1,3,5,7-テトラアザトリシクロ〔3.3.1.1^{3,7}〕デカンの ラット及びマウスを用いた経口投与による がん原性予備試験(混水試験)報告書

APPENDIXES

 $(B1-1\sim C2)$

13 週間試験:ラット/0201;マウス/0202

- APPENDIX B 1-1 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 1-2 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 1-3 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY) MOUSE : MALE
- APPENDIX B 1-4 CLINICAL OBSERVATION (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 2-1 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 2-2 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 2-3 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: MALE
- APPENDIX B 2-4 BODY WEIGHT CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 3-1 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 RAT: MALE
- APPENDIX B 3-2 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 RAT: FEMALE
- APPENDIX B 3-3 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: MALE
- APPENDIX B 3-4 WATER CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: FEMALE
- APPENDIX B 4-1 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 4-2 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 4-3 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 4-4 FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE

- APPENDIX B 5-1 CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 5-2 CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 5-3 CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY : SUMMARY)

 MOUSE : MALE
- APPENDIX B 5-4 CHEMICAL INTAKE CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)
 MOUSE: FEMALE
- APPENDIX B 6-1 HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 6-2 HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)
 RAT: FEMALE
- APPENDIX B 6-3 HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 6-4 HEMATOLOGY (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 7-1 BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 7-2 BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 7-3 BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 7-4 BIOCHEMISTRY (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE
- APPENDIX B 8-1 URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE
- APPENDIX B 8-2 URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : FEMALE
- APPENDIX B 8-3 URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : MALE
- APPENDIX B 8-4 URINALYSIS (THIRTEEN-WEEK STUDY : SUMMARY)
 MOUSE : FEMALE

- APPENDIX B 9-1 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)
 RAT : MALE : SACRIFICED ANIMALS
- APPENDIX B 9-2 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

RAT : FEMALE : SACRIFICED ANIMALS

APPENDIX B 9-3 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: MALE: DEAD AND MORIBUND ANIMALS

APPENDIX B 9-4 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE: FEMALE: DEAD AND MORIBUND ANIMALS

APPENDIX B 9-5 GROSS FINDINGS (THIRTEEN-WEEK STUDY : SUMMARY)

MOUSE : MALE : SACRIFICED ANIMALS

APPENDIX B 9-6 GROSS FINDINGS (THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: FEMALE: SACRIFICED ANIMALS

APPENDIX B 10-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), ABSOLUTE

RAT : MALE

APPENDIX B 10-2 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT : FEMALE

APPENDIX B 10-3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), ABSOLUTE

MOUSE : MALE

APPENDIX B 10-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), ABSOLUTE

MOUSE : FEMALE

APPENDIX B 11-1 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT : MALE

APPENDIX B 11-2 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT : FEMALE

APPENDIX B 11-3 ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE : MALE

APPENDIX B 11-4 ORGAN WEIGHT (THIRTEEN-WEEK STUDY : SUMMARY), RELATIVE

MOUSE : FEMALE

- APPENDIX B 12-1 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
 (THIRTEEN-WEEK STUDY: SUMMARY) RAT: MALE
 SACRIFICED ANIMALS
- APPENDIX B 12-2 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
 (THIRTEEN-WEEK STUDY: SUMMARY) RAT: FEMALE
 SACRIFICED ANIMALS
- APPENDIX B 12-3 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
 (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE
 DEAD AND MORIBUND ANIMALS
- APPENDIX B 12-4 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
 (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
 DEAD AND MORIBUND ANIMALS
- APPENDIX B 12-5 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: MALE SACRIFICED ANIMALS
- APPENDIX B 12-6 HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS
 (THIRTEEN-WEEK STUDY: SUMMARY) MOUSE: FEMALE
 SACRIFICED ANIMALS
- APPENDIX B 13-1 IDENTITY AND PURITY OF TATCD
 PERFORMED AT THE JAPAN BIOASSAY LABORATORY
 (THIRTEEN-WEEK STUDIES)
- APPENDIX B 13-2 STABILITY OF TATCD

 AT THE JAPAN BIOASSAY LABORATORY

 (THIRTEEN-WEEK STUDIES)
- APPENDIX B 13-3-1 ANALYSIS OF TATCD CONCENTRATION IN DRINKING WATER OF THE THIRTEEN-WEEK STUDIES
- APPENDIX B 13-3-2 STABILITY OF TATCD CONCENTRATION IN DRINKING WATER OF THE THIRTEEN-WEEK STUDIES
- APPENDIX C 1 METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS
- APPENDIX C 2 UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

APPENDIX B 1-1

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration W	ek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	0	0	0	0	1	1	1	4	4	4	4	6	
	40000 ppm	0	0	0	0	0	8	8	8	10	10	10	10	10	

APPENDIX B 1-2

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 13 CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

SEX : FEMALE

PAGE: 2

Clinical sign	Group Name	Admini	stration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
COLORED	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000 ppm	0	0	0	0	0	3	3	3	3	4	5	6	7	
	40000 ppm	0	0	0	0	0	6	6	6	9	9	9	9	10	
DILED PERI GENITALIA	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	1	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000 ppm	0	0	0	0	0	0	0	0	0	Ô	Ô	0	0	
	20000 ppm	0	0	0	0	0	0	Ŏ	ŏ	ň	0	1	Ô	ŏ	
	40000 ppm	0	0	0	0	0	0	Ö	Ö	0	1	1	í	Ö	
MALL STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	Ô	ő	Ô	0	0	0	0	0	1	٨	0	0	0	
	5000 ppm	0	0	0	0	0	0	0	0	۸	0	0	0	^	
	10000 ppm	0	0	0	0	0	0	0	0	0	0	0	٥	0	
	20000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	0	
	40000 ppm	0	0	0	0	0	0	0	0	0	0	1	0	-	
	HOOO PPIII	v	v	V	U	V	V	U	U	U	U	0	0	0	
LIGO-STOOL	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2500 ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000 ppm	0	0	0	0	0	0	Ŏ	0	0	Õ	0	Ô	0	
	10000 ppm	0	Ô	0	0	Õ	0	Ô	0	0	0	ñ	0	0	
	20000 ppm	ō	0	Õ	Ö	Ö	0	0	0	0	0	1	0	0	
	40000 ppm	0	Ö	Õ	Ö	0	0	0	0	0	0	0	0	0	
		v	v	V	v	•	v	v	v	V	V	V	v	V	

(HAN190)

BAIS 2

APPENDIX B 1-3

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: MALE

STUDY NO. : 0202 ANIMAL : MOUSE BDF1 REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
ORIBUND SACRIFICE	Control	0	0	0	0	0	0 -	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	40000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	,
	mqq00008	0	0	0	0	0	0	0	1	1	1	1	1	1	
UNCHBACK POSITION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	40000ppm	0	0	0	0	0	Ö	0	0	Ô	0	Ö	0	Ŏ	
	mqq00008	0	0	0	0	0	0	1	Ō	Ö	0	0	0	Ö	
ILOERECTION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	0	0	Ö	Ö	0	0	0	0	0	Õ	ŏ	ő	
	10000ppm	0	Ô	0	Ö	0	0	0	0	٥	0	0	0	0	
	20000ppm	Ô	0	0	0	0	0	0	0	٥	0	0	0	0	
	40000ppm	Ö	Ŏ	0	0	Ö	0	0	0	0	0	0	0	Ö	
	80000pm	Ö	Ö	0	Ö	Ö	0	1	0	0	0	0	0	0	
RREGULAR BREATHING	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	0	Ô	0	0	Ő	Õ	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	0	٥	0	0	0	
	20000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	40000ppm	0	0	Ő	0	0	0	0	0	0	0	Ņ	0	0	
	mqq00008	0	0	0	0	0	0	1	0	0	0	0	0	0	
BNORMAL RESPIRATION	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000ppm	Ŏ	0	0	0	0	0	0	0	0	0	0	0	0	
	10000ppm	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
	20000ppm	0	0	0	0	0	0	0	•	•	0	0.	•	•	
	2000ppm 4000ppm	0	0	0	0		0	-	0	. 0	0	0	0	0	
	40000ppm 80000ppm	0	•	0	0	0		0	0	. 0	0	0	0	. 0	
	SUUUUPPM	U	0	U	U	0	0	. 1	0	0	0	0	0	0	

STUDY NO.: 0202

ANIMAL : MOUSE BDF1 REPORT TYPE : A1 13

CLINICAL OBSERVATION (SUMMARY) ALL ANIMALS

SEX : MALE

Clinical sign	Group Name	Admini:	stration We	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1	
N ICO CTOOL	Control	٥	•	٥	٥	۰			•	0		٥	•	•	,
DL1GO-STOOL	Control 5000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		0	0	0	0	U	0	Ü	Û	Û	Û	0	0	Ü	
	10000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	40000ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	
	mqq00008	0	0	0	0	0	1	1	0	0	0	0	0	0	
							:								

APPENDIX B 1-4

CLINICAL OBSERVATION (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: FEMALE

CLINICAL OBSERVATION (SUMMARY)
ALL ANIMALS

STUDY NO. : 0202 ANIMAL : MOUSE BDF1 REPORT TYPE : A1 13

SEX : FEMALE

PAGE: 3

Clinical sign	Group Name	Admir	nistration W	eek-day											
		1-7	2-7	3-7	4-7	5-7	6-7	7-7	8-7	9-7	10-7	11-7	12-7	13-7	
		1	1	1	1	1	1	1	1	1	1	1	1	1 .	
DEATH	Contro		0	0	0	0	0	0	0	0	0	0	0	0	
	5000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	10000pp	om O	0	0	0	0	0	0	0	0	0	0	0	0	
	20000pp	om 0	0	0	0	. 0	0	0	0	0	0	0	0	0	
	40000pp	om O	0	0	0	0	0	0	0	0	0	0	0	0	
	80000pp	om O	0	0	0	0	0	0	0	0	0	0	1	1	
HUNCHBACK POSITION	Contro		0	0	0	0	0	0	0	0	0	0	0	0	
	5000pp	om 0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000pp	om 0	0	0	0	0	0	0	0	0	0	0	0	0	
	20000pp	om 0	0	0	0	0	0	0	0	0	0	0	0	0	
	40000pp	om 0	0	0	0	0	0	0	0	0	0	0	0	0	
	80000pp		0	0	0	1	1	1	1	1	1	1	0	0	
WASTING	Contro	ol 0	0	0	0	0	0	0	0	0	0	0	0	0	
	5000pp	om 0	0	0	0	0	0	0	0	0	0	0	0	0	
	10000pp	om O	0	0	0	0	0	0	0	0	0	0	0	0	
	20000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	40000pp		0	0	Ö	Ŏ	. 0	Ŏ	0	Ŏ	0	0	Ŏ	0	
	80000pr		0	0	Ô	0	0	0	Ö	Ö	1	1	Ō	Ö	
PILOERECTION	Contro	ol 0	0	0	0	0	0	0	0	0	. 0	0	0	0	
	5000pp		0	0	0	Ö	0	Ö	Ů	0	0	0	Ö	0	
	10000pp		Ô	0	0	Ô	Ô	Ŏ	0	0	ň	0	Ö	0	:
	20000p		Ô	Ô	0	0	0	Ö	0	0	0	0	0	0	
	40000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	id00008		0	0	0	0	0	0	Ő	1	1	1	0	0	
OLIGO-STOOL	Contra	ol 0	0	0	0	0	0	0	^	0	•	^	^	^	
OL160-3100L			•	0	0	0	0 .	0	0	0	0	0	0	0	
	5000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	10000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	20000pp		0	0	0	0	0	0	0	0	0	0	0	0	
	40000pp		0	0	0	0	0	0	0	0	. 0	0	0	0	
	90000pp	om 1	0	0	0	1	1	1	0	0	0	0	0	. 0	

(HAN190)

APPENDIX B 2-1

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY:SUMMARY)

RAT: MALE

STUDY NO. : 0201

ANIMAL : RAT F344

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Group Name Administration week-day_ 1-7 0-0 2-7 3-7 4-7 5-7 6-7 Control 134± 4 167± 6 199± 7 $225 \pm$ $243 \pm$ 261± 8 273± 10 6 8 2500 ppm $134 \pm$ 4 166± 5 196± 7 $220\pm$ 236± 12 261± 17 9 251± 15 5000 ppm $134 \pm$ 4 164± 5 $192 \pm$ 6 216± 8 233± 11 247 ± 13 259± 17 10000 ppm 134± 163± $191 \pm$ 4 4 212± 8** 227± 11* 241士 14** 251± 16* 20000 ppm 134士 4 $162 \pm$ 5 190± 212± 10** 227± 12** 243± 13* 253± 15* 8* 40000 ppm 134± 4 155± 5** 180± 7** 199士 10** 212± 13** 226± 16** 237士 19** Significant difference; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 2

STUDY NO. : 0201

'ANIMAL : RAT F344

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

(SUMMINI)

Group Name Administration week-day_ 7-7 8-7 9-7 10-7 11-7 12-7 13-7 Control 286± 11 300± 12 310± 13 316± 14 325 ± 13 335± 14 343± 14 2500 ppm 272± 18 285± 20 292± 22 300 ± 23 308± 23 317 ± 22 324 ± 21 5000 ppm 270± 17 283± 19 290± 20 298± 21 308± 23 315± 24 323± 23 10000 ppm 263生 18* 276± 21* 284士 22* 291± 23* 301± 23 310± 24 318 ± 23* 20000 ppm 265± 16* 276生 17* 285± 19* 293± 20 302± 21 311 ± 21 316± 21* 40000 ppm 249± 23** 260± 24** 267± 25** 275± 25** 293士 24** 299士 24** Significant difference; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett

(HAN260)

BAIS 2

APPENDIX B 2-2

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

SEX : FEMALE

oup Name	Admini	stration	n week-day						-					
	0-0		1-7		2-7		3-7		4-7		5-7		6-7	
Control	101±	3	118±	4	133±	4	145±	6	154±	6	161±	6	166±	9
2500 ppm	102±	3	118±	4	133±	5	144±	5	152±	6	160±	8	164±	8
5000 ppm	101±	3	117±	4	132±	5	143±	7	151±	6	159±	8	163±	7
10000 ppm	101±	3	116±	5	131±	5	140±	6	148±	6	154±	7	157±	9
20000 ppm	102±	3	116±	4	131±	3	141±	4	147±	5	154±	6	157±	7
40000 ppm	102±	3	111±	3**	124±	4**	134±	4**	141±	5**	147±	5**	151±	6**
Significant difference	e; *:P≦0	.05	**: P ≤ 0.0	1			Test of Du	innett						

(HAN260)

BAIS 2

STUDY NO. : 0201

ANIMAL : RAT F344
UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Toup Name	Administratio	on week-day					
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
Control	173± 12	176± 12	181± 13	186± 13	190± 13	192± 12	196± 13
2500 ppm	171± 9	175± 9	175± 9	181± 8	186± 10	189± 10	191± 8
5000 ppm	167± 11	173± 7	177± 8	181± 8	185± 9	189± 7	191± 7
10000 ppm	162± 9*	165± 10*	170± 11	172± 10**	176± 11*	180土 12*	181± 11**
mqq 0000S	163± 9	167± 8	171± 9	174± 10*	174± 14*	181± 11	183± 11*
40000 ppm	157± 6**	160土 6**	164± 6**	166± 7**	169± 9**	173± 9**	174± 8**
Significant differen	nce; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 2

APPENDIX B 2-3

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY:SUMMARY)

MOSUE: MALE

STUDY NO. : 0202

ANIMAL : MOUSE BDF1
UNIT : g
REPORT TYPE : A1 13
SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS (SUMMARY)

up Name	Administratio	on week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
				, , ,			
Control	24.1± 0.9	24.9± 1.1	26.0± 1.0	26.7± 0.8	27.7 ± 0.7	28.5± 1.0	29.6± 1.2
5000ppm	24.1± 0.9	25.3± 1.1	26.4± 1.1	27.4± 1.2	28.1± 1.6	29.3± 1.3	30.3± 1.2
10000ppm	24.1± 0.9	25.1± 0.9	26.2± 1.2	27.2± 1.2	28.0± 1.5	29.1± 1.6	30.3± 1.8
Toooppin	B1.12 V.0	20.12. 0.0	20.21 1.2	41.64. 1.6	20.04 1.5	20.12 1.0	00.0± 1.0
20000ppm	24.1± 0.9	24.9± 1.1	26.3± 1.1	27.2± 1.1	28.2± 1.4	29.0± 1.3	30.1± 1.5
40000ppm	24.1± 1.0	25.2± 1.1	26.3± 0.8	27.1± 1.4	28.0± 1.2	28.9± 1.1	29.8± 1.6
80000pm	24.1± 1.0	23.2± 0.9**	24.7± 1.3*	25.2± 1.5*	26.0± 2.0*	26.5± 2.8	27.0± 3.4
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
(260)							

STUDY NO.: 0202

ANIMAL : MOUSE BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

p Name	Administration	week-day			······································			
	7–7	8-7	9-7	10-7	11-7	12-7	13-7	
Control	30.3± 1.4	31.7± 1.5	32.7± 1.6	33.8± 1.9	34.4± 1.8	35.3± 2.0	35.9± 2.1	
5000ppm	31.0± 1.8	32.2± 1.9	33.5± 1.8	34.6± 2.0	35.4± 2.3	36.2± 2.7	36.7± 2.6	
10000ppm	30.8± 1.8	32.1± 2.1	33.0± 2.3	34.2± 2.5	34.7± 2.4	35.6± 2.5	36.3± 2.5	
20000ppm	30.6± 1.9	31.7± 2.0	32.5± 2.1	33.0± 2.0	33.8± 1.8	34.5± 1.9	35.5± 2.1	
40000ppm	30.1± 1.7	31.4± 2.1	32.0± 2.3	33.2± 2.5	33.6± 2.6	34.5± 2.7	35.4± 2.8	
Mqq00008	26.6± 4.1**	29.1± 1.2*	29.7± 1.0**	30,5± 1.3**	31.0± 1.5**	31.7± 1.6**	32.5± 1.2**	
Significant difference;	$*: P \leq 0.05$	**: P ≦ 0.01		Test of Dunnett				

BAIS 2

APPENDIX B 2-4

BODY WEIGHT CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

STUDY NO.: 0202

ANIMAL : MOUSE BDF1
UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

Name	Administration	week-day					
	0-0	1-7	2-7	3-7	4-7	5-7	6-7
Control	18.9± 0.7	20.1± 0.9	20.6± 0.5	20.8± 0.8	21.4± 0.8	22.0± 0.8	22.4± 0.9
5000ppm	19.0± 0.6	19.2± 0.6	20.4± 0.7	20.2± 0.8	21.1± 0.7	21.6± 1.0	22.0± 0.8
10000ppm	19.0± 0.7	19.5± 1.1	20.7± 1.1	20.9± 0.7	21.2± 1.1	21.7± 1.1	22.2± 1.1
20000ppm	19.0± 0.7	19.6± 0.9	20.2± 0.9	20.3± 0.8	20.9± 0.7	21.9± 1.1	21.8± 0.8
40000ppm	19.0± 0.7	19.5± 0.5	20.2± 0.5	20.6± 1.4	20.9± 1.1	21.5± 0.6	22.0± 0.9
mqq00008	19.0± 0.7	17.3± 1.5**	19.4± 1.0**	19.4± 0.7**	19.9± 1.2**	20.2± 2.3	20.0± 2.6**
Significant difference ;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 2

STUDY NO.: 0202

ANIMAL : MOUSE BDF1

UNIT : g REPORT TYPE : A1 13

SEX : FEMALE

BODY WEIGHT CHANGES ALL ANIMALS

(SUMMARY)

oup Name	Administrati	on week-day					
	7-7	8-7	9-7	10-7	11-7	12-7	13-7
Control	22.4± 1.0	23.2± 0.4	23.7± 0.9	23.3± 0.7	23.8± 0.4	23.7± 1.6	24.6± 1.3
5000ppm	21.8± 0.9	22.8± 0.8	23.7± 1.5	23.2± 1.1	23.4± 1.2	23.8± 1.1	24.1± 1.3
10000ppm	22.1± 1.2	23.2± 1.2	23.1± 1.1	23.7± 1.4	23.4± 1.6	23.9± 1.5	23.6± 1.7
20000ppm	21.9± 1.1	23.3± 0.8	22.9± 0.5	22.8± 0.9	23.7± 1.3	23.8± 1.0	23.9± 1.3
40000ppm	22.1± 1.0	22.8± 0.8	23.2± 0.8	22.9± 0.8	23.0± 1.1	23.6± 1.0	23.3± 0.7
80000pm	20.4± 2.9	21.4生 2.7	21.7± 2.8	21.5± 2.9	22.0± 3.4	23.2± 1.4	22.9± 1.0
Significant difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
1260)							. B.

APPENDIX B 3-1

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0201

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

PAGE: 1

iroup Name	Administration 1-7(4)	week-day(effective) 2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)
Control	18.3± 1.0	20.4± 1.8	21.1± 1.4	21.7± 1.7	20.7± 1.3	20.1± 1.5	19.6± 1.6
2500 ppm	19.4± 1.2	21.3± 1.3	21.1± 1.1	21.6± 1.7	20.4± 2.1	19.7± 2.3	19.5± 2.6
5000 ppm	19.2± 1.2	21.1± 0.9	21.2± 0.7	22.0± 1.2	20.5± 1.0	20.5± 1.7	20.1± 1.8
10000 ppm	19.8± 1.4	22.2± 1.7	21.9± 1.6	21.7± 2.2	19.9± 1.9	19.2± 1.6	18.8± 1.8
20000 ppm	21.5± 1.6**	22.9± 2.5*	22.8± 2.4	23.6± 4.2	23.2± 3.7	21.4± 1.9	21.2± 1.5
40000 ppm	17.6± 2.0	18.6± 0.9	19.3± 1.9	18.7± 2.0*	18.3± 2.6	17.4± 2.1**	17.9± 2.7
Significant difference	; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

BAIS 2

STUDY NO.: 0201 ANIMAL : RAT F344 WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

Group Name	Administratio	n week-day(effective)_					
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	19.8± 2.2	19.4± 1.4	18.5± 1.3	18.2± 1.3	18.2± 1.3	18.7± 1.4	
2500 ppm	19.7± 2.3	19.2± 2.2	19.0± 2.6	18.6± 2.2	18.4± 2.2	18.5± 2.1	
5000 ppm	20.4± 2.0	19.4± 1.9	19.3± 2.0	19.3± 1.9	18.4± 1.8	18.9± 1.8	
10000 ppm	19.3± 2.0	18.4± 1.8	18.3± 1.4	18.2± 1.5	18.3± 1.8	18.6± 1.5	
20000 ppm	21.0± 1.9	21.1± 2.9	20.6± 2.4	20.9± 1.8**	20.0± 2.6	20.0± 2.3	
40000 ppm	18.5± 1.8	17.5± 2.1	17.1± 1.8	18.6± 1.8	17.7± 1.4	18.1± 1.9	
Significant differenc	e; *:P≦0.05	**: P ≤ 0.01		Test of Dunnett			
(HANSEO)	· · · · · · · · · · · · · · · · · · ·	· 1 = V.VI		Test of pullett	· ····		DAT

(HAN260)

BAIS 2

APPENDIX B 3-2

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0201

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY)
ALL ANIMALS

PAGE: 3

Group Name	Administration 1-7(4)	week-day(effective) 2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7 (4)	7-7(4)	
Control	15.9± 0.7	16.8± 0.9	17.0± 0.9	16.7± 1.1	16.8± 1.6	19.1± 8.7	17.2± 2.8	
2500 ppm	18.5± 5.9	17.1± 1.2	17.7± 2.0	18.6± 5.2	18.5± 6.0	19.0± 6.7	21.8± 11.4	
5000 ppm	16.5± 1.5	17.7± 1.8	17.3± 1.6	17.3± 1.5	17.5± 1.6	18.6± 6.0	19.3± 8.6	
10000 ppm	17.2± 1.4	18.0± 2.1	19.1± 6.7	17.4± 2.6	17.2± 2.5	16.5± 2.6	16.2± 2.3	
20000 ppm	18.0± 1.0*	18.7± 1.5*	17.9± 1.3	17.4± 1.6	17.0± 1.6	16.2± 1.9	16.7± 2.4	
40000 ppm	15.0± 1.4	15.3± 1.2	24.0± 17.8	20.4± 9.6	14.8± 2.1	14.4± 3.0	14.6土 2.4	
Significant difference;	* : P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett				

(HAN260)

BAIS 2

STUDY NO. : 0201 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

roup Name	Administration	n week-day(effective)_					
	8-7(4)	9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	18.1± 4.5	18.5± 5.5	18.4± 5.0	18.8± 7.7	17.3± 3.9	16.9± 3.8	
2500 ppm	22.4± 12.0	15.3± 8.2	17.3± 3.4	18.4± 7.9	17.4± 5.4	20.4± 8.8	
5000 ppm	19.6± 8.8	18.5± 7.4	19.1± 9.6	18.5± 5.1	18.0± 7.3	18.4± 5.9	
10000 ppm	16.5± 2.5	17.1± 3.3	16.8± 3.5	19.1± 6.5	18.0± 4.3	18.1± 6.3	
20000 ppm	16.7± 1.4	16.2± 1.7	15.8± 1.5	19.0± 10.1	18.0± 5.9	22.1± 18.1	
40000 ppm	15.1± 2.9	13.9± 2.9*	13.4± 3.5**	13.8± 2.9	13.3± 3.1	13.4± 2.3	
Significant differer	nce; *: P ≦ 0.05	**: P ≤ 0.01		Test of Dunnett	<u></u>		

(HAN260)

BAIS 2

APPENDIX B 3-3

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO.: 0202

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

oup Name	Administration week-day(effective)							
	1-7(4)	2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)	
Control	5.1± 1.4	4.9± 1.0	4.6± 0.8	4.4± 0.8	4.6± 1.3	4.3± 1.0	4.3± 1.1	
5000ppm	5.2± 0.8	4.7± 0.8	4.7± 0.7	4.7± 1.1	4.8± 1.4	4.6± 1.0	4.7± 0.9	
10000ppm	5.2± 0.7	5.0± 0.7	4.8± 0.5	4.7± 0.5	4.5± 0.5	4.7± 0.4	4.6± 0.6	
20000ppm	5.5± 0.8	5.2± 0.8	5.2± 1.0	5.0± 0.8	4.9± 0.8	4.7± 0.6	4.8± 0.9	
40000ppm	6.4± 0.9**	5.7± 0.7*	5.6± 0.8*	5.3± 0.6*	5.1± 0.5	5.3± 0.3*	5.2± 0.4*	
80000ppm	7.9± 2.0**	6.7± 2.4*	7.5± 3.2**	7,5± 3.3**	7.5± 3.7**	7.4± 3.7**	7.1± 2.0**	
Significant difference	; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			· · · · · · · · · · · · · · · · · · ·	

(HAN260)

BAIS 2

STUDY NO. : 0202

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

WATER CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 2

Group Name	Administration w 8-7(4)	eek-day(effective) 9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)	
Control	4.3± 0.9	4.0± 0.6	3.9± 0.7	3.7± 0.5	3.6± 0.4	3.6± 0.5	
5000ppm	4.4± 1.0	4.1± 0.4	4.2± 0.5	4.0± 0.6	3.9± 0.4	3.8± 0.3	
10000pm	4.6± 0.5	4.2± 0.5	4.3± 0.5	4.1± 0.6	4.0± 0.4	3.9± 0.5	
20000ppm	5.1± 1.5	4.6± 1.1	4.4± 0.7	4.3± 0.8	4.3± 0.7	4.2± 0.6	
40000ppm	5.1± 0.4	4.9± 0.3*	4.9± 0.5**	4.6± 0.4*	4.6± 0.3**	4.5± 0.2**	
mqq00008	6.3± 2.0**	6.0± 1.8**	6.2± 2.1**	6.0± 1.8**	5.8± 1.7**	5.6± 1.4**	
Significant difference	e; *:P≦0.05 **	$: P \leq 0.01$		Test of Dunnett			

(HAN260)

BAIS 2

APPENDIX B 3-4

WATER CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

ID Name	Administration 1-7(4)	week-day(effective) 2-7(4)	3-7(4)	4-7(4)	5-7(4)	6-7(4)	7-7(4)
Control	4.9± 0.8	4.7± 0.5	4.6± 0.6	5.0± 1.1	5.5± 1.8	5.2± 1.5	5.5± 1.5
5000ppm	5.0± 0.7	5.2± 0.8	5.0± 1.1	5.2± 1.0	5.5± 1.3	5.5± 1.5	5.5± 0.9
10000ppm	5.0± 0.7	5.2± 0.9	4.8± 0.5	4.9± 0.3	4.5± 0.3	4.8± 0.5	5.0± 0.5
20000ppm	5.4± 0.5	5.3± 0.9	6.0± 2.7	5.7± 1.1	5.9± 2.2	5.6± 1.5	6.3± 1.3
40000ppm	5.7± 0.3*	5.6生 0.6	6.0± 1.0**	6.0± 1.1*	6.6± 2.2	5.9± 1.0	6.2± 1.0
80000ppm	7.2± 2.4**	7.3± 1.0**	9.2± 2.7**	9.6± 3.3**	9.9± 1.9**	9.7± 2.8**	9.7± 2.3**

(HAN260)

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13
SEX : FEMALE

WATER CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

D Name	Administration 8-7(4)	week-day(effective)_ 9-7(4)	10-7(4)	11-7(4)	12-7(4)	13-7(4)
Control	5.8± 2.6	6.8± 2.9	6.1± 2.8	6.7± 3.1	6.6± 3.5	5.9± 2.5
5000ppm	5.5± 1.2	5.3± 0.6	4.8± 0.5	4.8± 0.6	4.7± 0.5	4.8± 0.6
10000ppm	4.9± 0.6	4.8± 0.5	4.7± 0.3	4.8± 0.6	4.7± 0.7	5.1± 1.7
20000ppm	5.9± 1.5	6.5± 3.8	5.9± 1.5	5.9± 1.9	5.7± 1.7	5.9± 2.0
40000ppm	6.0± 0.8	5.6± 0.5	5.7± 0.8	5.7± 1.2	5.5± 1.1	5.5± 0.9
80000ppm	9.5± 3.5**	10.1± 4.6*	10.3± 4.6**	10.7± 7.0*	8.6± 2.2	7.3± 0.7*
ignificant differenc	e; *: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett		

(HAN260)

APPENDIX B 4-1

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0201 ANIMAL : RAT F344

UNIT : g REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 1

roup Name	Administration	week-day(effective)					
	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7 (7)
Control	15.0± 1.1	16.3± 1.0	17.1± 0.8	17.3± 1.0	17.1± 0.6	16.6± 0.8	16.5± 1.0
2500 ppm	14.9± 0.5	16.1± 0.7	16.7± 0.9	16.6± 0.8	16.0± 1.2	15.3± 1.1	15.5± 1.3
5000 ppm	14.9± 0.7	15.6± 0.8	16.0± 0.9	16.6± 1.4	16.0± 1.2	15.5± 1.4	15.3± 1.6
10000 ppm	14.5± 0.5	16.0± 0.9	16.0± 1.1	16.4± 1.6	15.4± 1.4*	14.8± 1.6*	15.1± 1.8
20000 ppm	14.5± 0.8	15.7± 0.8	16.2± 1.1	16.4± 1.2	16.0± 1.4	15.2± 1.2	15.7± 1.1
40000 ppm	12.7± 0.9**	14.7± 0.8**	15.0± 1.2**	14.9± 1.1**	14.3± 1.5**	14.0± 1.5**	14.4± 1.7
Significant differe	ence; *: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			
HAN260)							

STUDY NO. : 0201 ANIMAL : RAT F344 FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

PAGE: 2

roup Name	Administration	week-day(effective)_					
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	16.4± 0.9	16.5± 1.0	16.3± 1.1	16.6± 0.6	16.3± 1.0	16.4± 0.9	
2500 ppm	15.3± 1.3	15.1± 1.4	15.2± 1.4	15.5± 1.2	14.7± 1.1	15.4± 0.6	
5000 ppm	15.4± 1.6	15.0± 1.6	15.2± 1.6	15.4± 1.4	14.7± 1.8	15.1± 1.5	
10000 ppm	14.8± 1.8	14.7± 1.8	14.7± 1.4	15.1± 1.4*	14.6± 1.4*	15.2± 1.3	
20000 ppm	15.4± 1.2	15.3± 1.2	15.4± 1.4	15.8± 1.2	15.2± 1.5	15.5± 1.2	
40000 ppm	14.1± 1.8**	14.5± 1.9	14.0± 1.4**	14.6± 1.3**	14.4± 1.2*	14.9± 1.1	
			· .				
Significant difference	e; *: P ≦ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 4-2

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

roup Name		week-day(effective)	(-)				
	1-7(7)	2–7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7 (7)
Control	12.0± 0.7	12.8± 0.8	12.9± 0.9	12.7± 0.5	12.3± 0.8	11.6± 1.4	12.2± 1.5
2500 ppm	11.4± 0.7	12.1± 0.8	12.4± 1.0	12.3± 0.9	11.8± 1.0	11.3± 1.1	11.9± 1.0
5000 ppm	11.4± 0.6	12.4± 0.9	12.2± 0.8	12.2± 0.8	11.9± 0.8	11.3± 0.7	11.4± 0.9
10000 ppm	11.0± 0.5**	11.8± 1.0*	11.5± 0.8**	11.6± 1.0*	11.1± 0.9*	10.5± 1.3	10.7± 1.1*
20000 ppm	11.1± 0.3**	11.9± 0.4*	11.8± 0.7*	11.4± 0.7**	11.2± 0.8	10.4± 1.1	10.7± 1.1*
40000 ppm	10.1± 0.7**	11.2± 0.7**	11.2± 0.7**	11.2± 1.0**	10.9± 1.2**	10.1± 1.2*	10.6± 1.2*
Significant difference;	*: P ≤ 0.05 *	*: P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : RAT F344

UNIT : g
REPORT TYPE : A1 13

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

SEX : FEMALE

PAGE: 4

TOUR Name	Administration	week-day(effective)					
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Contral	11.6± 1.2	11.5± 1.0	11.7± 1.4	11.7± 1.0	11.5± 0.9	11.5± 0.9	
2500 ppm	11.3± 1.0	10.6± 1.4	11.1± 1.1	11.5± 1.3	11.3± 1.1	10.9± 0.7	
5000 ppm	11.4± 0.9	11.0± 0.9	11.1± 0.8	11.4± 1.0	11.2± 0.9	11.0± 0.8	
10000 ppm	10.4± 0.9*	10.2± 1.1*	10.0± 0.9**	10.3± 1.1	10.4± 1.1	10.0± 0.9**	
20000 ppm	10.7± 0.9	10.2± 1.0*	10.2± 1.1*	10.0± 1.6*	10.6± 1.0	10.4± 1.0*	
40000 ppm	10.3± 1.0*	9.9± 1.2**	9.7± 1.4**	10.1生 1.1*	9.9± 1.0**	9.6± 1.0**	
Significant difference;	*: P ≤ 0.05	** : P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 4-3

FOOD CONSUMPTION CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1

UNIT : g

REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY)

ALL ANIMALS

PAGE: 1

ine	Administration 1–7(7)	week-day(effective) 2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7-7(7)
Control	3.9± 0.3	3.9± 0.3	3.9± 0.3	4.0± 0.3	3.9± 0.3	4.0± 0.3	3.9± 0.3
5000ppm	4.0± 0.3	4.0± 0.2	3.9± 0.2	4.0± 0.2	3.9± 0.2	4.1± 0.2	4.1± 0.3
mqq0000	3.9± 0.1	4.0± 0.2	3.9± 0.2	4.0± 0.2	4.0± 0.2	4.2± 0.2	4.0± 0.2
:0000pm	4.1± 0.3	4.1± 0.4	4.0± 0.4	4.2± 0.4	4.1± 0.3	4.2± 0.3	4.1± 0.3
mqq0000	4.1± 0.2	4.0± 0.2	3.9± 0.2	4.1± 0.1	4.0± 0.2	4.1± 0.2	1.0± 0.2
mqq0000	3.4± 0.3**	4.0± 0.3	3.8± 0.3	3.9± 0.3	3.8± 0.4	3.8± 0.4	3.6± 0.5
nificant difference;	*: P ≦ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

ANIMAL : MOUSE BDF1

UNIT : g
REPORT TYPE : A1 13

SEX : MALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 2

DUP Name	Administration	week-day(effective)_					
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	4.2± 0.3	4.1± 0.4	4.2± 0.3	4.1± 0.2	4.2± 0.2	4.0± 0.3	g 11.
5000ppm	4.2± 0.2	4.3± 0.3	4.4± 0.3	4.2± 0.3	4.3± 0.3	4.1± 0.2	
10000ppm	4.2± 0.3	4.2± 0.2	4.3± 0.2	4.2± 0.2	4.2± 0.2	4.1± 0.2	
20000ppm	4.2± 0.2	4.2± 0.3	4.2± 0.2	4.1± 0.2	4.2± 0.2	4.2± 0.3	
40000ppm	4.2± 0.2	4.1± 0.1	4.3± 0.2	4.1± 0.2	4.2± 0.2	4.2± 0.2	
80000pm	4.0± 0.2	4.0± 0.3	4.1± 0.4	3.9± 0.3	4.1± 0.3	4.0± 0.3	!
Significant difference	e; *:P≦0.05	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 4-4

FOOD CONSUMPTION CHANGES (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 3

oup Name	Administration	week-day(effective)_					· · · · · · · · · · · · · · · · · · ·	
-	1-7(7)	2-7(7)	3-7(7)	4-7(7)	5-7(7)	6-7(7)	7–7 (7)	
Control	3.6± 0.1	3.4± 0.2	3.5± 0.2	3.7± 0.2	3.8± 0.3	3.8± 0.2	3.8± 0.3	
5000ppm	3.4± 0.2	3.5± 0.2	3.5± 0.2	3.7± 0.2	3.8± 0.2	3.7± 0.2	3.8± 0.2	
10000ppm	3.5± 0.2	3.5± 0.2	3.4± 0.2	3.6± 0.2	3.7± 0.2	3.7± 0.2	3.8± 0.3	
20000ppm	3.4± 0.3	3.4± 0.2	3.4± 0.2	3.6± 0.2	3.8± 0.3	3.7± 0.2	3.9± 0.3	
40000ppm	3.4± 0.2	3.5± 0.2	3.5± 0.2	3.7± 0.2	3.8± 0.2	3.7± 0.3	3.9± 0.2	
mqq00008	3.0± 0.3**	3.4± 0.1	3.4± 0.2	3.6± 0.2	3.6± 0.4	3.5± 0.3	3.6± 0.4	
Significant difference	ce; $*: P \leq 0.05$	$*: P \leq 0.01$		Test of Dunnett				

(HAN260)

ANIMAL : MOUSE BDF1
UNIT : g

REPORT TYPE : A1 13

SEX : FEMALE

FOOD CONSUMPTION CHANGES (SUMMARY) ALL ANIMALS

PAGE: 4

coup Name	Administratio	n week-day(effective)					
	8-7(7)	9-7(7)	10-7(7)	11-7(7)	12-7(7)	13-7(7)	
Control	4.0± 0.2	4.1± 0.3	3.9± 0.2	3.9± 0.2	3.9± 0.3	4.0± 0.3	
5000ppm	4.1± 0.2	4.1± 0.3	3.9± 0.2	3.9± 0.2	4.0± 0.2	3.9± 0.3	
10000ppm	3.9± 0.2	3.9± 0.3	4.0± 0.3	3.8± 0.3	3.9± 0.3	3.7± 0.2	
20000ppm	4.0± 0.3	3.9± 0.3	3.8± 0.3	3.9± 0.3	3.9± 0.3	3.9± 0.3	
40000ppm	4.0± 0.3	4.0± 0.2	3.9± 0.2	3.8± 0.2	4.0± 0.2	3.8± 0.1	
80000pm	3.7± 0.4	3.7± 0.5	3.7± 0.4	3.5± 0.8	3.6± 0.7	3.6± 0.3**	
	· · · · · · · · · · · · · · · · · · ·						
Significant difference;	*: $P \leq 0.05$	**: P ≤ 0.01		Test of Dunnett			

(HAN260)

APPENDIX B 5-1

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

ANIMAL : RAT F344

UNIT : g/kg/day REPORT TYPE: Al 13

SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY) ALL ANIMALS

PAGE: 1

Group Name	Administration	(weeks)					
	1	2	3	4	5	6	7
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
2500 ppm	0.292± 0.013	0.271± 0.013	0.240± 0.008	0.229± 0.013	0.203± 0.014	0.191± 0.018	0.179± 0.018
5000 ppm	0.584± 0.033	0.548± 0.019	0.491± 0.021	0.474± 0.015	0.415± 0.014	0.396± 0.025	0.373± 0.029
10000 ppm	1.211± 0.067	1.158± 0.061	1.031± 0.047	0.952± 0.065	0.825± 0.039	0.765± 0.049	0.713± 0.042
20000 ppm	2.648± 0.129	2.411± 0.267	2.153± 0.220	2.083± 0.372	1.912± 0.304	1.697± 0.129	1.606± 0.083
40000 ppm	4.559± 0.428	4.149± 0.195	3.891± 0.316	3.540± 0.277	3.228± 0.297	2.945± 0.269	2.873± 0.277

(HAN300)

ANIMAL : RAT F344

UNIT : g/kg/day

REPORT TYPE : A1 13

SEX : MALE

20000 ppm

40000 ppm

1.518± 0.122

2.848± 0.112

1.482± 0.191

2.622± 0.205

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

Group Name Administration (weeks)_ 10 11 12 13 8 Control 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 2500 ppm 0.173± 0.015 0.164± 0.015 0.151± 0.016 0.143± 0.015 0.159± 0.019 0.146± 0.017 5000 ppm 0.360 ± 0.018 0.313± 0.020 0.292 ± 0.017 0.292± 0.018 0.335 ± 0.019 0.323 ± 0.018 10000 ppm 0.700 ± 0.038 0.650 ± 0.031 0.628 ± 0.032 0.605 ± 0.023 0.589± 0.028 0.585± 0.026

PAGE: 2

(HAN300) BAIS 2

1.386± 0.068

 2.624 ± 0.227

1.284± 0.123

 2.427 ± 0.190

1.264± 0.105

2.427± 0.197

1.406± 0.131

2.494± 0.221

APPENDIX B 5-2

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

ANIMAL : RAT F344

UNIT : g/kg/day REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 3

7	7
± 0.000 0.000	0.000 ±
± 0.099 0.321	1± 0.174
± 0.202 0.590	0± 0.325
± 0.127 0.996	6± 0.111
± 0.165 2.051:	1± 0.218
± 0.678 3.717	7± 0.488
5 :	8± 0.678 3.71

(HAN300)

CHEMICAL INTAKE CHENGES (SUMMARY) ALL ANIMALS

ANIMAL : RAT F344
UNIT : g/kg/day
REPORT TYPE : A1 13
SEX : FEMALE

PAGE: 4

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
2500 ppm	0.324± 0.182	0.215± 0.109	0.240± 0.046	0.247± 0.102	0.231± 0.073	0.270± 0.126	
5000 ppm	0.570± 0.272	0.524± 0.224	0.533± 0.294	0.506± 0.173	0.476± 0.197	0.481± 0.158	
10000 ppm	0.997± 0.106	1.000± 0.178	0.971± 0.176	1.080± 0.329	0.999± 0.200	0.989± 0.283	
20000 ppm	2.000± 0.118	1.896± 0.154	1.818± 0.134	2.246± 1.478	1.973± 0.542	2.407± 1.939	
40000 ppm	3.746± 0.599	3.390± 0.587	3.210± 0.700	3.228± 0.528	3.050± 0.540	3.067± 0.412	

(HAN300)

APPENDIX B 5-3

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1

UNIT : g/kg/day
REPORT TYPE : A1 13

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

SEX : MALE

PAGE: 1

oup Name	Administration	(weeks)						
	1	2	3	4	5	6	7	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
5000ppm	1.034± 0.219	0.892± 0.190	0.869± 0.155	0.851± 0.256	0.825± 0.279	0.754± 0.180	0.766± 0.184	
10000ppm	2.085± 0.344	1.890± 0.257	1.764± 0.188	1.677± 0.201	1.558± 0.196	1.546± 0.158	1.482± 0.209	
20000ppm	4.442± 0.729	3.963± 0.609	3.807± 0.751	3.529± 0.595	3.369± 0.647	3.097± 0.425	3.174± 0.734	
40000ppm	10.240± 1.591	8.696± 1.096	8.311± 1.034	7.633± 0.982	7.139± 0.791	7.091± 0.623	6.969± 0.716	
80000ppm	27.286± 7.411	19.163± 3.776	24.202± 12.555	23.671± 13.492	24.209± 17.569	23.824± 18.905	22.788± 12.294	

(HAN300)

ANIMAL : MOUSE BDF1

UNIT : g/kg/day
REPORT TYPE : A1 13
SEX : MALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 2

	(weeks)					
8	9	10	11	12	13	
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
0.684± 0.180	0.611± 0.097	0.610± 0.102	0.569± 0.125	0.541± 0.097	0.525± 0.081	
1.439± 0.178	1.289± 0.172	1.268± 0.173	1.184± 0.181	1.127± 0.133	1.073± 0.165	
3.281± 1.108	2.855± 0.773	2.672± 0.511	2.570± 0.614	2.507± 0.553	2.365± 0.458	
6.518± 0.716	6.118± 0.658	5.884± 0.796	5.449± 0.702	5.330± 0.715	5.150± 0.472	
17.353± 5.888	16.276± 5.005	16.258± 5.772	15.461± 4.650	14.750± 4.633	13.689± 3.439	
•	0.000± 0.000 0.684± 0.180 1.439± 0.178 3.281± 1.108 6.518± 0.716	0.000± 0.000 0.000± 0.000 0.684± 0.180 0.611± 0.097 1.439± 0.178 1.289± 0.172 3.281± 1.108 2.855± 0.773 6.518± 0.716 6.118± 0.658	0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.684 ± 0.180 0.611 ± 0.097 0.610 ± 0.102 1.439 ± 0.178 1.289 ± 0.172 1.268 ± 0.173 3.281 ± 1.108 2.855 ± 0.773 2.672 ± 0.511 6.518 ± 0.716 6.118 ± 0.658 5.884 ± 0.796	$0.000\pm \ 0.000$ $0.684\pm \ 0.180$ $0.611\pm \ 0.097$ $0.610\pm \ 0.102$ $0.569\pm \ 0.125$ $1.439\pm \ 0.178$ $1.289\pm \ 0.172$ $1.268\pm \ 0.173$ $1.184\pm \ 0.181$ $3.281\pm \ 1.108$ $2.855\pm \ 0.773$ $2.672\pm \ 0.511$ $2.570\pm \ 0.614$ $6.518\pm \ 0.716$ $6.118\pm \ 0.658$ $5.884\pm \ 0.796$ $5.449\pm \ 0.702$	$0.000\pm \ 0.000$ $0.684\pm \ 0.180$ $0.611\pm \ 0.097$ $0.610\pm \ 0.102$ $0.569\pm \ 0.125$ $0.541\pm \ 0.097$ $1.439\pm \ 0.178$ $1.289\pm \ 0.172$ $1.268\pm \ 0.173$ $1.184\pm \ 0.181$ $1.127\pm \ 0.133$ $3.281\pm \ 1.108$ $2.855\pm \ 0.773$ $2.672\pm \ 0.511$ $2.570\pm \ 0.614$ $2.507\pm \ 0.553$ $6.518\pm \ 0.716$ $6.118\pm \ 0.658$ $5.884\pm \ 0.796$ $5.449\pm \ 0.702$ $5.330\pm \ 0.715$	$0.000\pm\ 0.000$ $0.000\pm\ 0.00$

(HAN300)

APPENDIX B 5-4

CHEMICAL INTAKE CHANGES (THIRTEEN—WEEK STUDY: SUMMARY)

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

UNIT : g/kg/day
REPORT TYPE : A1 13

SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

PAGE: 3

Administration	(weeks)					
1	2	3	4	5	6	7
0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000
1.291± 0.157	1.286± 0.192	1.243± 0.303	1.223± 0.231	1.286± 0.323	1.264± 0.365	1.262± 0.253
2.577± 0.469	2.530± 0.522	2.295± 0.241	2.294± 0.215	2.098± 0.178	2.171± 0.309	2.249± 0.273
5.571± 0.520	5.264± 0.667	5.849± 2.543	5.456± 1.078	5.420± 1.905	5.187± 1.409	5.798± 1.473
11.757± 0.697	11.155± 1.251	11.792± 2.732	11.490± 2.605	12.257± 4.362	10.693± 1.971	11.228± 2.201
32.638± 10.770	30.110± 4.729	38.096± 12.501	39.285± 16.258	40.298± 12.745	41.062± 21.053	40.398± 20.548
	$ \begin{array}{cccc} 1 & & & & & \\ 0.000 \pm & 0.000 & & \\ 1.291 \pm & 0.157 & & \\ 2.577 \pm & 0.469 & & \\ 5.571 \pm & 0.520 & & \\ 11.757 \pm & 0.697 & & \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 0.000 \pm 0.000 0.000 \pm 0.000 0.000 \pm 0.000 1.291 \pm 0.157 1.286 \pm 0.192 1.243 \pm 0.303 2.577 \pm 0.469 2.530 \pm 0.522 2.295 \pm 0.241 5.571 \pm 0.520 5.264 \pm 0.667 5.849 \pm 2.543 11.757 \pm 0.697 11.155 \pm 1.251 11.792 \pm 2.732	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(HAN300)

ANIMAL : MOUSE BDF1
UNIT : g/kg/day
REPORT TYPE : A1 13
SEX : FEMALE

CHEMICAL INTAKE CHENGES (SUMMARY)

ALL ANIMALS

Group Name	Administration	(weeks)					
	8	9	10	11	12	13	
Control	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	0.000± 0.000	
5000ppm	1.198± 0.291	1.119± 0.175	1.036± 0.156	1.031± 0.166	0.994± 0.128	0.998± 0.163	
10000ppm	2.093± 0.252	2.081± 0.220	1.994± 0.145	2.062± 0.379	1.972± 0.341	2.214 ± 0.862	
20000ppm	5.052± 1.222	5.686± 3.273	5.178± 1.347	4.946± 1.434	4.748± 1.353	4.848± 1.281	
40000ppm	10.459± 1.380	9.723± 0.940	9.896± 1.372	9.969± 2.372	9.353± 1.678	9.413± 1.563	
maq00008	37.972± 24.174	40.835± 31.308	42.301± 32.944	45.871± 51.738	27.377± 3.328	25,517± 2.819	

(HAN300)

BAIS 2

PAGE: 4

APPENDIX B 6-1

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ /μl	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f @	MCH Pg	MCHC g∕dl	PLATELET 1 O³ / με
Control	10	9.85± 0.15	16.6± 0.2	47.1± 0.8	47.8± 0.4	16.9± 0.2	35.3± 0.4	738± 36
2500 ppm	10	9.75± 0.15	16.7± 0.3	46.7± 0.8	47.9± 0.5	17.2± 0.2	35.8± 0.4	731± 36
5000 ppm	10	9.66± 0.40	16.4± 0.7	46.2± 1.8	47.9± 0.8	17.0± 0.3	35.5± 0.6	741± 46
10000 ppm	10	9.74± 0.21	16.6± 0.3	46.7± 1.1	48.0± 0.8	17.1± 0.3	35.6± 0.5	725± 45
20000 ppm	10	9.83± 0.18	16.6± 0.3	46.6± 0.9	47.4± 0.7	16.9± 0.3	35.5± 0.6	736± 35
40000 ppm	10	9.74± 0.31	16.7± 0.3	46.8± 1.1	48.1± 0.8	17.1± 0.4	35.7± 0.5	726± 35
Significant	difference;	*: P ≤ 0.05	**: P ≤ 0.01		Test of Dunnett			

(HCL070)

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : MALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

iroup Name	NO. of Animals	WBC 1 03/	WBC 1 О³∕µ₽		Differential WBC N-BAND				EOSINO)	BASO		MONO	MONO		LYMPHO		
Control	10	5.14±	1.61	0±	0	30±	. 8	2±	1	0±	0	4±	1	65±	8	0±	0	
2500 ppm	10	4.91±	1.10	0±	0	29±	7	2±	1	0±	0	4±	2	65±	8	0±	0	
5000 ppm	10	4.84±	1.40	0±	1	28±	5	2±	1	0±	0	5±	1	65±	4	0±	0	
10000 ppm	10	4.93±	1,38	0±	0	34±	7	1±	1	0±	0	4±	1	60±	7	0±	0	
20000 ppm	10	4.36±	1.14	0±	0	30±	10	1±	1	0±	0	4±	2	64±	8	0±	0	
40000 ppm	10	5.92±	1.60	0±	0	28±	6	1±	1	0±	0	4±	1	68±	5	0±	0	
Significan	nt difference;	*: P ≦	0.05	**: P ≦	0.01				Test of	Dunnett								
(JCL71A)																		

APPENDIX B 6-2

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

roup Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ /µl		HEMOGL g∕dl	OBIN	HEMATO %	OCRIT	MCV f l		MCH Pg		MCHC g∕dl		PLATELET 1 Ο³ / μl	
Control	9	9.19±	0.17	16.9±	0.3	47.2±	1.1	51.4±	0.4	18.3±	0.2	35.7±	0.4	822±	41
2500 ppm	10	8,96±	0.37	16.6±	0.5	45.8±	2.0	51.1±	0.3	18.6±	0.7	36.3±	1.6	812±	47
5000 ppm	10	9.04±	0.35	16.7±	0.4	46.3±	1.8	51.2±	0.5	18.5±	0.6	36.1±	1.2	799±	33
10000 ppm	10	9.05±	0.30	16.5±	0.6	45.9±	1.5	50.7±	0.5*	18.3±	0.3	36.0±	0.4	813±	61
20000 ppm	10	9.11±	0.20	16.6±	0.3	46.4±	1.1	50.9±	0.5	18.3±	0.2	35.9±	0.5	805±	63
40000 ppm	10	8.86±	0.22	16.1±	0.5**	45.0±	0.9**	50.8±	0.7*	18.2±	0.2	35.9±	0.8	787±	42
Significant	difference;	*: P ≤ (0.05	**: P ≤ 0.0)1			Test of Dur	nnett					<u> </u>	
HCL070)															

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

SEX: FEMALE

Group Name NO. of WBC (%) Differential WBC Animals 1 03/µl N-BAND N-SEG **EOSINO** BASO MONO LYMPHO OTHER Control 9 3.55 ± 0.78 $0\pm$ 0 $25\pm$ 6 $2\pm$ 0土 0 $4\pm$ 69± 6 0± 0 2500 ppm 10 3.56± 1.28 0± 0 $28\pm$ 8 $2\pm$ 2 0± 0 $65\pm$ 9 0± 0 $4\pm$ 5000 ppm 2.66± 0.61 10 $1\pm$ 1 28± 2± 2 0± 0 4土 2 65± 8 0± 0 10000 ppm 10 3.15± 1.09 0± 0 $25\pm$ 0 4 $2\pm$ 1 0土 5土 1 $68 \pm$ 4 0± 0 20000 ppm 10 3.13 ± 0.97 $1\pm$ $28\pm$ 6 $2\pm$ 1 0± 0 7 $0\pm$ $4\pm$ 66± 0 40000 ppm 10 3.05± 0.52 0± $25\pm$ $2\pm$ 0土 $5\pm$ 2 69± 0± 0 Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Dunnett (JCL71A)

BAIS 2

PAGE: 2

APPENDIX B 6-3

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

STUDY NO. : 0202 ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

NO. of Animals		LOOD CELL	g ∕al	HEMOGLOBIN HEMATO		CRIT	MCV f ℓ		MCH Pg		MCHC g∕dl			ET &
10	10.41±	0.24	15.5±	0.4	45.5±	1.1	43.8±	0.8	14.9±	0.2	34.0±	0.8	1342±	89
10	10.61±	0.47	15.7±	0.7	46.6±	2.8	43.9±	1.1	14.8±	0.2	33.8±	0.7	1371±	165
10	10.55±	0.41	15.7±	0.4	46.1±	2.0	43.7±	0.6	14.9±	0.3	34.1±	1.0	1372±	112
10	10.63±	0.36	15.7±	0.6	46.3±	2.2	43.5±	0.9	14.8±	0.3	34.1±	0.7	1386±	117
10	10.59±	0,25	15.7±	0.3	45.8±	0.8	43.2±	0.4	14.9±	0.3	34.4±	0.4	1442±	89
9	10.47±	0.35	15.6±	0.3	45.2±	1.6	43.2±	0.5	14.9±	0.5	34.6±	1.1	1386±	106
	10 10 10 10 10 10	10 10.41± 10 10.61± 10 10.55± 10 10.63± 10 10.59±	10 10.41± 0.24 10 10.61± 0.47 10 10.55± 0.41 10 10.63± 0.36 10 10.59± 0.25	Animals $10^{6}/\mu$ g/d ℓ 10 10.41 ± 0.24 $15.5\pm$ 10 10.61 ± 0.47 $15.7\pm$ 10 10.55 ± 0.41 $15.7\pm$ 10 10.63 ± 0.36 $15.7\pm$ 10 10.59 ± 0.25 $15.7\pm$	Animals $10^{6}/\mu$ g/de 10.41 ± 0.24 15.5 ± 0.4 10 10.61 ± 0.47 15.7 ± 0.7 10 10.55 ± 0.41 15.7 ± 0.4 10 10.63 ± 0.36 15.7 ± 0.6 10 10.59 ± 0.25 15.7 ± 0.3	Animals $10^{6}/\mu$ g/d % 10 10.41 ± 0.24 15.5 ± 0.4 $45.5\pm$ 10 10.61 ± 0.47 15.7 ± 0.7 $46.6\pm$ 10 10.55 ± 0.41 15.7 ± 0.4 $46.1\pm$ 10 10.63 ± 0.36 15.7 ± 0.6 $46.3\pm$ 10 10.59 ± 0.25 15.7 ± 0.3 $45.8\pm$	Animals $10^{6}/\mu\ell$ g/d ℓ % 10 10.41 ± 0.24 15.5 ± 0.4 45.5 ± 1.1 10 10.61 ± 0.47 15.7 ± 0.7 46.6 ± 2.8 10 10.55 ± 0.41 15.7 ± 0.4 46.1 ± 2.0 10 10.63 ± 0.36 15.7 ± 0.6 46.3 ± 2.2 10 10.59 ± 0.25 15.7 ± 0.3 45.8 ± 0.8	Animals $10^{6}/\mu$ g/d % $f \ell$ 10 10.41 ± 0.24 15.5 ± 0.4 45.5 ± 1.1 $43.8 \pm$ 10 10.61 ± 0.47 15.7 ± 0.7 46.6 ± 2.8 $43.9 \pm$ 10 10.55 ± 0.41 15.7 ± 0.4 46.1 ± 2.0 $43.7 \pm$ 10 10.63 ± 0.36 15.7 ± 0.6 46.3 ± 2.2 $43.5 \pm$ 10 10.59 ± 0.25 15.7 ± 0.3 45.8 ± 0.8 $43.2 \pm$	Animals $10^{6}/\mu$ g/d ℓ % f ℓ 10 10.41 ± 0.24 15.5 ± 0.4 45.5 ± 1.1 43.8 ± 0.8 10 10.61 ± 0.47 15.7 ± 0.7 46.6 ± 2.8 43.9 ± 1.1 10 10.55 ± 0.41 15.7 ± 0.4 46.1 ± 2.0 43.7 ± 0.6 10 10.63 ± 0.36 15.7 ± 0.6 46.3 ± 2.2 43.5 ± 0.9 10 10.59 ± 0.25 15.7 ± 0.3 45.8 ± 0.8 43.2 ± 0.4	Animals $10^{6}/\mu$ g/d % $f \ell$ $p g$ 10 10.41 ± 0.24 15.5 ± 0.4 45.5 ± 1.1 43.8 ± 0.8 $14.9\pm$ 10 10.61 ± 0.47 15.7 ± 0.7 46.6 ± 2.8 43.9 ± 1.1 $14.8\pm$ 10 10.55 ± 0.41 15.7 ± 0.4 46.1 ± 2.0 43.7 ± 0.6 $14.9\pm$ 10 10.63 ± 0.36 15.7 ± 0.6 46.3 ± 2.2 43.5 ± 0.9 $14.8\pm$ 10 10.59 ± 0.25 15.7 ± 0.3 45.8 ± 0.8 43.2 ± 0.4 $14.9\pm$	Animals $1\ 0^6/\mu^2$ g/d^2 % $f\ell$ pg 10 10.41 ± 0.24 15.5 ± 0.4 45.5 ± 1.1 43.8 ± 0.8 14.9 ± 0.2 10 10.61 ± 0.47 15.7 ± 0.7 46.6 ± 2.8 43.9 ± 1.1 14.8 ± 0.2 10 10.55 ± 0.41 15.7 ± 0.4 46.1 ± 2.0 43.7 ± 0.6 14.9 ± 0.3 10 10.63 ± 0.36 15.7 ± 0.6 46.3 ± 2.2 43.5 ± 0.9 14.8 ± 0.3 10 10.59 ± 0.25 15.7 ± 0.3 45.8 ± 0.8 43.2 ± 0.4 14.9 ± 0.3	Animals $1.0^{6}/\mu\ell$ $g/d\ell$ % $f \ell$ $p g$ $g/d\ell$ 10 $10.41\pm$ 0.24 $15.5\pm$ 0.4 $45.5\pm$ 1.1 $43.8\pm$ 0.8 $14.9\pm$ 0.2 $34.0\pm$ 10 $10.61\pm$ 0.47 $15.7\pm$ 0.7 $46.6\pm$ 2.8 $43.9\pm$ 1.1 $14.8\pm$ 0.2 $33.8\pm$ 10 $10.55\pm$ 0.41 $15.7\pm$ 0.4 $46.1\pm$ 2.0 $43.7\pm$ 0.6 $14.9\pm$ 0.3 $34.1\pm$ 10 $10.63\pm$ 0.36 $15.7\pm$ 0.6 $46.3\pm$ 2.2 $43.5\pm$ 0.9 $14.8\pm$ 0.3 $34.1\pm$ 10 $10.59\pm$ 0.25 $15.7\pm$ 0.3 $45.8\pm$ 0.8 $43.2\pm$ 0.4 $14.9\pm$ 0.3 $34.4\pm$	Animals 1 06/με g/dε % f e pg g/dε 10 10.41± 0.24 15.5± 0.4 45.5± 1.1 43.8± 0.8 14.9± 0.2 34.0± 0.8 10 10.61± 0.47 15.7± 0.7 46.6± 2.8 43.9± 1.1 14.8± 0.2 33.8± 0.7 10 10.55± 0.41 15.7± 0.4 46.1± 2.0 43.7± 0.6 14.9± 0.3 34.1± 1.0 10 10.63± 0.36 15.7± 0.6 46.3± 2.2 43.5± 0.9 14.8± 0.3 34.1± 0.7 10 10.59± 0.25 15.7± 0.3 45.8± 0.8 43.2± 0.4 14.9± 0.3 34.4± 0.4	Animals 10 ⁶ /με g/dε % f e pg g/dε 10 ³ /με 10 10.41± 0.24 15.5± 0.4 45.5± 1.1 43.8± 0.8 14.9± 0.2 34.0± 0.8 1342± 10 10.61± 0.47 15.7± 0.7 46.6± 2.8 43.9± 1.1 14.8± 0.2 33.8± 0.7 1371± 10 10.55± 0.41 15.7± 0.4 46.1± 2.0 43.7± 0.6 14.9± 0.3 34.1± 1.0 1372± 10 10.63± 0.36 15.7± 0.6 46.3± 2.2 43.5± 0.9 14.8± 0.3 34.1± 0.7 1386± 10 10.59± 0.25 15.7± 0.3 45.8± 0.8 43.2± 0.4 14.9± 0.3 34.4± 0.4 1442±

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

oup Name	NO. of Animals	WBC 1 O³/	μዩ	Different N-BAND		(%) N-SEG		EOSING)	BASO		MONO		ГА МЬНО)	OTHER		
Control	10	1.30±	0.72	1±	1	14±	4	2±	1	ο±	0	4±	1	80±	5	0±	0	
5000ppm	10	1.47±	0.94	1±	1	17±	5	1±	1	0±	0	4±	2	76±	6	0±	0	
10000ppm	10	1.79±	0.95	1±	1	13±	4	1±	1	0±	0	4±	1	81±	3	0±	0	
20000ppm	10	1.49±	0.73	1±	1	13±	3	2±	1	0±	0	4±	2	80±	4	0±	0	
40000ppm	10	1.20±	0.51	0±	0	14士	3	2±	1	0±	0	4±	2	80±	3	0±	0	
80000pm	9	1.18±	0.40	1±	1	14±	3	1土	1	0±	0	3±	1	80±	3	0±	0	
Significant	difference;	*: P ≦	0.05	**: P ≦	0.01				Test of	Dunnett			-					
L71A)																		BA

APPENDIX B 6-4

HEMATOLOGY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE HEMATOLOGY(1) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

oup Name	NO. of Animals	RED BLOOD CELL 1 O ⁶ /µ ²	HEMOGLOBIN g∕dl	HEMATOCRIT %	MCV f e	MCH pg	MCHC g / dl	PLATELET 1 O³ / μℓ
Control	10	10.62± 0.40	15.8± 0.7	45.5± 2.1	42.9± 0.9	14.9± 0.5	34.8± 1.0	1212± 75
5000ppm	10	10.45± 0.47	15.6± 0.6	45.3± 2.2	43.4± 0.4	15.0± 0.2	34.5± 0.6	1198± 138
10000ppm	10	10.51± 0.45	15.8± 0.7	45.7± 2.2	43.4± 0.4	15.0± 0.3	34.6± 0.6	1219± 124
20000ppm	9	10.62± 0.43	15.9± 0.7	46.1± 1.6	43.4± 0.7	15.0± 0.2	34.5± 0.7	· 1227± 83
40000ppm	10	10.46± 0.38	15.7± 0.5	45.5± 1.9	43.5± 0.4	15.0± 0.3	34.6± 0.9	1185± 101
80000ppm	9	10.54± 0.43	15.8± 0.6	45.5± 2.0	43.2± 0.5	15.0± 0.3	34.8± 0.6	1195± 135
Significant o	difference;	*: P ≤ 0.05 *	* : P ≤ 0.01		Test of Dunnett			
CL070)					:		· · · · · · · · · · · · · · · · · · ·	

(HCL070)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

HEMATOLOGY(2) (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

oup Name	NO. of Animals	WBC 1 03/	μl	Different N-BANI		(%) N-SEG		EOSIN)	BASO		момо		LYMPH	0	OTHER	
Control	10	0.97±	0.67	0±	1	15±	5	1±	1	0±	0	3±	1	81±	4	0±	0
5000ppm	10	1.48±	2.04	1±	1	16±	6	1±	1	0±	0	3±	1	79±	5	0±	0
10000pm	10	1.28±	1.38	1±	1	16±	5	1±	I	0±	0	3±	0	80±	6	0±	0
20000ppm	9	1.42±	0.98	1±	1	14±	5	1±	1	0±	0	3±	1	82±	5	0±	0
40000ppm	10	1.22±	0.88	1±	2	16±	10	1±	1	0±	0	3±	1	79±	13	0±	0
mqq00008	9	0.84±	0.42	0±	1	17±	8	0±	0	0±	0	3±	1 .	79±	8	0±	0
Significant	difference;	*: P ≦	0.05	** ; P ≦	0.01				Test of	Dunnett							
L71A)																	

APPENDIX B 7-1

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE

STUDY NO. : 0201 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

NO. of Animals	g/dl 101ML P	ROTEIN	g∕dl ALBUMIN		A/G RAT	10	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES	STEROL	TRIGLYCI mg/dl	ERIDE
10	6.8±	0.2	3.8±	0.1	1.2±	0.1	0.21±	0.03	199±	11	60±	3	76±	26
10	6.8±	0.3	3.8±	0.1	1.2±	0.1	0.22±	0.03	197±	17	61±	5	93±	29
10	6.7±	0.2	3.7±	0.1	1.2±	0.1	0.21±	0.04	195±	22	60±	6	85±	35
10	6.7±	0.2	3.7±	0.1	1.2±	0.1	0.22±	0.03	191±	19	58±	6	81±	31
10	6.6±	0.3*	3.6±	0.1	1.3±	0.1	0.21±	0.05	201±	21	59±	3	72±	22
10	6.5±	0.2**	3.7±	0.1	1.3±	0.0	0.21±	0.04	204±	13	61±	4	88±	20
	10 10 10 10	10 6.8± 10 6.8± 10 6.7± 10 6.7± 10 6.6±	10 6.8± 0.2 10 6.8± 0.3 10 6.7± 0.2 10 6.7± 0.2 10 6.6± 0.3*	10 6.8± 0.2 3.8± 10 6.8± 0.3 3.8± 10 6.7± 0.2 3.7± 10 6.7± 0.2 3.7± 10 6.6± 0.3* 3.6±	10 6.8± 0.2 3.8± 0.1 10 6.8± 0.3 3.8± 0.1 10 6.7± 0.2 3.7± 0.1 10 6.7± 0.2 3.7± 0.1 10 6.6± 0.3* 3.6± 0.1	10 6.8± 0.2 3.8± 0.1 1.2± 10 6.8± 0.3 3.8± 0.1 1.2± 10 6.7± 0.2 3.7± 0.1 1.2± 10 6.7± 0.2 3.7± 0.1 1.2± 10 6.6± 0.3* 3.6± 0.1 1.3±	10 6.8± 0.2 3.8± 0.1 1.2± 0.1 10 6.8± 0.3 3.8± 0.1 1.2± 0.1 10 6.7± 0.2 3.7± 0.1 1.2± 0.1 10 6.7± 0.2 3.7± 0.1 1.2± 0.1 10 6.6± 0.3* 3.6± 0.1 1.3± 0.1	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 10 6.6 \pm 0.3 \pm 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.03 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.04 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 10 6.6 \pm 0.3 \star 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm 0.05	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.03 199 \pm 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 197 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.04 195 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 191 \pm 10 6.6 \pm 0.3 \star 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm 0.05 201 \pm	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.03 199 \pm 11 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 197 \pm 17 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.04 195 \pm 22 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 191 \pm 19 10 6.6 \pm 0.3 \star 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm 0.05 201 \pm 21	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.03 199 \pm 11 60 \pm 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 197 \pm 17 61 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.04 195 \pm 22 60 \pm 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 191 \pm 19 58 \pm 10 6.6 \pm 0.3* 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm 0.05 201 \pm 21 59 \pm	10 6.8 \pm 0.2 3.8 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.03 199 \pm 11 60 \pm 3 10 6.8 \pm 0.3 3.8 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 197 \pm 17 61 \pm 5 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.21 \pm 0.04 195 \pm 22 60 \pm 6 10 6.7 \pm 0.2 3.7 \pm 0.1 1.2 \pm 0.1 0.22 \pm 0.03 191 \pm 19 58 \pm 6 10 6.6 \pm 0.3 \star 3.6 \pm 0.1 1.3 \pm 0.1 0.21 \pm 0.05 201 \pm 21 59 \pm 3	10 6.8± 0.2 3.8± 0.1 1.2± 0.1 0.21± 0.03 199± 11 60± 3 76± 10 6.8± 0.3 3.8± 0.1 1.2± 0.1 0.22± 0.03 197± 17 61± 5 93± 10 6.7± 0.2 3.7± 0.1 1.2± 0.1 0.21± 0.04 195± 22 60± 6 85± 10 6.7± 0.2 3.7± 0.1 1.2± 0.1 0.22± 0.03 191± 19 58± 6 81± 10 6.6± 0.3* 3.6± 0.1 1.3± 0.1 0.21± 0.05 201± 21 59± 3 72±

(HCL074)

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

SEX : MALE

PAGE: 2

roup Name	NO. of Animals	PHOSPHOI mg∕dl	LIPID	GOT IU/e		GPT IU∕ℓ		LDH IU/0		ALP I U / 4		G−GTP IU∕ℓ		CPK IU∕ℓ	
Control	10	106±	6	75±	12	25±	2	159±	37	288±	22	Ι±	1	84±	7
2500 ppm	10	113±	11	72±	11	24±	4	163±	26	294±	22	1±	1	89±	13
5000 ppm	10	108±	10	79±	15	26±	5	162±	35	307±	26	1±	1	80±	5
10000 ppm	10	106±	14	67±	10	23±	4	152±	18	297±	26	1±	1	82±	5
20000 ppm	10	109±	9	73±	16	26±	5	161±	42	291±	27	1±	1	84±	11
40000 ppm	10	115±	7	78±	18	25±	4	164±	43	287±	31	1±	1	83±	12

(HCL074)

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

SEX : MALE

Group Name	NO. of Animals	UREA N mg∕dl	ITROGEN	CREATIA mg/dl		SODIUM mEq∕ℓ		POTASS: mEq/		CIILORI DI mEq/l		mg/dl	ſ	INORGAN mg/dl	VIC PHOSPHORUS
Control	10	17.6±	0.9	0.5±	0.1	143±	1	3.1±	0.1	106生	1	10.4±	0.2	5.1±	0.7
2500 ppm	10	17.8±	1.2	0.5±	0.1	143±	1	3.1±	0.2	106±	1	10.4±	0.3	5.4±	0.9
5000 ppm	10	16.9±	1.2	0.5±	0.1	143±	1	3.1±	0.2	106士	1	10.4±	0.2	5.1±	0.8
10000 ppm	10	17.5±	0.8	0.5±	0.1	143士	2	3.2±	0.2	106±	2	10.3±	0.2	5.0±	0.7
20000 ppm	10	18.0±	1.3	0.5±	0.1	142±	1	3.2±	0.2	105±	2	10.2±	0.4	5.1±	0.6
40000 ppm	10	20.7±	1.6**	0.5±	0.1	141±	1**	3.2±	0.1	104土	1*	10.2±	0.2	4.9±	0.7
Significant	t difference;	*: P ≦ ().05 *	*: P ≤ 0.0	1			Test of Dur	nnett						
(HCL074)															BAIS 2

APPENDIX B 7-2

BIOCHEMISTRY(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE

STUDY NO.: 0201 ANIMAL : RAT F344 REPORT TYPE : A1
SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

Group Name	NO. of Animals	g/dl g/dl		g∕dl g∕dl		A/G RAT	010	T-BILI		GLUCOSE mg/dl		T-CHOLES	TEROL	TRIGLYCE ng/dl	RIDE
Control	9	6.6±	0.1	3.7±	0.1	1.2±	0.1	0.23±	0.02	150±	15	82±	7	34±	4
2500 ppm	10	6.6±	0.2	3.6±	0.1	1.2±	0.1	0.24±	0.03	150±	17	79±	5	35±	5
5000 ppm	10	6.5±	0.3	3.6±	0.2	1.3±	0.1	0.26±	0.04	152±	28	78±	7	35±	6
10000 ppm	10	6.4±	0.3	3.6±	0.1	1.3±	0.1	0.25±	0.03	151±	18	76±	9	32±	4
20000 ppm	10	6.5±	0.2	3.6±	0.1	1.2±	0.1	0.28±	0.08	138±	19	78±	9	32±	3
40000 ppm	10	6.0±	0.2**	3.4±	0.1**	1.3±	0.1	0.26±	0.05	147±	17	70±	4**	28±	3*
Significant	t difference;	*: P ≦ ().05	**: P ≤ 0.0	01		·	Test of Du	nnett						
HCL074)															ВА

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

SEX : FEMALE

Group Name NO. of PHOSPHOLIPID GOT GPT LDH ALP G-GTP CPK Animals mg/dl IU/e IU/l IU/l IU/l IU/l IU/l Control 9 $143 \pm$ 9 66± 10 $21\pm$ 5 $201\pm$ 46 $195\pm$ 21 $2\pm$ 1 $100 \pm$ 13 2500 ppm 10 $138 \pm$ 8 $78\pm$ 29 $25\pm$ 11 $222\pm$ 62 199± 25 $1\pm$ 1 99± 16 5000 ppm 10 134± 12 71± 16 $23\pm$ 8 217± 64 $207 \pm$ 27 $2\pm$ 98± 17 10000 ppm 10 130± 14 $78 \pm$ 14 $24\pm$ 5 $245\,\pm\,$ 56 $205\pm$ 23 $2\pm$ 1 104士 16 20000 ppm 10 133± 13 $75\pm$ 16 22土 7 222± 78 $224\pm$ 32 1 $2\pm$ $103 \pm$ 28 40000 ppm 10 119± 7** 66± 6 $18\pm$ 4 216± 62 $200 \pm$ 19 $2\pm$ 1 $97 \pm$ 17 Significant difference; $*:P \leq 0.05$ ** : $P \leq 0.01$ Test of Dunnett

PAGE: 5

(HCL074) BAIS 2

STUDY NO.: 0201 ANIMAL : RAT F344 REPORT TYPE : AI SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 6

Group Name	NO. of Animals	UREA N mg/dl		CREATIN mg/dl	INE	SODIUM mEq/l		POTASSI mEq/		CHLORIDE mEq/l		CALCIUM mg/dl	[INORGAN mg/dl	IC PHOSPHORUS
Control	9	19.6±	1.7	0.5±	0.1	143±	1	3.0±	0.2	108±	2	10.0±	0.4	4.9±	0.9
2500 ppm	10	19.6±	2.8	0.5±	0.1	142±	2	3.1±	0.2	107±	2	10.1±	0.2	4.7±	1.1
5000 ppm	10	19.9±	1.4	0.5±	0.1	142±	1	3.0±	0.2	108±	1	10.0±	0.3	4.7±	1.1
10000 ppm	10	20.8±	1.6	0.5±	0.1	143±	2	3.1±	0.2	108±	2	9.9±	0.3	4.6±	1.2
20000 ppm	10	20.3±	1.8	0.5±	0.1	142±	2	3.2±	0.3	108±	2	9.9±	0.3	5.0±	1.1
40000 ppm	10	22.3±	2.4*	0.5±	0.1	141±	2	3.3±	0.2	108±	1	9.6±	0.2**	4.8±	1.3
Significant	difference;	*: P ≦ ().05 :	**: P ≤ 0.0	1			Test of Dur	nett					. , , , , , , , , , , , , , , , , , , ,	
(HCL074)											•				BAIS

APPENDIX B 7-3

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

up Name	NO. of Animals	g∕dl TOTAL F	PROTEIN	g∕dø ATBUMIN		A/G RAT	010	T-BILI mg/dl		GLUCOSE mg/dl		T-CHOLES	STEROL	TRIGLYC mg/dl	ERIDE
Control	10	5.3±	0.1	2.8±	0.1	1.2±	0.1	0.32±	0.08	227±	50	89±	5	79±	14
5000ppm	10	5.3±	0.4	2.8±	0.2	1.1±	0.0	0.34±	0.11	233±	41	90±	9	81±	8
10000ppm	10	5.3±	0.2	2.8±	0.1	1.1±	0.1	0.32±	0.10	241±	29	91±	6	75±	15
20000ppm	10	5.3±	0.2	2.8±	0.1	1.1±	0.1	0.34±	0.20	229±	53	88±	9	75±	17
40000ppm	10	5.2±	0.2	2.7±	0.1	1.1±	0.0	0.28±	0.12	240±	31	84±	5	73±	20
80000ppm	9	5.0±	0.2	2.7±	0.1*	1.1±	0.1	0.38±	0.20	242±	34	88±	4	72±	12
Significant o	difference;	* : P ≤ ().05	**: P ≤ 0.0	1			Test of Du	nnett						
.074)									- 						

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

SEX : MALE PAGE: 2

p Name	NO. of Animals	GOT IU∕ℓ		GPT IU∕ℓ		LDH IU/4	?	ALP IU/l		CPK IU/l		UREA NI mg/dl	TROGEN	SODIUM mEq∕ℓ	
Control	10	46±	6	11±	2	231±	35	180±	20	55±	19	25.4±	1.9	154±	2
5000ppm	10	43±	5	13±	2	237±	56	176±	19	63±	25	25.0±	1.4	154±	2
10000ppm	10	40±	8	14土	5	242±	79	177±	8	67±	54	24.6±	4.1	154±	2
20000ppm	10	42±	5	14±	3	$227\pm$	46	168±	16	55±	21	25.4±	2.2	154±	2
40000ppm	10	39±	5	12±	3	229±	49	169±	16	55±	17	26.1±	1.5	154±	1
80000ppm	9	40±	6	13±	4	279±	154	158±	40	59±	19	25.5±	2.7	153±	2

ANIMAL : MOUSE BDF1

REPORT TYPE : A1

SEX : MALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3 Group Name NO. of POTASSIUM CHLORIDE CALCIUM INORGANIC PHOSPHORUS Animals mEq∕ℓ mEq∕ℓ mg/dl mg/dlControl 10 $122\pm$ 2 $3.9 \pm$ 0.4 8.7± 0.3 7.2 ± 0.8 5000ppm 10 $4.3 \pm$ 0.5 $122 \pm$ 3 $8.8 \pm$ 0.5 8.3± 1.7 10000ppm 10 $4.2 \pm$ 0.4 121± 2 8.6± 0.2 $7.1\pm$ 1.3 20000ppm 10 4.1± 0.4 121土 2 8.8± 0.3 $7.8 \pm$ 1.9 40000ppm 10 4.0± 0.3 $122 \pm$ 2 $8.7\pm$ 0.2 7.5± 1.0 80000ppm 9 3.9± 0.4 120± 2 7.6± 1.1 $8.6 \pm$ 0.3 Significant difference : $*: P \leq 0.05$ **: $P \leq 0.01$ Test of Dunnett

(HCL074)

APPENDIX B 7-4

BIOCHEMISTRY (THIRTEEN-WEEK STUDY: SUMMARY)

MOSUE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

p Name	NO. of Animals	g∕dl		g∕q _l VTBNWIN		A/G RAT	.10	T-BILI mg/dl		GLUCOSE mg∕dl		T-CHOLES	TEROL	TRIGLYC mg/dl	ERIDE
Control	10	5.5±	0.2	3.1±	0.1	1.3±	0.0	0.39±	0.09	189±	22	76±	4	49±	10
5000ppm	10	5.4±	0.3	3.1±	0.1	1.3±	0.1	0.37±	0.07	167±	23	74±	10	49±	18
10000ppm	10	5.3±	0.3	3.0±	0.2	1.3±	0.0	0.39±	0.12	178±	28	74±	7	44±	9
20000ppm	9	5.3±	0.2	3.1±	0.1	1.4±	0.1	0.34±	0.05	178±	20	78±	9	51±	15
40000ppm	10	5.3±	0.3	3.0±	0.1	1.3±	0.1	0.42±	0.09	183±	22	72±	11	43±	13
mqq00008	9	5.0±	0.2**	2.9±	0.1**	1.4±	0.1	0.39±	0.17	185±	25	73±	7	44±	9

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

oup Name	NO. of Animals	GOT I U / 4	?	GPT IU/e		LDH IU/	?	ALP IU/4		CPK I U/	?	UREA NI mg/dl	TROGEN	SODIUM mEq/e	
Control	10	60±	14	14±	3	274±	67	281±	38	73±	30	21.8±	1.9	154±	3
5000ppm	10	64±	15	14±	4	290±	75	298±	31	82±	25	22.8±	2.0	153±	2
10000ppm	10	53±	9	13±	2	252±	40	277±	30	76±	14	23.3±	2.6	154±	2
20000ppm	9	52±	7	14±	5	246±	42	272±	24	74±	23	22.4±	1.9	154±	3
40000ppm	10	58±	12	16±	4	368±	145	292±	33	134±	127	24.0±	2.5	154±	3
80000ppm	9	53±	14	13±	5	319±	92	304±	29	113±	102	22.5±	2.4	155±	3
Significant o	difference;	*: P ≤ 0	.05	**: P ≤ 0.01				Test of Dun	nett						
CL074)														·	

STUDY NO. : 0202 ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

BIOCHEMISTRY (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 6

roup Name	NO. of Animals	POTASSI mEq/		CHLORIDE mEq∕ℓ		mg/dl mg/dl		I NORGAN mg/dl	PHOSPHORUS	
Control	10	3.9±	0.6	121±	3	8.8±	0.2	6.8±	0.9	
5000ppm	10	3.5±	0.4	123±	3	8.7±	0.3	6.5±	1.0	
10000ppm	10	3.7±	0.4	124±	3	8.6±	0.4	6.6±	1.7	
20000ppm	9	3.8±	0.4	120±	2	8.6±	0.3	6.3±	1.4	
40000ppm	10	3.7±	0.4	122±	3	8.6±	0.4	6.4±	1.1	
80000ppm	9	3.6±	0.4	121±	3	8.5±	0.4	7.1±	1.1	
Significant c	lifference;	*: P ≦ ().05	**: P ≤ 0.01			·	Test of Dunr	tt	
HCI 074)	 .									

(HCL074)

APPENDIX B 8-1

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE : 013-4

SEX : MALE

REPORT TYPE : A1

PAGE: 1

roup Name	NO. of	Hq								Pri	otei	in					GI	.uco	se				Ke	etor	ne b	ody_				Bi	Lirub	in	
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI				2+	3+ 4	+	CHI					3+ 4	+ CH1				2+		4+	CHI				CIII
G. 3. 1	10	•	•	•			_					_										_									_		
Control	10	0	0	0	0	3	7	0		0	0	7	3	0	0		. 10) ()	0	0	0	0	C) 10) ()	0	0	0		10	0	0 0	
2500 ppm	10	0	0	0	1	2	7	0		0	0	5	5	0	0		10	0	0	0	0	0	1	. 9	9 0	0	0	0		10	0	0 0	
5000 ppm	10	0	0	0	0	5	5	0		0	0	3	7	0	0		10	0	0	0	0	0	2	2 7	7 1	. 0	0	0		10	0	0 0	
10000 ppm	10	0	0	0	0	8	2	0	*	0	0	2	5	3	0	*	10	0	0	0	0	0	7	' 3	3 0	0	0	0	**	10	0	0 0	
20000 ppm	10	0	0	0	0	7	3	0		0	0	0	5	5	0	**	10	0	0	0	0	0	8) 1	L 0	0	0	0	**	10	0	0 0	
40000 ppm	10	0	0	1	6	3	0	0	**	0	0	0	0	2	8	**	10	0	0	0	0	0	10) (0	0	0	0	**	10	0	0 0	
																						 -											
Significent	: difference	; *:	: P ≤	0.05		**:	P ≦	0.01								Test	of (HI	SQU/	ARE													

(JCL101)

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-4

SEX : MALE

REPORT TYPE : A1

Group Name NO. of Occult blood Urobilinogen $-\pm + 2 + 3 + CHI$ Animals ± + 2+ 3+ 4+ CHI Control 10 10 0 0 0 0 10 0 0 0 0 2500 ppm 10 9 1 0 0 0 10 0 0 0 0 5000 ppm 10 10 0 0 0 0 10 0 0 0 0 10000 ppm 10 10 0 0 0 0 10 0 0 0 0 20000 ppm 10 10 0 0 0 0 10 0 0 0 0 40000 ppm 10 10 0 0 0 0 10 0 0 0 0 Significent difference ; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of CHI SQUARE (JCL101)

BAIS 2

APPENDIX B 8-2

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-4

SEX: FEMALE REPORT TYPE : A1 PAGE: 3

roup Name	NO. of	Hq					-		-	Pr	ote	in					GL	LICO:	se					Ket	one	bady	,			Bi	irub	in		
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5	CHI				2+	3+ 4	1+	CHI				2+	3+ 4	+ CH	II				3+ 4	4+	CHI		+ 2		CHI	
																	,																	
Control	10	0	0	0	1	1	7	1		0	0	9	1	0	0		10	0	0	0	0	0		9	1	0 0	0	0		10	0	0 0		
2500 ppm	10	0	0	0	0	1	8	1		0	0	9	1	0	0		10	0	0	0	0	0		10	0	0 0	0	0		10	0	0 0		
5000 ppm	10	0	0	0	0	0	9	1		C	0	8	2	0	0		10	0	0	0	0	0		10	0	0 0	0	0		10	0	0 0		
10000 ppm	10	0	0	1	0	2	6	1		C	0	7	3	0	0		10	0	0	0	0	0		10	0	0 0	0	0		10	0	0 0		
20000 ppm	10	0	0	0	1	2	6	I		C) 0	0	8	2	0	**	10	0	0	0	0	0		10	0	0 0	0	0		10	0	0 0		
40000 ppm	10	0	0	0	1	8	1	0	*	C	0	0	0	5	5	**	10	0	0	0	0	0		10	0	0 0	0	0		10	0	0 0		
Significent	difference	; *	: P ≦	≦ 0.0	5	**	: P ≦	≦ 0.01								Test	of C	ΗI	SQU.	ARE														
(CL101)															-																			 BA

URINALYSIS

ANIMAL : RAT F344 SAMPLING DATE: 013-4

SEX : FEMALE

REPORT TYPE : A1

Group Name	NO. of Animals	0ccult blood — ± + 2+ 3+ CHI	Urobilinogen ± + 2+ 3+ 4+ CHI		
Contral	10	10 0 0 0 0	10 0 0 0 0		
2500 ppm	10	10 0 0 0 0	10 0 0 0 0		
5000 ppm	10	10 0 0 0 0	10 0 0 0 0		
10000 ppm	10	10 0 0 0 0	10 0 0 0 0		
20000 ppm	10	10 0 0 0 0	10 0 0 0 0		
40000 ppm	10	10 0 0 0 0	10 0 0 0 0		
Significen	t difference	; *: P ≤ 0.05 **	: P ≤ 0.01	Test of CHI SQUARE	
(JCL101)					BAIS 2

APPENDIX B 8-3

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE

URINALYSIS

ANIMAL : MOUSE BDF1

SAMPLING DATE: 013-4

SEX : MALE

REPORT TYPE : A1

0 0 0

3

Group Name NO. of Protein_ Glucose_ Ketane body Occult blood Animals 5.0 6.0 6.5 7.0 7.5 8.0 8.5 CHI $-\pm + 2 + 3 + 4 + CHI$ - ± + 2+ 3+ 4+ CHI - ± + 2+ 3+ 4+ CHI $-\pm + 2+ 3+$ CHI Control 10 0 0 1 3 6 0 0 7 3 0 0 10 0 0 0 0 0 1 6 3 0 0 0 10 0 0 0 0 5000ppm 10 0 0 5 5 0 0 5 5 0 0 10 0 0 0 0 0 1 9 0 0 0 0 10 0 0 0 0 10000ppm 10 0 0 0 6 3 1 0 0 2 7 1 0 10 0 0 0 0 10 0 0 0 0 0 7 3 0 0 0 0 * 20000ppm 10 0 0 4 6 0 0 0 5 4 1 ** 10 0 0 0 0 0 10 0 0 0 0 0 ** 10 0 0 0 0 40000ppm 10 0 0 0 0 0 3 2 5 ** 10 0 0 0 0 0 10 0 0 0 0 0 ** 10 0 0 0 0 80000ppm 9

9 0 0 0 0 0

9 0 0 0 0 0 **

9 0 0 0 0

PAGE: 1

BAIS 2

Significent difference ; $*: P \leq 0.05$ **: $P \leq 0.01$ Test of CHI SQUARE

0

(JCL101)

0 0 0 0 0 9 **

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-4

SEX : MALE

REPORT TYPE : A1

Group Name Urabilinagen NO. of ± + 2+ 3+ 4+ CHI Animals Control 10 10 0 0 0 0 5000ppm 10 10 0 0 0 0 10000ppm 10 10 0 0 0 0 20000ppm 10 10 0 0 0 0 40000ppm 10 10 0 0 0 0 mqq00008 9 9 0 0 0 0 Significent difference ; $*: P \leq 0.05$ ** : $P \leq 0.01$ Test of CHI SQUARE (JCL101)

BAIS 2

APPENDIX B 8-4

URINALYSIS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE

URINALYSIS

ANIMAL : MOUSE BDF1
SAMPLING DATE : 013-4
SEX : FEMALE R

REPORT TYPE : A1

PAGE: 3

₽ Name	NO. of	pН							Pro	tei	n					GL	1005	e.			 (etr	nna	bad	v				000	ult	blor	nd		
	Animals	5.0	6.0	6.5	7.0	7.5	8.0	8.5 CHI				2+	3+ 4	+	CHI				2+ 3	3+ 4+ C					+ 4+		CHI		± ·			CI	II
Control	10	0	1	0	1	4	4	0	0	1	8	1	0	0		10	0	0	0	0 0	5	5	0	0	0 0			10	0	0 () ()	
5000ppm	10	0	0	2	1	6	1	0	0	0	8	2	0	0		10	0	0	0	0 0	6	3	1	0	0 0			10	0	0 () ()	
10000ppm	10	0	0	0	1	2	7	0	0	0	4	5	0	1		10	0	0	0	0 0	8	2	0	0	0 0			10	0	0 (0 0)	
20000ppm	10	0	0	0	0	8	2	0	0	0	4	3	3	0		10	0	0	0	0 0	10	0	0	0	0 0	3	**	10	0	0	0 ()	
40000ppm	10	0	0	0	2	7	1	0	0	0	0	0	4	6	**	10	0	0	0	0 0	10	0	0	0	0 0	,	* *	10	0	0	0 ()	
80000ppm	9	0	0	0	5	4	0	0	0	0	0	0	2	7	**	9	0	0	0	0 0	9	0	0	0	0 0	,	ĸ	9	0	0	0 ()	

(JCL101)

URINALYSIS

ANIMAL : MOUSE BDF1 SAMPLING DATE: 013-4

SEX : FEMALE

REPORT TYPE : A1

Group Name	NO. of Animals	Urobilinogen ± + 2+ 3+ 4+ CHI		
Control	10	10 0 0 0 0		
5000ppm	10	10 0 0 0 0		
10000ppm	. 10	10 0 0 0 0		
20000ppm	10	10 0 0 0 0		
40000ppm	10	10 0 0 0 0		
mqq00008	9	9 0 0 0 0		
Significent	difference	; *: P ≤ 0.05 **: P ≤ 0.01	Test of CHI SQUARE	
(JCL101)				BAIS 2

APPENDIX B 9-1

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1 SEX : MALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)	10000 ppm 10 (%)
ather	hair:colored		0 (0)	0 (0)	0 (0)	0 (0)
(HPT080)						BAIS

STUDY NO. : 0201 ANIMAL : RAT F344 GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

REPORT TYPE : A1
SEX : MALE

Organ	Findings	Group Name NO. of Animals	20000 ppm 10 (%)	40000 ppm 10 (%)	
other	hair:colored		6 (60)	10 (100)	
HPT080)					RATS

BAIS 2

APPENDIX B 9-2

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

RAT: FEMALE: SACRIFICED ANIMALS

ANIMAL : RAT F344 REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	2500 ppm 10 (%)	5000 ppm 10 (%)	10000 ppm 10 (%)
iver.	herniation		0 (0)	0 (0)	1 (10)	1 (10)
ther	hair:colored		0 (0)	0 (0)	0 (0)	0 (0)

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : FEMALE GROSS FINDINGS (SUMMARY) ALL ANIMALS (0- 14W)

rgan	Findings	Group Name 2 NO. of Animals 1	0000 ppm 0 (%)	4000 ppm 10 (%)	
ver	herniation		0 (0)	0 (0)	
her	hair:colored		7 (70)	10 (100)	

APPENDIX B 9-3

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE BDF1
REPORT TYPE : A1

: MALE SEX

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

SEX	: MALE					PAGE: 1
Organ	Findings	Group Name NO. of Animals	Control 0 (%)	5000ppm 0 (%)	10000ppm 0 (%)	20000ppm 0 (%)
thymus	atrophic		- (-)	- (-)	- (-)	- (-)
(HPT080)						BAIS 2

Δ

STUDY NO. : 0202

ANIMAL : MOUSE BDF1

GROSS FINDINGS (SUMMARY)

REPORT TYPE : A1
SEX : MALE

DEAD AND MORIBUND ANIMALS (0- 14W)

					PAGE: 2
Organ F	indings	Group Name NO. of Animals	40000ppm 0 (%)	80000ppm 1 (%)	
thymus a	traphic		- (-)	1 (100)	
(HPT080)					BAIS 2

APPENDIX B 9-4

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE DEAD AND MORIBUND ANIMALS

STUDY NO. : 0202 ANIMAL

: MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

5000ppm 10000ppm Group Name Control 20000ppm Findings_ 0rgan_ NO. of Animals 0 (%) 0 (%) 0 (%) 0 (%) whale body wasting - (-) - (-) - (-) - (-) (HPT080) BAIS 2

STUDY NO. : 0202 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 : FEMALE SEX

GROSS FINDINGS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

PAGE: 4 Group Name 40000ppm mqq00008 Organ__ Findings_ NO. of Animals 0 (%) 1 (%) whole body - (-) wasting 1 (100) (HPT080) BAIS 2

APPENDIX B 9-5

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: MALE: SACRIFICED ANIMALS

...

STUDY NO. : 0202

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

L5 (14%)

Organ	Findings	Group Name NO. of Animals	Control 10 (%)	5000ppm 10 (%)	10000ppm 10 (%)	20000ppm 10 (%)
spleen	black zone		0 (0)	1 (10)	0 (0)	1 (10)
dney	white zone		0 (0)	2 (20)	0 (0)	0 (0)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 2

Organ	Findings	Group Name NO. of Animals	10	40000ppm (%)	9	80000pm (%)	
spleen	black zone		0	(0)	0	(0)	
kidney	white zone		0	(0)	0	(0)	
(HPT080)							

APPENDIX B 9-6

GROSS FINDINGS (THIRTEEN—WEEK STUDY: SUMMARY)

MOSUE: FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

REPORT TYPE : A1

SEX : FEMALE

Organ	Findings	Group Name NO. of Animals	Contral 10 (%)	5000ppm 10 (%)	10000ppm 10 (%)	20000ppm 10 (%)
spleen	black zone		1 (10)	2 (20)	0 (0)	0 (0)
(HPT080)						ВАІ

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

GROSS FINDINGS (SUMMARY) SACRIFICED ANIMALS (14W)

 Organ___
 Findings__
 Group Name NO. of Animals 10 (%)
 40000ppm 9 (%)

 spleen
 black zone
 0 (0)
 0 (0)

(HPT080)

APPENDIX B 10-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: MALE

STUDY NO.: 0201 ANIMAL : RAT F344 REPORT TYPE : A1

SEX : MALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

Group Name	NO. of Animals	Body Weight	ТНҮ	MUS	ADRE	NALS	TEST	ES	HEAR	r	LUNG	S	
Control	10	321± 14	0.255±	0.026	0.048±	0.007	2.876±	0.129	0.923±	0.038	1.009±	0.059	
2500 ppm	10	303± 21	0.225±	0.019*	0.049±	0.012	2.806±	0,127	0.885±	0.036	0.993±	0.057	
5000 ppm	10	304± 22	0.230±	0.031	0.047±	0.005	2.737±	0.131	0.876±	0.047	0.976±	0.059	
10000 ppm	10	299± 22	0.238±	0.025	0.047±	0.008	2.852±	0.096	0.886±	0.051	0.959±	0.042	
20000 ppm	10	299± 19	0.225±	0.017*	0.046±	0.008	2.847±	0.127	0.916±	0.054	0.985±	0.040	
40000 ppm	10	284± 22**	0.207±	0.021**	0.045±	0.004	2.827±	0.120	0.865±	0.047*	0.964±	0.077	
Significan	t difference;	*: P ≤ 0.05	**: P ≤ 0.01			Tes	t of Dunnett						
(HCL040)											-		В

STUDY NO. : 0201 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE

UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.913± 0.091	0.551± 0.031	8.008± 0.454	1.901± 0.034	
2500 ppm	10	1.814± 0.102	0.517± 0.029	7.545± 0.390	1.865± 0.032	
5000 ppm	10	1.812± 0.148	0.493± 0.035**	7.492± 0.773	1.864± 0.047	
10000 ppm	10	1.839± 0.108	0.517± 0.042	7.486± 0.579	1.874± 0.040	•
20000 ppm	10	1.890± 0.112	0.516± 0.033	7.574± 0.552	1.866± 0.066	
40000 ppm	10	1.895± 0.099	0.497± 0.032**	7.530± 0.769	1.869± 0.036	

(HCL040)

APPENDIX B 10-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1
SEX : FEMALE

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

UNIT: g

PAGE: 3

Group Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	182± 12	0.196± 0.020	0.053± 0.004	0.103± 0.016	0.613± 0.042	0.734± 0.057	
2500 ppm	10	178± 9	0.185± 0.016	0.054± 0.005	0.095± 0.017	0.603± 0.023	0.731± 0.032	
5000 ppm	10	179± 7	0.198± 0.024	0.050± 0.004	0.098± 0.018	0.608± 0.021	0.741± 0.032	
10000 ppm	10	170± 11*	0.191± 0.012	0.054± 0.007	0.090± 0.017	0.587± 0.031	0.726± 0.055	
20000 ppm	10	172± 10	0.196± 0.019	0.055± 0.006	0.088± 0.018	0.607± 0.043	0.744± 0.041	
40000 ppm	10	166士 8**	0.174± 0.015*	0.053± 0.008	0.082± 0.020	0.578± 0.037	0.719± 0.033	
Significan	nt difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	t of Dunnett			
(HCL040)								ВАІ

STUDY NO.: 0201 ANIMAL : RAT F344 REPORT TYPE : A1

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

SEX : FEMALE UNIT: g

Group Name NO. of KIDNEYS SPLEEN LIVER BRAIN Animals Control 10 1.220± 0.116 0.371± 0.044 4.377± 0.500 1.732± 0.033 2500 ppm 10 1.179± 0.038 0.359 ± 0.036 4.170± 0.289 1.729± 0.032 $0.356 \pm$ 0.032 4.179± 0.188 1.716± 0.055 1.180± 0.054 5000 ppm 10 10000 ppm 10 1.162± 0.059 0.351 ± 0.029 3.977 ± 0.291 1.699± 0.052 4.038 ± 0.365 1.738± 0.025 20000 ppm 10 1.201 ± 0.057 0.357 ± 0.019 40000 ppm 10 1.267 ± 0.057 0.363± 0.031 3.974 ± 0.225 1.681± 0.056 **: $P \leq 0.01$ Test of Dunnett Significant difference : $*: P \leq 0.05$ (HCL040) BAIS 2

APPENDIX B 10-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE: A1 SEX: MALE UNIT: g ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

oup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	TESTES	HEART	LUNGS
Control	10	32.5± 2.0	0.046± 0.009	0.009± 0.002	0.197± 0.025	0.145± 0.007	0.144± 0.004
5000ppm	10	33.7± 2.5	0.044± 0.008	0.009± 0.002	0.208± 0.030	0.149± 0.011	0.150± 0.013
10000ppm	. 10	33.2± 2.6	0.048± 0.012	0.010± 0.002	0.206± 0.022	0.147± 0.010	0.148± 0.008
20000ppm	10	32.2± 1.9	0.045± 0.007	0.010± 0.002	0.223± 0.030	0.148± 0.009	0.153± 0.010
40000ppm	10	31.9± 2.7	0.047± 0.009	0.010± 0.002	0.211± 0.019	0.149± 0.009	0.145± 0.010
80000ppm	9	29.6± 1.2*	0.038± 0.004	0.010± 0.002	0.227± 0.021	0.146± 0.011	0.147± 0.010
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Test	of Dunnett		

(HCL040)

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE
UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

up Name	NO. of Animals	KIDNEYS	SPI	LEEN	LIV	ER	BRA		
Control	10	0.433± 0.0	5 0.045±	0.005	1.144±	0.061	0.447±	010	
5000ppm	10	0.440± 0.03	0.048±	0.005	1.165±	0.057	0.444±	011	
10000ppm	10	0.445± 0.02	3 0.049±	0.007	1.152±	0.052	0.445±	010	
20000ppm	10	0.445± 0.03	0.052±	0.008	1.164±	0.049	0.442±	009	
40000ppm	10	0.455± 0.0	5 0.047±	0.006	1.162±	0.042	0.446±	008	
80000ppm	9	0.468± 0.03	9 0.047±	0.003	1.127±	0.052	0.436±	016	

(HCL040)

APPENDIX B 10-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), ABSOLUTE

MOUSE: FEMALE

STUDY NO.: 0202 ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

oup Name	NO. of Animals	Body Weight	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.7± 1.0	0.045± 0.006	0.012± 0.002	0.029± 0.006	0.119± 0.006	0.143± 0.013	
5000ppm	10	20.9± 1.2	0.043± 0.007	0.011± 0.002	0.032± 0.008	0.118± 0.007	0.143± 0.009	
10000ppm	10	20.9± 1.2	0.041± 0.005	0.010± 0.001	0.028± 0.007	0.121± 0.009	0.140± 0.010	
20000ppm	10	21.3± 1.0	0.043± 0.005	0.011± 0.002	0.030± 0.006	0.117± 0.006	0.145± 0.010	
40000ppm	10	20.4± 0.8*	0.039± 0.004	0.010± 0.002	0.027± 0.004	0.117± 0.007	0.142± 0.016	
mqq00008	9	20.4± 0.9*	0.038± 0.006*	0.010± 0.002	0.027± 0.005	0.114± 0.005	0.137± 0.011	
Significant	difference;	* : P ≤ 0.05 **	: P ≤ 0.01	Test	of Dunnett			
L040)								В

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: g

ORGAN WEIGHT: ABSOLUTE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 4

up Name	NO. of Animals	KIDNEYS	SPLE	EN	LIV	ER	BRA		
Control	10	0.292± 0.012	0.054±	0.007	0.907±	0.069	0.458±	021	
5000ppm	10	0.298± 0.014	0.049±	0.007	0.857±	0.062	0.457±	.018	
10000ppm	10	0.285± 0.018	0.051±	0.007	0.860±	0.042	0.450±	.017	
20000ppm	10	0.294± 0.021	0.051±	0.009	0.897±	0.045	0.450±	.019	
40000ppm	10	0.292± 0.015	0.043±	0.005**	0.847±	0.040	0.455±	.013	
80000ppm	9	0.306± 0.022	0.042±	0.004**	0.844±	0.045*	0.440±	.013	

APPENDIX B 11-1

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: MALE

STUDY NO. : 0201 ANIMAL : RAT F344

REPORT TYPE : A1

SEX : MALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 1

roup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Control	10	321± 14	0.079± 0.007	0.015± 0.002	0.896± 0.045	0.287± 0.014	0.314± 0.016	
2500 ppm	10	303± 21	0.074± 0.004	0.016± 0.003	0.928± 0.049	0.293± 0.017	0.328± 0.010	
5000 ppm	10	304± 22	0.076± 0.008	0.016± 0.001	0.905± 0.075	0.289± 0.012	0.323± 0.025	
10000 ppm	10	299± 22	0.079± 0.005	0.016± 0.003	0.957± 0.062	0.297± 0.012	0.321± 0.013	
20000 ppm	10	299± 19	0.075± 0.005	0.016± 0.003	0.956± 0.077	0.306± 0.010*	0.330± 0.020	
40000 ppm	10	284± 22**	0.073± 0.008	0.016± 0.002	1.000± 0.056**	0.306± 0.021*	0.340± 0.013**	

(HCL042)

STUDY NO. : 0201 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE UNIT: % ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 2

Group Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	0.595± 0.016	0.171± 0.007	2.491± 0.073	0.592± 0.027	
2500 ppm	10	0.599± 0.015	0.171± 0.009	2.491± 0.065	0.618± 0.048	
5000 ppm	10	0.596± 0.021	0.163± 0.009	2.461± 0.122	0.616± 0.041	
10000 ppm	10	0.615± 0.023	0.173± 0.007	2.502± 0.069	0.629± 0.044	
20000 ppm	10	0.632± 0.016**	0.173± 0.008	2.532± 0.079	0.625± 0.032	
40000 ppm	10	0.670± 0.025**	0.176± 0.010	2.652± 0.096**	0.663± 0.050**	

(HCL042)

APPENDIX B 11-2

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

RAT: FEMALE

STUDY NO. : 0201 ANIMAL : RAT F344

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

PAGE: 3

Group Name	NO. of Animals	Bady Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Contral	10	182± 12	0.107± 0.007	0.029± 0.003	0.057± 0.008	0.337± 0.022	0.403± 0.015	
2500 ppm	10	178± 9	0.104± 0.009	0.030± 0.003	0.054± 0.010	0.339± 0.020	0.411± 0.023	
5000 ppm	10	179± 7	0.111± 0.011	0.028± 0.002	0.055± 0.010	0.340± 0.014	0.414± 0.012	
10000 ppm	10	170土 11*	0.113± 0.006	0.032± 0.004	0.054± 0.011	0.347± 0.017	0.428± 0.017*	
20000 ppm	10	172± 10	0.115± 0.012	0.032± 0.003	0.052± 0.010	0.354± 0.018	0.434± 0.021**	
40000 ppm	10	166生 8**	0.105± 0.011	0.032± 0.004	0.049± 0.012	0.349± 0.018	0.434± 0.020**	
Significan	t difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			

(HCL042)

STUDY NO. : 0201 ANIMAL : RAT F344 REPORT TYPE : A1

REPORT TYPE:
SEX: FEMALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 4

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN		
Control	10	0.669± 0.041	0.203± 0.016	2.400± 0.190	0.954± 0.063		
2500 ppm	10	0.663± 0.034	0.201± 0.014	2.340± 0.102	0.973± 0.056		
5000 ppm	10	0.660± 0.022	0.199± 0.013	2.337± 0.066	0.960± 0.036		
10000 ppm	10	0.687± 0.032	0.207± 0.007	2.347± 0.073	1.007± 0.081		
20000 ppm	10	0.700± 0.021	0.208± 0.008	2.350± 0.094	1.016± 0.059		
40000 ppm	10	0.764± 0.022**	0.219± 0.018*	2.398± 0.109	1.015± 0.036		

(HCL042)

APPENDIX B 11-3

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: MALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

oup Name	NO. of Animals	Body Weight (g)	THYMUS	ADRENALS	TESTES	HEART	LUNGS	
Contral	10	32.5± 2.0	0.141± 0.026	0.028± 0.007	0.608± 0.091	0.448± 0.029	0.444± 0.027	
5000ppm	10	33.7± 2.5	0.131± 0.018	0.026± 0.006	0.619± 0.096	0.444± 0.041	0.446± 0.036	
10000ppm	10	33.2± 2.6	0.145± 0.030	0.031± 0.008	0.624± 0.095	0.443± 0.032	0.447± 0.024	
20000ppm	10	32.2± 1.9	0.139± 0.016	0.031± 0.008	0.691± 0.079	0.462± 0.046	0.476± 0.027	
40000ppm	10	31.9± 2.7	0.148± 0.022	0.030± 0.004	0.665± 0.083	0.470± 0.035	0.457± 0.054	
80000ppm	9	29.6± 1.2*	0.129± 0.008	0.032± 0.007	0.766± 0.064**	0.495± 0.031*	0.498士 0.039**	
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	st of Dunnett			
CL042)						•		BA

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE
UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY)
SURVIVAL ANIMALS (14)

PAGE: 2

up Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN	
Control	10	1.338± 0.094	0.137± 0.010	3.526± 0.189	1.379± 0.087	
5000ppm	10	1.311± 0.113	0.143± 0.020	3.468± 0.188	1.326± 0.130	
10000ppm	10	1.342± 0.082	0.147± 0.020	3.480± 0.225	1.347± 0.109	
20000ppm	10	1.385± 0.086	0.161± 0.025	3.625± 0.210	1.376± 0.075	
40000ppm	10	1.433± 0.115	0.148± 0.023	3.657± 0.218	1.406± 0.123	
80000ppm	9	1.580± 0.070**	0.160± 0.011	3.808± 0.132*	1.473± 0.033	

(IICL042)

APPENDIX B 11-4

ORGAN WEIGHT (THIRTEEN-WEEK STUDY: SUMMARY), RELATIVE

MOUSE: FEMALE

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

Group Name	NO. of Animals	Bady Weight (g)	THYMUS	ADRENALS	OVARIES	HEART	LUNGS	
Control	10	21.7± 1.0	0.206± 0.024	0.055± 0.009	0.131± 0.025	0.548± 0.030	0.658± 0.063	
5000ppm	10	20.9± 1.2	0.206± 0.025	0.053± 0.011	0.151± 0.034	0.566± 0.023	0.685± 0.033	
10000ppm	10	20.9± 1.2	0.198± 0.017	0.048± 0.006	0.133± 0.034	0.581± 0.030	0.673± 0.041	
20000ppm	10	21.3± 1.0	0.203± 0.022	0.052± 0.006	0.141± 0.026	0.548± 0.024	0.681± 0.051	
40000ppm	10	20.4± 0.8*	0.190± 0.018	0.051± 0.011	0.131± 0.021	0.577± 0.045	0.698土 0.079	
80000ppm	9	20.4± 0.9*	0.185± 0.027	0.050± 0.008	0.132± 0.025	0.559± 0.033	0.674± 0.040	
Significant	difference;	*: P ≤ 0.05 **	: P ≤ 0.01	Tes	at of Dunnett			
(HCL042)								BAI

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE UNIT: %

ORGAN WEIGHT: RELATIVE (SUMMARY) SURVIVAL ANIMALS (14)

roup Name	NO. of Animals	KIDNEYS	SPLEEN	LIVER	BRAIN		
Control	10	1.346± 0.075	0.249± 0.025	4.172± 0.201	2.113± 0.157		
5000ppm	10	1.425± 0.073	0.235± 0.024	4.094± 0.149	2.187± 0.087		
10000ppm	10	1.369± 0.077	0.244± 0.027	4.127± 0.169	2.161± 0.075		
20000ppm	10	1.379± 0.083	0.236± 0.033	4.214± 0.106	2.118± 0.111		
40000ppm	10	1.437± 0.095	0.209± 0.020**	4.167± 0.184	2.237± 0.122		
80000pm	9	1.504± 0.106**	0.207± 0.017**	4.148± 0.150	2.164± 0.097		
Significant	difference;	*: P ≤ 0.05 **:	P ≤ 0.01	Tes	st of Dunnett		
CL042)				· · · · · · · · · · · · · · · · · · ·		•	BA

APPENDIX B 12-1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: MALE: SACRIFICED ANIMALS

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

Organ	Findings	Group Name Control No. of Animals 10 <1> <2> <3> <4>	2500 ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)	5000 ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)	10000 ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)
Respirator	y system]				
arynx	inflammation	1 0 0 0 0 (10) (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ung	granulation	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)
	osseous metaplasia	0 0 0 0 0 (0) (0)	1 0 0 0 0 (10) (10) (10)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Hematopoie	tic system]				
oleen	deposit of hemosiderin	0 10 0 0 (0) (100) (0) (0)	0 10 0 0 (0) (100) (0) (0)	0 10 0 0 (0) (100) (0) (0)	0 10 0 0 0 (0) (100) (0) (0)
Circulator	y system]				
eart	granulation	3 0 0 0 0 (30) (30) (0) (0) (0)	2 0 0 0 0 (20) (0) (0) (0)	3 0 0 0 0 (30) (0) (0) (0)	4 0 0 0 0 0 (40) (0) (0)
Digestive :	system]				
tomach	erosion:glandular stomach	0 0 0 0 0 (0) (0) (0)	0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0
	increase in superficial layer of fundus	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 0 (0) (0)
iver	necrosis:focal	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0
Urinary sy	stem]				
idney	cyst	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 0 (10) (0) (0)

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 2

ALL ANIMALS (0- 14W)

Group Name 20000 ppm 40000 ppm No. of Animals 10 10 〈2〉 〈3〉 <1> 〈2〉 〈3〉 〈4〉 (4) (%) (%) 0rgan__ Findings_ (%) (%) (%) (%) (%) [Respiratory system] larynx inflammation (0)(0)(0)(0) (0)(0)(0)(0) lung granulation (0)(0)(0)(0) (0)(0)(0)(0) osseous metaplasia 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Hematopoietic system] spleen deposit of hemosiderin 0 10 0 10 0 0 (0)(100)(0)(0) (0)(100)(0)(0) [Circulatory system] heart granulation 0 0 0 2 0 (30) (0) (0) (0) (20) (0) (0) (0) [Digestive system] stomach erosion:glandular stomach (0)(0)(0)(0) (0)(10)(0)(0) increase in superficial layer of fundus 0 0 0 0 (0)(0)(0)(0) (40) (0) (0) (0) Liver necrosis:focal 0 0 (0)(0)(0)(0) (10) (0) (0) (0) [Urinary system] kidney 0 0 0 0 cyst 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Significant difference; $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe

Δ:

STUDY NO. : 0201 : RAT F344 ANIMAL REPORT TYPE : A1

(HPT150)

: MALE

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

Group Name Control 2500 ppm 5000 ppm 10000 ppm No. of Animals 10 10 10 10 〈2〉 〈3〉 <1> <4> <2> <3> <4> <2> <3> (4) 〈2〉 〈3〉 〈4〉 <1> (1) <1> Organ_ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) [Urinary system] kidney basophilic change 0 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) easinophilic body 1 9 0 0 10 0 0 0 10 0 0 0 10 0 (10) (90) (0) (0) (0)(100)(0)(0) (0) (100) (0) (0) (0)(100)(0)(0) [Endocrine system] pituitary 0 0 0 1 0 0 0 0 0 0 0 0 cyst (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) Rathke pouch 1 (0)(0)(0)(0) (0)(0)(0)(0) (-10) (0) (0) (0)(0)(0)(0)(0) 0 thyroid ultimibranchial body remanet 0 0 0 0 0 2 0 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (20) (0) (0) (0) (0)(0)(0)(0) [Reproductive system] prostate inflammation 0 0 1 1 0 0 (0)(0)(0)(0) (10) (10) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) [Special sense organs/appandage] Harder gl inflammation 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) Significant difference : $*: P \le 0.05$ $**: P \le 0.01$ Test of Chi Square <1>:Slight <2>: Moderate <3>:Marked <1>:Severe

PAGE: 3

BAIS2

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

Group Name 20000 ppm 40000 ppm No. of Animals 10 10 〈2〉 〈3〉 〈4〉 <1> <2> <3> <4> Organ_ Findings (%) (%) (%) (%) (%) (%) (%) (%) [Urinary system] kidney basophilic change 0 0 0 0 (0)(0)(0)(0) (0) (0) (0) (0) easinaphilic body 0 10 0 0 1 9 0 0 (0) (100) (0) (0) (10) (90) (0) (0) [Endocrine system] pituitary cyst 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Rathke pouch 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) thyroid ultimibranchial body remanet (0)(0)(0)(0) (0)(0)(0)(0) [Reproductive system] prostate inflammation 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) [Special sense organs/appandage] Harder gl inflammation 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>: Marked <4>:Severe (HPT150)

BAIS2

APPENDIX B 12-2

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

RAT: FEMALE: SACRIFICED ANIMALS

: RAT F344

REPORT TYPE : A1
SEX : FEMALE

ANIMAL

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

PAGE: 5 Group Name Control 2500 ppm 5000 ppm 10000 ppm No. of Animals 10 10 10 10 <1> 〈2〉 〈3〉 <4> <1> <2> <3> <4> <2> <3> <2> <3> <4> <4> Findings (%) 0rgan_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) [Respiratory system] nasal cavit inflammation:squamous epithelium 1 0 0 0 0 0 0 1 0 0 (10) (0) (0) (0) (20) (0) (0) (0) (10) (0) (0) (0) (10) (0) (0) (0) [Hematopoietic system] bone marrow granulation 3 0 0 2 0 0 0 0 0 1 0 0 (30) (0) (0) (0) (20) (0) (0) (0) (30) (0) (0) (0) (30) (10) (0) (0) lymph node granulation 0 0 1 0 0 0 0 0 (0)(10)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (10) (0) (0) deposit of hemosiderin spleen 0 10 10 0 10 0 10 0 0 (0)(100)(0)(0) (0)(100)(0)(0) (0)(100)(0)(0) (0)(100)(0)(0) [Digestive system] tongue inflammation 0 0 0 0 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) stomach erosion:glandular stomach 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) decrease in middle layer of fundus (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) liver herniation 0 0 0 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (10) (0) (0) (0) vacuolic change 0 0 1 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) granulation 0 0 0 2 0 0 (10) (0) (0) (0) (10) (10) (0) (0) (10) (0) (0) (0) (20) (0) (0) (0) Significant difference ; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe

(HPT150)

BAIS2

: RAT F344

REPORT TYPE : A1

ANIMAL

SEX : FEMALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

PAGE: 6 Group Name 20000 ppm 40000 ppm No. of Animals 10 10 (1) <2> <3> <4> <2> <3> <4> Organ___ Findings_ (%) (%) (%) (%) (%) (%) [Respiratory system] nasal cauit inflammation:squamous epithelium 2 0 0 0 (20) (0) (0) (0) (0)(0)(0)(0) [Hematopoietic system] bone marrow granulation 3 0 0 0 (40) (0) (0) (0) (30) (0) (0) (0) lymph node granulation 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) spleen deposit of hemosiderin 0 10 0 10 0 0 (0)(100)(0)(0) (0) (100) (0) (0) [Digestive system] tongue inflammation 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) erosion:glandular stomach stomach (0)(0)(0)(0) (10) (0) (0) (0) decrease in middle layer of fundus (0)(0)(0)(0) (10) (0) (0) (0) Liver herniation 1 0 0 0 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) vacuatic change 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) granulation 2 0 1 0 0 0 (20) (0) (0) (0) (10) (0) (0) (0) Significant difference; *: $P \le 0.05$ **: $P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe

(HPT150)

BAIS2

ANIMAL : RAT F344

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

ALL ANIMALS (0- 14W)

Group Name Control 2500 ppm 5000 ppm 10000 ppm No. of Animals 10 10 10 10 ⟨1⟩ 〈2〉 〈3〉 〈2〉 〈3〉 〈4〉 <4> <1> <1> ⟨2⟩ ⟨3⟩ (4) <1> 〈2〉 〈3〉 〈4〉 Findings (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) [Digestive system] pancreas atrophy 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) [Urinary system] kidney basophilic change 0 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) mineralization:cortico-medullary junction 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) (100) (0) (0) (0) [Endocrine system] pituitary Rathke pouch 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) thyroid ultimibranchial body remanet 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 (0)(0)(0)(0) (10) (0) (0) (0) (10) (0) (0) (0) (10) (0) (0) (0) [Special sense organs/appandage] Harder gl inflammation 2 0 3 0 0 0 (10) (0) (0) (0) (10) (0) (0) (0) (20) (0) (0) (0) (30) (0) (0) (0) Significant difference; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square <1>:Slight <3>:Marked <4>:Severe <2>:Moderate (HPT150)

 Δ

ANIMAL : RAT F344

REPORT TYPE : A1
SEX : FEMALE

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 8

ALL ANIMALS (0- 14W)

Group Name 20000 ppm 40000 ppm No. of Animals 10 10 <1> <2> <3> <4> <1> 〈2〉 〈3〉 〈4〉 (%) (%) (%) Organ____ Findings_ (%) (%) (%) (%) [Digestive system] pancreas atrophy 0 0 0 0 (10) (0) (0) (0) (0)(0)(0)(0) [Urinary system] kidney basophilic change (0) (0) (0) (0) (10) (0) (0) (0) mineralization:cortico-medullary junction 10 0 0 0 9 1 0 0 (100) (0) (0) (0) (90) (10) (0) (0) [Endocrine system] pituitary Rathke pouch (0)(0)(0)(0) (10) (0) (0) (0) thyroid ultimibranchial body remanet 2 0 0 0 2 0 0 0 (20) (0) (0) (0) (20) (0) (0) (0) [Special sense organs/appandage] Harder gl inflammation (20) (10) (0) (0) (10) (0) (0) (0) Significant difference; $*:P \le 0.05$ $**:P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe (HPT150) BAIS2

 Δ

APPENDIX B 12-3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 : MALE SEX

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY) DEAD AND MORIBUND ANIMALS (0- 14W)

		Group Name Control No. of Animals 0	5000ppm	10000ppm	20000ppm 0
rgan	Findings	(%) (%) (%) (%)	<1> <2> <3> <4> (%) (%) (%) (%)	<1> <2> <3> <4> (%) (%) (%) (%)	<1> <2> <3> <4> <4> <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6
Hematopoie	otic system]				
hymus	atrophy	(-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-)	
pleen	atrophy	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
	deposit of hemosiderin	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-)
Digestive	system]				
iver	necrosis:single cell	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Urinary sy	vstem]				
idney	vacuolization of proximal tubule	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
Reproducti	ive system]				
estis	degeneration:seminiferous epithelium	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)	(-) (-) (-) (-)
<	(1>:Slight <2>:Moderate <3>:Marke	d <4>:Severe			
(HPT150)					

STUDY NO. : 0202 ANIMAL

: MOUSE BDF1

REPORT TYPE : A1 SEX : MALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

Group Name 40000ppm mqq00008 No. of Animals 0 1 <2> 〈3〉 〈4〉 (1) (2) (3) (4) <1> (%) (%) (%) (%) (%) (%) (%) Findings_ [Hematopoietic system] thymus atrophy (-) (-) (-) (-) (0)(0)(100)(0) spleen atrophy (-) (-) (-) (-) (0) (100) (0) (0) deposit of hemosiderin 1 0 0 0 (-) (-) (-) (-) (100) (0) (0) (0) [Digestive system] liver necrosis:single cell (-) (-) (-) (0) (100) (0) (0) [Urinary system] kidney vacuolization of proximal tubule (-) (-) (-) (-) (100) (0) (0) (0) [Reproductive system] testis degeneration:seminiferous epithelium 1 0 0 0 (-) (-) (-) (-) (100) (0) (0) (0) <1>:Slight <2>:Moderate <3>:Marked <4>:Severe (HPT150)

BAIS2

APPENDIX B 12-4

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: FEMALE: DEAD AND MORIBUND ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 3

DEAD AND MORIBUND ANIMALS (0- 14W)

		Group Name No. of Animals <1>	Contr () <2> <3>	ol <4>	<1> <2>	5000ppm 0 <3> <4>	⟨1⟩	10000p 0 <2> <3>	opm <4>	<1> <2	
)rgan	Findings	(%)	(%) (%)	(%)	(%) (%)	(%) (%)	(%)	(%) (%)	(%)	(%) (%)	(%) (%)
(Hematopoie	tic system]										
thymus	atrophy	- (-)	(-) (-)	- (-)	 (-) (-)	(-) (-)	- (-) (-) (-)	- (-)	(-) (-)	
spleen	atrophy	(-)	(-) (-)	- (-)	(-) (-)	(-) (-)	(-) (- (· -)	(-) (-)	
Circulator	y system]										
neart	necrosis	(-)		- (-)	 (-) (-)		(-) (-) (-)	- (-)	(-) (-	
<	1>:Slight <2>:Moderate	<3>:Marked <4>:Severe									
(HPT150)											-

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

DEAD AND MORIBUND ANIMALS (0- 14W)

)rgan	Findings		Group Name 4 No. of Animals 0 <1> <2> (%) (%)	0000ppm <3> <4> (%) (%)	80000ppm 1 <1> <2> <3> <4> (%) (%) (%) (%)	
[Hematopoie	rtic system]		·			
thymus	atrophy		 (-) (-) (0 0 1 0 (0) (0) (100) (0)	
spleen	atrophy		(-) (-) (1 0 0 0 (100) (0) (0) (0)	
Circulator	ry system]					
peart	necrosis		(-) (-) (-) (-)	1 0 0 0 0 (100) (0) (0) (0)	
<	(1>:Slight <2>:	:Moderate <3>:Marked	<4>:Severe			
(HPT150)				··· · · · · · · · · · · · · · · · · ·		

APPENDIX B 12-3

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: MALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

PAGE: 1

		Group Name Control No. of Animals 10	5000ppm 10	10000ppm 10	20000ppm 10
rgan	Findings	<1> <2> <3> <4> (%) (%) (%) (%)	<1> <2> <3> <4> (%) (%) (%) (%)	<1> <2> <3> <4> (%) (%) (%) (%)	<1> <2> <3> <4> (%) (%) (%) (%) (%)
Respiratory	system]				
nasal cavit	eosinophilic change:olfactory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
		0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (10) (0) (0) (0)
	duct ectasia:olfactory gland	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	(0)(0)(0)(0)
[Hematopoieti	c system]				
spleen	deposit of hemosiderin	5 0 0 0 (50)(0)(0)(0)	4 0 0 0 (40)(0)(0)(0)	7 0 0 0 (70) (0) (0) (0)	5 0 0 0 (50) (0) (0) (0)
	deposit of melanin	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)
[Circulatory	system]				
neart	arthritis	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
Digestive sy	rstem]				
stomach	increase in superficial layer of fundus	0 0 0 0 0 (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	decrease in middle layer of fundus	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	decrease in deep layer of fundus	0 0 0 0 0 (0) (0)	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (10) (10) (10) (10)
Significant d	lifference; *: P ≤ 0.05 **: P ≤ 0.01	Test of Chi Square <1>:Slight	t <2>:Moderate <	3>:Marked <4>:Severe	
(HPT150)					

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : MALE

(HPT150)

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

SACRIFICED ANIMALS (14W)

Group Name 40000ppm 80000ppm No. of Animals <1> (2> <3> <4> <2> <3> <4> Findings (%) (%) (%) (%) (%) (%) (%) (%) [Respiratory system] nasal cavit eosinophilic change:olfactory epithelium 0 0 0 (0)(0)(0)(0) (11) (0) (0) (0) 0 0 (0)(0)(0)(0) (0)(0)(0)(0) duct ectasia:olfactory gland 6 0 0 (10) (0) (0) (0) (67) (0) (0) (0) [Hematopoietic system] spleen deposit of hemosiderin (44) (0) (0) (0) (50) (0) (0) (0) deposit of melanin 0 0 0 0 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) [Circulatory system] heart arthritis (0)(0)(0)(0) (0)(0)(0)(0) [Digestive system] stomach increase in superficial layer of fundus 0 0 () ** (0)(0)(0)(0) (89) (0) (0) (0) decrease in middle layer of fundus 0 * (50) (0) (0) (0) (56) (0) (0) (0) decrease in deep layer of fundus 0 0 0 6 0 0 0 ** (0)(0)(0)(0) (67) (0) (0) (0) Significant difference; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe

Δ

STUDY NO. : 0202

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

HISTOLOGICAL FINDINGS : NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 3

SACRIFICED ANIMALS (14W)

Group Name Control 5000ppm 10000ppm 20000ppm No. of Animals 10 10 10 <1> (2) <3> <4> ⟨2⟩ ⟨3⟩ <1> <2> 〈3〉 〈4〉 <2> <3> <4> <1> <1> Organ_ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) [Digestive system] Liver granulation 0 0 0 3 0 0 0 (40) (0) (0) (0) (30) (0) (0) (0) (30) (0) (0) (0) (40) (0) (0) (0) [Urinary system] kidney basophilic change 1 0 0 0 0 0 0 2 0 (0)(0)(0)(0) (10) (0) (0) (0) (0)(0)(0)(0) (20) (0) (0) (0) vacuolization of proximal tubule 8 0 0 0 0 0 9 10 0 0 (80) (0) (0) (0) (70) (0) (0) (0) (90) (0) (0) (0) (100) (0) (0) (0) [Endocrine system] adrenal accesory cortical nodule 0 0 0 0 0 1 0 0 0 (0)(0)(0)(0) (0)(0)(0)(0) (0)(0)(0)(0) (10) (0) (0) (0) Significant difference; * : $P \le 0.05$ ** : $P \le 0.01$ Test of Chi Square <1>:Slight <2>:Moderate <3>:Marked <4>:Severe (HPT150) BAIS2

ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : MALE

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

Organ	Findings	Group Name 40000ppm No. of Animals 10 <1> <2> <3> <4> (%) (%) (%) (%)	80000ppm 9 <1> <2> <3> <4> (%) (%) (%) (%)	
[Digestive :	system]			
liver	granulation	3 0 0 0 (30) (0) (0) (0)	2 0 0 0 (22) (0) (0) (0)	
[Urinary sy:	stem]			
kidney	basophilic change	0 0 0 0 0 (0) (0)	1 0 0 0 (11) (0) (0) (0)	
	vacuolization of proximal tubule	9 0. 0 0	8 0 0 0 (89) (0) (0) (0)	
(Endocrine :	system]			
adrenal	accesory cortical nodule	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	
Significant	difference; $*: P \leq 0.05$ $**: P \leq 0$	0.01 Test of Chi Square <1>:Sligh	t <2>:Moderate <3>:Marked	(4):Severe
(HPT150)			,	BAI

APPENDIX B 12-4

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS

(THIRTEEN-WEEK STUDY: SUMMARY)

MOUSE: FEMALE: SACRIFICED ANIMALS

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

0rgan	Findings	Group Name Control No. of Animals 10	5000ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)	10000ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)	20000ppm 10 <1> <2> <3> <4> (%) (%) (%) (%)
				(6) (6) (6)	(b) (b) (b)
[Respiratory	system]				
nasal cavit	eosinophilic change:olfactory epithelium	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)
	eosinophilic change:respiratory epithelium	0 1 0 0 (0) (10) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
	respiratory metaplasia:olfactory epithelium	0 0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	duct ectasia:olfactory gland	(0) (0) (0) (0)	0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 0 (0) (0) (0)
[Hematopoiet	ic system]				
spleen	deposit of hemosiderin	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)	10 0 0 0 (100) (0) (0) (0)
	deposit of melanin	1 0 0 0 (10) (0) (0) (0)	2 0 0 0 0 (20) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
	extramedullary hematopoiesis	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0)	0 0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)
[Digestive s	/stem]				
stomach	increase in superficial layer of fundus	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)	0 0 0 0 0 (0) (0)
liver	granulation	4 0 0 0 0 (40) (0) (0)	2 0 0 0 0 (20) (0) (0)	4 0 0 0 0 (40) (0) (0) (0)	6 0 0 0 0 (60) (60) (0) (0)
[Endocrine s	vstem]				
adrena l	accesory cortical nodule	1 0 0 0 (10) (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)

STUDY NO. : 0202 ANIMAL : MOUSE BDF1

REPORT TYPE : A1
SEX : FEMALE

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY) SACRIFICED ANIMALS (14W)

Organ	Findings	Group Name 40000ppm No. of Animals 10	80000ppm 9 <1> <2> <3> <4> (%) (%) (%) (%)	
[Respiratory	system]			
nasal cavit	eosinophilic change:olfactory epithelium	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	
	eosinophilic change:respiratory epithelium	0 0 0 0 0 (0) (0) (0)	2 0 0 0 (22) (0) (0) (0)	
	respiratory metaplasia:olfactory epithelium	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	
	duct ectasia:olfactory gland	0 0 0 0 0 (0) (0)	9 0 0 0 *** (100) (0) (0) (0)	
Hematopoiet	ic system]			
spleen	deposit of hemosiderin	10 0 0 0 (100) (0) (0) (0)	9 0 0 0 (100) (0) (0) (0)	
	deposit of melanin	0 0 0 0 0 (0) (0) (0)	0 0 0 0 0 (0) (0) (0)	
	extramedullary hematopoiesis	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 (0) (0) (0)	
Digestive s	ystem]			
stomach	increase in superficial layer of fundus	0 0 0 0 0 (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	
iver.	granulation	3 0 0 0 0 (30) (0) (0)	2 0 0 0 (22) (0) (0) (0)	
Endocrine s	ystem]			
adrena l	accesory comtical nodule	1 0 0 0 (10) (0) (0) (0)	1 0 0 0 (11) (0) (0) (0)	

SEX

: MOUSE BDF1

: FEMALE

ANIMAL : MOUS
REPORT TYPE : A1

HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 7

SACRIFICED ANIMALS (14W)

Group Name Cantral 5000ppm 10000ppm 20000ppm No. of Animals 10 10 10 10 <1> <2> <3> <4> <2> <3> <4> 〈2〉 〈3〉 〈4〉 <1> <2> <3> <4> <1> <1> (%) (%) (%) (%) (%) (%) Organ____ Findings_ (%) (%) (%) (%) (%) (%) (%) (%) (%) [Special sense organs/appandage] Harder gl inflammation 0 0 0 0 1 0 0 0 0 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (10) (0) (0) (0) (0)(0)(0)(0) Significant difference; * : P \leq 0.05 ** : P \leq 0.01 Test of Chi Square <1>:Slight <2>:Moderate <3>: Marked <4>:Se∪ere (HPT150) BAIS2

ANIMAL : MOUSE BDF1

REPORT TYPE : A1 SEX : FEMALE HISTOLOGICAL FINDINGS: NON-NEOPLASTIC LESIONS (SUMMARY)

PAGE: 8

SACRIFICED ANIMALS (14W)

Organ	Findings	Group Name No. of Animals <1> <2 (%) (%)		80000ppm 9 <1> <2> <3> <4 (%) (%) (%) (%)		
[Special ser	nse organs/appandage]					
Harder gl	inflammation	0 (0)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Significant	difference; *: $P \le 0.05$ **: $P \le 0.01$	Test of Chi Square	<1>:Slight	<2>:Moderate	<3>:Marked <4>:Severe	
(HPT150)						BAIS2

APPENDIX B 13-1

IDENTITY AND PURITY OF BIPHENYL PERFORMED AT THE JAPAN BIOASSAY LABORATORY (THIRTEEN-WEEK STUDY)

IDENTITY OF 1,3,5,7-TETRAAZATRICYCLO[3.3.1.13,7]DECANE PERFORMED AT THE JAPAN BIOASSAY LABORATORY (THIRTEEN-WEEK STUDIES)

Lot no. TWQ4880

1. Spectral data

Mass Spectrometry


Instrument

: Hitachi M-80B

Ionization

: EI(Electron Ionization)

Ionization Voltage : 70eV

Mass Spectrum of 1,3,5,7-Tetraazatricyclo[3.3.1.13.7]decane

Result:

Molecular Weight

Theoretical Value

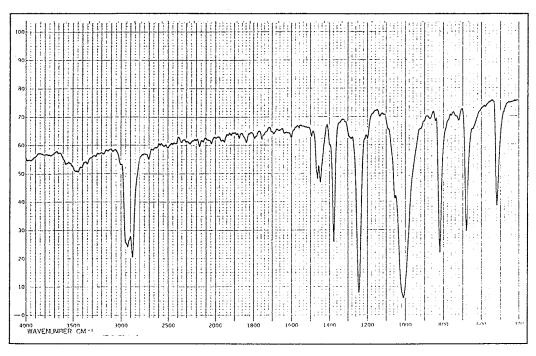
140.1 (Calculated)

Determined

140.0

Infrared Spectrum

Instrument


: Hitachi 270-30

Cell

: KBr

Slit

: Medium

Infrared Spectrum of 1,3,5,7-Tetraazatricyclo[3.3.1.1 3,7]decane

Results:

Wave Number (CM⁻¹)

Determined	Literature Value
480~ 530	480~ 530
640~ 700	640~ 700
780∼ 830	780~ 830
910~1100	910~1100
$1200 \sim 1270$	$1200 \sim 1270$
$1350 \sim 1420$	$1350 \sim 1420$
$1420 \sim 1490$	$1420 \sim 1490$
2800~3000	2800~3000
	(Performed by the WAKO PURE CHEMICAL INDUSTRIES, LTD.)

2. Conclusions: The result of the mass spectrum agreed with the theoretical value and the infrared spectrum agreed with the literature value.

APPENDIX B 13-2

STABILITY OF BIPHENYL AT THE JAPAN BIOASSAY LABORATORY (THIRTEEN-WEEK STUDY)

STABILITY OF 1,3,5,7-TETRAAZATRICYCLO[3.3.1.1 3,7] DECANE AT THE JAPAN BIOASSAY LABORATORY (THIRTEEN-WEEK STUDIES)

Lot no. TWQ4880

1. Sample storage: 1,3,5,7-Tetraazatricyclo[3.3.1.1 3,7]decane was stored for about 15 weeks at 5 $^{\circ}$ C.

2. Infrared Spectrum

Instrument

: Hitachi 270-30

Cell

: KBr

Slit

: Medium

Results:

Wave Number (CM⁻¹)

03/06/92	06/17/92
480~ 530	480~ 530
640~ 700	640~ 700
780∼ 830	780∼ 830
910~1100	910~1100
$1200 \sim 1270$	$1200 \sim 1270$
$1350 \sim 1420$	$1350 \sim 1420$
$1420 \sim 1490$	$1420 \sim 1490$
2800~3000	2800~3000

3. Conclusions: No notable differrence was observed between infrared spectrums of pre- and post-examination of the study.

Consequently, 1,3,5,7-tetraazatricyclo[3.3.1.1 3 ,7]decane was stable as the chemical when stored for about 15 weeks at 5°C.

APPENDIX B 13-3-1

ANALYSIS OF TATCD CONCENTRATION IN DRINKING WATER OF THE THIRTEEN —WEEK STUDIES

ANALYSIS OF 1,3,5,7-TETRAAZATRICYCLO[3.3.1.13,7]DECANE CONCENTRATION IN DRINKING WATER OF THE THIRTEEN-WEEK STUDIES

(Rat)

Concentration of 1,3,5,7-Tetraazatricyclo[3.3.1.1 ^{3,7}]decane in Drinking Water for Target Concentration(ppm)						
2500 (a)	5000 (a)	10000 (a)	20000 (a)	40000 (a)		
2687.2(107.5)	5352.0(107.0)	10585.9(105.9)	20804.6(104.0)	40204.5(100.5)		

(Mouse)

Concentration of 1,3,5,7-Tetraazatricyclo[3.3.1.1 ^{3,7}]decane in Drinking Water for Target Concentration(ppm)						
5000 (a)	10000 (a)	20000 (a)	40000 (a)	80000 (a)		
5352.0(107.0)	10585.9(105.9)	20804.6(104.0)	40204.5(100.5)	80738.5(100.9)		

(a) Percent of target concentration

Analytical method: The sample were analyzed by the Gas Chromatography.

Instrument

: Hewlett Packard 5890A

Flow Rate

: 34.5ml/min

Column

: 4% Carbowax 20M / 0.8% KOH

Detector

: FID(Hydrogen Flame Ionization)

/ 60/80 Carbopack B $(2mm\phi \times 2m)$

Injection Volume

 $: 1 \mu 1$

Column Temperature: 215°C

APPENDIX B 31-3-2

STABILITY OF TATCD CONCENTRATION IN DRINKING WATER OF THE THIRTEEN - WEEK STUDIES

STABILITY OF 1,3,5,7-TETRAAZATRICYCLO[3.3.1.13.7] DECANE IN DRINKING WATER OF THE THIRTEEN-WEEK STUDIES (Rat)

	Concentration of 1,3,5,7-Tetraazatricyclo[3.3.1.1 $^{3.7}$]decane in Drinking Water for Target Concentration(ppm)			
Date	2500 (b)	40000 (b)		
03/19/92(a)	2687.2(100)	40204.5(100)		
03/23/92	2666.1(99.2)	40131.5(99.8)		
(Mouse)				
	Concentration of 1,3,5,7-Tetraazatricyclo[3.3.1.1 $^{3.7}$]decane in Drinking Water for Target Concentration(ppm)			
Date	5000 (b)	80000 (b)		
03/19/92(a)	5352.0(100)	80738.5(100)		
03/23/92	5357.6(100.1)	80487.0(99.7)		

⁽a) Date of preparation

Analytical method: The sample were analyzed by the Gas Chromatography.

Instrument

: Hewlett Packard 5890A

Flow Rate

: 34.5ml/min

Column

: 4% Carbowax 20M / 0.8% KOH

Detector

: FID(Hydrogen Flame Ionization)

/ 60/80 Carbopack B $(2mm\phi \times 2m)$

Injection Volume

: $1 \mu 1$

Column Temperature: 215℃

⁽b) Percent of concentration on preparation day

APPENDIX C 1

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALSYS

METHODS FOR HEMATOLOGY, BIOCHEMISTRY AND URINALYSIS

I t e m	Method	Unit
Hematology		
Red blood cell (RBC)	Light scattering method ¹⁾	$\times 10^6 / \mu$ l
Hemoglobin (Hgb)	Cyanmethemoglobin method 1)	g/dl
Hematocrit (Hct)	Calculated as RBC×MCV/10 1)	%
Mean corpuscular volume (MCV)	Light scattering method 1)	fl
Mean corpuscular hemoglobin (MCH)	Calculated as Hgb/RBC×10 1)	pg
Mean corpuscular hemoglobin		
concentration (MCHC)	Calculated as Hgb/Hct×100 1)	g/dl
Platelet	Light scattering method ¹⁾	$\times 10^3 / \mu$ l
White blood cell (WBC)	Light scattering method 1)	$\times 10^3 / \mu$ l
Differential WBC	Pattern recognition method ²⁾	%
	(May-Grunwald-Giemsa staining)	
Biochemistry		
Total protein (TP)	Biuret method ³⁾	g/dl
Albumin (Alb)	BCG method ³⁾	g/dl
A/G ratio	Calculated as Alb/ (TP-Alb) 3)	
T-bilirubin	Michaelson method ³⁾	mg/d1
Glucose	Enzymatic method (HK+G-6-PDH) 3)	mg/dl
T-cholesterol	Enzymatic method (CEH•COD•POD) 3)	mg/dl
Triglyceride	Enzymatic method (GK+GPO+POD) 3)	mg/dl
Phospholipid	Enzymatic method (PLD+COD+POD) 3)	mg/dl
Glutamic oxaloacetic transaminase (GOT)	Karmen method ³⁾	10/1
Glutamic pyruvic transaminase (GPT)	Karmen method ³⁾	10/1
Lactate dehydrogenase (LDH)	Wroblewski-LaDue method ³⁾	10/1
Alkaline phosphatase (ALP)	GSCC method ³⁾	10/1
γ -Glutamyl transpeptidase (G-GTP)	L- γ -Glutamyl-p-nitroanilide substrate	10/1
	method ³⁾	
Creatine phosphokinase (CPK)	GSCC method ³⁾	10/1
Urea nitrogen	Enzymatic method (Urease•GLDH) ³⁾	mg/d1
Creatinine	Jaffe method ³⁾	mg/d1
Sodium	Flame photometry 4)	mEq/1
Potassium	Flame photometry 4)	mEq/1
Chloride	Coulometric titration 4)	mEq/1
Calcium	OCPC method 3)	mg/dl
Inorganic phosphorus	Enzymatic method (SPL•PGM•G-6-PDH) 3)	mg/d1
Urinalysis pH, Protein, Glucose, Ketone body, Bilirubin, Occult blood, Urobilinogen	Urinalysis reagent paper method ⁵⁾	

- 1) Automatic blood cell analyzer (Technicon H·1: Technicon Instruments Corporation, USA)
- 2) Automatic blood cell differential analyzer (Hitachi 8200 : Hitachi, Ltd., Japan)
- 3) Automatic analyzer (Hitachi 705 : Hitachi, Ltd., Japan)
- 4) Flame photometer (Hitachi 750 : Hitachi, Ltd., Japan)
- 5) Ames reagent strips for urinalysis (Multistix, Uro-Labstix: Miles Sankyo Co., Ltd., Japan)

APPENDIX C 2

UNITS AND DECIMAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

UNITS AND DECIMNAL PLACE FOR HEMATOLOGY AND BIOCHEMISTRY

	TEST ITEM	DECIMAL PLACE	UNIT
HEMATOLOGY	Red blood cell	2	×10 ⁶ /μ1
	Hemoglobin	1	g/dl
	Hematocrit	1	%
	MCV	1	f1
	мсн	1	pg
	мснс	1	g/dl
	Platelet	0	\times 10 ³ / μ 1
	White blood cell	2	\times 10 ³ / μ 1
	Differntial WBC	0	%
BIOCHEMISTRY	Total protein	. 1	g/d1
~	Albumin	1	g/dl
	A/G ratio	1	
	T-bilirubin	2	mg/dl
	Glucose	0	mg/dl
	T-cholesterol	0	mg/dl
	Triglyceride	0	mg/dl
	Phospholipid	0 .	mg/dl
	GOT	0	IU/1
	GPT	0	IU/I
	LDH	0	IU/I
	ALP	0	IU/1
	γ -GTP	0	IU/1
	CPK	0	IU/1
	Urea nitrogen	1	mg/dl
	Creatinine	1	mg/dl
	Sodium	0	mEq/1
	Potassium	1	mEq/1
	Chloride	0	mEq/1
	Calcium	1	mg/dl
	Inorganic phosphorus	1	mg/dl

)

)