Summary of Drinking Water Carcinogenicity Study of *o*-Phenylenediamine Dihydrochloride

in BDF1 Mice

February 2004

Japan Bioassay Research Center

Japan Industrial Safety and Health Association

PREFACE

The tests were contracted and supported by the Ministry of Health, Labour and Welfare of Japan. The tests were conducted by Japan Bioassay Research Center (JBRC) and the report was prepared by JBRC and peer reviewed by outside expert pathologist. Complete report was submitted to Ministry of Health, Labour and Welfare of Japan on February 26 2004.

This English Summary was translated by JBRC from Japanese complete report.

Summary of Drinking Water Carcinogenicity Study of *o*-Phenylenediamine Dihydrochloride in BDF1 Mice

Purpose, materials and methods

o-Phenylenediamine dihydrochloride (*o*-PD2HCl, 1,2-benzenediamine dihydrochloride, CAS No. 615-28-1) is a light red crystalline powder with a melting point of 258°C and is soluble in water.

The carcinogenicity and chronic toxicity of o-PD2HCl were examined in groups of 50 Crj:BDF1 mice of both sexes administered o-PD2HCl in drinking water for 2 years (104 weeks). The drinking water concentration of o-PD2HCl was 0, 500, 1000 or 2000 ppm (w/w) for male mice and 0, 1000, 2000 or 4000 ppm for female mice. The highest dose levels were chosen so as not to exceed the maximum tolerated dose (MTD), based on both growth rate and toxicity in the previous 13-week toxicity study. o-PD2HCl was analyzed for purity and stability by both infrared spectrometry and high performance liquid chromatography before and after its use. The concentrations of o-PD2HCl in drinking water were determined by high performance liquid chromatography at the time of preparation, and on 8th day after preparation, while stored at room temperature. The animals were observed daily for clinical signs and mortality. Body weight, water consumption and food consumption were measured once a week for the first 14 weeks and every 4 weeks thereafter. Animals found dead, in a moribund state, or surviving to the end of the 2-year administration period underwent complete necropsy. Urinalysis was performed near the end of the administration period. For hematology and blood biochemistry, the surviving animals were bled under ether anesthesia, after they were fasted overnight, at the terminal necropsy. Organs and tissues were removed, weighed and examined for macroscopic lesions at necropsy. The organs and tissues were fixed and embedded in paraffin. Tissue sections of 5 µm thick were prepared and stained with hematoxylin and eosin and examined for histopathology. Incidences of neoplastic lesions were statistically analyzed by Fisher's exact test. A positive trend of dose-response relationship for the neoplastic incidence was analyzed by Peto's test. Incidences of non-neoplastic lesions and urinalysis were analyzed by Chi-square test. Changes in body weight, water consumption, food consumption, hematological and blood biochemical parameters and organ weights were analyzed by Dunnett's test. The present studies were conducted in accordance with the Organisation for Economic Co-operation and Development (OECD) Good Laboratory Practice and with reference to the OECD Guideline for Testing of Chemicals 451 "Carcinogenicity Studies".

(Study No.0372)

Results

Survival rates of the *o*-PD2HCl-administered females were slightly higher than those of the control. Body weights, food consumption and water consumption of all the *o*-PD2HCl-administered groups of both sexes were significantly decreased, but water consumption of the 2000 and 4000 ppm-administered females was recovered to the control level during the late period of 2-year administration.

The incidences of hepatocellular adenomas in males and hepatocellular adenomas and carcinomas in females were increased dose-dependently. The significantly increased incidence of hepatocellular adenomas in the males and females was noted even at the lowest dose level, whereas the incidence of hepatocellular carcinomas was significantly increased in the females administered 2000 ppm and above. The incidences of the hepatocellular tumors exceeded the respective maximum incidences of the Japan Bioassay Research Center (JBRC) historical control data. As pre-neoplastic lesions, the incidences of altered cell foci in the liver, including basophilic, acidophilic and clear cell foci, were increased in the 4000 ppm-administered females. In addition to hepatic tumors, blood biochemical parameters (ALP and ALT (GPT)) were increased in both male and females administered 2000 ppm. Since the gall bladder papillary adenoma has not been observed in the JBRC historical control data, the gall bladder tumor was judged to be induced by the *o*-PD2HCl administration. In addition, histopathological findings relating to the *o*-PD2HCl administration were noted in the nasal cavity, nasopharynx and kidneys.

Since the incidence of hepatocellular adenomas was increased at the lowest dose level, the lower confidence limit of the benchmark dose yielding a response with 10% extra risk (BMDL₁₀) was calculated instead of the no-observed-adverse-effect-level (NOAEL). The BMDL₁₀ value for the endpoint of hepatocellular adenomas in males was 134 ppm, while the BMDL₁₀ value for the endpoint of gall bladder papillary adenomas in males was 1014 ppm.

Conclusions

In mice, there was some evidence of carcinogenic activity of *o*-PD2HCl in males, based on the increased incidences of hepatocellular adenomas and gall bladder papillary adenomas, and there was clear evidence of carcinogenic activity of *o*-PD2HCl in females, based on the increased incidences of hepatocellular adenomas and carcinomas and gall bladder papillary adenomas.

 $\mathbf{2}$

TABLES

- TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGESOF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OFo -PHENYLENEDIAMINE DIHYDROCHLORIDE
- TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES
OF FEMALE MICE I IN THE 2-YEAR DRINKING WATER STUDY
OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
- TABLE 3WATER CONSUMPTION CHANGES OF MALE MICE IN THE
2-YEAR DRINKING WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE

)

- TABLE 4WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE
2-YEAR DRINKING WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 5FOOD CONSUMPTION CHANGES OF MALE MICE IN THE
2-YEAR DRINKING WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE
2-YEAR DRINKING WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 7INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN
CLINICAL OBSERVATION OF MALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o -PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 8
 INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN

 CLINICAL OBSERVATION OF FEMALE MICE IN THE 2-YEAR

 DRINKING WATER STUDY OF o PHENYLENEDIAMINE

 DIHYDROCHLORIDE

TABLES (CONTINUED)

- TABLE 9HEMATOLOGY OF MALE MICE IN THE 2-YEAR DRINKINGWATER STUDY OF o -PHENYLENEDIAMINEDIHYDROCHLORIDE
- TABLE 10
 HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR DRINKING

 WATER STUDY OF o PHENYLENEDIAMINE
 DIHYDROCHLORIDE
- TABLE 11BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR DRINKINGWATER STUDY OF o PHENYLENEDIAMINEDIHYDROCHLORIDE
- TABLE 12
 BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR DRINKING

 WATER STUDY OF o PHENYLENEDIAMINE

 DIHYDROCHLORIDE
- TABLE 13URINALYSIS OF MALE MICE IN THE 2-YEAR DRINKING WATERSTUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE
- TABLE 14
 URINALYSIS OF FEMALE MICE IN THE 2-YEAR DRINKING

 WATER STUDY OF o -PHENYLENEDIAMINE

 DIHYDROCHLORIDE
- TABLE 15ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR DRINKING
WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 16ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR DRINKING
WATER STUDY OF o -PHENYLENEDIAMINE
DIHYDROCHLORIDE

TABLES (CONTINUED)

- TABLE 17INCIDENCES OF SELECTED LESIONS OF MALE MICE IN THE
2-YEAR DRINKING WATER STUDY OF o PHENYLENEDIAMINE
DIHYDROCHLORIDE
- TABLE 18INCIDENCES OF SELECTED LESIONS OF FEMALE MICE IN
THE 2-YEAR DRINKING WATER STUDY OF
o-PHENYLENEDIAMINE DIHYDROCHLORIDE
- TABLE 19HISTORICAL CONTROL DATA OF SELECTED NEOPLASTICLESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1MALE MICE

)

- TABLE 20HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC
LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1
FEMALE MICE
- TABLE 21CAUSE OF DEATH OF MICE IN THE 2-YEAR DRINKING WATERSTUDY OF o -PHENYLENEDIAMINE DIHYDROCHLORIDE

TABLE 1SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF
o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

)

	Control	500 ppm	1000 ppm	2000 ppm	2000 ppm			
Week on Study	Av. Wt. No. of Surviv. <50>	Av. Wt. % of No. of cont. Surviv. <50>	Av. Wt. % of No. of cont. Surviv. <50>	Av. Wt. % of cont. \$ <50>	No. of Surviv.			
0	22.8 (50) 50 / 50	22.8 (50) 100 50 / 50	22.8 (50) 100 50 / 50	22.8 (50) 100 5	0 / 50			
1	23.5 (50) 50 / 50	23.4 (50) 100 50 / 50	22.9 (50) 97 50 / 50	22.2 (50) 94 5	0 / 50			
2	24.8 (50) 50 / 50	24.5 (50) 99 50 / 50	24.3 (50) 98 50 / 50	23.5 (50) 95 5	0 / 50			
3	25.4 (50) 50 / 50	25.3 (50) 100 50 / 50	24.9 (50) 98 50 / 50	23.8 (50) 94 5	0 / 50			
4	25.9(50)50/50	26.0 (50) 100 50 / 50	25.7 (50) 99 50 / 50	24.9 (50) 96 5	0 / 50			
5	26.9(50)50/50	26.3 (50) 98 50 / 50	26.1 (50) 97 50 / 50	25.1 (50) 93 5	0 / 50			
6	27.6 (50) 50 / 50	27.2 (50) 99 50 / 50	26.7 (50) 97 50 / 50	26.2 (50) 95 5	0 / 50			
7	28.2 (50) 50 / 50	27.5 (50) 98 50 / 50	26.7 (50) 95 50 / 50	26.5(50) 94 5	0 / 50			
8	29.6 (50) 50 / 50	28.9 (50) 98 50 / 50	28.0 (50) 95 50 / 50	27.3 (50) 92 5	0 / 50			
9	29.9(50)50/50	29.2 (50) 98 50 / 50	27.8 (50) 93 50 / 50	27.2 (50) 91 5	0 / 50			
10	30.8 (50) 50 / 50	29.5 (50) 96 50 / 50	28.8 (50) 94 50 / 50	28.1 (50) 91 5	0 / 50			
11	31.1 (50) 50 / 50	29.9 (50) 96 50 / 50	29.0 (50) 93 50 / 50	28.0 (50) 90 5	0 / 50			
12	32.0 (50) 50 / 50	30.9 (50) 97 50 / 50	29.6 (50) 93 50 / 50	28.6 (50) 89 5	0 / 50			
13	32.7 (50) 50 / 50	31.3 (50) 96 50 / 50	30.1 (50) 92 50 / 50	28.7 (50) 88 5	0 / 50			
14	33.7(50)50/50	32.3 (50) 96 50 / 50	30.8 (50) 91 50 / 50	29.4 (50) 87 5	0 / 50			
18	36.2 (50) 50 / 50	34.0 (50) 94 50/50	32.4 (50) 90 50 / 50	30.8 (50) 85 5	0 / 50			
22	38.5 (50) 50 / 50	35.9 (50) 93 50 / 50	33.6 (50) 87 50 / 50	31.8 (50) 83 5	0 / 50			
26	40.8(50)50/50	37.1 (50) 91 50 / 50	35.1 (50) 86 50 / 50	33.2 (50) 81 5	0 / 50			
30	42.9 (50) 50 / 50	38.3 (50) 89 50 / 50	36.1 (50) 84 50 / 50	33.9 (50) 79 5	0 / 50			
34	44.4 (50) 50 / 50	39.0 (50) 88 50 / 50	36.5 (50) 82 50 / 50	34.5 (50) 78 5	0 / 50			
38	45.7(50)50/50	39.7 (50) 87 50 / 50	37.4 (50) 82 50 / 50	35.1 (50) 77 5	0 / 50			
42	46.8(50)50/50	41.0 (49) 88 49/50	38.2 (50) 82 50 / 50	35.9 (49) 77 4	9 / 50			
46	47.8 (50) 50 / 50	41.9 (49) 88 49 / 50	38.9 (50) 81 50 / 50	36.4 (49) 76 4	9 / 50			
50	48.7(50)50/50	42.7 (49) 88 49 / 50	39.5 (50) 81 50 / 50	37.2 (49) 76 4	9 / 50			
54	49.5 (50) 50 / 50	43.9 (49) 89 49 / 50	40.3 (50) 81 50 / 50	37.4 (49) 76 4	9 / 50			
58	49.8 (50) 50 / 50	43.4 (48) 87 48 / 50	40.1 (50) 81 50 / 50	37.0 (49) 74 4	9 / 50			
62	50.5 (50) 50 / 50	43.3 (48) 86 48 / 50	40.0(49) 79 49/50	36.7 (49) 73 4	9 / 50			
66	51.6 (50) 50 / 50	45.0 (47) 87 47/50	41.0 (49) 79 49 / 50	38.0 (49) 74 4	9 / 50			
70	52.1 (50) 50 / 50	45.1 (46) 87 46 / 50	41.4 (49) 79 49 / 50	38.4 (49) 74 4	9 / 50			
74	52.0 (50) 50 / 50	45.6 (46) 88 46 / 50	41.5 (49) 80 49/50	37.6 (49) 72 49	9 / 50			
78	52.1 (50) 50 / 50	45.3 (45) 87 45 / 50	41.7 (49) 80 49 / 50	38.1 (48) 73 48	8 / 50			
82	52.6 (48) 48/50	46.0 (44) 87 44 / 50	41.4 (49) 79 49 / 50	37.7 (48) 72 48	8 / 50			
86	52.4 (48) 48/50	46.1 (43) 88 43 / 50	41.1 (49) 78 49 / 50	36.5 (47) 70 4'	7 / 50			
90	51.6 (47)47/50	44.9 (43) 87 43 / 50	39.4 (48) 76 48 / 50	35.9 (43) 70 43	3 / 50			
94	50.5(45)45/50	44.6(41) 88 41/50	39.1 (47) 77 47 / 50	35.7 (41) 71 4	1 / 50			
98	51.2(41)41/50	44.1 (40) 86 40 / 50	38.6 (46) 75 46 / 50	35.2 (40) 69 40	0 / 50			
102	51.8 (39) 39 / 50	43.5 (39) 84 39/50	38.5 (42) 74 42 / 50	34.2 (40) 66 40	0 / 50			
104	52.6 (38) 38 / 50	44.4 (38) 84 38 / 50	38.8(42) 74 42/50	34.5 (39) 66 39	9 / 50			
	< >: No.of effecti	ve animals (): No of measured ar	imals Av.Wt.: Averaged body	weight (Unit:g)				

6

.

TABLE 2SURVIVAL ANIMAL NUMBERS AND BODY WEIGHT CHANGES OF
FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF
o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

<u>,,,,,,</u>	Control	1000 ppm	2000 ppm	4000 ppm
Week on Study	Av. Wt. No. of Surviv. <50>	Av. Wt. % of No. of cont. Surviv. <50>	Av. Wt. % of No. of cont. Surviv. <50>	Av. Wt. % of No. of cont. Surviv. <50>
0	18.9 (50) 50 / 50	18.9 (50) 100 50 / 50	18.9 (50) 100 50 / 50	18.9 (50) 100 50 / 50
1	18.7 (50) 50 / 50	18.9 (50) 101 50 / 50	18.3 (50) 98 50 / 50	16.3 (50) 87 50 / 50
2	19.9 (50) 50 / 50	19.8 (50) 99 50 / 50	19.3 (50) 97 50 / 50	18.1 (50) 91 50 / 50
3	20.5 (50) 50 / 50	20.5 (50) 100 50 / 50	19.8 (50) 97 50 / 50	19.1 (50) 93 50 / 50
4	21.2 (50) 50 / 50	20.8 (50) 98 50 / 50	20.0 (50) 94 50 / 50	19.3 (50) 91 50 / 50
5	21.6 (50) 50 / 50	20.7 (50) 96 50 / 50	20.0 (50) 93 50 / 50	19.7 (50) 91 50 / 50
6	22.2 (50) 50 / 50	22.3 (50) 100 50 / 50	21.0 (50) 95 50 / 50	20.2 (50) 91 50 / 50
7	22.7 (50) 50 / 50	22.2 (50) 98 50 / 50	21.5 (50) 95 50 / 50	20.6 (50) 91 50 / 50
8	23.2 (50) 50 / 50	22.4 (50) 97 50 / 50	21.5 (50) 93 50 / 50	21.1 (50) 91 50 / 50
9	23.3 (50) 50 / 50	23.0 (50) 99 50 / 50	22.2 (50) 95 50 / 50	21.4 (50) 92 50 / 50
10	23.9 (50) 50 / 50	23.5 (50) 98 50 / 50	22.5 (50) 94 50 / 50	21.8 (50) 91 50 / 50
11	24.1 (50) 50 / 50	23.4 (50) 97 50 / 50	22.6 (50) 94 50 / 50	21.8 (50) 90 50 / 50
12	24.1 (50) 50 / 50	23.5 (50) 98 50 / 50	22.8 (50) 95 50 / 50	22.0 (50) 91 50 / 50
13	24.7 (50) 50 / 50	23.8 (50) 96 50 / 50	23.3 (50) 94 50 / 50	22.3 (50) 90 50 / 50
14	24.9 (50) 50 / 50	24.0 (50) 96 50 / 50	23.2 (50) 93 50 / 50	22.4 (50) 90 50 / 50
18	26.0 (50) 50 / 50	25.1 (50) 97 50 / 50	24.2 (50) 93 50 / 50	23.3 (50) 90 50 / 50
22	27.3 (50) 50 / 50	25.8 (50) 95 50 / 50	24.7 (50) 90 50 / 50	23.7 (50) 87 50 / 50
26	28.6 (50) 50 / 50	26.5 (50) 93 50 / 50	25.5 (50) 89 50 / 50	24.4 (50) 85 50 / 50
30	29.7 (50) 50 / 50	27.1 (50) 91 50 / 50	25.5 (50) 86 50 / 50	24.5 (50) 82 50 / 50
34	30.5 (50) 50 / 50	27.6 (50) 90 50 / 50	26.1 (50) 86 50 / 50	24.6 (50) 81 50 / 50
38	31.3 (50) 50 / 50	28.3 (50) 90 50 / 50	26.7 (50) 85 50 / 50	25.1 (50) 80 50 / 50
42	31.8 (50) 50 / 50	28.6 (50) 90 50 / 50	27.1 (50) 85 50 / 50	25.3 (50) 80 50 / 50
46	32.6 (49)49/50	29.6 (50) 91 50 / 50	26.8 (50) 82 50 / 50	25.7 (50) 79 50 / 50
50	33.2(49)49/50	29.7(49) 89 49/50	27.6 (50) 83 50 / 50	25.9 (49) 78 49 / 50
54	33.8(48) 48 / 50	30.0(49) 89 49/50	27.4 (50) 81 50 / 50	26.0 (49) 77 49 / 50
58	33.8 (48) 48/50	29.7(49) 88 49 / 50	27.3 (49) 81 49 / 50	25.7(49) 76 49 / 50
62	33.4 (48) 48/50	30.4 (49) 91 49/50	27.2 (49) 81 49 / 50	25.6 (49) 77 49 / 50
66	34.5 (48) 48/50	31.3 (48) 91 48/50	27.9 (49) 81 49 / 50	26.1 (48) 76 48 / 50
70	35.1 (48) 48/50	31.8 (48) 91 48 / 50	28.3 (49) 81 49 / 50	25.7 (48) 73 48 / 50
74	35.5 (48) 48/50	32.1 (46) 90 46 / 50	28.3 (48) 80 48 / 50	25.5 (47) 72 47 / 50
78	35.4 (47)47/50	32.1 (45) 91 45 / 50	28.4 (46) 80 46 / 50	25.4 (46) 72 46 / 50
82	35.7 (41) 41 / 50	32.5 (43) 91 43 / 50	29.1 (45) 82 45 / 50	24.7(45) 69 45 / 50
86	35.6 (39) 39/50	32.0(42) 90 42 / 50	28.7 (42) 81 42 / 50	24.0(44) 67 44 / 50
90	34.7(39) 39 / 50	31.6 (40) 91 40 / 50	28.7(39) 83 39/50	23.7 (43) 68 43 / 50
94	34.2 (36) 36 / 50	31.3 (36) 92 36 / 50	28.6 (34) 84 34 / 50	23.6 (40) 69 40 / 50
98	34.0 (35) 35/50	31.3 (33) 92 33 / 50	28.4(33) 84 33 / 50	23.5 (40) 69 40 / 50
102	33.4 (30) 30 / 50	32.0 (30) 96 30 / 50	28.5 (28) 85 28 / 50	23.5(35) 70 35 / 50
104	35.8(24)24/50	31.5(29) 88 29/50	29.3 (28) 82 28 / 50	23.9 (34) 67 34 / 50
	< > : No.of effecti	ve animals. (): No.of measured a	nimals, Av.Wt.:Averaged body	weight (Unit:g).

TABLE 3WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control			500 ppm					200	2000 ppm			
Week on Study	Av. WC.	No. of Surviv.	Av. WC.	% of cont. 50>	No. of Surviv.	Av. WC.	% of cont. 50>	No. of Surviv.	Av. WC. <	% of cont. 50>	No. of Surviv.		
1	4.7 (47)	50 / 50	4.4 (50)	94	50 / 50	3.4 (50)	72	50 / 50	2.3 (50)	49	50 / 50		
2	4.7 (43)	50 / 50	4.8(44)	102	50 / 50	3.7 (50)	79	50 / 50	2.7 (50)	57	50 / 50		
3	4.4 (44)	50 / 50	4.9(48)	111	50 / 50	3.8(50)	86	50 / 50	2.7 (50)	61	50 / 50		
4	4.6 (47)	50 / 50	4.5(48)	98	50 / 50	3.5 (50)	76	50 / 50	2.8 (50)	61	50 / 50		
5	4.5 (48)	50 / 50	4.0(50)	89	50 / 50	3.4 (50)	76	50 / 50	2.7 (50)	60	50 / 50		
6	4.8(46)	50 / 50	4.6(49)	96	50 / 50	3.8(50)	79	50 / 50	3.2 (50)	67	50 / 50		
7	4.4 (49)	50 / 50	4.1(50)	93	50 / 50	3.5 (50)	80	50 / 50	3.0 (50)	68	50 / 50		
8	4.5(44)	50 / 50	4.3 (47)	96	50 / 50	3.6(49)	80	50 / 50	3.0 (50)	67	50 / 50		
9	4.6 (46)	50 / 50	4.2(48)	91	50 / 50	3.4 (48)	74	50 / 50	3.2(50)	70	50 / 50		
10	4.8 (50)	50 / 50	4.5(48)	94	50 / 50	3.6 (50)	75	50 / 50	3.1 (50)	65	50 / 50		
11	4.3 (49)	50 / 50	4.0(49)	93	50 / 50	3.5 (50)	81	50 / 50	2.9(50)	67	50 / 50		
12	4.2(50)	50 / 50	4.1 (50)	98	50 / 50	3.4 (50)	81	50 / 50	2.9 (50)	69	50 / 50		
13	4.4 (49)	50 / 50	4.1(50)	93	50 / 50	3.6(49)	82	50 / 50	3.0(50)	68	50 / 50		
14	4.3 (43)	50 / 50	4.1(49)	95	50 / 50	3.3(49)	77	50 / 50	3.0 (50)	70	50 / 50		
18	3.8(50)	50 / 50	3.6 (50)	95	50 / 50	3.2(50)	84	50 / 50	2.8 (50)	74	50 / 50		
22	3.7 (50)	50 / 50	3.4(50)	92	50 / 50	3.0(50)	81	50 / 50	2.7(50)	73	50 / 50		
26	3.7 (50)	50 / 50	3.5 (50)	95	50 / 50	3.1 (50)	84	50 / 50	2.7(50)	73	50 / 50		
30	3.7 (50)	50 / 50	3.5 (50)	95	50 / 50	3.0 (50)	81	50 / 50	2.8(50)	76	50 / 50		
34	4.0 (50)	50 / 50	3.6 (50)	90	50 / 50	3.2(50)	80	50 / 50	2.9 (50)	73	50 / 50		
38	4.1 (50)	50 / 50	3.9 (50)	95	50 / 50	3.3 (50)	80	50 / 50	3.0 (50)	73	50 / 50		
42	4.1(50)	50 / 50	3.7(49)	90	49 / 50	3.3 (50)	80	50 / 50	3.1(49)	76	49 / 50		
46	4.1 (50)	50 / 50	3.7 (49)	90	49 / 50	3.4(50)	83	50 / 50	3.2(49)	78	49 / 50		
50	3.9 (50)	50 / 50	3.7(49)	95	49 / 50	3.3 (50)	85	50 / 50	3.0(49)	77	49 / 50		
54	4.0(50)	50 / 50	3.6(49)	90	49 / 50	3.3 (50)	83	50 / 50	3.1 (49)	78	49 / 50		
58	4.0 (50)	50 / 50	3.9(48)	97	48 / 50	3.5 (50)	88	50 / 50	3.1 (49)	78	49 / 50		
62	4.1 (50)	50 / 50	3.4(48)	83	48 / 50	3.4(49)	83	49 / 50	3.1(49)	76	49 / 50		
66	4.2(50)	50 / 50	3.7(47)	88	47 / 50	3.5(49)	83	49 / 50	3.4 (49)	81	49 / 50		
70	4.4 (50)	50 / 50	3.9(46)	89	46 / 50	3.6(49)	82	49 / 50	3.5 (49)	80	49 / 50		
74	4.4 (50)	50 / 50	3.8(46)	86	46 / 50	3.6(49)	82	49 / 50	3.4 (49)	77	49 / 50		
78	4.5 (50)	50 / 50	4.0(45)	89	45 / 50	3.7(49)	82	49 / 50	3.4 (47)	76	48 / 50		
82	4.6(48)	48 / 50	4.0(44)	87	44 / 50	3.7(49)	80	49 / 50	3.5 (48)	76	48 / 50		
86	4.4 (47)	48 / 50	3.9(43)	89	43 / 50	3.6(49)	82	49 / 50	3.3 (47)	75	47 / 50		
90	4.5 (45)	47 / 50	4.2(42)	93	43 / 50	3.9(48)	87	48 / 50	3.6(43)	80	43 / 50		
94	4.2(43)	45 / 50	4.0(40)	95	41 / 50	3.9(47)	93	47 / 50	3.8(41)	90	41 / 50		
98	4.7(39)	41 / 50	4.0(40)	85	40 / 50	3.9(46)	83	46 / 50	3.9(40)	83	40 / 50		
102	4.8(38)	39 / 50	4.0(39)	83	39 / 50	4.1(42)	85	42 / 50	4.0(40)	83	40 / 50		
104	4.6 (36)	38 / 50	4.0 (38)	87	38 / 50	4.0 (41)	87	42 / 50	4.1 (38)	89	39 / 50		

)

TABLE 4WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control		100	0 ppm			200	0 ppm		4000) ppm	
Week on Study	Av. WC.	No. of Surviv.	Av. WC.	% of cont. 50>	No. of Surviv.	Av. V	WC.	% of cont. 50>	No. of Surviv.	Av. WC.	% of cont. 50>	No. of Surviv.
1	4.2(50)	50 / 50	3.3 (50)	79	50 / 50	2.2 ((50)	52	50 / 50	1.6 (50)	38	50 / 50
2	4.4 (49)	50 / 50	3.3 (49)	75	50 / 50	2.4 ((50)	55	50 / 50	1.8(50)	41	50 / 50
3	4.2 (50) 8	50 / 50	3.3 (50)	79	50 / 50	2.3 ((50)	55	50 / 50	1.8(50)	43	50 / 50
4	4.3 (50) 5	50 / 50	3.2(50)	74	50 / 50	2.4 ((50)	56	50 / 50	1.9(50)	44	50 / 50
5	4.2 (50) 8	50 / 50	3.1(50)	74	50 / 50	2.3 ((50)	55	50 / 50	1.9(50)	45	50 / 50
6	4.4 (50) 8	50 / 50	3.5 (50)	80	50 / 50	2.7 ((50)	61	50 / 50	2.1 (50)	48	50 / 50
7	4.2 (50) 8	50 / 50	3.4 (50)	81	50 / 50	2.6 ((50)	62	50 / 50	2.0 (50)	48	50 / 50
8	4.3 (50) 5	50 / 50	3.5(49)	81	50 / 50	2.6 ((50)	60	50 / 50	2.0 (50)	47	50 / 50
9	4.3 (50) 5	50 / 50	3.6 (50)	84	50 / 50	2.7 ((50)	63	50 / 50	2.1 (50)	49	50 / 50
10	4.2 (50) 8	50 / 50	3.5(49)	83	50 / 50	2.7 ((50)	64	50 / 50	2.0(50)	48	50 / 50
11	4.2 (50) 5	50 / 50	3.5 (50)	83	50 / 50	2.7 ((50)	64	50 / 50	2.2(50)	52	50 / 50
12	4.3 (50) 5	60 / 50	3.5 (50)	81	50 / 50	2.7 ((49)	63	50 / 50	2.2(50)	51	50 / 50
13	4.3 (48) 5	50 / 50	3.8(48)	88	50 / 50	2.9 ((50)	67	50 / 50	2.3 (50)	53	50 / 50
14	4.3 (50) 5	60 / 50	3.6 (50)	84	50 / 50	3.0 ((49)	70	50 / 50	2.2 (50)	51	50 / 50
18	4.1 (50) 5	60 / 50	3.4 (50)	83	50 / 50	2.7 ((50)	66	50 / 50	2.2(50)	54	50 / 50
22	4.1 (50) 5	60 / 50	3.3 (50)	80	50 / 50	2.7 ((49)	66	50 / 50	2.0(50)	49	50 / 50
26	4.0 (50)5	50 / 50	3.1 (50)	78	50 / 50	2.6 ((50)	65	50 / 50	2.0(50)	50	50 / 50
30	4.0 (50) 5	60 / 50	3.2 (50)	80	50 / 50	2.7 ((50)	68	50 / 50	2.2(50)	55	50 / 50
34	4.0 (50) 5	60 / 50	3.2 (50)	80	50 / 50	2.8 ((50)	70	50 / 50	2.2 (50)	55	50 / 50
38	3.9 (49) 5	60 / 50	3.2 (50)	82	50 / 50	2.6 ((50)	67	50 / 50	2.2(50)	56	50 / 50
42	3.9 (50) 5	60 / 50	3.2(49)	82	50 / 50	2.6 ((50)	67	50 / 50	2.2(50)	56	50 / 50
46	4.0(49)4	19 / 50	3.1 (50)	78	50 / 50	2.7 ((50)	68	50 / 50	2.3 (50)	58	50 / 50
50	4.0(49)4	9 / 50	3.2(49)	80	49 / 50	2.7 ((50)	68	50 / 50	2.3 (49)	58	49 / 50
54	3.9(48)4	8 / 50	3.0(49)	77	49 / 50	2.7 ((50)	69	50 / 50	2.2(49)	56	49 / 50
58	3.8(48)4	8 / 50	3.1(49)	82	49 / 50	2.6 ((49)	68	49 / 50	2.2(49)	58	49 / 50
62	3.9(48)4	8 / 50	3.0(49)	77	49 / 50	2.6 ((49)	67	49 / 50	2.3 (49)	59	49 / 50
66	3.9(48)4	8 / 50	3.0(48)	77	48 / 50	2.8 ((48)	72	49 / 50	2.4 (48)	62	48 / 50
70	3.7(48)4	8 / 50	3.0(48)	81	48 / 50	2.7 ((49)	73	49 / 50	2.3 (48)	62	48 / 50
74	3.9(48)4	8 / 50	3.0(46)	77	46 / 50	2.7 (48)	69	48 / 50	2.5 (47)	64	47 / 50
78	3.9(47)4	7 / 50	3.1(45)	79	45 / 50	2.8 ((46)	72	46 / 50	2.8(46)	72	46 / 50
82	4.1(41)4	1 / 50	3.2(43)	78	43 / 50	3.0 (45)	73	45 / 50	3.1 (45)	76	45 / 50
86	3.9 (39) 3	9 / 50	3.1 (42)	79	42 / 50	2.9 (42)	74	42 / 50	3.3(44)	85	44 / 50
90	4.0(39) 3	9 / 50	3.1(40)	78	40 / 50	3.1 (39)	78	39 / 50	3.4 (43)	85	43 / 50
94	4.1 (36) 3	6 / 50	3.5 (36)	85	36 / 50	3.5 (34)	85	34 / 50	4.0(40)	98	40 / 50
98	4.2 (35) 3	5 / 50	3.3 (33)	79	33 / 50	3.7 (33)	88	33 / 50	3.7(40)	88	40 / 50
102	4.1 (28) 3	0 / 50	3.5 (30)	85	30 / 50	3.8 (28)	93	28 / 50	3.8(35)	93	35 / 50
104	4.3 (21)2	4 / 50	3.3 (29)	77	29 / 50	4.1 (28)	95	28 / 50	3.8(33)	88	34 / 50
	< >: N	o of effect	ive animals. (): No.(fmeasu	red anima	als.	Av.W(:Averag	ed water consum	tion (Unit:g).

)

)

TABLE 5FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Cont	rol	500	ppm			100	0 ppm		200) ppm	
Week on Study	Av. FC.	No. of Surviv. >	Av. FC.	% of cont. 50>	No. of Surviv.	Av. F	°C. <	% of cont. 50>	No. of Surviv.	Av. FC.	% of cont. 50>	No. of Surviv.
1	3.7 (50)) 50 / 50	3.6 (50)	97	50 / 50	3.6 (50)	97	50 / 50	3.4 (50)	92	50 / 50
2	3.9 (50)) 50 / 50	3.8 (50)	97	50 / 50	3.8 (50)	97	50 / 50	3.7 (50)	95	50 / 50
3	3.9 (50)) 50 / 50	3.9 (50)	100	50 / 50	3.9 (50)	100	50 / 50	3.7 (50)	95	50 / 50
4	4.0 (50)) 50 / 50	4.0(50)	100	50 / 50	3.9 (50)	98	50 / 50	3.8 (50)	95	50 / 50
5	4.0 (50)) 50 / 50	3.9 (50)	97	50 / 50	3.9 (50)	98	50 / 50	3.8 (50)	95	50 / 50
6	4.1 (50)) 50 / 50	4.1 (50)	100	50 / 50	3.9 (50)	95	50 / 50	4.0(50)	98	50 / 50
7	4.1 (50)) 50 / 50	4.0 (50)	98	50 / 50	3.9 (50)	95	50 / 50	4.1 (50)	100	50 / 50
8	4.2 (50)) 50 / 50	4.1 (50)	98	50 / 50	4.1 (50)	98	50 / 50	4.0 (50)	95	50 / 50
9	4.2 (50)) 50 / 50	4.0 (50)	95	50 / 50	3.9 (50)	93	50 / 50	4.0 (50)	95	50 / 50
10	4.3 (50)) 50 / 50	4.1 (50)	95	50 / 50	4.1 (50)	95	50 / 50	4.1 (50)	95	50 / 50
11	4.2 (50)) 50 / 50	4.3 (49)	102	50 / 50	4.1 (50)	98	50 / 50	4.1 (50)	98	50 / 50
12	4.3 (50)) 50 / 50	4.3 (50)	100	50 / 50	4.2 (50)	98	50 / 50	4.1 (50)	95	50 / 50
13	4.2 (50)) 50 / 50	4.1 (50)	98	50 / 50	4.0 (50)	95	50 / 50	4.0 (50)	95	50 / 50
14	4.4 (50)) 50 / 50	4.3 (50)	98	50 / 50	4.2 (50)	95	50 / 50	4.1 (50)	93	50 / 50
18	4.4 (50)) 50 / 50	4.3(50)	98	50 / 50	4.2 (50)	95	50 / 50	4.1 (50)	93	50 / 50
22	4.5 (50)) 50 / 50	4.2(50)	93	50 / 50	4.2 (50)	93	50 / 50	4.1(50)	91	50 / 50
26	4.5 (50)) 50 / 50	4.3 (50)	96	50 / 50	4.2 (50)	93	50 / 50	4.0(50)	89	50 / 50
30	4.7 (50)) 50 / 50	4.3 (50)	91	50 / 50	4.2 (50)	89	50 / 50	3.9(50)	83	50 / 50
34	4.9 (50)) 50 / 50	4.6 (50)	94	50 / 50	4.5 (50)	92	50 / 50	4.3 (50)	88	50 / 50
38	5.0 (50)) 50 / 50	4.7(50)	94	50 / 50	4.6 (50)	92	50 / 50	4.3 (50)	86	50 / 50
42	4.9 (50)) 50 / 50	4.6(49)	94	49 / 50	4.6 (50)	94	50 / 50	4.4(49)	90	49 / 50
46	5.0 (50)) 50 / 50	4.6(49)	92	49 / 50	4.5 (50)	90	50 / 50	4.3 (49)	86	49 / 50
50	4.9 (50)) 50 / 50	4.8(49)	98	49 / 50	4.5 (50)	92	50 / 50	4.5(49)	92	49 / 50
54	5.0 (50)) 50 / 50	4.6(49)	92	49 / 50	4.5 (50)	90	50 / 50	4.3(49)	86	49 / 50
58	4.7 (50)) 50 / 50	4.3(48)	91	48 / 50	4.2 (50)	89	50 / 50	4.0(49)	85	49 / 50
62	4.6 (50)) 50 / 50	3.9(48)	85	48 / 50	4.2 (48)	91	49 / 50	4.0(49)	87	49 / 50
66	5.0 (50)) 50 / 50	4.6(47)	92	47 / 50	4.5 (49)	90	49 / 50	4.4 (49)	88	49 / 50
70	5.1 (50)) 50 / 50	4.8(46)	94	46 / 50	4.7 (49)	92	49 / 50	4.5 (49)	88	49 / 50
74	5.1 (50)) 50 / 50	4.7(46)	92	46 / 50	4.8 (49)	94	49 / 50	4.6(49)	90	49 / 50
78	5.1 (50)) 50 / 50	4.6(45)	90	45 / 50	4.6 (49)	90	49 / 50	4.3(48)	84	48 / 50
82	5.2 (48)) 48 / 50	4.8(44)	92	44 / 50	4.7 (49)	90	49 / 50	4.5 (48)	87	48 / 50
86	4.9 (48)) 48 / 50	4.7(43)	96	43 / 50	4.5 (49)	92	49 / 50	4.2(47)	86	47 / 50
90	5.1 (47)) 47 / 50	4.8(43)	94	43 / 50	4.6 (48)	90	48 / 50	4.3 (43)	84	43 / 50
94	5.0 (45)) 45 / 50	4.6(41)	92	41 / 50	4.5 (47)	90	47 / 50	3.9(41)	78	41 / 50
98	4.9 (41)) 41 / 50	4.5(40)	92	40 / 50	4.4 (46)	90	46 / 50	4.2(40)	86	40 / 50
102	5.0 (39)) 39 / 50	4.4 (39)	88	39 / 50	4.4 (42)	88	42 / 50	4.1(40)	82	40 / 50
104	4.8 (37)) 38 / 50	4.4 (38)	92	38 / 50	4.4 (42)	92	42 / 50	4.1 (39)	85	39 / 50

)

TABLE 6FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

	Control	1000 ppm	2000 ppm	4000 ppm
Week on Study	Av. FC. No. of Surviv. <50>	Av. FC. % of No. of cont. Surviv. <50>	Av. FC. % of No. of cont. Surviv. <50>	Av. FC. % of No. of cont. Surviv. <50>
1	3.0 (50) 50 / 50	3.1 (50) 103 50 / 50	2.8 (50) 93 50 / 50	2.2 (50) 73 50 / 50
2	3.4 (50) 50 / 50	3.3 (50) 97 50 / 50	3.1 (50) 91 50 / 50	3.1 (50) 91 50 / 50
3	3.4 (50) 50 / 50	3.4 (49) 100 50 / 50	3.2 (50) 94 50 / 50	3.1 (50) 91 50 / 50
4	3.5 (50) 50 / 50	3.4 (50) 97 50 / 50	3.2 (50) 91 50 / 50	2.9 (50) 83 50 / 50
5	3.4 (50) 50 / 50	3.3 (50) 97 50 / 50	3.2 (50) 94 50 / 50	3.0 (50) 88 50 / 50
6	3.5 (50) 50 / 50	3.5 (50) 100 50 / 50	3.4 (50) 97 50 / 50	3.1 (50) 89 50 / 50
7	3.7 (50) 50 / 50	3.5 (50) 95 50/50	3.4 (50) 92 50 / 50	3.2 (50) 86 50 / 50
8	3.7 (49) 50/50	3.6 (50) 97 50 / 50	3.3 (50) 89 50 / 50	3.2 (50) 86 50 / 50
9	3.7 (50) 50 / 50	3.7 (50) 100 50 / 50	3.5 (50) 95 50 / 50	3.3 (50) 89 50 / 50
10	3.7 (50) 50 / 50	3.7 (50) 100 50 / 50	3.5 (50) 95 50 / 50	3.2 (50) 86 50 / 50
11	3.7 (50) 50 / 50	3.7 (50) 100 50 / 50	3.6 (50) 97 50 / 50	3.3 (50) 89 50 / 50
12	3.7 (50) 50 / 50	3.7 (49) 100 50 / 50	3.6 (50) 97 50 / 50	3.3 (50) 89 50 / 50
13	3.8 (50) 50 / 50	3.8 (50) 100 50 / 50	3.7 (50) 97 50 / 50	3.4 (50) 89 50 / 50
14	3.9 (50) 50 / 50	3.8 (50) 97 50 / 50	3.8 (50) 97 50 / 50	3.5 (50) 90 50 / 50
18	4.0 (50) 50 / 50	3.9 (50) 98 50 / 50	3.8 (50) 95 50 / 50	3.5 (50) 88 50 / 50
22	4.0(50)50/50	3.8 (50) 95 50 / 50	3.7 (50) 93 50 / 50	3.4 (50) 85 50 / 50
26	4.1 (50) 50 / 50	4.0 (50) 98 50 / 50	3.8 (50) 93 50 / 50	3.6 (50) 88 50 / 50
30	4.0 (50) 50 / 50	3.8 (50) 95 50 / 50	3.6 (50) 90 50 / 50	3.4 (50) 85 50 / 50
34	4.1 (50) 50 / 50	3.9 (50) 95 50 / 50	3.8 (50) 93 50 / 50	3.6 (50) 88 50 / 50
38	4.2 (50) 50 / 50	4.0 (50) 95 50 / 50	3.9 (50) 93 50 / 50	3.6 (50) 86 50 / 50
42	4.0 (50) 50 / 50	3.9 (50) 98 50 / 50	3.7 (50) 93 50 / 50	3.5 (50) 88 50 / 50
46	4.0 (49) 49 / 50	4.0 (50) 100 50 / 50	3.7 (50) 93 50 / 50	3.5 (50) 88 50 / 50
50	4.1 (49) 49 / 50	3.8 (49) 93 49/50	3.6 (50) 88 50 / 50	3.4 (49) 83 49 / 50
54	4.1 (48) 48 / 50	3.7 (49) 90 49 / 50	3.5 (50) 85 50 / 50	3.3 (49) 80 49 / 50
58	3.8 (48) 48/50	3.4 (49) 89 49 / 50	3.2 (49) 84 49/50	3.1 (49) 82 49/50
62	3.8 (48) 48/50	3.5 (49) 92 49 / 50	3.3 (49) 87 49 / 50	3.1 (49) 82 49/50
66	4.1 (48) 48 / 50	3.7 (48) 90 48/50	3.5 (49) 85 49/50	3.4 (48) 83 48 / 50
70	4.2 (48) 48 / 50	3.9 (48) 93 48 / 50	3.7 (49) 88 49 / 50	3.4 (48) 81 48 / 50
74	4.1 (48) 48 / 50	3.9 (46) 95 46 / 50	3.6 (48) 88 48 / 50	3.4 (47) 83 47 / 50
78	4.0 (47)47/50	3.8 (45) 95 45 / 50	3.5 (46) 88 46 / 50	3.3 (46) 83 46 / 50
82	4.0(41)41/50	3.8 (43) 95 43 / 50	3.6 (45) 90 45 / 50	3.3 (45) 83 45 / 50
86	4.2 (39) 39 / 50	3.7 (42) 88 42 / 50	3.6 (42) 86 42 / 50	3.3 (44) 79 44 / 50
90	4.1 (39) 39 / 50	3.7 (40) 90 40 / 50	4.0 (39) 98 39 / 50	3.7 (43) 90 43 / 50
94	4.1 (36) 36 / 50	3.8 (36) 93 36 / 50	3.7 (34) 90 34 / 50	3.3 (40) 80 40 / 50
98	4.0 (35) 35 / 50	3.7 (33) 92 33 / 50	3.6 (33) 90 33 / 50	3.2 (40) 80 40 / 50
102	4.0 (30) 30 / 50	3.7 (30) 92 30 / 50	3.7 (28) 92 28/50	3.2 (35) 80 35 / 50
104	4.4 (24) 24 / 50	3.6 (29) 82 29 / 50	3.7 (28) 84 28 / 50	3.1 (34) 70 34 / 50
<u> </u>	< >: No.of effect	ive animals, (): No.of measure	ed animals, Av.FC.:Averaged	food consumption (Unit:g).

)

)

TABLE 7	INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION
	OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY
	OF <i>o</i> -PHENYLENEDIAMINE DIHYDROCHLORIDE

Time of mass occurrence (week)	0~13	14~26	$27 \sim 39$	$40{\sim}52$	$53 \sim 65$	$66 \sim 78$	$79 \sim 91$	92~104	0~104
External mass									
Control	0/50	0/50	0/50	0/50	0/50	0/50	0/49	2/47	2/50(1/12)
$500~{ m ppm}$	0/50	0/50	0/50	0/49	0/49	1/47	3/45	1/43	4/50(3/12)
1000 ppm	0/50	0/50	0/50	0/50	1/50	1/49	2/49	2/48	3/50(1/8)
2000 ppm	0/50	0/50	0/50	0/49	0/49	1/49	0/48	2/42	3/50(1/11)
Internal mass									
Control	0/50	1/50	1/50	1/50	1/50	6/50	10/49	10/47	15/50(5/12)
$500~{ m ppm}$	0/50	1/50	1/50	1/49	2/49	2/47	1/45	8/43	11/50(5/12)
$1000 \mathrm{~ppm}$	0/50	1/50	3/50	3/50	4/50	5/49	5/49	13/48	16/50(2/ 8)
2000 ppm	0/50	1/50	1/50	0/49	0/49	0/49	4/48	6/42	10/50(6/11)

No. of animals with mass / No. of surviving animals at the first week in each period. (No. of dead and moribund animals with mass / No. of dead and moribund animals)

)

)

TABLE 8INCIDENCES OF EXTERNAL AND INTERNAL MASSES IN CLINICAL OBSERVATION
OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Time of mass occ	currence (week)	0~13	$14 \sim 26$	27~39	$40 \sim 52$	53~65	66~78	79~91	92~104	0~104
External mas	S									
	Control	0/50	0/50	0/50	1/50	2/48	2/48	3/46	3/37	3/50(1/26)
	1000 ppm	0/50	0/50	0/50	0/50	0/49	0/48	0/45	0/37	0/50(0/21)
	2000 ppm	0/50	0/50	0/50	0/50	0/50	0/49	0/46	2/38	2/50(1/22)
	4000 ppm	0/50	0/50	0/50	0/50	1/49	2/48	2/46	2/41	4/50(4/16)
Internal mass	3									
	Control	0/50	0/50	0/50	0/50	0/48	4/48	6/46	6/37	11/50(8/26)
	1000 ppm	0/50	1/50	1/50	3/50	5/49	11/48	14/45	14/37	26/50(19/21)
	2000 ppm	0/50	0/50	0/50	0/50	3/50	10/49	17/46	20/38	31/50(18/22)
	4000 ppm	0/50	0/50	1/50	2/50	2/49	6/48	11/46	21/41	27/50(13/16)

No. of animals with mass / No. of surviving animals at the first week in each period.

(No. of dead and moribund animals with mass / No. of dead and moribund animals)

Group name	Control	500 ppm	1000 ppm	2000 ppm
No. of examined animals	36	38	42	39
Red blood cell (10 ⁶ / μ L)	9.60 ± 0.91	$9.59 ~\pm~ 1.28$	$9.43 ~\pm~ 1.92$	9.10 ± 0.84 **
Hemoglobin (g/dL)	13.8 ± 1.1	13.6 ± 1.5	13.5 ± 2.3	13.3 ± 1.2 **
MCV (fL)	$45.8~\pm~1.9$	45.3 ± 2.9	46.9 ± 6.3	46.9 ± 1.2 **
MCHC (g/dL)	31.5 ± 0.7	31.4 ± 1.0	31.1 ± 1.3	31.1 ± 0.6 **
Platelet ($10^3/\mu$ L)	1911 ± 411	1985 ± 418	$2084~\pm~470$	2279 ± 303 **
WBC ($10^3/\mu$ L)	4.47 ± 8.86	$2.96~\pm~1.61$	3.05 ± 2.90	2.00 ± 1.31 **
Differential WBC (%)				
N-Seg	30 ± 17	29 ± 13	36 ± 14	42 ± 17 **
Eosino	2 ± 1	2 ± 3	1 ± 1	1 ± 3 **
Mono	5 ± 3	5 ± 2	4 ± 2	3 ± 1 **

TABLE 9HEMATOLOGY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Mean \pm S.D.

)

)

*) Significant difference, p<0.05 (Test of Dunnett)

**) Significant difference, p<0.01 (Test of Dunnett)

TABLE 10HEMATOLOGY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Control	1000 ppm	2000 ppm	4000 ppm
No. of examined animals	22	27	25	28
Hemoglobin (g/dL)	14.1 ± 2.3	13.6 ± 1.7	12.9 ± 2.7	13.4 ± 1.2 **
MCV (fL)	45.7 ± 2.3	46.7 ± 2.8	47.4 ± 5.1	46.7 ± 2.1 **
MCHC (g/dL)	31.6 ± 1.1	31.5 ± 1.1	30.9 ± 1.6 *	30.7 ± 0.6 **
Platelet (10 ³ /µL)	$1210~\pm~273$	$1329 \ \pm \ 374$	$1399~\pm~453$	$1641 \pm 454 **$
Differential WBC (%)				
Eosino	3 ± 4	1 ± 1	1 ± 1 **	1 ± 1 **

Mean \pm S.D.

 $^{\ast)}$ Significant difference, p<0.05 (Test of Dunnett)

**) Significant difference, p<0.01 (Test of Dunnett)

Group name	Conti	rol	500	ppm		1000	ppm		200	0 p	opm	
No. of examined animals	37		ŧ	38		42	2			39		
Total protein (g/dL)	$5.1 \pm$	0.6	5.3	± 0.7		$5.3 \pm$	0.9		5.6	±	0.8	**
Albumin (g/dL)	2.9 ±	0.4	3.0	± 0.4		3.0 ±	0.5	*	3.2	±	0.3	**
Triglyceride (mg/dL)	$47 \pm$	27	41	± 24		41 ±	16		31	±	11	**
GPT (IU/L)	$49 \pm$	77	135	± 355		$178 \pm$	514	**	119	±	300	**
ALP (IU/L)	$124 \pm$	28	220	± 244	**	337 ±	396	**	279	±	182	**
CPK (IU/L)	$42 \pm$	13	47	± 20		$120 \pm$	337	*	84	Ŧ	129	**
Urea nitrogen (mg/dL)	$23.4 \pm$	9.4	22.8	± 3.3		28.4 ±	12.1	**	30.9	±	11.3	**
Sodium (mEq/L)	$152 \pm$	1	152	± 1		$152 \pm$	3		153	±	2	**
Potassium (mEq/L)	4.3 ±	0.4	4.1	± 0.3		$4.2 \pm$	0.4		4.0	±	0.4	**

TABLE 11BIOCHEMISTRY OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

 $Mean \pm S.D.$

)

)

^{*)} Significant difference, p<0.05 (Test of Dunnett)

**) Significant difference, p<0.01 (Test of Dunnett)

TABLE 12BIOCHEMISTRY OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

Group name	Cont	rol	1000	ppm		2000) ppm		4000) ppm	
No. of examined animals	23	}	2	27		2	26		1	31	
Total protein (g/dL)	5.5 ±	1.1	5.3 =	± 0.5		5.4	± 0.9		5.7	± 0.7	*
Albumin (g/dL)	2.9 ±	0.3	3.1 =	± 0.3		3.2	± 0.5	**	3.5	± 0.4	**
A/G Ratio	$1.3 \pm$	0.3	1.4 =	± 0.2		1.5	± 0.2		1.6	± 0.2	**
T·cholesterol (mg/dL)	$85 \pm$	37	93 =	± 37		133	± 81	**	169	± 74	**
Phospholipid (mg/dL)	$163 \pm$	61	177 =	± 53		244 :	± 116	**	286	± 104	**
GPT (IU/L)	40 ±	23	74 =	± 123		120	± 189		207	± 316	**
ALP (IU/L)	$171 \pm$	53	254 =	± 88	*	443	± 468	**	598	± 559	**
CPK (IU/L)	$73 \pm$	65	64 =	± 43		117 :	± 184		112	± 88	**
Urea nitrogen (mg/dL)	23.6 ±	24.3	24.5 =	± 10.6		27.5	± 11.9	**	30.7	± 13.9	**
Sodium (mEq/L)	$151 \pm$	2	151 =	± 2		152 :	± 3		155	± 4	**
Chloride (mEq/L)	$123 \pm$	3	123 =	± 4		124 :	± 5		126	± 4	**

Mean ± S.D.

*) Significant difference, p<0.05 (Test of Dunnett)

**) Significant difference, p<0.01 (Test of Dunnett)

Group	Grade	Control	500 ppm	1000 ppm	2000 ppm
Number of examined anim	mals	38	38	42	39
$_{ m pH}$	6.0	1	1	7	6
	6.5	6	19	28	25
	7.0	16	12	7	8
	7.5	14	6	0	0
	8.0	1	0	0	0
	8.5	0	0	0	0
	Chi square tes	st	*	**	**
Significant difference	:*:p<0.05	**:p<0.01			

TABLE 13URINALYSIS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

TABLE 14URINALYSIS OF FEMALE RATS IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

Group	Grade	Control	1000 ppm	2000 ppm	4000 ppm
Number of examined a	animals	27	29	28	34
$_{ m pH}$	6.0	1	2	9	25
	6.5	3	14	16	9
	7.0	6	8	3	0
	7.5	5	4	0	0
	8.0	10	1	0	0
	8.5	2	0	0	0
	Chi square tes	st	**	**	**
Protein	±	0	2	6	13
	+	9	9	10	16
	2+	16	16	11	4
	3+	2	2	1	1
	4+	0	0	0	0
	Chi square tes	st			**
	-				
Ketone body		3	2	3	13
	±	20	18	22	20
	+	4	7	1	1
	2+	0	2	2	0
	Chi square tes	st			**
Markey					
Significant differe	nce: *:p<0.05	** : p<0.01			

Group name	Control	500 ppm	1000 ppm	2000 ppm
No. of examined animals 37		38	42	39
Body weight (g)	48.1 ± 7.0	40.3 ± 5.3 **	35.1 ± 4.1 **	31.0 ± 2.6 **
Adrenals (g)	0.011 ± 0.003	0.010 ± 0.003	0.010 ± 0.003	0.009 ± 0.003
Adrenals (%)	0.023 ± 0.009	0.025 ± 0.008	$0.030 \pm 0.009 **$	0.031 ± 0.011 **
Testes (g)	0.219 ± 0.044	0.221 ± 0.051	0.204 ± 0.033	0.209 ± 0.030
Testes (%)	0.461 ± 0.094	$0.557 \pm 0.156 *$	0.586 ± 0.102 **	$0.679 \pm 0.109 **$
Heart (g)	0.232 ± 0.026	0.216 ± 0.018 **	0.210 ± 0.019 **	$0.197 \pm 0.021 **$
Heart (%)	0.495 ± 0.111	0.547 ± 0.094 *	$0.602 \pm 0.065 **$	$0.639 \pm 0.068 **$
Lungs (g)	0.238 ± 0.091	0.222 ± 0.046	0.208 ± 0.037 *	$0.195 \pm 0.027 $ **
Lungs (%)	0.504 ± 0.196	0.556 ± 0.114 *	0.600 ± 0.127 **	$0.637 \pm 0.128 **$
Kidneys (g)	0.964 ± 1.964	0.757 ± 0.893	$0.675 \ \pm \ 0.447 \ \ ^{*}$	0.765 ± 0.918
Kidneys (%)	2.119 ± 4.555	$1.925 \pm 2.408 *$	$1.932 \pm 1.234 $ **	$2.473 \pm 2.930 **$
Spleen (g)	0.092 ± 0.080	0.143 ± 0.210	0.169 ± 0.271	0.092 ± 0.112
Spleen (%)	0.199 ± 0.171	0.373 ± 0.584 *	0.506 ± 0.867 **	$0.298 \pm 0.365 *$
Liver (g)	1.792 ± 0.601	1.902 ± 0.633	2.092 ± 0.964	$1.872 \ \pm \ 0.504$
Liver (%)	3.919 ± 2.259	$4.945 \pm 2.625 $ **	6.162 ± 3.224 **	$6.115 \pm 1.984 $ **
Brain (g)	0.453 ± 0.017	0.456 ± 0.017	0.453 ± 0.020	0.453 ± 0.018
Brain (%)	0.967 ± 0.173	$1.151 \pm 0.157 **$	$1.308 \pm 0.156 **$	$1.470 \pm 0.127 **$
	0.567 ± 0.173 Mean \pm S.D. Significant difference	e, p<0.05 (Test of Dunne	tt)	1.470 ± 0.1

)

TABLE 15 ORGAN WEIGHTS OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE

**) Significant difference, p<0.01 (Test of Dunnett)

Group name	roup name Control		2000 ppm	4000 ppm
No. of examined animals	s 24	29	28	34
Body weight (g)	31.1 ± 3.4	$28.4~\pm~4.4$	$26.4~\pm~5.6$	** 21.5 ± 2.1 **
Adrenals (g)	0.013 ± 0.003	0.013 ± 0.004	0.012 ± 0.002	0.010 ± 0.002 **
Adrenals (%)	0.040 ± 0.009	0.045 ± 0.018	0.046 ± 0.009	0.049 ± 0.015 *
Ovaries (g)	0.097 ± 0.113	0.268 ± 0.866	0.052 ± 0.077	0.041 ± 0.037
Ovaries (%)	0.310 ± 0.383	0.893 ± 2.780	0.201 ± 0.268	0.193 ± 0.198
Heart (g)	0.183 ± 0.026	0.169 ± 0.031	0.158 ± 0.032	** 0.139 ± 0.025 **
Heart (%)	0.600 ± 0.129	0.597 ± 0.086	0.612 ± 0.136	0.649 ± 0.122
Lungs (g)	0.249 ± 0.243	0.197 ± 0.053	0.191 ± 0.028	0.173 ± 0.024 **
Lungs (%)	0.831 ± 0.904	0.700 ± 0.187	0.745 ± 0.157	* 0.810 ± 0.100 **
Kidneys (g)	0.501 ± 0.273	1.056 ± 2.744	2.107 ± 6.004	0.442 ± 0.338 **
Kidneys (%)	1.655 ± 0.992	$3.077 \pm 6.025 *$	5.634 ± 12.482	** 2.070 ± 1.574 **
Spleen (g)	0.169 ± 0.159	0.298 ± 0.672	0.168 ± 0.128	0.115 ± 0.178 **
Spleen (%)	0.576 ± 0.598	1.048 ± 2.384	0.642 ± 0.487	0.510 ± 0.734
Liver (g)	1.490 ± 0.300	1.580 ± 0.437	1.993 ± 1.208	2.024 ± 0.976
Liver (%)	4.891 ± 1.346	5.611 ± 1.529	7.834 ± 5.039	** 9.451 ± 4.632 **
Brain (g)	0.471 ± 0.021	0.466 ± 0.017	0.455 ± 0.025	* 0.443 ± 0.021 **
Brain (%)	1.533 ± 0.186	1.674 ± 0.231	1.775 ± 0.254	** 2.081 ± 0.225 **
M *) Si **) S	lean ± S.D. gnificant differenc	e, p<0.05 (Test of Dunner ce. p<0.01 (Test of Dunner	tt) ett)	

TABLE 16ORGAN WEIGHTS OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

)

TABLE 17INCIDENCES OF SELECTED LESIONS OF MALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

)

Group Number of examined animals		Control 50	500 ppm 50	1000 ppm 50	2000 ppm 50	Peto test	Cochran- Armitage
Organ	Grade of nonneoplasti	c					test
Findings	finding						
Nasal cavity Fosinon bilio chongo	1.1	91	95	95	26		
respiratory epithelium	1+ 9+	51	20	20	50 6		
respiratory epithenum	3+	. 1	1	0	3		
	Chi square test	t -	-	Ū.	**		
Respiratoty metaplasia:	1+	18	7	12	11		
olfactory epithelium	2+	0	0	1	0		
	Chi square test	;	*				
Lung							
Bronchiolar-alveolar adenom	าล	5	4	5	2		
Bronchiolar-alveolar carcino	ma	9	4	5	5		
	1110	v		v			
Stomach							
Hyperplasia:glandular stoma	ach 1+	6	1	0	1		
	3+	1	0	0	0		
	Chi square test			*			
Liver							
Acidophilic cell focus	1+	1	9	5	5		
•	2+	1	1	4	0		
	Chi square test	;	*				
	1.	0	F	C	7		
Basophilic cell focus	1+ 2+	2	5 0	0 2	7		
	3+	0	0	0	1		
	Chi square test	;	-	-	_		
		0	,	-	o *		1 1
Hemangioma		6 19	4	1	U ^ 95 **	↑ ↑	$\downarrow \downarrow$ $\uparrow \uparrow$
Hopotocellular adenoma 1)		12	20	04 ···· 19	50 ···· 10		11
1)+2)		18	29 *	39 **	38 **	1 1	↑ ↑
Gall bladder							
Hyperplasia	1+	0 ^{a)}	13	8 ^{b)}	8 ⁰		
	Chi square test	;	**	*	*		
Papillary adenoma		0	2	4	. 5*	ſ	ſ

Kidney	1,	0	0	0	0		
Hydronephrosis	1+	0	0	0	0		
	2+ 3+	4	1	2	3		
	4+	Ô	1	0	1		
	Chi square test	;	-	Ū	-		
Brain		01	0		10		
Mineralization	1+ Chi aguana taat	21	8 **	20	16		
	Chi square test	,			<u> </u>		
All site							
Hemangioma		7	5	3	1 *		ţ
Grade	1+: Slight 2	+: Moderate	e 3+: Marked	4+: Severe			
Significant difference	*:n<0.05 *:	* : n<0 01	Chi	square test for	non-neonlastic	lesion	
Significant unterence	· h -0.00	· h -0.01		hould am+ ++	for moor 1 1-	1001011	
			Fis.	ner's exact test	for neoplastic le	sion	
	î(↓):p<0 î	. ↓(↓ ↓):I	o<0.01 Pete	o or Cochran-Arr	nitage test for ne	oplastic les	ion
a): No. of examined animal is 46	3. b): No. of exam	nined anima	l is 49. c): 1	No. of examined a	animal is 47.		
The combined incidences ind	icate the tumor-	bearing ani	imals but not t	he tumors.			

TABLE 18INCIDENCES OF SELECTED LESIONS OF FEMALE MICE IN THE 2-YEAR
DRINKING WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

Group Number of examined animals		Control 50	1000 ppm 50	2000 ppm 50	4000 ppm 50	Peto test	Cochran- Armitage
Organ	Grade of nonneoplastic						test
Findings	finding						
Eosinophilic change: olfactory epithelium	1+ Chi square test	7	1	11	18 *		
Eosinophilic change: respiratory epithelium	1+ 2+	30 5	26 18	15 32	9 28		
respiratory optimetrum	3+ Chi square test	2	1 **	1 **	11 **		
Respiratory metaplasia : gland	1+ 2+	14 0	19 0	22 5	31 3		
	Chi square test			**	**		
Nasopharynx							
Eosinophilic change	1+	2	5	3	13		
	2+ Chi square test	1	0	0	0 **		
Lung Metastasis : liver tumor		2	3	5	2		
Lymph node Malianant lymphoma		99	16	6 **	3 **		11
			10	<u> </u>			<u> </u>
Spleen Extramedullary hematonoiesis	1+	14	5	10	9		
Extramedulary nematopolesis	2+	5	1	7	2		
	3+ Chi square test	1	1 *	2	4		
Liver Clear cell focus	1+	0	4	3	6		
Clear cen locus	2+	0	Ū Ū	0	0		
	3+	0	0	0	2		
	Chi square test				*		
Acidonhilic cell focus	1+	1	3	3	12		
	2+	õ	1	Ő	5		
	3+	0	0	0	1		
	4+	1	0	0	0		
	Chi square test						
Basophilic cell focus	1+	0	5	4	9		
-	2+	1	2	0	1		
	Chi square test				**		
Hepatocellular adenoma 1)		6	22 **	23 **	34 **	↑ ↑	↑ ↑
Hepatocellular carcinoma 2)		1	4	11 **	17 **	Ϋ́ Ύ	11
1)+2)		6	23 **	31 **	41 **	<u> </u>	<u> </u>
Gall bladdor							
Hyperplasia	1+	0	2	14	10		
	Chi square test			**	**		
Papillary adenoma		0	1	5 *	3		
Grade	1+: Slight	2+: Moderat	e 3+: Marked	4+: Severe			
Significant difference	*:p<0.05	**:p<0.01	Ch	i square test for	non-neoplastic	lesion	
-			Fis	her's exact test i	for neoplastic le	sion	
	↑(↓):p<0.05	$\uparrow \uparrow (\downarrow \downarrow):$	p<0.01 Pet	to or Cochran-Ar	mitage test for	neoplastic	e lesion
The combined incidences indica	te the tumor-bea	ring animal	<u>s but not the tu</u>	mors.			

Group		Control	1000 ppm	2000 ppm	4000 ppm	Peto	Cochran-
Number of examined animals	Cuada of	00	0	0		test	Armitage
Organ	Grade of						lest
Findings	finding						
Kidney							
Inflammatory polyp	1+	0	2	0	1		
	2+	2	2	2	2		
	3+	0	5	8	3		
	Chi square test			*			
Hydronenhrosis	1+	1	4	0	4		
11julonephilosis	2+	Ō	1	2	Ô		
	3+	1	7	11	7		
	Chi square test	·	*	**	*		
Bituitowr							
Hypernlasia	1+	5	8	3	4		
TTyperplasia	2+	6	2	1	Ô		
	3+	1	ō	Ô	Õ		
	Chi square test	-	v	Ū	*		
Adenoma		6	3	1	1		Ļ
Adrenal							
Spindle-cell hyperplasia	1+	23	18	17	36		
Spinule cen hyperplasia	2+	24	29	32	11		
	3+	0	0	1	0		
	Chi square test	· · · · ·	~	-	*		
Literus							
Endometrial stromal polyn		3	0	0	0		1
Histiocytic sarcoma		9	18	* 10	10		
All site							
Malignant lymphoma		23	17	7 **	4 **		↓ ↓
Grade	1+: Slight	2+: Modera	te 3+: Marked	4+: Severe			
Significant difference	*:n<0.05	** : n<0.01	Ch	i square test for	non-neonlastic	lesion	
Significant amerence	. h -0.00	. h -0.01	Fis	her's exact test	for neoplastic le	sion	
	↑(↓)∶p<0.05	$\uparrow \uparrow (\downarrow \downarrow):$	p<0.01 Pe	to or Cochran-A	rmitage test for	neoplasti	c lesion
The combined incidences indi	cate the tumor-be	aring animal	s but not the tu	mors.	-	-	
- HO VOID MORAN MORANDO MU							

)

TABLE 18INCIDENCES OF SELECTED LESIONS OF FEMALE MICE IN THE 2-YEAR DRINKING
WATER STUDY OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE (Continued)

TABLE 19 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1 MALE MICE

Organs	Tumors	No. of animals examined	No. of animals with bearing tumors	Incidence (%)	Min Max. (%)
liver	<u>i in de la de</u>	<1296>		*********	
	Hepatocellular adenoma 1)		231	17.8	4 - 34
	Hepatocellular carcinoma 2)		265	20.4	2 - 42
	Hepatoblastoma 3)		7	0.5	0-6
	2)+3)		267	20.6	2 - 46
	1)+2)+3)		456	35.2	8 - 72

27 carcinogenicity studies examined in Japan Bioassay Research Center were used.

Study No. : 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279 0285, 0297, 0319, 0329, 0343, 0348, 0366

TABLE 20 HISTORICAL CONTROL DATA OF SELECTED NEOPLASTIC LESIONS IN JAPAN BIOASSAY RESEARCH CENTER : Crj:BDF1 FEMALE MICE

Organs	Tumors	No. of animals examined	No. of animals with bearing tumors	Incidence (%)	Min Max. (%)
Liver		<1298>			
	Hepatocellular adenoma 1)		66	5.1	0 - 10
	Hepatocellular carcinoma 2)		32	2.5	0-8
	Hepatoblastoma 3)		0	0.0	0 - 0
	2)+3)		33	2.4	0-8
	1)+2)+3)		95	7.3	4 - 14

27 carcinogenicity studies examined in Japan Bioassay Research Center were used. Study No.: 0044, 0060, 0062, 0064, 0066, 0068, 0096, 0105, 0116, 0140, 0159, 0163, 0190, 0206, 0211, 0225, 0243, 0268, 0270, 0279 0285, 0297, 0319, 0329, 0343, 0348, 0366

		M	ale		Female			
Group	Control	500 ppm	1000 ppm	1000 ppm 2000 ppm		1000 ppm	1000 ppm 2000 ppm 4000	
Number of dead or moribund animals	12	12	8	11	26	21	22	16
No microscopical confirmation	0	1	1	0	0	0	1	0
Integumentary system lesion	0	0	0	1	0	0	0	0
Renal lesion	0	0	0	0	1	0	0	1
Urinary retention	1	1	0	1	0	0	0	0
Hydronephrosis	1	1	1	2	0	2	6	4
Tumor death \exists leukemia	3	4	1	3	14	8	1	1
subcutis	0	0	1	0	0	0	0	0
lung	0	0	0	0	0	0	1	0
spleen	1	1	0	0	1	1	0	0
salivary gland	0	0	1	0	0	0	0	0
small intestine	0	0	• 0	1	0	0	0	0
large intestine	0	0	0	0	0	1	0	0
liver	4	3	2	2	2	1	3	2
pancreas	1	0	0	0	0	0	0	0
pituitary	0	0	0	0	1	0	0	1
ovary				—	0	0	0	1
uterus					6	8	9	6
spinal cord	0	0	0	1	0	0	0	0
peripheral nerves	0	1	1	0	1	0	0	0
bone	1	0	0	0	0	0	0	0
peritoneum	0	0	0	0	0	0	1	0

TABLE 21CAUSE OF DEATH OF MICE IN THE 2-YEAR DRINKING WATER STUDY
OF o-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

FIGURES

- FIGURE 1 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 2 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 3 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE

)

)

- FIGURE 4 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 5 WATER CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 6 WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 7 FOOD CONSUMPTION CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE
- FIGURE 8 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o*-PHENYLENEDIAMINE DIHYDROCHLORIDE

FIGURE 1 SURVIVAL ANIMAL RATE OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* -PHENYLENEDIAMINE DIHYDROCHLORIDE

FIGURE 2 SURVIVAL ANIMAL RATE OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* -PHENYLENEDIAMINE DIHYDROCHLORIDE

FIGURE 3 BODY WEIGHT CHANGES OF MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* -PHENYLENEDIAMINE DIHYDROCHLORIDE

)

FIGURE 4 BODY WEIGHT CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* -PHENYLENEDIAMINE DIHYDROCHLORIDE

FIGURE 6 WATER CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* -PHENYLENEDIAMINE DIHYDROCHLORIDE

)

FIGURE 8 FOOD CONSUMPTION CHANGES OF FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF *o* • PHENYLENEDIAMINE DIHYDROCHLORIDE

PHOTOGRAPHS

PHOTOGRAPH 1	LIVER: HEPATOCELLULAR CARCINOMA, MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2334 (H&E)
PHOTOGRAPH 2	LIVER: HEPATOCELLULAR CARCINOMA, HIGH MAGNIFICATION OF PHOTOGRAPH 1
PHOTOGRAPH 3	LIVER: HEPATOCELLULAR ADENOMA, (ARROW) MOUSE, FEMALE, 2000 ppm, ANIMAL NO. 0372-2201 (H&E)
PHOTOGRAPH 4	LIVER: BASOPHILIC CELL FOCUS, (ARROW) MOUSE, MALE, 2000 ppm, ANIMAL NO. 0372-1309 (H&E)
PHOTOGRAPH 5	LIVER: ACIDOPHILIC CELL FOCUS, (ARROW) MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2323 (H&E)
PHOTOGRAPH 6	LIVER: CLEAR CELL FOCUS, (ARROW) MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2349 (H&E)
PHOTOGRAPH 7	GALL BLADDER: PAPILLARY ADENOMA, (ARROW: GALL BLADDER, ARROWHEAD: PAPILLARY ADENOMA) MOUSE, MALE, 2000 ppm, ANIMAL NO. 0372-1334 (H&E)
PHOTOGRAPH 8	GALL BLADDER: HYPERPLASIA, (ARROW) MOUSE, MALE, 2000 ppm, ANIMAL NO. 0372-1331 (H&E)
PHOTOGRAPH 9	NASAL CAVITY: EOSINOPHILIC CHANGE OF THE OLFACTORY EPITHELIUM, (ARROW) MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2302 (H&E)
PHOTOGRAPH 10	NASAL CAVITY: EOSINOPHILIC CHANGE OF THE RESPIRATORY EPITHELIUM, (ARROW) MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2320 (H&E)
PHOTOGRAPH 11	NASAL CAVITY: EOSINOPHILIC CHANGE OF THE GLAND, (ARROW) MOUSE, FEMALE, 4000 ppm, ANIMAL NO. 0372-2320 (H&E)
PHOTOGRAPH 12	KIDNEY: INFLAMMATORY POLYP,(ARROW) MOUSE, MALE, 2000 ppm, ANIMAL NO. 0372-1302 (H&E)

)

(Study No. 0372)

PHOTOGRAPH 1

 \bigcirc

PHOTOGRAPH 2

PHOTOGRAPH 3

PHOTOGRAPH 4

PHOTOGRAPH 5

PHOTOGRAPH 6

(Study No. 0372)

100 µ m

PHOTOGRAPH 7

PHOTOGRAPH 8

PHOTOGRAPH 9

PHOTOGRAPH 10

PHOTOGRAPH 11

PHOTOGRAPH 12