-value is beyond the estimated P-value.
======: There is no data which should be statistical analysis.
Significant difference; *: P ≤ 0.05 **: P ≤ 0.01
N. C.: Statistical value cannot be calculated and was not significant.

TABLE Q

TABLE Q HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER: F344/DuCrlCrlj MALE RATS

Organs	No. of animals examined	No. of animals	Incidence	Min Max.
Tumors		bearing tumor	(%)	(%)
Peritoneum Mesothelioma	2247	59	2.6	0 - 8

45 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No.:

 $0043,\,0059,\,0061,\,0063,\,0065,\,0067,\,0095,\,0104,\,0115,\,0130,\,0141,\,0158,\,0162,\,0189,\\0205,\,0210,\,0224,\,0242,\,0246,\,0267,\,0269,\,0278,\,0284,\,0288,\,0294,\,0296,\,0318,\,0328,\\0342,\,0347,\,0365,\,0371,\,0396,\,0399,\,0401,\,0407,\,0417,\,0421,\,0437,\,0448,\,0457,\,0461,$

0497, 0535, 0560

TABLE R

CAUSE OF DEATH OF RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

STUDY NO. : 0610 ANIMAL : RAT F344/Duc	: 0610 : RAT F344/DuCrlCrlj[F344/DuCrj] : WAI F		ಶ ೮	COUSE OF DEATH (SUMMARY) (0-105W)	!
					PAGE: 1
Group Name	Control	1000 ррш	2000 ppm	4000 ppm	
Number of Dead and Moribund Animal	17	8	12	- ω	
no microscop confirm	4	1	1		
cardiovascular les	0	0	-	0	
chronic nephropathy	0	0	2	0	
peritonitis	0	0	_	0	
tumor d:leukemia	က	0	2	1	
tumor d:subcutis	1	2	2	1	
tumor d:small intes	0	1	0	0	
tumor d:liver	0	-1	0	0	
tumor d:urin bladd	1	0	0	0	
tumor d:pituitary	4	က	1	1	
tumor d:adrenal	2	0	0	0	
tumor d:prep/cli gl	0	0	_	0	
tumor d:spinal cord	0	0	_	0	
tumor d:peritoneum	1	0	0	4	
tumor d:retroperit	1	0	0	0	
(BI0120)					BAIS4

					PAGE: 2
Group Name Cor	Control	1000 ppm	2000 ррш	4000 ppm	
Number of Dead and 16 Moribund Animal		15	7	9	errorran
no microscop confirm 2		1	0		
tumor d:leukemia 5		ന	- 2		
tumor d:subcutis 0		0	_	0	
tumor d:liver 0		1	0		
tumor d:pituitary 6		2	2	1	
tumor d:ovary 0		0	0	1	
tumor d:uterus 3		4	_	0	
tumor d:mammary gl 0		2	0	0	
tumor d:periph nerv 0		-	0	0	
tumor d:Zymbal gl 0		1	-1	0	

BAIS4

FIGURES

FIGURE 1	ISOPROPYL ACETATE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM
FIGURE 2	SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE
FIGURE 3	SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE
FIGURE 4	BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE
FIGURE 5	BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE
FIGURE 6	FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE
FIGURE 7	FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

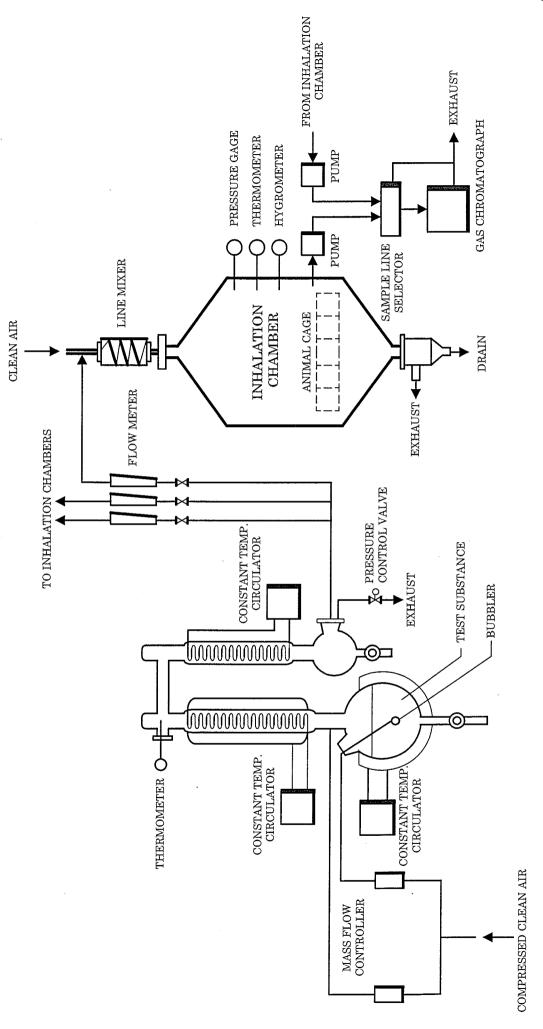


FIGURE 1 ISOPROPYL ACETATE VAPOR GENERATION SYSTEM AND INHALATION SYSTEM

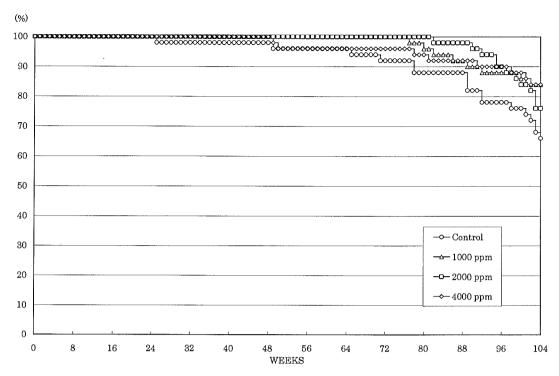


FIGURE 2 SURVIVAL ANIMAL RATE OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

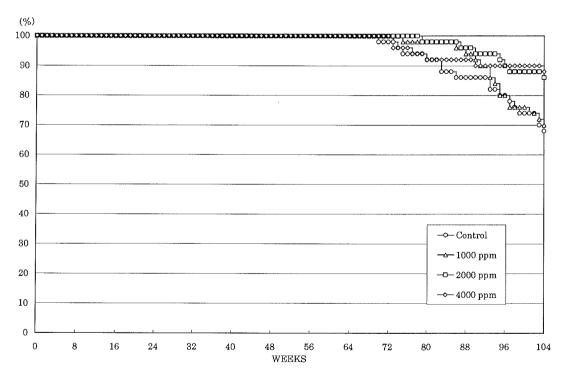


FIGURE 3 SURVIVAL ANIMAL RATE OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYLACETATE

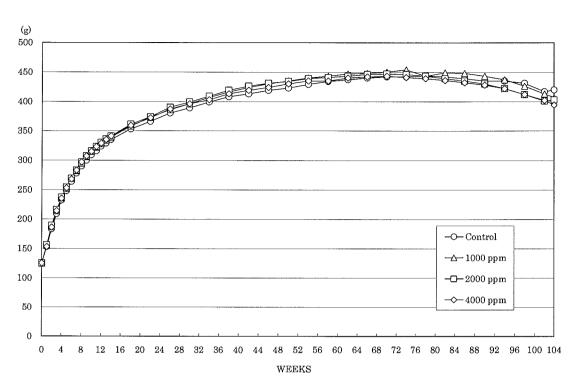


FIGURE 4 BODY WEIGHT CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

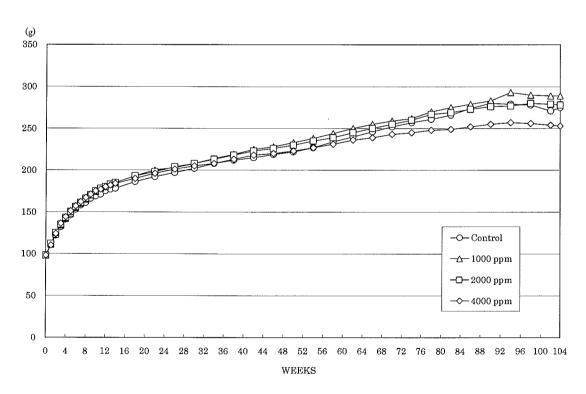


FIGURE 5 BODY WEIGHT CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

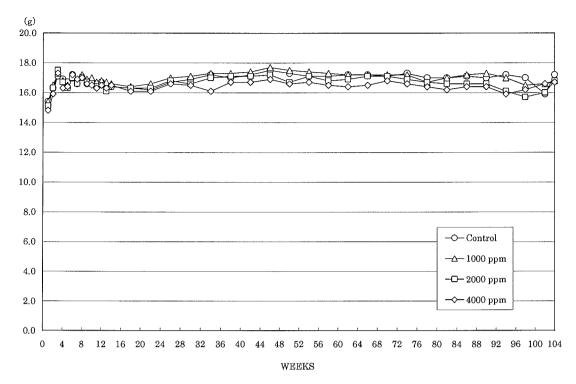


FIGURE 6 FOOD CONSUMPTION CHANGES OF MALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

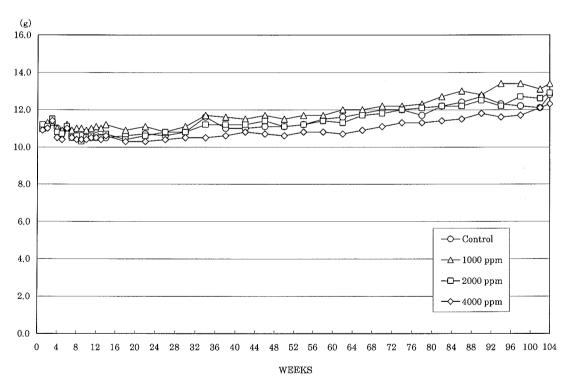
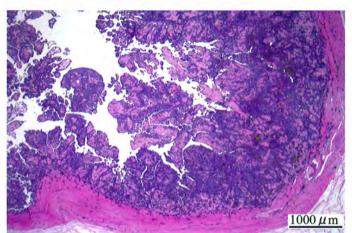
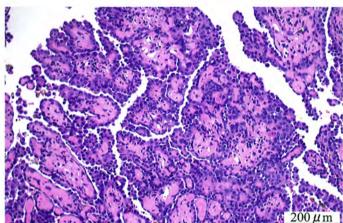




FIGURE 7 FOOD CONSUMPTION CHANGES OF FEMALE RATS IN THE 2-YEAR INHALATION STUDY OF ISOPROPYL ACETATE

Photograph 1 Peritoneum: mesothelioma Rat, Male, 4000 ppm, Animal No. 0610-1336 (H&E)

Photograph 2
Higher magnification of photograph 1
Peritoneum: mesothelioma
Rat, Male, 4000 ppm, Animal No. 0610-1336 (H&E)